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Abstract

One of the fundamental difficulties in engineering design is the multiplicity of local solutions. This has triggered great

efforts to develop global search algorithms. Globality, however, often has a prohibitively high numerical cost for real

problems. A fixed cost local search, which sequentially becomes global is developed. Globalization is achieved by prob-

abilistic restart. A spatial probability of starting a local search is built based on past searches. An improved Nelder–

Mead algorithm makes the local optimizer. It accounts for variable bounds. It is additionally made more robust by

reinitializing degenerated simplexes. The resulting method, called Globalized Bounded Nelder–Mead (GBNM) algo-

rithm, is particularly adapted to tackle multimodal, discontinuous optimization problems, for which it is uncertain that

a global optimization can be afforded. Different strategies for restarting the local search are discussed. Numerical exper-

iments are given on analytical test functions and composite laminate design problems. The GBNM method compares

favorably to an evolutionary algorithm, both in terms of numerical cost and accuracy.

� 2004 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Complex engineering optimization problems are

characterized by calculation intensive system simula-

tions, difficulties in estimating sensitivities (when they

exist), the existence of design constraints, and a multi-

plicity of local solutions.

Acknowledging the last point, much research has

been devoted to global optimization (e.g., [1,2]). The
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high numerical cost of global optimizers has been at

the origin of subsequent efforts to speed up the search

either by adding problem specific knowledge to the

search, or by mixing efficient, local algorithms with glo-

bal algorithms. There are many ways in which local and

global searches can cooperate.

The simplest strategy is to link the searches in series,

meaning that, firstly, a global optimization of limited

cost is executed, the solution of which is refined by a lo-

cal search. An example of the serial hybrid is given in [3]

where simulated annealing, the global optimizer, is cou-

pled with a sequential quadratic programming and a

Nelder–Mead algorithm.

A large number of parallel local-global searches have

been proposed [1,4,5] and analyzed [6,7]. In these cases,

iterations of global and local algorithms are intertwined.
Ltd. All rights reserved.
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One can further classify parallel hybrids into those

where the local searches converge, and those where local

searches may be prematurely stopped. Memetic genetic

algorithms [8] and multistart methods (e.g., determinis-

tic restart in [9], random restarts in [10]) are examples

of the former. The latter are usually based on clustering

steps, where local searches approaching already ex-

plored regions of the design space are abandoned [6,11].

When considering a real engineering optimization

problem, a common situation is that the affordable total

number of analyses is limited, that the presence of spu-

rious local minima is unknown, and that it is uncertain

if it will be possible to complete as few as two local

searches. Nevertheless, achieving global results remains

an objective of the optimizer. This typically occurs when

dealing with an unknown function of less than 20 varia-

bles, for which one is willing to wait for about 1000

evaluations of the objective function. In such a case, a

local-global method based on restart is the safest strat-

egy because it can terminate in a short time (the length

of a single local search). The method described in this

article, the Globalized Bounded Nelder–Mead algorithm

(GBNM) is meant to be a black-box local-global

approach to real optimization problems. A restart pro-

cedure that uses an adaptive probability density keeps

a memory of past local searches. Limits on variables

are taken into account through projection. Finally,

GBNM can be applied to discontinuous (no gradient

information needed), non-convex functions, since the lo-

cal searches are based on a variant of the Nelder–Mead

algorithm [12]. Improvements to the Nelder–Mead algo-

rithm consist of simplex degeneracy detection and han-

dling through reinitialization.

This paper is structured as follows. The GBNM algo-

rithm is described in Section 2, and Section 3 reports

numerical experiments on analytical functions and com-

posite laminated plate design problems. In particular,

different strategies for restarting the improved Nelder–

Mead search are numerically discussed. The GBNM

algorithm is also compared to a steady-state evolution-

ary algorithm [2].
2. Globalization of a local search by probabilistic restart

Local optimizers can make up a global search when

repeatedly started from different points. The simplest re-

start methods initialize the search either from a regular

grid of points, or from randomly chosen points. In the

first case, one needs to know how many restarts will

be performed to calculate the size of the mesh. In the

other case, knowledge of past searches is not used, so

that the same local optima may be found several times,

costing vast unnecessary effort. In the current work, the

number of restarts is unknown beforehand because a

maximum number of analyses is imposed and the cost
of each local search is unknown. A grid method cannot

be applied here. Also, a memory of previous local

searches is kept by building a spacial probability density

of starting a search.

2.1. Probabilistic restart

The probability, p(x), of having sampled a point x is

described here by a Gaussian Parzen-windows approach

[13]. This method can be considered as a smoothed ver-

sion of the histograms techniques, the histograms being

centered at selected sampled points. The probability p(x)

is written,

pðxÞ ¼ 1

N

XN
i¼1

piðxÞ; ð1Þ

where N is the number of points already sampled, and pi
is the normal multidimensional probability density

function,

piðxÞ ¼
1

ð2pÞ
n
2ðdetðRÞÞ

1
2

� exp � 1

2
ðx� xiÞTR�1ðx� xiÞ

� �
; ð2Þ

n is the dimension (number of variables) and R the

covariance matrix,

R ¼

r2
1 0

. .
.

0 r2
n

2
664

3
775: ð3Þ

The variances, r2
j , are estimated by the relation,

r2
j ¼ a xmax

j � xmin
j


 �2
; ð4Þ

where a is a positive parameter that controls the length

of the Gaussians, and xmax
j and xmin

j are the bounds in

the jth direction. Note that, in order to keep the method

as simple and cost effective as possible, the variances are

kept constant. This strategy would have a cost in terms

of total number of analyses. The probability density is

such that
R1
�1 pðxÞdx ¼ 1, but since a bounded domain

X is considered, a bounded probability ~pðxÞ is

introduced,

~pðxÞ ¼ pðxÞ
M

; M ¼
Z

X
pðxÞdx; ð5Þ

so that
R

X ~pðxÞdx ¼ 1.

The probability density of sampling a new point,

/(x), is a probability density of not having sampled x

before. For its estimation we adopt the following

assumption: only the highest point xH of ~pðxÞ has a null

probability of being sampled at the next iteration. So,

the probability /(x) is calculated as,
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Fig. 1. Probability density functions.
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/ðxÞ ¼ H � ~pðxÞR
XðH � ~pðxÞÞdx ; H ¼ max

x2X
~pðxÞ: ð6Þ

Fig. 1 illustrates p(x), ~pðxÞ and H � ~pðxÞ, in a unidimen-

sional domain.

The maximization of / is not performed exactly,

firstly because of its numerical cost, and secondly, as will

be seen in Section 3.1, because it would be detrimental to

the search. Instead, Nr points are chosen randomly and

the point that maximizes / is selected to initiate the next

search. Note that, in order to maximize /, it is necessary
to calculate neither M (5) nor H (6): the maximum of /
is the minimum of p, so p only is calculated.

Three parameters influence the probability density p

and, consequently, the starting points: the points that

are kept for the probability calculation, p; the number

of random points used to maximize /, Nr; and the Gaus-

sians length parameter, a. Their setting is discussed in

the numerical results (Section 3.1).

The probabilistic restart procedure can be applied to

any local optimizer. In this case, an improved Nelder–

Mead algorithm is proposed.

2.2. An improved Nelder–Mead search

The original Nelder–Mead algorithm [12] and the

strategy for bounding variables are summarized in

Appendix A. The GBNM algorithm differs from the

Nelder–Mead method because of a set of restart options.

The purpose of the restarts is twofold.

Firstly, probabilistic restarts based on the density p

(Eq. (1)) aim at repeating local searches until a fixed to-

tal cost, Cmax has been reached. The probability of hav-

ing located a global optimum increases with the number

of probabilistic restarts. This is the ‘‘globalized’’ aspect

of the method. In the current implementation of prob-

abilistic restart, the size of the new simplex, a (defined

in Eq. (A.1)), is a uniform random variable taken be-

tween 2% and 10% of the smallest domain dimension.

Secondly, restarts are used to check and improve

convergence of the algorithm. The two-restart schemes

that are convergence related initialize a new simplex

from the current best vertex. The small and large test re-
starts use a small and large simplex of sizes as and al,

respectively (see Eq. (A.2)).

Convergence of the local Nelder–Mead searches is

estimated through three criteria, the small, flat or degen-

erate simplex tests. The simplex is small if

max
k¼1;...;nþ1

Xn
k¼1

xki
xmax
i � xmin

i

����
����

 !
< es1; ð7Þ

where xki is the ith component of the kth edge, xmin
i and

xmax
i are the bounds in the ith direction, and es1 is a ter-

mination tolerance. The simplex is flat if

jfH � fLj < es2; ð8Þ

where fH and fL are the highest and lowest objective

functions in the simplex, and es2 is a tolerance value.

The simplex is degenerated if it has collapsed into a sub-

space of the search domain. This is the most common

symptom of a failed Nelder–Mead search [14] because

the method cannot escape the subspace. More precisely,

a simplex is called degenerated here if it is neither small,

nor touches a variable bound, and one of the two fol-

lowing conditions is satisfied:

min
k¼1;n

kekk

max
k¼1;n

kekk < es3 or
det½e�Q
k
kekk < es4; ð9Þ

where ek is the kth edge, e is the edge matrix, kÆk repre-

sents the Euclidean norm, and es3 and es4 are small pos-

itive constants.

The linking of the three restarts and three conver-

gence tests in the GBNM algorithm is shown in Fig.

2. A memory of past convergence locations is kept,

thus preventing unnecessarily spending computations

on already analyzed points (third test, T3, in the flow

chart of Fig. 2). When the simplex is flat, a probabilis-

tic restart is performed (T4). A simplex which is degen-

erated induces a large test iteration (T8). When the

optimality of the convergence point is unsure, such

as a convergence on a variable bound where the sim-

plex has degenerated (T6), a small test, that stands

for an optimality check, is performed. If the small sim-

plex returns to the same convergence point, it is con-

sidered to be a local optimum. It should be

remembered that the Kuhn and Tucker conditions of

mathematical programming are not applicable to the

present non-differentiable framework. The tolerances

for small and degenerated simplices, es1 and [es3, es4],
respectively, may be difficult to tune, so that a simplex

which is becoming small may be tagged as degenerated

before. Thus, if a degeneration is detected twice con-

secutively at the same point, the point is taken as a

possible optimum, and a probabilistic restart is called.

Similarly, if a degeneration is detected after a small

test, this point is also saved as a possible optimum,

and a large test is ordered.
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Fig. 2. Restarts and convergence tests linking in GBNM.
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Once the GBNM algorithm terminates, the list of

possible local (eventually global) optima makes the re-

sults of the search. In practice, the calculation of many
local or global optima is a benefit of the method in com-

parison with global optimizers that provide a single

solution (e.g., evolutionary algorithms). Finally, it
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should be noted that, in order to find all the local opti-

ma, the number of restarts should be larger or equal to

the number of local optima. Typically, more restars are

required because searches started at different points may

converge to the same local solution.
3. Numerical results

In Section 3.1, the choice of GBNM parameters is

discussed. Results on an analytical function are given

in Section 3.2 and composite laminate design problems

are addressed in Sections 3.3 and 3.4. The GBNM meth-

od is compared to an evolutionary algorithm (EA). The

evolutionary algorithm [2] has a steady-state structure

[15] with real encoding, continuous crossover, and Gaus-

sian mutation of variance rmut
i ¼ ðxmax

i � xmin
i Þ2=16. For

fair comparisons, the parameters of the EA chosen for

each test are the ones that perform best in 100 independ-

ent trials among all combinations of population sizes (20

or 50), mutation probabilities (0.15 or 0.20) and crosso-

ver probabilities (0.4 or 0.5).

3.1. GBNM parameters choice

3.1.1. The Gaussians length parameter, a
In this work, a is set to 0.01, which means that one

standard deviation away from the Gaussian mean point

covers about 20% of the domain.

3.1.2. Points kept for the probability calculation

Three strategies have been compared in terms of

probability of not finding at least one local minimum,

Pnfm: the xi�s used in Eqs. (1) and (2) are (i) the starting

points, (ii) the starting and local convergence points, (iii)

all the points sampled during the search. One should

remember that local convergence points are never dupli-

cated (test T3 on Fig. 2). From preliminary tests, it has

been observed that strategy (iii) is memory and time con-

suming, with degraded performance with respect to

strategies (i) and (ii). For these reasons, it has not been

considered for further testing. Strategies (i) and (ii) are

tested with Nr varying from 1 to 1000, on three

functions,

f1ðx1; x2Þ ¼ 2þ 0:01ðx2 � x21Þ
2 þ ð1� x1Þ2 þ 2ð2� x2Þ2

þ sinð0:5x1Þ sinð0:7x2x1Þ
x1; x2 2 ½0; 5�;

f2ðx1; x2Þ ¼ 4� 2:1x21 þ 1
3
x41

� �
x21 þ x1x2 þ ð�4þ 4x22Þx22

x1; x2 2 ½�3; 3�;
f3ðx1; x2Þ ¼ x2 � 5:1

4p2 x
2
1 þ 5

p x1 � 6
� �2
þ10 1� 1

8p

� �
cosðx1Þ þ 10

x1 2 ½�5; 10�; x2 2 ½0; 15�;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ
f1 has 4 local minima, f2 6, and f3 3 (see Fig. 3). f2 is

known as the Six Humps Camel Back function and f3
as the Branin�s rcos function. For the first and the sec-

ond strategies, results after 500 analysis and based on

1000 independents runs are presented in Tables 1 and

2, respectively. The second strategy performs best, inde-

pendently of Nr. It shows that the starting and local con-

vergence points efficiently summarize the topology of the

basins of attraction. This scheme is chosen to update p.

3.1.3. Number of random points, Nr
If Nr is equal to 1, the reinitialization is random. If Nr

is large, the initial points are distributed based on the

initial and convergence points of past searches, which in-

duces a regular grid-like pattern. Setting Nr to a small

number, larger than 1, gives a biased-random reinitiali-

zation. It should be seen as a compromise between the

grid and the random strategies. Optimum value of Nr de-

pends on the test function: if the basins of attraction are

regularly distributed, restarts following a regular pattern

(i.e., Nr large) are optimal, and vice versa. From the tests

results on the three multimodal functions presented in

Table 2, the optimal strategy is Nr large for f1 and f3,

while it is Nr=2 for f2. Nr=10 is chosen as a compromise

for general function optimization.
3.2. Griewank�s function minimization

Consider the minimization of the Griewank�s test

function,

F ðx1; . . . ; xnÞ ¼
1

400n

Xn
i¼1

x2i �
Yn
i¼1

cos
xiffiffi
i

p
� �

;

xi 2 ½�1000; 1000�; ð11Þ

where the dimension is n=12 and the global minimum is

�1.0 at xi=0.0, i=1,n. This function has many local

minima. Fig. 4 shows it in the one-dimensional case

(n=1), x2 [�20,20]. Table 3 compares GBNM and the

best point in the population of an evolutionary algo-

rithm (EA) at 200, 1000, 5000 and 10,000 function calls.

Table 3 averages 100 independent runs where the start-

ing point of the GBNM is randomly selected. The fol-

lowing criterion is used to consider the EA has

convergedd to the global minimum:

1

n
kx̂� x�k < 1; ð12Þ

where x̂ is the best point found, and x* the global

minimum.

The main observation is that the GBNM method

finds, on average, better objective function values, with

a higher probability of finding the global minimum than

the EA does. The advantage of the GBNM method is

substantial at a low number of analyses, and slowly de-

creases as numerical cost grows.
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3.3. Buckling load maximization

Composite laminates are made of stacked layers

where each layer has oriented fibers melted in an iso-
Table 1

Probability Pnfm of not finding at least one of the local minima

(Cmax=500 analyses, 1000 runs, only the starting points are

kept for the probability density calculation)

Nr f1 f2 f3

1 (random restart) 0.96904 0.99679 0.49420

2 0.93201 0.99597 0.33697

3 0.92247 0.99549 0.27986

10 0.87097 0.99752 0.15167

20 0.82177 0.99876 0.14210

50 0.77436 0.99960 0.11170

1000 0.79485 0.99974 0.08178
tropic matrix (see sketch in Fig. 5). The design problems

addressed here aim at finding the optimal orientation of

the fibers within each layer i, hi, where hi is a continuous

variable bounded by 0� and 90�. The plates are analyzed
Table 2

Probability Pnfm of not finding at least one of the local minima

(Cmax=500 analyses, 1000 runs, starting and convergence

points are kept for the probability density calculation)

Nr f1 f2 f3

1 (random restart) 0.96904 0.99679 0.49420

2 0.93323 0.99444 0.29337

3 0.91236 0.99860 0.23685

10 0.84521 0.99862 0.09115

20 0.79950 0.99945 0.07130

50 0.74687 0.99971 0.04735

1000 0.71452 0.99982 0.02681
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using the classical lamination theory and an elastic linear

buckling model (see [16]).

Consider a simply supported carbon-epoxy square

plate, subjected to in-plane compressive loads Nx=Ny,

as shown in Fig. 5. The plate is balanced and symmetric

and has 32 layers, each of which are 0.125 mm thick.

The elastic material properties of the layers are

E1=115 GPa, E2=5 GPa, G12=5 GPa, m12=0.35. The

laminate is designed to maximize its buckling load (asso-
Table 3

Comparison of GBNM (Nr=10) and the best of an EA population on

200 analyses 1000 analyses

Minimum

function

value

Probability

of finding

the global

minimum

Minimum

function

value

Probabilit

of finding

the global

minimum

GBNM 19.321±26.709 0/100 �0.526±0.499 0/100

EA 36.497±15.537 0/100 4.861±1.920 0/100

xN

= fiber orientationθ

Fig. 5. Simply supported rectangular p
ciated to the most critical buckling mode). Since the

plate is balanced and symmetric, there are eight contin-

uous design variables, the ply orientations, which are

bounded between 0� and 90�. This problem has a unique

minimum, all plies oriented at 45�. Note also that the

outermost plies have more influence on the buckling

behavior than the innermost plies.

Table 4 compares GBNM and the evolutionary algo-

rithm (EA), showing the stacking sequences found, after

300, 500 and 1000 analyses based on 100 independents

runs. At 300 evaluations, the buckling load of the de-

signs proposed by GBNM and EA are equivalent. One

notices that the first local search of GBNM has not al-

ways converged at that point. A steady difference be-

tween GBNM and EA designs at 300 analyses can be

seen: GBNM, which is by nature a more oriented search,

converges faster on the more sensitive outerplies than

EA does, and vice versa on the innerplies. From 500

evaluations on, GBNM converges more accurately to

the optimum than EA does.

3.4. Composite plate longitudinal stiffness maximization

A 16-ply balanced and symmetric plate, made of

glass-epoxy, is to be designed by maximizing the longitu-

dinal stiffness Ex (see [17, p. 427]). The elastic proprieties

for the glass-epoxy layers are E1=45 GPa, E2=10 GPa,
Griewank�s function, 100 runs (average ± standard deviation)

5000 analyses 10,000 analyses

y Minimum

function

value

Probability

of finding

the global

minimum

Minimum

function

value

Probability

of finding

the global

minimum

�0.947±0.074 15/100 �0.982±0.024 30/100

0.090±0.096 2/100 �0.157±0.221 29/100

yN

a

a

late subjected to in plane loads.



Table 5

GBNM Ex maximization, 2000 analyses, 100 runs

Nr Average number of optima found Standard deviation

1 8.92 1.19

2 9.11 1.13

3 9.48 1.22

10 9.50 1.13

50 9.79 1.25

1000 10.03 1.41

Table 4

Buckling load maximization, 100 runs, Nr=10 (stacking sequence: average ± standard deviation)

300 analyses

GBNM [±45.04 ±44.97 ±45.02 ±45.38 ±45.38 ±44.97 ±43.28 ±49.65]s
Std. Dev. ±0.47 ±0.54 ±0.83 ±4.61 ±4.37 ±11.53 ±17.46 ±23.47

EA [±45.09 ±44.91 ±45.23 ±44.55 ±44.78 ±45.02 ±45.16 ±44.85]s
Std. Dev. ±1.75 ±1.96 ±2.67 ±3.00 ±3.66 ±5.19 ±8.80 ±15.69

500 analyses

GBNM [±45.01 ±45.03 ±45.00 ±45.08 ±45.04 ±44.97 ±45.05 ±45.18]s
Std. Dev. ±0.17 ±0.22 ±0.39 ±0.40 ±0.29 ±0.46 ±0.92 ±4.22

EA [±45.13 ±44.95 ±44.99 ±44.95 ±44.80 ±45.00 ±44.70 ±46.45]s
Std. Dev. ±1.09 ±1.28 ±1.61 ±1.90 ±2.22 ±3.22 ±4.49 ±11.30

1000 analyses

GBNM [±45.00 ±45.00 ±45.00 ±45.00 ±44.99 ±45.00 ±44.98 ±45.02]s
Std. Dev. ±0.02 ±0.02 ±0.03 ±0.05 ±0.04 ±0.06 ±0.15 ±0.44

EA [±44.96 ±44.98 ±44.96 ±45.07 ±44.99 ±44.92 ±45.13 ±45.27]s
Std. Dev. ±0.60 ±0.61 ±0.71 ±0.95 ±1.12 ±1.17 ±1.71 ±4.95

8 M.A. Luersen, R. Le Riche / Computers and Structures xxx (2004) xxx–xxx

ARTICLE IN PRESS
G12=4.5 GPa and m12=0.31. The plate is balanced and

symmetric, so there are four fiber orientations to be

found. This problem presents 16 local minima which

are all the combinations of the 0� and 90� orientations.
The global maximum has all plies oriented at 0�. This
example shows that local solutions exist for simple com-

posite laminate design problems.

Table 5 gives the average number of local optima

found after 2000 analyses based on 100 GBNM runs

as a function of Nr. The first starting point is chosen ran-

domly. One observes that the average number of optima

found grows with Nr. This is expected since the optima

are regularly distributed in the domain. Moreover, with-

in a budget of 2000 function evaluations, the global opti-

mum is always found because its basin of attraction is

the largest one.
4. Concluding remarks

A local/global optimization method based on prob-

abilistic restart has been presented. Local searches are

performed by an improved Nelder–Mead algorithm

where design variables can be bounded and some search

failure cases prevented. The method, called Globalized

and Bounded Nelder–Mead search, does not need sensi-

tivities and constructively uses computer resources up to

a given limit. It yields a list of candidate local optima,

which contain, with an increasing probability in terms

of computer time, global solutions.

The GBNM method is simple in its principles, and

the aforementionned features make it particularly useful

in an engineering design context. It has been found to

compare favorably to an evolutionary optimization

algorithm in terms of convergence speed, accuracy of re-

sults and ability to find local optima.
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Appendix A. A Nelder–Mead algorithm with bounded

variables

The Nelder–Mead method [12] is the most popular

direct search method for minimizing unconstrained real

functions. It is based on the comparison of function val-

ues at the n+1 vertices xi of a simplex. A simplex of size

a is initialized at x0 based on the rule (see [17]),

xi ¼ x0 þ pei þ
Xn
k¼1
k 6¼i

qek ; i ¼ 1; n; ðA:1Þ

where ei are the unit base vectors and

p ¼ a

n
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
þ n� 1


 �
;

q ¼ a

n
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
� 1


 �
:

ðA:2Þ
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Fig. 6. Nelder–Mead algorithm with bounded variables.
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The simplex vertices are changed through reflection,

expansion and contraction operations in order to find

an improving point (see Fig. 6). The algorithm termi-

nates when the vertices function values become similar,

which is measured with the inequality,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnþ1

i¼1

ðfi � �f Þ2

n

vuut < e; �f ¼ 1

nþ 1

Xnþ1

i¼1

fi; ðA:3Þ

where e is a small positive scalar. The cumulative effect

of the operations on the simplex is, roughly speaking,

to stretch the shape along the descent directions, and

to zoom around local optima. Two comments on the

properties of the algorithm are added. Firstly, the

Nelder–Mead algorithm may fail to converge to a local

optimum, which happens in particular when the simplex

collapses into a subspace. Secondly, the method may es-

cape a region that would be a basin of attraction for a

pointwise descent search if the simplex is large enough.
Ultimately, as the size of the simplex decreases, the algo-

rithm becomes local.

The original Nelder–Mead algorithm was conceived

for unbounded domain problems. With bounded varia-

bles, the points can leave the domain after either the

reflection or the expansion operation. It is straightfor-

ward to account for variables bounds by projection,

if ðxi < xmin
i Þ; xi ¼ xmin

i ;

if ðxi > xmax
i Þ; xi ¼ xmax

i :

(
ðA:4Þ

The flowchart of the Nelder–Mead method shown in

Fig. 6 differs from the original method only in the initial-

ization (Eq. (A.1)) and in the bounded variables. An

important side effect of accounting for the bounded var-

iables through projection is that it tends to make the

simplex collapse into the subspace of the saturated var-

iables. A specific convergence test, based on a small sim-

plex reinitialization at the point of convergence is then

required (see ‘‘small test’’ in Section 2.2).
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