
Building an RDMA-Capable Application with IB Verbs∗

Tarick Bedeir
Schlumberger
tbedeir@slb.com

August 21, 2010

Abstract

This paper explains the steps required to set up a connection between applications using InfiniBand
verbs such that they may exchange data. The RDMA Connection Manager is used to automate and
simplify the setup process. Sample code illustrates connection setup as well as data transfer using verbs’
send/receive semantics.

1 Basics

If you’re looking to build an application that uses InfiniBand natively, now would be a good time to ask
yourself if you wouldn’t be better off using one of InfiniBand’s upper-layer protocols (ULPs), such as IP-
over-IB/SDP or RDS, or, most obviously, MPI. Writing programs using the verbs library (libibverbs, but I’ll
refer to it as ibverbs) isn’t hard, but why reinvent the wheel?

My own reasons for choosing ibverbs rather than MPI or any of the available ULPs had to do with comparative
performance advantages over IPoIB and that my target applications are ill-suited to the MPI message-passing
model. MPI-2’s one-sided communication semantics would probably have worked, but for reasons irrelevant
to this discussion MPI is/was a non-starter anyway.

Before looking at the details of programming with ibverbs, we should cover some prerequisites. I strongly
recommend reading though the InfiniBand Trade Association’s introduction1 – chapters one and four in
particular (only thirteen pages!). I’m also going to assume that you’re comfortable programming in C, and
have at least passing familiarity with sockets, MPI, and networking in general.

Our goal is to connect two applications such that they can exchange data. With reliable, connection-oriented
sockets (i.e., SOCK_STREAM) , this involves setting up a listening socket on the server side, and connecting to
it from the client side. Once a connection is established, either side can call send() and recv() to transfer
data. This doesn’t change much with ibverbs, but things are done in a much more explicit manner. The
significant differences are:

1. You’re not limited to send() and recv(). Reading and writing directly from/to remote memory (i.e.,
RDMA) is enormously useful.

2. Everything is asynchronous. Requests are made and notification is received at some point in the future
that they have (or have not) completed.

3. At the application level, nothing is buffered. Receives have to be posted before sends. Memory used
for a send request cannot be modified until the request has completed.

∗Adapted from a series of blog posts at http://thegeekinthecorner.wordpress.com/
1Available at http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf

1

http://thegeekinthecorner.wordpress.com/
http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_Users.pdf

4. Memory used for send/receive operations has to be registered, which effectively “pins” it such that it
isn’t swapped out.

So in an InfiniBand world, how do we establish connections between applications? If you’ve read the IBTA’s
introduction you’ll know that the key components we need to set up are the queue pair (consisting of a send
queue and a receive queue on which we post send and receive operations, respectively) and the completion
queue, on which we receive notification that our operations have completed. Each side of a connection will
have a send-receive queue pair and a completion queue (but note that the mapping between an individual
send or receive queue and completion queues within any given application can be many-to-one). I’m going to
focus on the reliable, connected service (similar to TCP) for now. In a future paper I’ll explore the datagram
service.

Building queue pairs and connecting them to each other, such that operations posted on one side are executed
on the other, involves the following steps:

1. Create a protection domain (which associates queue pairs, completion queues, memory registrations,
etc.), a completion queue, and a send-receive queue pair.

2. Determine the queue pair’s address.

3. Communicate the address to the other node (through some out-of-band mechanism).

4. Transition the queue pair to the ready-to-receive (RTR) state and then the ready-to-send (RTS) state.

5. Post send, receive, etc. operations as appropriate.

Step four in particular isn’t very pleasant, so we’ll use a event-driven connection manager (CM) to connect
queue pairs, manage state transitions, and handle errors. We could use the InfiniBand Connection Manager
(ib cm), but the RDMA Connection Manager (available in librdmacm, and also known as the connection
manager abstraction2), uses a higher-level IP address/port number abstraction that should be familiar to
anyone who’s written a sockets program.

This gives us two distinct procedures, one for the passive (responder) side of the connection, and another
for the active (initiator) side:

Passive Side

1. Create an event channel so that we can receive rdmacm events, such as connection-request and
connection-established notifications.

2. Bind to an address.

3. Create a listener and return the port/address.

4. Wait for a connection request.

5. Create a protection domain, completion queue, and send-receive queue pair.

6. Accept the connection request.

7. Wait for the connection to be established.

8. Post operations as appropriate.

Active Side

1. Create an event channel so that we can receive rdmacm events, such as address-resolved, route-resolved,
and connection-established notifications.

2https://wiki.openfabrics.org/tiki-index.php?page=IB+and+RDMA+Communication+Managers

2

https://wiki.openfabrics.org/tiki-index.php?page=IB+and+RDMA+Communication+Managers

2. Create a connection identifier.

3. Resolve the peer’s address, which binds the connection identifier to a local RDMA device.

4. Create a protection domain, completion queue, and send-receive queue pair.

5. Resolve the route to the peer.

6. Connect.

7. Wait for the connection to be established.

8. Post operations as appropriate.

Both sides will share a fair amount of code – steps one, five, seven, and eight on the passive side are roughly
equivalent to steps one, four, seven, and eight on the active side. It may or may not be worth pointing
out that as with sockets once the connection has been established, both sides are peers. Making use of the
connection requires that we post operations on the queue pair. Receive operations are posted (unsurprisingly)
on the receive queue. On the send queue, we post send requests, RDMA read/write requests, and atomic
operation requests.

The next two sections will describe in detail the construction of two applications: one will act as the
passive/server side and the other will act as the active/client side. Once connected, the applications will
exchange a simple message and disconnect.

If you haven’t already, download and install the OpenFabrics software stack3. You’ll need it to build the
sample code provided in the next sections. Complete sample code, for both the passive side/server and the
active side/client, is available online4. It’s far from optimal, but I’ll talk more about optimization in later
papers.

2 Passive/Server Side

The previous section established the steps involved in setting up a connection on the passive side. Let’s now
examine them in detail. Since almost everything is handled asynchronously, we’ll structure our code as an
event-processing loop and a set of event handlers. First, the fundamentals:
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <uni s td . h>
#include <rdma/rdma cma . h>

#define TEST NZ(x) \
do { i f ((x)) d i e (" error : " #x " failed (returned non - zero). ") ; } while (0)

#define TEST Z(x) \
do { i f (! (x)) d i e (" error : " #x " failed (returned zero / null). ") ; } while (0)

stat ic void d ie (const char ∗ reason) ;

int main (int argc , char ∗∗ argv)
{

return 0 ;
}

void d ie (const char ∗ reason)
{

f p r i n t f (s tde r r , "%s\n" , reason) ;
e x i t (EXIT FAILURE) ;

}

Next, we set up an event channel, create an rdmacm ID (roughly analogous to a socket), bind it, and wait in
a loop for events (namely, connection requests and connection-established notifications). main() becomes:

3Available at http://http://www.openfabrics.org/
4https://sites.google.com/a/bedeir.com/home/basic-rdma-client-server.tar.gz?attredirects=0&d=1

3

http://http://www.openfabrics.org/
https://sites.google.com/a/bedeir.com/home/basic-rdma-client-server.tar.gz?attredirects=0&d=1

stat ic void on event (struct rdma cm event ∗ event) ;

int main (int argc , char ∗∗ argv)
{

struct sockaddr in addr ;
struct rdma cm event ∗ event = NULL;
struct rdma cm id ∗ l i s t e n e r = NULL;
struct rdma event channel ∗ ec = NULL;
u in t 16 t port = 0 ;

memset(&addr , 0 , s izeof (addr)) ;
addr . s i n f am i l y = AF INET ;

TEST Z(ec = rdma create event channe l ()) ;
TEST NZ(rdma create id (ec , &l i s t e n e r , NULL, RDMA PS TCP)) ;
TEST NZ(rdma bind addr (l i s t e n e r , (struct sockaddr ∗)&addr)) ;
TEST NZ(rdma l i s t en (l i s t e n e r , 1 0)) ; /∗ back log=10 i s arb i t ra ry ∗/

port = ntohs (rdma ge t s r c po r t (l i s t e n e r)) ;

p r i n t f (" listening on port %d .\ n" , port) ;

while (rdma get cm event (ec , &event) == 0) {
struct rdma cm event event copy ;

memcpy(&event copy , event , s izeof (∗ event)) ;
rdma ack cm event (event) ;

i f (on event(&event copy))
break ;

}

rdma dest roy id (l i s t e n e r) ;
rdma dest roy event channe l (ec) ;

return 0 ;
}

ec is a pointer to the rdmacm event channel. listener is a pointer to the rdmacm ID for our listener. We
specified RDMA_PS_TCP when creating it, which indicates that we want a connection-oriented, reliable queue
pair. RDMA_PS_UDP would indicate a connectionless, unreliable queue pair.

We then bind this ID to a socket address. By setting the port, addr.sin_port, to zero, we instruct rdmacm
to pick an available port. We’ve also indicated that we want to listen for connections on any available RDMA
interface/device.

Our event loop gets an event from rdmacm, acknowledges the event, then processes it. Failing to acknowledge
events will result in rdma_destroy_id() blocking. The event handler for the passive side of the connection
is only interested in three events:
stat ic void on connec t r eque s t (struct rdma cm id ∗ id) ;
stat ic void on connect ion (void ∗ context) ;
stat ic void on d i s connec t (struct rdma cm id ∗ id) ;

int on event (struct rdma cm event ∗ event)
{

int r = 0 ;

i f (event−>event == RDMA CM EVENT CONNECT REQUEST)
r = on connec t r eque s t (event−>id) ;

else i f (event−>event == RDMA CM EVENT ESTABLISHED)
r = on connect ion (event−>id−>context) ;

else i f (event−>event == RDMA CM EVENT DISCONNECTED)
r = on d i s connec t (event−>id) ;

else
d ie (" on_event : unknown event .") ;

return r ;
}

rdmacm allows us to associate a void * context pointer with an ID. We’ll use this to attach a connection
context structure:
struct connect ion {

struct ibv qp ∗qp ;

4

struct ibv mr ∗ recv mr ;
struct ibv mr ∗ send mr ;

char ∗ r e c v r e g i on ;
char ∗ s end reg i on ;

} ;

This contains a pointer to the queue pair (redundant, but simplifies the code slightly), two buffers (one for
sends, the other for receives), and two memory regions (memory used for sends/receives has to be “registered”
with the verbs library). When we receive a connection request, we first build our verbs context if it hasn’t
already been built. Then, after building our connection context structure, we pre-post our receives (more
on this in a bit), and accept the connection request:
stat ic void bu i l d con t ex t (struct i bv contex t ∗verbs) ;
stat ic void bu i l d qp a t t r (struct i b v q p i n i t a t t r ∗ qp at t r) ;
stat ic void po s t r e c e i v e s (struct connect ion ∗conn) ;
stat ic void reg i s ter memory (struct connect ion ∗conn) ;

int on connec t r eque s t (struct rdma cm id ∗ id)
{

struct i b v q p i n i t a t t r qp a t t r ;
struct rdma conn param cm params ;
struct connect ion ∗conn ;

p r i n t f (" received connection request .\ n") ;

bu i l d con t ex t (id−>verbs) ;
bu i l d qp a t t r (&qp at t r) ;

TEST NZ(rdma create qp (id , s c tx−>pd , &qp at t r)) ;

id−>context = conn = (struct connect ion ∗) mal loc (s izeof (struct connect ion)) ;
conn−>qp = id−>qp ;

reg i s ter memory (conn) ;
p o s t r e c e i v e s (conn) ;

memset(&cm params , 0 , s izeof (cm params)) ;
TEST NZ(rdma accept (id , &cm params)) ;

return 0 ;
}

We postpone building the verbs context until we receive our first connection request because the rdmacm
listener ID isn’t necessarily bound to a specific RDMA device (and associated verbs context). However, the
first connection request we receive will have a valid verbs context structure at id->verbs. Building the verbs
context involves setting up a static context structure, creating a protection domain, creating a completion
queue, creating a completion channel, and starting a thread to pull completions from the queue:
struct context {

struct i bv contex t ∗ ctx ;
struct ibv pd ∗pd ;
struct i bv cq ∗cq ;
struct ibv comp channel ∗comp channel ;

pthread t c q p o l l e r t h r e a d ;
} ;

stat ic void ∗ po l l c q (void ∗) ;

stat ic struct context ∗ s c t x = NULL;

void bu i l d con t ex t (struct i bv contex t ∗verbs)
{

i f (s c t x) {
i f (s c tx−>ctx != verbs)

d i e (" cannot handle events in more than one context .") ;

return ;
}

s c t x = (struct context ∗) mal loc (s izeof (struct context)) ;

s c tx−>ctx = verbs ;

TEST Z(s ctx−>pd = ibv a l l o c pd (s c tx−>ctx)) ;

5

TEST Z(s ctx−>comp channel = ibv create comp channe l (s c tx−>ctx)) ;
TEST Z(s ctx−>cq = ibv c r e a t e c q (s c tx−>ctx , 10 , NULL, s c tx−>comp channel , 0)) ;
TEST NZ(i b v r e q n o t i f y c q (s c tx−>cq , 0)) ;

TEST NZ(pth r ead c r ea t e (&s ctx−>cq po l l e r t h r e ad , NULL, po l l c q , NULL)) ;
}

Using a completion channel allows us to block the poller thread waiting for completions. We create the
completion queue with cqe set to 10, indicating we want room for ten entries on the queue. This number
should be set large enough that the queue isn’t overrun.The poller waits on the channel, acknowledges the
completion, rearms the completion queue (with ibv_req_notify_cq()), then pulls events from the queue
until none are left:
stat ic void on complet ion (struct ibv wc ∗wc) ;

void ∗ po l l c q (void ∗ ctx)
{

struct i bv cq ∗cq ;
struct ibv wc wc ;

while (1) {
TEST NZ(i bv g e t c q ev en t (s c tx−>comp channel , &cq , &ctx)) ;
i bv a ck cq even t s (cq , 1) ;
TEST NZ(i b v r e q n o t i f y c q (cq , 0)) ;

while (i b v p o l l c q (cq , 1 , &wc))
on complet ion(&wc) ;

}

return NULL;
}

Back to our connection request. After building the verbs context, we have to initialize the queue pair
attributes structure:
void bu i l d qp a t t r (struct i b v q p i n i t a t t r ∗ qp at t r)
{

memset (qp attr , 0 , s izeof (∗ qp at t r)) ;

qp attr−>send cq = s ctx−>cq ;
qp attr−>r e cv cq = s ctx−>cq ;
qp attr−>qp type = IBV QPT RC;

qp attr−>cap . max send wr = 10 ;
qp attr−>cap . max recv wr = 10 ;
qp attr−>cap . max send sge = 1 ;
qp attr−>cap . max recv sge = 1 ;

}

We first zero out the structure, then set the attributes we care about. send_cq and recv_cq are the send and
receive completion queues, respectively. qp_type is set to indicate we want a reliable, connection-oriented
queue pair. The queue pair capabilities structure, qp_attr->cap, is used to negotiate minimum capabilities
with the verbs driver. Here we request ten pending sends and receives (at any one time in their respective
queues), and one scatter/gather element (SGE; effectively a memory location/size tuple) per send or receive
request. After building the queue pair initialization attributes, we call rdma_create_qp() to create the
queue pair. We then allocate memory for our connection context structure (struct connection), and
allocate/register memory for our send and receive operations:

const int BUFFER SIZE = 1024 ;

void reg i s ter memory (struct connect ion ∗conn)
{

conn−>s end reg i on = malloc (BUFFER SIZE) ;
conn−>r e c v r e g i on = malloc (BUFFER SIZE) ;

TEST Z(conn−>send mr = ibv reg mr (
s c tx−>pd ,
conn−>send reg ion ,
BUFFER SIZE ,
IBV ACCESS LOCAL WRITE | IBV ACCESS REMOTE WRITE)) ;

TEST Z(conn−>recv mr = ibv reg mr (
s c tx−>pd ,

6

conn−>r e cv r eg i on ,
BUFFER SIZE ,
IBV ACCESS LOCAL WRITE | IBV ACCESS REMOTE WRITE)) ;

}

Here we allocate two buffers, one for sends and the other for receives, then register them with verbs.We specify
we want local write and remote write access to these memory regions. The next step in our connection-request
event handler (which is getting rather long) is the pre-posting of receives. The reason it is necessary to post
receive work requests (WRs) before accepting the connection is that the underlying hardware won’t buffer
incoming messages – if a receive request has not been posted to the work queue, the incoming message is
rejected and the peer will receive a receiver-not-ready (RNR) error. I’ll discuss this further in another paper,
but for now it suffices to say that receives have to be posted before sends. We’ll enforce this by posting
receives before accepting the connection, and posting sends after the connection is established. Posting
receives requires that we build a receive work-request structure and then post it to the receive queue:
void po s t r e c e i v e s (struct connect ion ∗conn)
{

struct i bv r ecv wr wr , ∗bad wr = NULL;
struct i bv s g e sge ;

wr . wr id = (u i n t p t r t) conn ;
wr . next = NULL;
wr . s g l i s t = &sge ;
wr . num sge = 1 ;

sge . addr = (u i n t p t r t) conn−>r e c v r e g i on ;
sge . l ength = BUFFER SIZE ;
sge . lkey = conn−>recv mr−>l key ;

TEST NZ(i bv po s t r e c v (conn−>qp , &wr , &bad wr)) ;
}

The (arbitrary) wr_id field is used to store a connection context pointer. Finally, having done all this setup,
we’re ready to accept the connection request. This is accomplished with a call to rdma_accept().

The next event we need to handle is RDMA_CM_EVENT_ESTABLISHED, which indicates that a connection has
been established. This handler is simple – it merely posts a send work request:
int on connect ion (void ∗ context)
{

struct connect ion ∗conn = (struct connect ion ∗) context ;
struct ibv send wr wr , ∗bad wr = NULL;
struct i bv s g e sge ;

s np r i n t f (
conn−>send reg ion ,
BUFFER SIZE ,
" message from passive / server side with pid %d" ,
ge tp id ()) ;

p r i n t f (" connected . posting send ...\ n") ;

memset(&wr , 0 , s izeof (wr)) ;

wr . opcode = IBV WR SEND;
wr . s g l i s t = &sge ;
wr . num sge = 1 ;
wr . s e nd f l a g s = IBV SEND SIGNALED;

sge . addr = (u i n t p t r t) conn−>s end reg i on ;
sge . l ength = BUFFER SIZE ;
sge . lkey = conn−>send mr−>l key ;

TEST NZ(ibv po s t s end (conn−>qp , &wr , &bad wr)) ;

return 0 ;
}

This isn’t radically different from the code we used to post a receive, except that send requests specify
an opcode. Here, IBV_WR_SEND indicates a send request that must match a corresponding receive request
on the peer. Other options include RDMA write, RDMA read, and various atomic operations. Specifying
IBV_SEND_SIGNALED in wr.send_flags indicates that we want completion notification for this send request.

7

The last rdmacm event we want to handle is RDMA_CM_EVENT_DISCONNECTED, where we’ll perform some
cleanup:
int on d i s connec t (struct rdma cm id ∗ id)
{

struct connect ion ∗conn = (struct connect ion ∗) id−>context ;

p r i n t f (" peer disconnected .\ n") ;

rdma destroy qp (id) ;

ibv dereg mr (conn−>send mr) ;
ibv dereg mr (conn−>recv mr) ;

f r e e (conn−>s end reg i on) ;
f r e e (conn−>r e c v r e g i on) ;

f r e e (conn) ;

rdma dest roy id (id) ;

return 0 ;
}

All that’s left for us to do is handle completions pulled from the completion queue:
void on complet ion (struct ibv wc ∗wc)
{

i f (wc−>s t a tu s != IBV WC SUCCESS)
d i e (" on_completion : status is not IBV_WC_SUCCESS .") ;

i f (wc−>opcode & IBV WC RECV) {
struct connect ion ∗conn = (struct connect ion ∗) (u i n t p t r t)wc−>wr id ;

p r i n t f (" received message : %s\n" , conn−>r e c v r e g i on) ;

} else i f (wc−>opcode == IBV WC SEND) {
p r i n t f (" send completed successfully .\ n") ;

}
}

Recall that in post_receives() we set wr_id to the connection context structure. And that’s it! Building
is straightforward, but don’t forget -lrdmacm.

3 Active/Client Side

We’ve looked, in detail, at the passive side. We’ve also outlined the rough steps involved in setting up a
connection on the active side. Let’s now examine the active side in detail. Since the code is very similar, I’ll
focus on the differences.

On the command line, our client takes a server host name or IP address and a port number. We use
getaddrinfo() to translate these two parameters to struct sockaddr. This requires that we include a new
header file:
#include <netdb . h>

We also modify main() to determine the server’s address (using getaddrinfo()):
const int TIMEOUT IN MS = 500 ; /∗ ms ∗/

int main (int argc , char ∗∗ argv)
{

struct addr in fo ∗addr ;
struct rdma cm event ∗ event = NULL;
struct rdma cm id ∗conn= NULL;
struct rdma event channel ∗ ec = NULL;

i f (argc != 3)
d i e (" usage : client < server - address > < server - port >") ;

TEST NZ(ge taddr in f o (argv [1] , argv [2] , NULL, &addr)) ;

TEST Z(ec = rdma create event channe l ()) ;

8

TEST NZ(rdma create id (ec , &conn , NULL, RDMA PS TCP)) ;
TEST NZ(rdma reso lve addr (conn , NULL, addr−>a i addr , TIMEOUT IN MS)) ;

f r e e add r i n f o (addr) ;

while (rdma get cm event (ec , &event) == 0) {
struct rdma cm event event copy ;

memcpy(&event copy , event , s izeof (∗ event)) ;
rdma ack cm event (event) ;

i f (on event(&event copy))
break ;

}

rdma dest roy event channe l (ec) ;

return 0 ;
}

Whereas with sockets we’d establish a connection with a simple call to connect(), with rdmacm we have a
more elaborate connection process:

1. Create an ID with rdma_create_id().

2. Resolve the server’s address with rdma_resolve_addr(), passing a pointer to struct sockaddr.

3. Wait for the RDMA_CM_EVENT_ADDR_RESOLVED event, then call rdma_resolve_route() to resolve a
route to the server.

4. Wait for the RDMA_CM_EVENT_ROUTE_RESOLVED event, then call rdma_connect() to connect to the
server.

5. Wait for RDMA_CM_EVENT_ESTABLISHED, which indicates that the connection has been established.

main() starts this off by calling rdma_resolve_addr(), and the handlers for the subsequent events complete
the process:
stat ic int on addr r e so lved (struct rdma cm id ∗ id) ;
stat ic int on r ou t e r e s o l v ed (struct rdma cm id ∗ id) ;

int on event (struct rdma cm event ∗ event)
{

int r = 0 ;

i f (event−>event == RDMA CM EVENT ADDR RESOLVED)
r = on addr r e so lved (event−>id) ;

else i f (event−>event == RDMA CM EVENT ROUTE RESOLVED)
r = on rou t e r e s o l v ed (event−>id) ;

else i f (event−>event == RDMA CM EVENT ESTABLISHED)
r = on connect ion (event−>id−>context) ;

else i f (event−>event == RDMA CM EVENT DISCONNECTED)
r = on d i s connec t (event−>id) ;

else
d ie (" on_event : unknown event .") ;

return r ;
}

In our passive side code, on_connect_request() initialized struct connection and built the verbs con-
text. On the active side, this initialization happens as soon as we have a valid verbs context pointer – in
on_addr_resolved():
struct connect ion {

struct rdma cm id ∗ id ;
struct ibv qp ∗qp ;

struct ibv mr ∗ recv mr ;
struct ibv mr ∗ send mr ;

char ∗ r e c v r e g i on ;
char ∗ s end reg i on ;

9

int num completions ;
} ;

int on addr r e so lved (struct rdma cm id ∗ id)
{

struct i b v q p i n i t a t t r qp a t t r ;
struct connect ion ∗conn ;

p r i n t f (" address resolved .\ n") ;

bu i l d con t ex t (id−>verbs) ;
bu i l d qp a t t r (&qp at t r) ;

TEST NZ(rdma create qp (id , s c tx−>pd , &qp at t r)) ;

id−>context = conn = (struct connect ion ∗) mal loc (s izeof (struct connect ion)) ;

conn−>id = id ;
conn−>qp = id−>qp ;
conn−>num completions = 0 ;

reg i s ter memory (conn) ;
p o s t r e c e i v e s (conn) ;

TEST NZ(rdma re so lve route (id , TIMEOUT IN MS)) ;

return 0 ;
}

Note the num_completions field in struct connection: we’ll use it to keep track of the number of com-
pletions we’ve processed for this connection. The client will disconnect after processing two completions:
one send, and one receive. The next event we expect is RDMA_CM_EVENT_ROUTE_RESOLVED, where we call
rdma_connect():
int on r ou t e r e s o l v ed (struct rdma cm id ∗ id)
{

struct rdma conn param cm params ;

p r i n t f (" route resolved .\ n") ;

memset(&cm params , 0 , s izeof (cm params)) ;
TEST NZ(rdma connect (id , &cm params)) ;

return 0 ;
}

Our RDMA_CM_EVENT_ESTABLISHED handler also differs in that we’re sending a different message:
int on connect ion (void ∗ context)
{

struct connect ion ∗conn = (struct connect ion ∗) context ;
struct ibv send wr wr , ∗bad wr = NULL;
struct i bv s g e sge ;

s np r i n t f (
conn−>send reg ion ,
BUFFER SIZE ,
" message from active / client side with pid %d" ,
ge tp id ()) ;

p r i n t f (" connected . posting send ...\ n") ;

memset(&wr , 0 , s izeof (wr)) ;

wr . wr id = (u i n t p t r t) conn ;
wr . opcode = IBV WR SEND;
wr . s g l i s t = &sge ;
wr . num sge = 1 ;
wr . s e nd f l a g s = IBV SEND SIGNALED;

sge . addr = (u i n t p t r t) conn−>s end reg i on ;
sge . l ength = BUFFER SIZE ;
sge . lkey = conn−>send mr−>l key ;

TEST NZ(ibv po s t s end (conn−>qp , &wr , &bad wr)) ;

return 0 ;
}

10

Perhaps most importantly, our completion callback now counts the number of completions and disconnects
after two are processed:
void on complet ion (struct ibv wc ∗wc)
{

struct connect ion ∗conn = (struct connect ion ∗) (u i n t p t r t)wc−>wr id ;

i f (wc−>s t a tu s != IBV WC SUCCESS)
d i e (" on_completion : status is not IBV_WC_SUCCESS .") ;

i f (wc−>opcode & IBV WC RECV)
p r i n t f (" received message : %s\n" , conn−>r e c v r e g i on) ;

else i f (wc−>opcode == IBV WC SEND)
p r i n t f (" send completed successfully .\ n") ;

else
d ie (" on_completion : completion isn ’t a send or a receive .") ;

i f (++conn−>num completions == 2)
rdma disconnect (conn−>id) ;

}

Lastly, our RDMA_CM_EVENT_DISCONNECTED handler is modified to signal to the event loop in main() that it
should exit:
int on d i s connec t (struct rdma cm id ∗ id)
{

struct connect ion ∗conn = (struct connect ion ∗) id−>context ;

p r i n t f (" disconnected .\ n") ;

rdma destroy qp (id) ;

ibv dereg mr (conn−>send mr) ;
ibv dereg mr (conn−>recv mr) ;

f r e e (conn−>s end reg i on) ;
f r e e (conn−>r e c v r e g i on) ;

f r e e (conn) ;

rdma dest roy id (id) ;

return 1 ; /∗ e x i t event loop ∗/
}

This completes our active side/client application.

4 Conclusion

If you’ve managed to build everything properly, your output on the server side should look like the following:

$ /sbin/ifconfig ib0 | grep "inet addr"
inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0

$./server
listening on port 45267.
received connection request.
connected. posting send...
received message: message from active/client side with pid 29717
send completed successfully.
peer disconnected.

And on the client side:

$./client 192.168.0.1 45267
address resolved.
route resolved.

11

connected. posting send...
send completed successfully.
received message: message from passive/server side with pid 14943
disconnected.

The IP address passed to client is the IP address of the IPoIB interface on the server. As far as I can tell
it’s an rdmacm requirement that the struct sockaddr passed to rdma_resolve_addr() point to an IPoIB
interface.

So we now have a working pair of applications. The next paper in this series will look at reading and writing
directly from/to remote memory.

12

	Basics
	Passive/Server Side
	Active/Client Side
	Conclusion

