CAUI-4 Application Requirements

IEEE 100GNGOPTX Study Group

Ali Ghiasi

Broadcom Corporation

July 17, 2012

San Diego

List of Suporters

- Mike Li Altera
- Vasu Parthasrathy Broadcom
- Richard Mellitz Intel
- Ken Lusted Intel
- David Chalupsky Intel

Overview

- Alphabet soup
- 100 GbE I/O trend
- 10G CAUI application model
- Line card requirement
- Architectural implementation
- PCB reach
- Proposed CAUI-4
- Impact of CAUI-4 with higher loss budget

10 GbE Alphabet Soup

- We will be very lucky if 100 GbE can follow the same alphabet
 - CFP is 100 GbE equivalent Gen 1 (Xenpak)
 - CFP2 is 100 GbE equivalent Gen 1+ (XPAK)
 - CFP4 100 GbE equivalent Gen 2 (XFP)
 - QSFP28 100 GbE equivalent of Gen3 (SFP+)

100GbE I/O Trends

Reality Check and Market Requirement

- There is a clear need to define next generation chip to chip and chip to module interface CAUI-4 in 100GNGOPTX project
 - 10G CAUI had loss budget of 10.5 dB from chip to chip at Nyquist or 7.9 dB allocated to the host sufficient to support 8-16" PCB depending on the material
- OIF 28G-VSR is defined for chip to module applications where a gearbox is placed 100 mm away from the module
 - When the gearbox is integrated into the large switch ASIC then OIF 28G-VSR does not meet the reach requirement
- 100GNGOPTX project focus is development of PMDs and there is little interest to define more complex unretime cPPI-4 at this point
 - SFP+ took more than 3 years of development in a dedicated group but its fruit enabled definition of 40G/100G PPI interface in 802.3ba
- CAUI-4 interface will be more in line with OIF 28G-MR loss budget of 20 dB and need to support support
 - 250 mm of host PCB in chip to module applications with one connector
 - 300 mm of host PCB in chip to chip applications with one connector

10G CAUI Application Reference Diagrams

- 10G CAUI has 10.5 dB of loss at 5.15625 GHz supporting 250 mm of PCB
 - CL83A define chip to chip application
 - CL83B define chip to module application

Figure 83A-2—Definition of transmit and receive compliance points

Figure 83B-2—Chip-module loss budget at 5.15625 GHz

CAUI-4 Applications

- Chip to module applications supporting 250 mm
- Chip to chip applications supporting 300 mm

Current Retimed Applications with "CFP2"

 CFP2 is retimed interfaced works nicely with current silicon generation where Gearbox is placed 100 mm away from module

Sub-Optimum Retime Implementation

- If CAUI-4 loss budget is only 10 dB most switch/ASIC would require mid-span retimer!
 - 10G CAUI met these application without mid-span retimer

CAUI-4 Chip to Module Application Reference Model

CAUI-4 must support equivalent reach of the 10G CAUI which was 250 mm

Unretime Applications Diagram with QSFP28

- Follows SFP+/QSFP+ model of lower power and cost trend
 - 802.3bj is defining CR4 to support 100GBase-CR4
 - It is unlikely 100GNGOPTX will define cPPI-4 due to complexity and current focus of the group on the optical PMDs

The Crystal Ball is not so clear!

- Nicholl_01_1111 assumes 1st generation 100 GbE implementation where gearbox chip placed 100 mm from the module
 - 2nd and 3rd generation 100GbE implementations single ASIC will connect to 16-32 ports
 - Linecard chip to chip applications require 300 mm PCB plus one connector

4 port CFP

4 port 'XFP'

PCB Reach for Various Interfaces

- PCB loss estimate assumptions and tools for calculation
 - IEEE 803.bj spreadsheet http://www.ieee802.org/3/bj/public/tools/DkDf AlgebraicModel v2.02a.xlsm for N4000-13SI and Megtron-6 calculation
 - Rogers Corp impedance calculator (free download but require registration)
 https://www.rogerscorp.com/acm/technology/index.aspx for FR4-6 and N4000-13
 - Stripline ~ 50 Ω , trace width is 5 mils, and with ½ oz Cu
 - Surface roughness med per IEEE spreadsheet or 2.8 um RMS

FR4-6 DK=4.2 and DF=0.02, N4000-13 DK=3.6 and DF=0.014, N4000-13SI and Meg-6 per IEEE spreadsheet

- FR4-6 DK-4.2 and DF-0.02, N4000-13	DR=3.0 and Dr =	0.014, 144000-13	331 and Meg-	o per ille s	preausifeet	
Host Trace Length (in)	Total Loss (dB)	Host Loss(dB)	FR4-6	N4000-13	N4000-13SI	Megtron 6
Nominal PCB Loss/in at 5.15 GHz	N/A	N/A	1.00	0.79	0.56	0.43
Nominal PCB Loss/in at 12.89 GHz	N/A	N/A	2.00	1.60	1.25	0.92
CAUI Classic	10.5	7.9	7.9	10.0	14.1	18.4
PPI CL85A/86A with one connector & HCB#	6.5	4.37	4.4	5.5	7.8	10.2
OIF 28G-VSR with one connector & HCB*	10	6.8	3.4	4.3	5.4	7.4
802.3bj CL92A with one connector & HCB **	10	6.31	3.2	3.9	5.0	6.9
OIF 28G-SR with one connector & HCB*	15.4	12.2	6.1	7.6	9.8	13.3
OIF 28G-MR with one connector & HCB*	20	16.8	8.4	10.5	13.4	18.3

[#] Assumes connector loss is 0.87 dB, HCB loss is 1.26 dB, 0 dB allocated for via loss.

^{*} Assumes connector loss is 1.2 dB, HCB loss is 1.5 dB, 0.5 dB allocated for via at 12.89 GHz.

^{**} Assumes connector loss is 1.69 dB. HCB loss is 1.5 dB. 0.5 dB allocated for via at 12.89 GHz.

Proposed CAUI-4 Architecture and Reference Points

15

 Following 802.3 CL83A/B (CAUI) where common I/O supports chip to chip and chip to module

Host PCB Budget 20 dB

CAUI-4 Having 20 dB (MR) vs 10 dB (VSR) Loss Budget

- Transmitter architecture
 - 3 tap FFE with pre and post for both MR/VSR
- Transmit amplitude
 - VSR is 600 mV
 - MR is 800 mV
- Receiver architecture
 - VSR assumes adaptive CTLE with 0-8 dB peaking
 - MR would require CTLE + about 2 tap DFE
- Receiver sensitivity
 - VSR at chip ball is 100 mV when measured with software CTLE
 - MR at chip ball likely 100 mV but with CTLE+2DFE
- Back channel
 - VSR has no back channel and is a symmetrical interface
 - MR may require back channel and is a symmetrical interface
- Power dissipation of adding 2 tap DFE is less than 1 CMOS node.

Summary

- Next generation 100 GbE line cards and module require a harmonious retime interface comparable to 10G CAUI
 - Support chip to chip applications with one connector & 250 mm of PCB
 - Support chip to module applications with one connector & 250 mm of PCB
- OIF 28G-VSR is an interim solution for retime chip to module
 - Designed around 1st generation implementation with gearbox chip placed very close to the module therefore the 100 mm PCB reach is sufficient
 - Next generation Switch/ASIC with integrated 25G I/O require 250 mm of PCB reach, if one uses VSR it will require mid-span retimer
 - OIF VSR doesn't meet next generation chip to chip or chip to chip line card applications but severing very important market need right now
- 100GNGOPTX likely will not defining unretime cPPI-4 due to complexity of the interface and current group focus on optical PMDs
 - Longer term unretime cPPI-4 offers more flexible architecture with lower cost and power as we have seen with SFP+/QSFP+
- 802.3bj currently defining unretime CR4
 - Host PCB reach vs cable reach should be optimized based on cable-host trade off and commonality with retime interface should not be a factor.

Thank You