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Abstract— The work presented in this paper seeks (i) to correct
and generalize some previously published results regarding the
siphon control in PT-ordinary Petri nets, and subsequently (ii)
to employ this generalized framework in order to provide an
alternative explanation of the way in which certain methodolo-
gies, that have been proposed in the past, enforce the liveness of
a particular class of PT-ordinary Petri nets modelling resource
allocation. The derived characterizations provide a unifying
framework for analyzing and interpreting the aforementioned
methodologies, and also they reveal that approaches that have
been considered as disparate in the current literature, can
actually be “mixed” towards the development of an ever richer
set of liveness enforcing supervisory control policies for the
considered class of Petri nets.

Index Terms— sequential resource allocation systems, system
design and verification using Petri nets, deadlock resolution and
liveness enforcing supervision

I. I NTRODUCTION

The role and the significance of the structural object of
siphon for the deadlock and liveness analysis of many Petri
net (PN) classes are well-documented in the relevant literature,
e.g., [1], [2], [3], [4], [5], [6], [7]. Generally speaking,the
development of deadlock markings in any PN system, as
well as the non-liveness of a considerable number of PN
sub-classes, can be attributed to the insufficient marking of
some of the system siphons. In the particular case that the
considered net is PT-ordinary – i.e., the firing of any transition
requires at most one token from each of the net places –
the aforementioned insufficiently marked siphons areempty
siphons. Siphons that never empty during the evolution of the
net marking are said to becontrolled. Hence, for PT-ordinary
PN’s, ensuring that every siphon is controlled guarantees the
net deadlock-freedom, and, in certain cases, the net liveness.

The work presented in this paper seeks (i) to correct
and generalize some results regarding the siphon control
in PT-ordinary Petri nets, originally published in [8], and
subsequently (ii) to employ this generalized framework in
order to provide an alternative explanation of the way in
which certain methodologies, that have been proposed in the
past, enforce the liveness of a particular class of PT-ordinary
Petri nets modelling resource allocation. Beyond providing a
novel unifying framework for analyzing the aforementioned
methodologies, the presented results enable also their“mix-
ing” towards the development of an ever richer set of liveness
enforcing supervisory control policies for the consideredclass
of Petri nets.

The rest of the paper is organized as follows: Section II pro-
vides a brief introduction to the Petri net modelling framework,
presenting all the notation, concepts and results that are neces-
sary for the subsequent developments. Section III presentsour
generalization of the results developed in [8], which takesthe
form of some new sufficiency tests for assessing whether any
given siphon of a marked PN is controlled or not. The last part
of this section discusses also some problems with some of the
statements and derivations in [8], that were revealed by our
new developments. Section IV first establishes the generalizing
power of the results derived in Section III, by demonstrating
the ability of this set of results to analyze and interpret the
efficacy of a class of liveness enforcing supervisory control
policies, that have been developed for certain PT-ordinary
PN sub-classes where liveness is equivalent to the absence
of uncontrolled siphons, and are not covered by the results
presented in [8]. Subsequently, the last part of this section
briefly surveys the liveness enforcing supervisory control
policies studied in [8], and it discusses how the two classesof
policies addressed in this section, can actually be“mixed”
towards the development of an ever richer set of liveness
enforcing supervisory control policies for the consideredclass
of PT-ordinary Petri nets. Finally, Section V concludes the
paper and suggests directions for future work.

II. PETRI NET PRELIMINARIES

Petri net Definition A formal definition of the Petri net
model is as follows:

Definition 1: [9] A (marked) Petri net (PN)is defined by a
quadrupleN = (P, T,W, M0), where

• P is the set ofplaces,
• T is the set oftransitions,
• W : (P × T )∪ (T ×P ) → Z+

0 is theflow relation,1 and
• M0 : P → Z+

0 is the netinitial marking, assigning to
each placep ∈ P , M0(p) tokens.

The first three items in Definition 1 essentially define a
weighted bipartite digraphrepresenting the systemstructure
that governs its underlying dynamics. The last item defines the
systeminitial state. A conventional graphical representation of
the net structure and its marking depicts nodes corresponding
to places by empty circles, nodes corresponding to transitions
by bars, and the tokens located at the various places by small
filled circles. The flow relationW is depicted by directed

1In this work,Z+

0
denotes the set of nonnegative integers, andZ+ denotes

the set of strictly positive integers.
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edges that link every nodal pair for which the corresponding
W -value is non-zero. These edges point from the first node
of the corresponding pair to the second, and they are also
labelled – or,“weighed” – by the correspondingW -value. By
convention, absence of a label for any edge implies that the
correspondingW -value is equal to unity.

PN structure-related concepts and propertiesGiven a
transitiont ∈ T , the set of placesp for which (p, t) > 0 (resp.,
(t, p) > 0) is known as the set ofinput (resp.,output) places
of t. Similarly, given a placep ∈ P , the set of transitionst
for which (t, p) > 0 (resp.,(p, t) > 0) is known as the set of
input (resp.,output) transitions ofp. It is customary in the PN
literature to denote the set of input (resp., output) transitions
of a placep by •p (resp.,p•). Similarly, the set of input (resp.,
output) places of a transitiont is denoted by•t (resp.,t•). This
notation is also generalized to any set of places or transitions,
X, e.g.•X =

⋃

x∈X
•x.

The ordered setX =< x1 . . . xn > ∈ (P ∪ T )∗ is a path,
if and only if (iff ) xi+1 ∈ x•

i , i = 1, . . . , n − 1. Furthermore,
a pathX is characterized as acircuit iff x1 ≡ xn.

A PN with a flow relationW mapping onto{0, 1} is said
to beordinary. If only the restriction ofW to (P × T ) maps
on {0, 1}, the PN is said to bePT -ordinary. An ordinary PN
such that (s.t.)∀t ∈ T , |t•| = |•t| = 1, is characterized as a
state machine, while an ordinary PN s.t.∀p ∈ P , |p•| = |•p|
= 1, is characterized as amarked graph.

A PN is said to bepure if ∀(x, y) ∈ (P × T ) ∪ (T × P ),
W (x, y) > 0 ⇒ W (y, x) = 0. The flow relation of pure PN’s
can be represented by theflow matrixΘ = Θ+ − Θ− where
Θ+(p, t) = W (t, p) andΘ−(p, t) = W (p, t).

PN dynamics-related concepts and propertiesIn the PN
modelling framework, the system state is represented by the
net markingM , i.e., a function fromP to Z+

0 that assigns a
tokencontent to the various net places. The net markingM is
initialized to markingM0, introduced in Definition 1, and it
subsequently evolves through a set of rules summarized in the
concept oftransition firing. A concise characterization of this
concept has as follows: Given a markingM , a transitiont is
enabled iff for every placep ∈ •t, M(p) ≥ W (p, t), and this
is denoted byM [t〉. t ∈ T is said to bedisabledby a place
p ∈ •t at M iff M(p) < W (p, t). Furthermore, a placep ∈ P

for which there existst ∈ p• s.t.M(p) < W (p, t) is said to be
a disablingplace atM . Given a markingM , a transitiont can
be fired only if it is enabled inM , and firing such an enabled
transition t results in a new markingM ′, which is obtained
from M by removingW (p, t) tokens from each placep ∈
•t, and placingW (t, p′) tokens in each placep′ ∈ t•. For
pure PN’s, the marking evolution incurred by the firing of a
transitiont can be concisely expressed by thestate equation:

M ′ = M + Θ · 1t (1)

where 1t denotes the unit vector of dimensionality|T | and
with the unit element located at the component corresponding
to transitiont.

The set of markings reachable from the initial marking
M0 through anyfireable sequence of transitions is denoted
by R(N ,M0) and it is referred to as the netreachability
space. In the case of pure PN’s, a necessary condition for

M ∈ R(N ,M0) is that the following system of equations is
feasible inz:

M = M0 + Θz (2)

z ∈ (Z+
0 )|T | (3)

A PN N = (P, T,W,M0) is said to bebounded iff all
markings M ∈ R(N ,M0) are bounded.N is said to be
structurally bounded iffit is bounded for any initial marking
M0. N is said to bereversible iff M0 ∈ R(N ,M), for all
M ∈ R(N ,M0). A transition t ∈ T is said to belive iff for
all M ∈ R(N ,M0), there existsM ′ ∈ R(N ,M) s.t. M ′[t〉;
non-live transitions are said to bedead at those markings
M ∈ R(N ,M0) for which there is noM ′ ∈ R(N ,M)
s.t. M ′[t〉. PN N is quasi-live iff for all t ∈ T , there
existsM ∈ R(N ,M0) s.t. M [t〉; it is weakly live iff for all
M ∈ R(N ,M0), there existst ∈ T s.t. M [t〉; and it is live iff
for all t ∈ T , t is live. A markingM ∈ R(N ,M0) is a (total)
deadlock iff every t ∈ T is dead atM .

Siphons and their role in the interpretation of the PN
deadlock A siphon is a set of placesS ⊆ P such that•S ⊆
S•. A siphonS is minimal iff there exists no other siphonS′

s.t. S′ ⊂ S. A siphon S is said to beemptyat markingM

iff M(S) ≡
∑

p∈S M(p) = 0. S is said to bedeadly marked
at markingM , iff every transitiont ∈ •S is disabled by
some placep ∈ S. Clearly, empty siphons are deadly marked
siphons. It is easy to see that, ifS is a deadly marked siphon
at some markingM , then (i)∀t ∈ •S, t is a dead transition in
M , and (ii) ∀M ′ ∈ R(N ,M), S is deadly marked. The next
theorem connects total deadlocks arising in PN’s to deadly
marked siphons.

Theorem 1:[10] Given a deadlock markingM of a PN
N = (P, T,W,M0), the set of disabling placesS ⊆ P in M

constitutes a deadly marked siphon.
In PT-ordinary PN’s, disabling places are empty places.

Hence, an immediate corollary of Theorem 1 is as follows:
Corollary 1: Given a deadlock markingM of a PT-ordinary

PN N = (P, T,W , M0), the set of disabling placesS ⊆ P

in M constitutes an empty siphon.
Finally, as it was mentioned in the Introduction, a siphonS

is said to becontrolled, iff it never empties during the evolu-
tion of the net marking, i.e.,M(S) > 0, ∀M ∈ R(N ,M0).

PN semiflowsPN semiflows provide an analytical charac-
terization of various concepts ofinvarianceunderlying the net
dynamics. Generally, there are two types, p and t-semiflows,
with ap-semiflowformally defined as a|P |-dimensional vector
y satisfyingyT Θ = 0 and y ≥ 0, and at-semiflowformally
defined as a|T |-dimensional vectorx satisfyingΘx = 0 and
x ≥ 0. In the light of Equation 2, the invariance property
expressed by a p-semiflowy is that yT M = yT M0, for all
M ∈ R(N ,M0). Similarly, Equation 2 implies that for any
t-semiflowx, M = M0 + Θx = M0.

Given a p-semiflowy (resp., t-semiflowx) its support is
defined as‖y‖ = {p ∈ P | y(p) > 0} (resp.,‖x‖ = {t ∈
T | x(t) > 0}). A p-semiflowy (resp., t-semiflowx) is said
to beminimal iff there is no p-semiflowy′ (resp., t-semiflow
x′) s.t. ‖y′‖ ⊂ ‖y‖ (resp.,‖x′‖ ⊂ ‖x‖).

PN merging We conclude our general discussion on the
PN concepts and properties to be employed in the subsequent
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parts of this work, by introducing a merging operation of two
PN’s: Given two PN’sN1 = (P1, T1,W1,M01) and N2 =
(P2, T2,W2,M02) with T1∩T2 = ∅ andP1∩P2 = Q 6= ∅ s.t.
for all p ∈ Q, M01(p) = M02(p), the PNN resulting from
the mergingof the netsN1 andN2 through the place setQ,
is defined byN = (P1 ∪ P2, T1 ∪ T2,W1 ∪ W2,M0) with
M0(p) = M01(p), ∀p ∈ P1\P2; M0(p) = M02(p), ∀p ∈
P2\P1; M0(p) = M01(p) = M02(p), ∀p ∈ P1 ∩ P2.

III. I MPLICIT SIPHON CONTROL

In this section we develop some new tests for identifying
controlled siphons in any given marked PNN . As it was
mentioned in the introductory section, the results derivedin
this section generalize, but also correct, some results initially
developed in [8]. The following two concepts are instrumental
for the development of the proposed tests:

Definition 2: Consider a marked PNN = (P, T,W,M0)
and a vectorv ∈ <|P |, where< denotes the set of reals. Then,
for any markingM ∈ R(N ,M0), the generalized compound
markinggenerated byv, is defined by

GCM(M,v) =
∑

p∈P

v(p)M(p) = vT M (4)

The vectorv will be called thegeneratorof GCM(M,v).
Notice that in the particular case thatv(p) ∈ {0, 1}, ∀p ∈

P , a GCM(M,v) reduces to thecompound markingof the
place subsetP v defined by the support ofv. In the following,
P v will denote more generally the set of places corresponding
to non-zero elements ofv.

Definition 3: Consider a pure marked PN N =
(P, T,W ,M0) and a GCM generatorv ∈ <|P |. Then,
the net flow (vector)of v is defined by

NF (v) = vT Θ (5)

whereΘ denotes the flow matrix ofN .
Notice thatNF (v) is a |T |-dimensional row vector. Fur-

thermore, in the light of Equation 1, the components of
NF (v) have the following very intuitive interpretation:For
every transitiont ∈ T , NF (v; t) denotes the net change of
GCM(M,v) resulting by the firing of transitiont at M .

The next definition connects theGCM and NF concepts
to the concept of siphon.

Definition 4: Consider a siphonS of a pure marked PN
N = (P, T,W ,M0). Thecharacteristic vector2 of S is a |P |-
dimensional binary vectorλS such that

∀p ∈ P, λS(p) = 1 ⇐⇒ p ∈ S (6)

The characteristic vectorλS , of any given siphonS, can
be considered as aGCM generator withGCM(M,λS)
being equal to the token content of siphonS at markingM .
Furthermore, the components of the corresponding net flow
vectorNF (λS) express the net change incurred to the siphon
marking by the firing of any single transitiont ∈ T .

2In order to facilitate the interpretation of the results presented in [8] in
the context of the results presented in this work, we notice that this concept
corresponds to thecharacteristic P-vectordefined in [8].

Now we have all the necessary concepts in place in order
to state and prove the main result of this section; this is done
in the following theorem:

Theorem 2:Let S denote a siphon of apure marked PN
N = (P, T,W ,M0) such that

NF (λS) =

n
∑

i=1

aiNF (vi) (7)

wherevi, i = 1, . . . , n, areGCM generators ofN , andai ∈
<, ∀i. Then,

S is controlled in N ⇐⇒ λT
SM0 + G∗ > 0 (8)

where

G∗ = min
M∈R(N ,M0)

(M − M0)
T

n
∑

i=1

aiv
i (9)

Proof: Consider a markingM ∈ R(N ,M0). Then, there
exists a vectorz ∈ (Z+

0 )|T | such thatM = M0 + Θz (c.f.
Equations 2 and 3). Therefore,

M(S) =
∑

p∈S

M(p)

= λT
SM

= λT
SM0 + λT

SΘz

= λT
SM0 + NF (λS)z

= λT
SM0 + [

∑

i

aiNF (vi)]z

= λT
SM0 + [

∑

i

ai(v
i)T Θ]z

= λT
SM0 + [

∑

i

aiv
i]T Θz

= λT
SM0 + [

∑

i

aiv
i]T (M − M0)

= λT
SM0 + (M − M0)

T
∑

i

aiv
i (10)

Clearly, the right-hand-side of Equation 10 is minimized over
R(N ,M0) by G∗, and therefore,S will be controlled if and
only if the criterion of Equation 8 holds.

A siphon S controlled by means of the criterion of Theo-
rem 2 will be characterized as animplicitly controlled siphon.
The corresponding generator vectorsvi, i = 1, . . . , n, of
Equation 7, will be called thecontrolling generatorsof S. In
practice, the application of the criterion of Theorem 2 on any
siphonS with respect to any given set of generator vectors
{vi : i = 1, . . . , n} that satisfy Equation 7, is complicated
by the fact that the constraintM ∈ R(N ,M0) cannot be
represented easily – i.e., polynomially – by a set of linear
constraints. Yet, one can compromise for asufficiencytest by
relaxing the requirementM ∈ R(N ,M0) in Equation 9 to
that expressed by the state Equations 2 and 3. We state the
resulting criterion as a corollary.

Corollary 2: Let S denote a siphon of apure marked PN
N = (P, T,W ,M0) such that

NF (λS) =

n
∑

i=1

aiNF (vi) (11)
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wherevi, i = 1, . . . , n, areGCM generators ofN , andai ∈
<, ∀i. Also, let

G′ = min
(M,z)

(M − M0)
T

n
∑

i=1

aiv
i (12)

s.t.
M = M0 + Θz (13)

M ≥ 0, z ∈ (Z+
0 )|T | (14)

Then,

λT
SM0 + G′ > 0 =⇒ S is controlled in N (15)

Notice that the mathematical programming (MP) formula-
tion involved in the criterion of Corollary 2 is a Mixed Integer
Program (MIP), and therefore, it can be easily addressed
through commercial solvers (c.f. [11], for instance)3. Next
we present another criterion that is weaker than the criterion
of Corollary 2, but it reveals the connection of the presented
results to those derived in [8]. Furthermore, this new criterion
can be simpler, from a computational standpoint.

Corollary 3: Let S denote a siphon of apure marked PN
N = (P, T,W ,M0) such that

NF (λS) =

n
∑

i=1

aiNF (vi) (16)

wherevi, i = 1, . . . , n, areGCM generators ofN , andai ∈
<, ∀i. Also, for every i ∈ {1, . . . , n}, let GCM(vi) and
GCM(vi) respectively denote a lower and an upper bound of
GCM(M,vi), for all M such that

M = M0 + Θz (17)

M ≥ 0, z ∈ (Z+
0 )|T | (18)

Finally, let

G′′ =
∑

i:ai>0

ai[GCM(vi) − GCM(M0, v
i)] +

∑

i:ai<0

ai[GCM(vi) − GCM(M0, v
i)] (19)

Then,

λT
SM0 + G′′ > 0 =⇒ S is controlled in N (20)

Proof: Notice that

(M − M0)
T

∑

i

aiv
i =

∑

i

ai(M
T vi − MT

0 vi)

=
∑

i

ai[GCM(M,vi) −

GCM(M0, v
i)] (21)

3In fact, the integrality requirement forz can be further relaxed toz ≥
0, providing a test that is computationally easier, but also with diminished
resolution power, compared to the test of Corollary 2.

The definitions ofGCM(vi) andGCM(vi), when combined
with Equations 12-14, 17-19 and 21, imply that

G′ ≥ G′′ (22)

But then, the validity of Corollary 3 follows from Corollary2.

Beyond providing a sufficiency test for assessing whether
a given siphonS is implicitly controlled by a set ofGCM

generator vectors{vi : i = 1, . . . , n}, the result of Corollary 3
can also provide the basis for deploying a control mechanism
that will actively enforce the implicit control of siphonS by
some generator set{vi : i = 1, . . . , n}. Under this approach,
the upper and lower boundsGCM(vi) and GCM(vi), i =
1, . . . , n, are“design parameters”, and their values are chosen
such that they guarantee the condition of Equation 20. The
selected bounds can be subsequently enforced on the behavior
of the original net by the addition of appropriate“monitor
places”, according to the theory developed in [12], [13]. The
following result, established in [8], strengthens furtherthe
viability of such a control scheme, as it implies that the entire
set of siphons,S, of a pure marked PNN = (P, T,W,M0),
can be potentially controlled by a set of generators, and
corresponding control places, that are polynomially – in fact,
linearly – related to the size of the netN , where the latter is
expressed by|P |+ |T |; the implications of this possibility are
further explored in the next section.

Proposition 1: [8] Given a pure marked PNN =
(P, T,W,M0), the rank of the space of net flow vectors
NF (λS), corresponding to the net siphonsS, is bounded from
above bymin{|P |, |T |}.

We conclude this section by noticing that the result of
Corollary 3 subsumes the result of Theorem 1 in [8]. On the
other hand, Theorems 2 and Corollary 1 of [8] are erroneous,
because they fail to recognize properly the impact of the
second term in the right-hand-side of Equation 19. More
specifically, the analysis of [8] restricts the potential set of
GCM generators,{vi}, to the set of the siphon characteristic
vectors,{λS}, and then it makes the erroneous assumption
that, for any given PNN = (P, T,W,M0) and siphonS,
M0(S) = GCM(M0, λS) ≥ GCM(M,λS) = M(S), ∀M ∈
R(N ,M0). Clearly, if this assumption were true, the second
term in the right-hand-side of Equation 19 would be identically
zero for the considered set ofGCM generators; hence, [8]
systematically ignores this term in its derivations and the
presented results. But, while it happens that the aforestated
assumption is satisfied by the siphons that constitute the main
focus of attention in [8],4 the next example establishes that this
assumption is not generally true, and therefore, the disputed
term can have a significant impact even when the considered
set ofGCM generators is restricted to the set{λS}.

Example 1 Consider the marked PNN = (P, T,W,M0)
depicted in Figure 1. This net was shown in [5] to be
live and reversible. A minimal siphon ofN is S =
{p13, p23, r1, r2, r3}, with M0(S) = 4. Next, consider the
marking M of N with M(p10) = M(p11) = M(p12) =
M(p13) = M(r2) = 1, M(p20) = 4, and M(p) = 0 for

4and therefore, the results derived in Section VI of that paper remain correct
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Fig. 1. The Petri net considered in Example 1

every otherp ∈ P . It can be easily checked thatM =
M0[t10t11t12t10t11t10 >, and therefore,M ∈ R(N ,M0).
Furthermore, notice thatM(S) = 2. Finally, sinceN is
live and reversible,M0 ∈ R(N ,M). But then, the marked
PN N ′ = (P, T,W,M ′

0 ≡ M) constitutes a marked PN
that contains a siphonS for which maxM∈R(N ,M ′

0
) M(S) ≥

M0(S) > M ′
0(S), and establishes the fallacy of the aforemen-

tioned assumption of [8].�
In the next section it is shown that, while the siphon

control criteria of Corollaries 2 and 3 encompass all the
relevant results developed in [8], they can also support the
analysis and interpret the correctness of an additional set
of liveness enforcing supervisory control policies, that have
been developed for certain PT-ordinary PN sub-classes where
liveness is equivalent to the absence of uncontrolled siphons,
and are not covered by the results developed in [8]. Therefore,
it can be claimed that the results developed in this section
constitute a substantial generalization of the corresponding set
of results developed in [8].

IV. T HE ROLE OFIMPLICIT SIPHON CONTROL IN

ASSESSING AND ENFORCING THE LIVENESS OF

SEQUENTIAL RESOURCEALLOCATION SYSTEMS

Process-resource nets and theirES3PR sub-class In
this section, we shift attention to a particular PN sub-class
known asprocess-resourcenets. Process-resource nets have
been extensively used in the literature for modelling the
contest of concurrently executing processes for a finite set
of reusable resources; some general characterizations of these
nets and extensive studies of their properties can be found in
[4], [7], [10]. Generally speaking, these nets are obtainedby
merging a set of sub-nets modelling the sequential logic and
the resource allocation associated with the execution of their
process types, through the places modelling the availability of
the shared resources. The resulting net structure is depicted
in Figure 2: Tokens contained in placeii (resp.,ij) represent
process instances of typeJTi (resp.,JTj) waiting to initiate
execution, while tokens in placeoi (resp,oj) correspond to
completed processes. The firing of transitiontIi

(resp., tIj
)
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Fig. 2. The generic structure ofprocess-resourcenets

models the initiation of a new process instance of typeJTi

(resp.,JTj). Similarly, the firing of transitiontFi
(resp.,tFj

)
models the completion of a process instance of typeJTi

(resp.JTj). The part of the net between transitionstIi
and

tFi
(resp.,tIj

and tFj
) encodes the sequential logic applying

to the execution of any process instance of typeJTi (resp.,
JTj). Placesrl are“monitor” places modelling the availability
of the various resource types during the system operation.
Their connectivity to the rest of the network encodes the
resource requests posed by the various processing stages.
Finally, transitionst∗i and t∗j allow the repetitive execution
of the logic encoded by the corresponding process sub-nets,
by enabling the “re-circulation” of the tokens modelling the
relevant process instances. It is customary in the literature to
“collapse” the path< oi, t

∗
i , ii > to a single placep0i

that is
known as the“idle (state) place” of the corresponding process
sub-net.

A development that has been extremely useful in the past
studies of process-resource nets, is their classification in a
taxonomy based on (i) the specific structure of the involved
process sub-nets, and (ii) the structure of the restrictionof the
net flow relation,W , on (PR × T ) ∪ (T × PR), wherePR

denotes the set of resource placesrl. Following this practice,
in the following we focus on a particular class of process-
resource nets in which (i) the sequential logic governing the
execution of the various process types is characterized by
acyclic state machines, and (ii) W (rl, t) ∈ {0, 1}, ∀rl, t. The
first of the above restrictions implies that the considered sub-
class allows for choice – or“routing flexibility” , in the relevant
terminology – but it also requires that any activated process
remains a single atomic entity during its sojourn into the
system (i.e., no task parallelization is allowed). The second
restriction requires that resources from any particular type can
be acquired by a process only one unit at a time (however,
they can be accumulated and released in larger quantities).The
resulting process-resource net sub-class belongs to the class
of PT-ordinary PN’s and it is known as the class ofExtended
Simple Sequential Systems of Processes with Resources, or
more briefly, asES3PR nets [14]. A formal definition of
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ES3PR nets is as follows:
Definition 5: [14] Let IN = {1, 2, . . . ,m} be a finite set of

indices. A (well-marked) Extended Simple Sequential System
of Processes with Resources– or, more briefly, anES3P R

net– is a PT-ordinary marked PNN = (P, T,W,M0), where:
1) P = PS ∪ P0 ∪ PR is a partition such that

a) PS = ∪i∈IN
PSi

, with PSi
∩PSj

= ∅ for all i 6= j.
b) P0 = ∪i∈IN

{p0i
} (idle state places).

c) PR = {r1, r2, . . . , rn}, n > 0.
2) ∀i ∈ IN , the sub-netNi generated byPSi

∪ {p0i
} and

the transition subsetTi connected to these places, is a
strongly connected state machine, such that every cycle
contains placep0i

.
3) ∀rl ∈ PR, ∃ a unique minimalp-semiflowYrl

such that
{rl} = ||Yrl

|| ∩ PR, P0 ∩ ||Yrl
|| = ∅, PS ∩ ||Yrl

|| 6= ∅
andYrl

(rl) = 1.
4) ∀rl ∈ PR, ∀t ∈ r•l , W (rl, t) = 1.
5) PS = ∪rl∈PR

(||Yrl
||\{rl}).

6) N is a connected net.
7) The initial markingM0 satisfies the following condi-

tions:
a) ∀p ∈ PS , M0(p) = 0.
b) ∀p ∈ P0, M0(p) > 0.
c) ∀rl ∈ PR, M0(rl) ≥ maxp∈||Yrl

||{Yrl
(p)}.

Item 3 of Definition 5 expresses the conservative – or
reusable– nature of the system resources. Furthermore, the
combination of items 2, 3 and 7 implies that every transition
sequenceσ defined by a circuit of some sub-netNi, i ∈ IN ,
that leads from idle placep0i

back to it, is fireable fromM0,
and therefore,N is quasi-live.

A desirable property for process-resource nets is that they
are reversible, since this property implies that all active
processes in the underlying system can always proceed to
completion, no matter what is the running loading pattern.
It has been shown [4], [7] that, for a large class of process-
resource nets, the net reversibility is a concept equivalent to the
net liveness. In addition, the possession of these two properties
by a process-resource net of this class, is contingent upon the
absence of certain types of insufficiently marked siphons from
its reachability space. For the particular case ofES3PR nets,
the following result is a direct implication of Corollary 3 and
Theorem 2 in [7]:

Theorem 3:A well-markedES3PR net N = (PS ∪ P0 ∪
PR, T,W,M0) is live and reversibleiff all its siphons are
controlled.

Algebraic Liveness-Enforcing Supervisors (LES) for
ES3PR nets In general, the condition of Theorem 3 will not
be immediately satisfied by any given well-markedES3PR

net. However, it has been shown in the literature [10] that
it is possible to establish the liveness and reversibility of
these nets by imposing on their operation an additional set
of linear inequalities to be observed by the net marking. One
particular type of these inequalities seeks to constrain the
number of process instances that are simultaneously executing
certain subsets of processing stages. In theES3PR modelling
framework, these inequalities take the form:

A · MS ≤ b (23)

where matrixA is an incidence– i.e., binary – matrix,MS

restricts the PN markingM to its components corresponding
to placesp ∈ PS , andbl ∈ Z+, ∀l. The constraints expressed
by Equation 23 are subsequently enforced on the considered
ES3PR net, by augmenting it with a controlling sub-net
that is readily constructed through the theory ofcontrol-
place invariantsof [12], [13]. According to [13], each of the
inequalities

A[l,·] · MS ≤ bl (24)

can be imposed on the net behavior by superimposing on the
original net structure a“control place” wl, connected to the
rest of the network according to the incidence vector

θwl
= −A[l,·] · ΘS (25)

where ΘS denotes the flow sub-matrix of the uncontrolled
network N = (PS ∪ P0 ∪ PR, T,W, M0) corresponding to
placesp ∈ PS . The initial marking of placewl must be set to

M0(wl) = bl (26)

and the resulting controller imposes Constraint 24 on the
system behavior by establishing the place invariant

A[l,·] · MS + M(wl) = bl (27)

Let PW ≡
⋃

l{wl}. Equation 27, when interpreted in
the light of item 3 of Definition 5, implies that the control
placeswl, implementing each of the constraints in the LES-
defining Equation 23, essentially play the role offictitious
new resources in the dynamics of the netNc, that models
the controlled system behavior. Hence, the controlled netNc

remains in the broader class of process-resource nets. Nextwe
show that the netNc is also anES3PR net.

Proposition 2: Consider the netNc obtained by enforcing
on anES3PR net,N = (PS ∪ P0 ∪ PR, T,W,M0), a set of
inequality constraints of the type expressed by Equation 23,
according to the theory of control-place invariants. Then,under
the assumption that|w•

l | > 0,∀l, the netNc is alsoES3PR.
Proof: The conditions expressed by items 1, 2, 5, (7a)

and (7b) of Definition 5 are immediately satisfied by the fact
that the original netN is ES3PR. The condition of item
3 is met by Equation 27, while the condition of item (7c)
results from Equation 27 and the facts thatA is a binary matrix
and bl ∈ Z+, ∀l. The condition of item 4 is satisfied by
Equation 25 and the facts thatA is a binary matrix and each
process sub-netNi, i ∈ IN , of N is a state machine (c.f. item
2 of Definition 5). Finally, the condition expressed by item 6
of Definition 5 is satisfied by the fact that the original netN
is connected, and the posed assumption that|w•

l | > 0,∀l.
Notice that the assumption|w•

l | > 0,∀l, must be naturally
satisfied by any algebraic LES of the type expressed by
Equation 23 that contains no redundant constraints; such
an LES will be characterized aswell-structured. Then, the
following corollary is an immediate implication of Theorem3
and Proposition 2:

Corollary 4: Consider the netNc that is obtained by en-
forcing on anES3PR net,N = (PS ∪P0∪PR, T,W,M0), a
well-structured algebraic LES of the type expressed by Equa-
tion 23, according to the theory of control-place invariants.Nc
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is live and reversibleiff all its siphons are controlled.
Next, we derive acorrectness sufficiency testfor well-

structured algebraic LES of the type expressed by Equation 23,
based on Corollary 4 and the results of Section III. For that,let
N = (PS∪P0∪PR, T,W,M0) denote a non-liveES3PR net
and(A, b) define a tentative well-structured algebraic LES for
this net, of the type expressed by Equation 23. Furthermore,
let Nc denote the corresponding control net, andSM

c denote
the set ofminimal siphons of netNc. SM

c can be partitioned
to the setsSMC

c and SMU
c , whereSMC

c denotes the subset
of minimal siphons corresponding to the support of somep-
semiflow ofNc, andSMU

c = SM
c \SMC

c . Finally, for each row
i of A, A[i,·], let vi denote theGCM generator ofNc obtained
by “padding” A[i,·] with zeros for every placep 6∈ PS . Then,
we have the following theorem:

Theorem 4:Consider anES3PR net N = (PS ∪ P0 ∪
PR, T,W,M0), under the control of the algebraic LES defined
by the tuple(A, b) and Equation 23. Also, let the vector set
{vi} denote theGCM generator set that is induced for the
controlled netNc by the rows of matrixA, and further assume
that, for every siphonS ∈ SMU

c , there exists a possibly empty
GCM generator set{vj

S}, such that
1) the net flow vectorNF (λS) can be expressed as linear

combination of the vectors{NF (vi)}∪{NF (vj
S)}, and

2) S satisfies one of the criteria of Section III with respect
to theGCM generator set{vi} ∪ {vj

S}.
Then, the netN is live and reversible.

Proof: Clearly, under the assumptions of Theorem 4, all
siphonsS ∈ SMU

c are controlled. Furthermore, the siphons
S ∈ SMC

c are controlled by the correspondingp-semiflow.
Hence, all siphons ofNc are controlled. But then, the validity
of Theorem 4 is immediately implied by Corollary 4.

The next example demonstrates the application of Theo-
rem 4, by (re-)establishing the correctness of some algebraic
LES originally studied in [5].

Example 2 Consider theES3PR netN depicted by solid
lines in Figure 3, under the supervision of the algebraic LES
expressed by the following constraints:





1 1 1 1
1 1 1 1
1 1 1 1





















M(p11)
M(p12)
M(p13)
M(p21)
M(p22)
M(p23)

















=





1
2
1



 (28)

The control sub-net enforcing the constraints of Equation 28
on N is also depicted in Figure 3, through dashed lines. The
resulting controlled netNc is known to be live, since the LES
of the Equation 28 constitutes an implementation of the RUN
LES for the considered netN ; the reader is referred to [5] for
a statement of RUN LES and a proof of its correctness. Here
we re-establish the liveness of netNc, and the correctness of
the LES expressed by Equation 28, by applying Theorem 4,
based on the siphon control criterion of Corollary 3.

The characteristic vectors of the minimal siphons in the
controlled netNc of Figure 3 are tabulated in Table I. Siphons
S1–S8 correspond to the support ofp-semiflows, and therefore,
they are already controlled. The net flowsNF (Sk) of the
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Fig. 3. TheES3PR netsN andNc of Example 2

remaining uncontrolled siphonsSk, k = 9, 10, 11, can be
expressed as linear combinations of the net flowsNF (vk)
corresponding to theGCM generator vectorsvl, l = 1, . . . , 6,
presented in Table II; notice that the vector set{vl, l = 1, 2, 3}
corresponds to theGCM generator set{vi} of Theorem 4,
while the vector set{vl, l = 4, 5, 6} corresponds to the set
{vj

S}, for all three siphonsSk, k = 9, 10, 11. Table II also
provides the boundsGCM(vl) and GCM(vl) used in the
evaluation ofG′′, during the application of the criterion of
Corollary 3 to the siphonsSk, k = 9, 10, 11. The values
of GCM(vl) are obtained immediately by noticing that (i)
MT ·vl ≥ 0, ∀l, (ii) vl(p) > 0 =⇒ p ∈ PS , ∀p ∈ P , and (iii)
M0(p) = 0, ∀p ∈ PS . The values ofGCM(vl) were obtained
by solving the following MIP for eachl ∈ {1, . . . , 6}:

GCM(vl) = max
(M,z)

MT · vl (29)

s.t.

Equations 17 and 18

The coefficientsal(λSk
), l = 1, . . . , 6, k = 9, 10, 11, for the

expansionsNF (λSk
) =

∑6
l=1 al(λSk

)NF (vl) are tabulated
in Table III. Table III provides also the values obtained forthe
left-hand-side of the inequality that is employed by the test of
Corollary 3 (c.f. Equation 20), based on the aforementioned
expansions and bounds. Since all the obtained values are
strictly greater than zero, it is concluded that the netNc is
live, and the LES of Equation 28 is a correct LES for the
original netN .

The work of [5] has also established that the LES obtained
by replacing the right-hand-side of Equation 28 with the vector
(2 4 2)T , is another correct LES for netN . Interestingly, the
application of the test of Corollary 3, based on theGCM

generator set{vl} of Table II, fails to recognize the ability of
this new LES to control the siphonsS9 and S10 of Table I.
On the other hand, this effect is successfully recognized by
the more powerful test of Corollary 2. We leave the relevant
computational details to the reader.

Finally, it is interesting to notice that in the computation
of the G′′(S) values tabulated in Table III, the first term in
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TABLE I

EXAMPLE 2: THE MINIMAL SIPHONS OF THE CONTROLLED NETNc

siphon p10 p11 p12 p13 p20 p21 p22 p23 r1 r2 r3 w1 w2 w3

S1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 1 1 1 1 0 0 0 0 0 0
S3 0 1 0 0 0 0 0 1 1 0 0 0 0 0
S4 0 0 1 0 0 0 1 0 0 1 0 0 0 0
S5 0 0 0 1 0 1 0 0 0 0 1 0 0 0
S6 0 1 0 0 0 1 1 1 0 0 0 1 0 0
S7 0 1 1 0 0 1 1 0 0 0 0 0 1 0
S8 0 1 1 1 0 1 0 0 0 0 0 0 0 1
S9 0 0 1 0 0 0 0 1 1 1 0 0 0 0
S10 0 0 0 1 0 0 1 0 0 1 1 0 0 0
S11 0 0 0 1 0 0 0 1 1 1 1 0 0 0

TABLE II

EXAMPLE 2: THE GCM GENERATORS, vl , EMPLOYED FOR THE EXPANSION OF THE NET FLOW VECTORSNF (λSk
), k = 9, 10, 11, AND THE

ASSOCIATED BOUNDS USED IN THE EVALUATION OF THE CRITERION OFCOROLLARY 3

generator p10 p11 p12 p13 p20 p21 p22 p23 r1 r2 r3 w1 w2 w3 GCM(vi) GCM(vi)
v1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1
v2 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 2
v3 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
v4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
v5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
v6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

TABLE III

EXAMPLE 2: THE COORDINATES FOR THE EXPANSIONS OFNF (λSk
), k = 9, 10, 11, AS LINEAR COMBINATIONS OFNF (vl), l = 1, . . . , 6, AND THE

OBTAINED VALUES FOR THE TEST OFCOROLLARY 3

siphon a1 a2 a3 a4 a5 a6 λT
SM0 + G′′(S)

S9 0.0 -1.0 0.0 0.0 1.0 1.0 3-2=1
S10 0.0 0.0 0.0 0.0 -1.0 -1.0 3-2=1
S11 0.0 -1.0 0.0 0.0 0.0 0.0 4-2=2

the right-hand-side of Equation 19 is identically zero, andthe
only term that essentially defines the value ofG′′(S) is the
second term in that sum.�

The above example renders clear the mechanism through
which theGCM generator concept, introduced in Section III,
explains the correctness of LES like RUN, that do not fall
into the LES scope covered in [8]. Furthermore, the same
example also reveals that, in this generalized regime, the
second term in the right-hand-side of Equation 19, and the
pertinent selection of the upper bounds involved in this term,
can have an impacting role in the establishment of deadlock-
freedom and/or the liveness and reversibility ofES3PR nets
through implicit siphon control. In the remaining part of this
section, we briefly review the key results presented in [8]
regarding the liveness enforcing supervision through implicit
siphon control for a sub-class of theES3PR nets, known
as S3PR nets; this discussion will outline the connection of
those past results to the results of Section III, and it will also
reveal that it is possible to“mix” the control logic underlying
the methodology of [8] with the control logic underlying the

algebraic LES of the type expressed by Equation 23, in order
to obtain an even broader class of LES for the considered class
of process-resource nets.

Liveness Enforcing Supervision ofS3PR nets through
explicit control of “elementary” siphons The class ofS3PR

nets constitutes a sub-class ofES3PR nets, which is obtained
by further stipulating that (i) every placep ∈ PS belongs to
the support of only one of thep-semiflowsYrl

introduced in
item 3 of Definition 5, and (ii)Yrl

(p) ∈ {0, 1} for all p ∈ PS

andrl ∈ PR.5 In order to develop an LES forS3PR nets, [8]
starts with the observation that, according to Theorem 3, the
liveness and reversibility of any givenS3PR net,N = (PS ∪
P0 ∪ PR, T,W,M0), could be possibly enforced by adding a
“monitor” place for every uncontrolled minimal siphon ofN ,
S ∈ SMU , that imposes the inequality:

λT
SM ≥ ξS (30)

5A more intuitive interpretation of these two requirements is that every
processing stage requires onlyone unit from a single resource type for its
execution.
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In Equation 30,λS is the characteristic vector ofS, M is
the marking of netN , and ξS is an integer such that0 <

ξS < M0(S). However, the direct imposition of Constraint 30
on the behavior of the original netN , through the theory of
control-place invariants, might lead to a controlled netNc that
is not PT-ordinary, and therefore, it cannot have its liveness
tested according to the criterion of Theorem 3. For this reason,
Constraint 30 is enforced upon the original netN , through the
enforcement of another inequality, of the type:

κT
SMS ≤ M0(S) − ξS (31)

In Equation 31,κS is a binary vector with its non-zero
elements corresponding to some placesp ∈ PS . Hence, the
inequality of Equation 31 is of the same type with that of
Equation 23, and it can be enforced on the original netN by
the super-imposition of a monitor place such that the resulting
netNc belongs to the class ofES3PR nets. Furthermore, the
support of the vectorκS is selected in a way ensuring that
(i) the satisfaction of Constraint 31 implies the satisfaction of
Constraint 30, and (ii) the resulting controlled netNc does not
possess any additional uncontrolled siphons; the feasibility of
such a selection is established in [3] and we refer the reader
to that work for the relevant details.

In addition, the result of Corollary 3, when combined with
Proposition 1, indicate that it might be possible to control
the entire set of siphonsS ∈ SMU by explicitly controlling
only a subsetSE of SMU with |SE | = rank[NF (λS) : S ∈
SMU ]. The work of [8] characterizes each siphonS ∈ SE

as “elementary”, and it proposes to satisfy the criterion of
Corollary 3 for every siphonS ∈ SMU , by appropriately
selecting (i) the set of elementary siphonsSE ⊆ SMU , and
(ii) the right-hand-side vector[ξS : S ∈ SE ] of Equation 30,
where the latter is considered only for the elementary siphons.
A last observation necessary to interpret the methodology of
[8] through the result of Corollary 3, is that, inS3PR nets,
every siphonS ∈ SMU hasGCM(λS) = GCM(M0, λS).
Hence, [8] also proposes to ignore, in the evaluation ofG′′ for
every siphonS ∈ SMU\SE , the impact of elementary siphons
with negative coefficientsai in the corresponding expansion
of NF (λS).

Liveness enforcing supervision ofS3PR nets based on
the “mixing” of the presented approachesIt is clear from
the above discussion, that the methodology proposed in [8],
establishes the liveness of any givenS3PR net, by enforcing
an appropriately selected lower bound,ξS , for the compound
marking of every elementary siphonS ∈ SE . On the other
hand, the algebraic LES of the type expressed by Equation 23,
attain the liveness of the controlled net, by controlling the
maximum compound marking of certain subsets of the place
set PS , defined by the rows of the LES-defining matrixA.
One can easily envision an LES that constitutes a“mixture”
of both inequality types defined by Equations 23 and 30: Under
this new LES, some of the net siphons will be controlled
by the LES part pertaining to Equation 23, and the rest of
them will be controlled through the LES scheme established
by Equation 30. Hence, it can be claimed that the results of
Section III, and in particular, those of Corollaries 2 and 3,

constitute a“unifying framework” for interpreting and ex-
tending many of the past results available in the literature
with respect to the liveness enforcing supervision of(E)S3PR

nets. The complete characterization of the implications ofthis
new framework, and its potential for developing ever more
permissive supervisors forES3PR nets, while maintaining
computational tractability, are important issues for further
research.

V. CONCLUSIONS

This paper (i) introduced some new tests for siphon control
in marked PN systems, and (ii) it demonstrated the ability of
these tests to (re-)interpret, generalize and unify a number of
past results regarding the deadlock avoidance and the liveness
enforcing supervision of certain PN classes modelling sequen-
tial resource allocation systems. Our future work will seek
to extend these results to broader PN classes, and to unravel
their complete potential regarding the deadlock-freedom and
liveness enforcing supervision of these nets.
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