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Abstract— The work presented in this paper seeks (i) to correct ~ The rest of the paper is organized as follows: Section Il pro-
and generalize some previously published results regarding the vides a brief introduction to the Petri net modelling franoeky
siphon control in PT-ordinary Petri nets, and subsequently (ii) presenting all the notation, concepts and results thateresa

to employ this generalized framework in order to provide an for th b t devel ts. Section IIl t
alternative explanation of the way in which certain methodolo- S@Y T0r the subsequent developments. section lil presemts

gies, that have been proposed in the past, enforce the liveness ogeneralization of the results developed in [8], which tatkes

a particular class of PT-ordinary Petri nets modelling resource form of some new sufficiency tests for assessing whether any

allocation. The derived characterizations provide aunifying given siphon of a marked PN is controlled or not. The last part

framework for analyzing and interpreting the aforementioned ¢ this section discusses also some problems with some of the

methodologies, and also they reveal that approaches that have S .

been considered as disparate in the current literature, can statements and der'vat'c_ms In _[8]' that vyere revealed. by. our

actually be “mixed” towards the development of an ever richer New developments. Section IV first establishes the gezergli

set of liveness enforcing supervisory control policies for the power of the results derived in Section Ill, by demonstigtin

considered class of Petri nets. the ability of this set of results to analyze and interpret th
Index Terms—sequential resource allocation systems, systemefficacy of a class of liveness enforcing supervisory cdntro

design and verification using Petri nets, deadlock resolution and policies, that have been developed for certain PT-ordinary

liveness enforcing supervision PN sub-classes where liveness is equivalent to the absence

of uncontrolled siphons, and are not covered by the results

presented in [8]. Subsequently, the last part of this sectio

briefly surveys the liveness enforcing supervisory control
The role and the significance of the structural object @olicies studied in [8], and it discusses how the two clasdes

siphon for the deadlock and liveness analysis of many Pegtolicies addressed in this section, can actually“iméxed”

net (PN) classes are well-documented in the relevantiite¥a towards the development of an ever richer set of liveness

e.g., [1], [2], [3], [4], [5], [6], [7].- Generally speakingthe enforcing supervisory control policies for the considectass

development of deadlock markings in any PN system, a$ PT-ordinary Petri nets. Finally, Section V concludes the

well as the non-liveness of a considerable number of RMper and suggests directions for future work.

sub-classes, can be attributed to the insufficient marking o

some of the system siphons. In the particular case that the [I. PETRI NET PRELIMINARIES

considered net is PT-ordinary —i.e., the firing of any tosi  peg net Definition A formal definition of the Petri net
requires at most one token from each of the net places el is as follows:

the aforementioned insufficiently marked siphons anepty Definition 1: [9] A (marked) Petri net (PNjs defined by a
siphons. Siphons that never empty during the evolution ef tlauadruple/\/ = (P, T, W, My), where
net marking are said to beontrolled Hence, for PT-ordinary
PN’s, ensuring that every siphon is controlled guaranthes t
net deadlock-freedom, and, in certain cases, the net bgene
The work presented in this paper seeks (i) to correct”
and generalize some results regarding the siphon control
in PT-ordinary Petri nets, originally published in [8], and
subsequently (i) to employ this generalized framework in
order to provide an alternative explanation of the way i

which certain methodologies, that have been proposed in tgoye_r_ns its underlying dynamics. The last item defihest
past, enforce the liveness of a particular class of PT-arglin systeminitial state A conventional graphical representation of

Petri nets modelling resource allocation. Beyond proyjdin the lnet strtl)Jcture ?nd_ |ts|, marklgg depicts no%gs ctorrte spgrth !
novel unifying framework for analyzing the aforementionecL0 places by emply CIrcles, nodes corresponding 1o ramsit

methodologies, the presented results enable also ‘i y bars, and the tokens located at the various places by small

ing” towards the development of an ever richer set of IiveneQQEd circles. The flow relationi¥ is depicted by directed

enforcu_'lg supervisory control policies for the considectass 1, s work, Z; denotes the set of nonnegative integers, Zriddenotes
of Petri nets. the set of strictly positive integers.

I. INTRODUCTION

« P is the set ofplaces

o T is the set oftransitions

W :(PxT)U(T x P) — Z§ is theflow relation® and
My : P — Z§ is the netinitial marking, assigning to
each place» € P, My(p) tokens

The first three items in Definition 1 essentially define a
eighted bipartite digraphrepresenting the systestructure



edges that link every nodal pair for which the correspondiny € R(N, M) is that the following system of equations is
W-value is non-zero. These edges point from the first nodleasible inz:
of the corresponding pair to the second, and they are also M = My + 0Oz (2)
labelled — or,"'weighed” — by the corresponding/-value. By 7] 3
convention, absence of a label for any edge implies that the 2 €(Zy) ©)
correspondingV-value is equal to unity. A PN N = (P, T,W,M,) is said to bebounded iff all
PN structure-related concepts and propertiesGiven a markings M e R(N, M) are bounded\ is said to be
transitiont € T, the set of places for which (p,¢) > 0 (resp., structurally bounded iffit is bounded for any initial marking
(t,p) > 0) is known as the set dhput (resp.,outpu) places 1f,. N is said to bereversible iff M, € R(N, M), for all
of ¢. Similarly, given a place € P, the set of transition$ A7 ¢ R(N, My). A transitiont € T is said to belive iff for
for which (¢,p) > 0 (resp.,(p,t) > 0) is known as the set of all M € R(N, My), there existsM’ € R(N, M) s.t. M'[t);
input (resp.,outpu) transitions ofp. It is customary in the PN non-live transitions are said to bdead at those markings
literature to denote the set of input (resp., output) tteovss 1/ < R(N, M,) for which there is noM’ € R(N, M)
of a placep by *p (resp.,p®). Similarly, the set of input (resp., s.t. M’[t). PN A is quasi-live iff for all ¢+ € T, there
output) places of a transitians denoted byt (resp..,t*). This  exists M € R(N, M) s.t. M[t); it is weakly live iff for all
notation is also generalized to any set of places or tramsiti A/ ¢ R(N, M), there exists € T s.t. M|[t); and it islive iff

X,e0.°X =U,ex *7 forallt € T, tis live. A markingM € R(N, M) is a (total)
The ordered seX =< z;...z, > € (PUT)* is apath deadlock iffeveryt € T is dead atM.

if and only if (iff) z;11 € 27, =1,...,n — 1. Furthermore,  Siphons and their role in the interpretation of the PN

a pathX is characterized as @rcuit iff z; = x,,. deadlock A siphonis a set of places C P such that*S C

A PN with a flow relationi’’ mapping onto{0, 1} is said §*. A siphon.S is minimal iff there exists no other siphasf
to beordinary. If only the restriction ofi¥ to (P x ') maps st. $' c S. A siphon S is said to beemptyat marking M
on {0,1}, the PN is said to béT-ordinary. An ordinary PN iff 7/(S) = > pes M(p) = 0. S is said to bedeadly marked
such that (s.tyt € T, [t*| = |*t| = 1, is characterized as aat marking M, iff every transitont € *S is disabled by
state machinewhile an ordinary PN s.tvp € P, [p*| = [*p| some place € S. Clearly, empty siphons are deadly marked
= 1, is characterized asmarked graph siphons. It is easy to see that,Sfis a deadly marked siphon

A PN is said to bepureif V(z,y) € (P x T) U (T x P), at some marking/Z, then (i)Vt € *S, tis a dead transition in
W(z,y) > 0= W(y,z) = 0. The flow relation of pure PN's A7 and (ii) VM’ € R(N, M), S is deadly marked. The next
can be represented by tfilew matrix© = ©F — ©~ where theorem connects total deadlocks arising in PN's to deadly
07 (p,t) = W(t,p) andO~ (p,t) = W(p,1). marked siphons.

PN dynamics-related concepts and propertiesn the PN Theorem 1:[10] Given a deadlock marking/ of a PN
modelling framework, the system state is represented by the— (P, T,W, M,), the set of disabling place$ C P in M
netmarking M, i.e., a function fromP to Z; that assigns a constitutes a deadly marked siphon.
tokencontent to the various net places. The net maergs In PT_ordinary PN'’s, d|sab||ng p|aces are empty p|aces_
initialized to markingMo, introduced in Definition 1, and it Hence, an immediate Cor0||ary of Theorem 1 is as follows:
subsequently evolves through a set of rules summarizecein th Corollary 1: Given a deadlock markind/ of a PT-ordinary
concept oftransition firing A concise characterization of thispN A7 = (P, T, W, M), the set of disabling placeS C P
concept has as follows: Given a markifg, a transitiont is in A/ constitutes an empty siphon.
enabled iff for every placep € *t, M(p) > W(p,t), and this  Finally, as it was mentioned in the Introduction, a siptn
is denoted byM|[t). t € T is said to bedisabledby a place is said to becontrolled iff it never empties during the evolu-
p € *tatM iff M(p) < W(p,t). Furthermore, a place € P tion of the net marking, i.e)(S) > 0, VM € RN, My).
for which there existg € p* s.t. M (p) < W(p,t) issaidtobe PN semiflowsPN semiflows provide an analytical charac-
adisablingplace atM/. Given a markingV/, a transitiont can  terization of various concepts @fvarianceunderlying the net
be fired only if it is enabled inM, and firing such an enab|eddynamics. Generally, there are two types, p and t-semiflows,
transitiont results in a new marking/’, which is obtained with ap-semiflowformally defined as &P|-dimensional vector
from M by removingW (p,t) tokens from each place € y satisfyingy”© = 0 andy > 0, and at-semiflowformally
*t, and placingl¥(,p’) tokens in each placg’ € t*. For defined as 47'|-dimensional vector: satisfying©z = 0 and
pure PN’s, the marking evolution incurred by the firing of & > 0. In the light of Equation 2, the invariance property
transitiont can be concisely expressed by tate equation expressed by a p-semiflow is thaty” M = y” M,, for all

r_ ) M € R(N, My). Similarly, Equation 2 implies that for any
M =M+6-1; (@) t-semiflowz, M = My + Oz = M,.
where 1, denotes the unit vector of dimensionality| and Given a p-semiflowy (resp., t-semiflowr) its supportis
with the unit element located at the component correspandidefined as||y|| = {p € P | y(p) > 0} (resp.,||z|| = {t €
to transitiont. T | z(t) > 0}). A p-semiflowy (resp., t-semiflowr) is said

The set of markings reachable from the initial markingp be minimal iff there is no p-semiflow’ (resp., t-semiflow
M, through anyfireable sequence of transitions is denoted’) s.t. ||y/|| C |ly|| (resp.,||=’|| C [|z]))-
by R(N,M,) and it is referred to as the neeachability PN merging We conclude our general discussion on the
space In the case of pure PN’'s, a necessary condition f&N concepts and properties to be employed in the subsequent



parts of this work, by introducing a merging operation of two Now we have all the necessary concepts in place in order
PN's: Given two PN'sA; = (P, Ty, Wy, My;) and No = to state and prove the main result of this section; this issdon
(P, Ty, Wa, Moz) With ThNTy =P andPLN P, = Q # @ s.t.  in the following theorem:
for all p € Q, Mo1(p) = Moz2(p), the PNA resulting from Theorem 2:Let S denote a siphon of @ure marked PN
the mergingof the nets\; and A through the place se), N = (P, T,W,M,) such that
is defined byN = (Pl UPb,,Ty Ul WU WQ,M()) with n
Mo(p) = Moi(p), Vp € P\ Po; Mo(p) = Mo2(p), Vp € NF(As) =Y a;NF(v') 7)
P2\ Pl; Mo(p) :M01(p) :]\4'02(]7)7 VpGPl ﬂPQ. i=1
wherev?, i = 1,...,n, areGCM generators of\, anda; €
1. I MPLICIT SIPHON CONTROL R, Vi. Then,

In this section we develop some new tests for identifying
controlled siphons in any given marked PN. As it was
mentioned in the introductory section, the results derived where

S is controlledin N <= A, My + G* > 0 (8)

this section generalize, but also correct, some resultisligi _ . B e i
developed in [8]. The following two concepts are instruna¢nt ¢ = MEII%I(IJI\I/{MO)(M Mo) Z} @iv ©
for the development of the proposed tests: '

Definition 2: Consider a marked PW = (P, T, W, M) Proof: Consider a markind/ € R(N, My). Then, there

and a vectow € RI”!, whereR denotes the set of reals. Thenexists a vector: € (ZH™! such thatM = M, + ©z (c.f.
for any markingM € R(N, M), the generalized compound Equations 2 and 3). Therefore,
marking generated by, is defined by

M(S) = Y M(p)
GCM(M,v) =) v(p)M(p) =v"M 4) Zs
peP = )\?;M

The vectorv will be called thegeneratorof GCM (M, v).
Notice that in the particular case thafp) € {0,1}, Vp €
P, aGCM(M,v) reduces to theompound markingf the

MMy + 256z
= MMy + NF(\s)z

T 7

place subseP? defined by the support af. In the following, = AgMo+ [Z a; NF(v")]z
Pv will denote more generally the set of places corresponding g .
to non-zero elements of = MM+ a;(v)"0]z

Definition 3: Consider a pure marked PN N = i
(P, T,W,My) and a GOM generatorv € R, Then, = MMy +[> ani]T0z
the net flow (vector)of v is defined by i

NF(v) = vT® ) = NEMo+ [ a']" (M — M)

where@ denotes the _flow matr?x 01\/.. _ )\EMO (M- MO)T Zaﬂ}i (10)

Notice that NF'(v) is a |T|-dimensional row vector. Fur- ;

thermore, i the light of Equation 1, the components 0Cfilearly, the right-hand-side of Equation 10 is minimizeeov

NF(v) have the following very intuitive interpretatiorior N . .
every transitiont € T, NF(v;t) denotes the net change ofR(N’ Mp) by G, and therefore will be controlled if and

. . i only if the criterion of Equation 8 holds. |
GOM (M, v) re;u_lt_mg by the firing of transition at M. A siphon S controlled by means of the criterion of Theo-
The next definition connects th@C'M and N F' concepts : . o .
X rem 2 will be characterized as amplicitly controlled siphon.
to the concept of siphon, The corresponding generator vectar§ i = 1 n, Of
Definition 4: Consider a siphort' of a pure marked PN P 99 A

N = (P, T, W,Mp). The characteristic vectdr of S is a |P|- Equapon 7, will bg cglled theontrplllpg generatorf S. In
. . ; practice, the application of the criterion of Theorem 2 og an
dimensional binary vectokgs such that

siphon S with respect to any given set of generator vectors
Vpe P, \s(p)=1<pes (6) {v':i=1,...,n} that satisfy Equation 7, is complicated
by the fact that the constrail/ € R(N, M,) cannot be
represented easily — i.e., polynomially — by a set of linear
, i constraints. Yet, one can compromise fosificiencytest by

be considered as &CM generator withGOM(M, As) relaxing the requiremend! € R(N, M) in Equation 9 to

being equal to the token content of siphSmat markingM. ot expressed by the state Equations 2 and 3. We state the
Furthermore, the components of the corresponding net ﬂ‘?@’sulting criterion as a corollary.

vector NF'(\g) express the net change incurred to the siphon Corollary 2: Let S denote a siphon of aure marked PN
marking by the firing of any single transitiane T N = (P, T,W,M,) such that

The characteristic vectokg, of any given siphonS, can

2In order to facilitate the interpretation of the results gmeted in [8] in n )
the context of the results presented in this work, we nofie this concept NF(\g) = Z a;NF(v*) (11)
corresponds to theharacteristic P-vectodefined in [8]. i—1



wherev?, i =1,...,n, areGCM generators of\/, anda; €

The definitions ofGC M (v*) and GC'M (v*), when combined

R, Vi. Also, let with Equations 12-14, 17-19 and 21, imply that
n ) Yl
G’ = min (M — Mo)" > a;v’ (12) ¢ =G (22)
(M) i=1 But then, the validity of Corollary 3 follows from Corollad.
s.t. n
M = My + Oz (13) Beyond providing a sufficiency test for assessing whether
a given siphonS is implicitly controlled by a set oilGCM
+\|7| .
M >0, z€(Z) (14) generator vector§v® : i = 1,...,n}, the result of Corollary 3
Then, can also provide the basis for deploying a control mechanism
" , ) ) that will actively enforce the implicit control of siphofi by
AsMo+G'> 0= Sis controlledin N' ' (15) some generator sdti : i = 1,...,n}. Under this approach,

the upper and lower boundSC'M (v') and GCM (v?), i =

) ) ) 1,...,n, are“design parameters; and their values are chosen
~ Notice that the mathematical programming (MP) formulag,c that they guarantee the condition of Equation 20. The
tion involved in the criterion of Corollary 2 is a Mixed Integ  ggjected bounds can be subsequently enforced on the behavio
Program (MIP), and therefore, it can be easily addressgflihe original net by the addition of appropriatsonitor
through commercial solvers (c.f. [11], for mstan’(:e)\legt places”, according to the theory developed in [12], [13]. The
we present another criterion that is Weal_<er than the m’"‘e”following result, established in [8], strengthens furthae
of Corollary 2, but it reveals the connection of the presentg;apility of such a control scheme, as it implies that theirent
results tq those derived in [8]. Fu_rthermore, thl_s new oote  got of siphonsg, of a pure marked PN = (P, T, W, My),
can be simpler, from a computational standpoint. can be potentially controlled by a set of generators, and
corresponding control places, that are polynomially — itt,fa
linearly — related to the size of the naf, where the latter is
expressed byP|+ |T'|; the implications of this possibility are

Corollary 3: Let S denote a siphon of aure marked PN
N = (P, T,W,M,) such that

NF(\g) = ZaiNF(vi) (16) further explored in the next section.
pat Proposition 1:[8] Given a pure marked PNN =
wherewvi i — 1 n, areGCM generators oV, anda; € (P, T,W, M), the rank of the space of net flow vectors

R, Vi. Also, for everyi € {1,...,n}, let GCM(v') and NF(/\S),cqrrespondlng to the net siphofisis bounded from
GCM (v') respectively denote a lower and an upper bound apove bymin{| P, [T}
We conclude this section by noticing that the result of

GCM(M, '), for all M such that Corollary 3 subsumes the result of Theorem 1 in [8]. On the

]

M = My + 06z (17) other hand, Theorems 2 and Corollary 1 of [8] are erroneous,
because they fail to recognize properly the impact of the

+3I71
M =20, =€ (Zy) (18) second term in the right-hand-side of Equation 19. More

Finally, let specifically, the analysis of [8] restricts the potentiat &
. , , GCM generators{v'}, to the set of the siphon characteristic
G = ) a4[GCM(v') — GCM(Mp,v')] + vectors, {\s}, and then it makes the erroneous assumption
i:a;>0 that, for any given PN\ = (P, T, W, M,) and siphonS,
Z a;[GCM (v') — GCM (Mo, v%)]  (19) My(S) = GCM (Mo, As) > GCM (M, g) = M(S), VM €
ita; <0 R(N, My). Clearly, if this assumption were true, the second
Then, term in the right-hand-side of Equation 19 would be idetitica
zero for the considered set &fC'M generators; hence, [8]
A§My+G” > 0= S is controlledin ' (20) systematically ignores this term in its derivations and the

presented results. But, while it happens that the afoexbtat
assumption is satisfied by the siphons that constitute the ma
focus of attention in [8F,the next example establishes that this
assumption is not generally true, and therefore, the disput
term can have a significant impact even when the considered
set of GC'M generators is restricted to the dets}.

Example 1 Consider the marked PW = (P, T, W, My)
depicted in Figure 1. This net was shown in [5] to be
live and reversible. A minimal siphon ofV is § =
{p13, P23, r1,72,73}, With My(S) = 4. Next, consider the
marking M of N with M(p1o) = M(p11) = M(p12) =
M(plg) = M(’I’Q) = 1, M(pgo) = 4, and ]\/[(p) = 0 for

Proof: Notice that
(M= M)"> aiv' = Y a(M"v' — Mg v')

K2

= ) a[GCM(M,v') -

GCM (Mo, v')] (21)

3In fact, the integrality requirement for can be further relaxed te >
0, providing a test that is computationally easier, but alsthwdiminished

resolution power, compared to the test of Corollary 2. 4and therefore, the results derived in Section VI of that papeain correct



Fig. 1. The Petri net considered in Example 1 Fig. 2. The generic structure piocess-resourceets

every otherp € P. It can be easily checked thadt/ =
Mo[tlotlltlgtlofntu) >, and thereforeJVI S R(./\/,Mo)
Furthermore, notice thaf/(S) = 2. Finally, since NV is
live and reversible M, € R(N,M). But then, the marked

PN A . (P, T’.W’ My = M) constitutes a marked PN tr, (resp.,t;. andtr.) encodes the sequential logic applying
that contam/s a siphos for V.Vh'Ch maxye gy, mp) M(S) 2 to the execution ofjany process instance of tyfig (resp.,
MO(S) -~ MO(S).’ and establishes the fallacy of the aforemeanj)_ Places-; are“monitor” places modelling the availability
tioned assumption (.)f [8].° . . .. _of the various resource types during the system operation.
In the 'nex.t section 1t IS shown that, while the Slpho'E]'heir connectivity to the rest of the network encodes the
control criteria of CoroIIarlgs 2 and 3 encompass all the. . ..o requests posed by the various processing stages.
reIevar_1t result_s developed in [8], they can also support t ally, transitionst? and ¢} allow the repetitive execution
analysis and interpret the correctness of an additional Rline logic encodéd by tﬁe corresponding process sub-nets,

of liveness enforcing supervisory .control policies, thawéd by enabling the “re-circulation” of the tokens modellingeth
been developed for certain PT-ordinary PN Sub'd""S‘Q‘esa"’h?glevant process instances. It is customary in the litegatol

liveness is equivalent to the absence of uncontrolled Sigho“collapse” the path< o;, ¢*,i; > to a single placey, that is
_and are not cpvered by the results developed In [8]. Thmef%nown as théidle (state) place” of the correspondinyg process
it can be claimed that the results developed in this sectiQ(), ot

constitute a substantial generalization of the corresipgnset '
of results developed in [8].

models the initiation of a new process instance of tyj¥e
(resp.,JT}). Similarly, the firing of transitiontr, (resp.,tr,)
models the completion of a process instance of tyfe
(resp. JTj). The part of the net between transitions and

A development that has been extremely useful in the past
studies of process-resource nets, is their classification i
taxonomy based on (i) the specific structure of the involved
process sub-nets, and (ii) the structure of the restriatiothe
net flow relation,IW, on (Pr x T') U (T x Pgr), where Py
denotes the set of resource plaegsFollowing this practice,

Process-resource nets and theirES®PR sub-classIn in the following we focus on a particular class of process-
this section, we shift attention to a particular PN sub<lasesource nets in which (i) the sequential logic governing th
known asprocess-resourcaets. Process-resource nets hawexecution of the various process types is characterized by
been extensively used in the literature for modelling thecyclic state machinesand (ii) W (r;,t) € {0,1}, Vr, t. The
contest of concurrently executing processes for a finite dast of the above restrictions implies that the considendat s
of reusable resources; some general characterizatiotesé t class allows for choice — drouting flexibility” , in the relevant
nets and extensive studies of their properties can be faundérminology — but it also requires that any activated preces
[4], [7], [10]. Generally speaking, these nets are obtaibgd remains a single atomic entity during its sojourn into the
merging a set of sub-nets modelling the sequential logic amgstem (i.e., no task parallelization is allowed). The seéco
the resource allocation associated with the execution @if threstriction requires that resources from any particulpetgan
process types, through the places modelling the avatialofi be acquired by a process only one unit at a time (however,
the shared resources. The resulting net structure is @epicthey can be accumulated and released in larger quantifies).
in Figure 2: Tokens contained in pla¢g(resp.,i;) represent resulting process-resource net sub-class belongs to éss cl
process instances of typgl; (resp.,J7T;) waiting to initiate of PT-ordinary PN’'s and it is known as the classEbéitended
execution, while tokens in place; (resp,o;) correspond to Simple Sequential Systems of Processes with Respunces
completed processes. The firing of transition (resp.,t;;) more briefly, asES3PR nets[14]. A formal definition of

IV. THE ROLE OFIMPLICIT SIPHON CONTROL IN
ASSESSING AND ENFORCING THE LIVENESS OF
SEQUENTIAL RESOURCEALLOCATION SYSTEMS



ES3PR nets is as follows: where matrixA is anincidence— i.e., binary — matrix,Mg
Definition 5: [14] Let Iy = {1,2,...,m} be a finite set of restricts the PN markind/ to its components corresponding
indices. A(well-marked) Extended Simple Sequential Systemplacesp € Ps, andb;, € Z*, VI. The constraints expressed
of Processes with Resourcesor, more briefly, anES®P R by Equation 23 are subsequently enforced on the considered
net—is a PT-ordinary marked PN = (P, T, W, My), where: ES3PR net, by augmenting it with a controlling sub-net

1) P = PsU PyU Pg is a partition such that that is readily constructed through the theory adntrol-
a) Ps = Ujery Ps,, With Ps, N Ps, = () for all i # j. place invariantsof [12], [13]. According to [13], each of the
b) Py = Usery {po,} (idle state places). inequalities
c) Pr={ri,m2,...,rn}, n>0. App - Ms < by (24)

2) Vi € Iy, the sub-netV; generated by’s, U {po,} and  can pe imposed on the net behavior by superimposing on the
the transition subser; connected to these places, is riginal net structure &control place” w;, connected to the

strongly connected state machine, such that every cygl&t of the network according to the incidence vector
contains place, .

3) Vr; € Pg, 3 a unique minimap-semiflowY;, such that 0w, = —Ap,1 - Os (25)
{r1} = 1Yl 0 Pr, PonV[[Vey ]l = 0, Ps 0 [[Yi]] # 0
andY,, (r;) = 1.

4) Vr; € Pg, Vt € ’I’l., W(’I’l,t) =1.

5) Ps = UT‘ZEPR(HYFZH\ {rl})'

6) N is a connected net. Mo(w;) = by (26)

7) The initial marking M, satisfies the following condi-

where ©g denotes the flow sub-matrix of the uncontrolled
network N' = (Ps U Py U Pg, T, W, M,) corresponding to
placesp € Pg. The initial marking of placev; must be set to

and the resulting controller imposes Constraint 24 on the

tions: . N ) .
system behavior by establishing the place invariant
a) Vp € Ps, Mo(p) = 0. 4 y gmhep
b) Vp € Py, My(p) > 0. A[[ﬁ,] Mg + M(w;) = b 27)

C) Vr; € Pg, MQ(T'Z) > InaxpeHy”H{Y}l (p)}

Iltem 3 of Definition 5 expresses the conservative —
reusable— nature of the system resources. Furthermore,
combination of items 2, 3 and 7 implies that every transiti
sequencer defined by a circuit of some sub-naf;, i € Iy,
that leads from idle placg,, back to it, is fireable from\/,,

Let Pw = |J,{w:}. Equation 27, when interpreted in
he light of item 3 of Definition 5, implies that the control

cesw;, implementing each of the constraints in the LES-
oE'efining Equation 23, essentially play the role fadtitious
new resources in the dynamics of the niét, that models

) I the controlled system behavior. Hence, the controlledMet

and ther_eforej\/’ s quasi-live . remains in the broader class of process-resource netsvidext

A desirable property for process-resource nets is that thel;( : 3

. . . . . _~ sHow that the neiV. is also anE'S® PR net.

are reversible since this property implies that all active ition 2- ider the nelV.. obtained b forci
rocesses in the underlying system can always proceed tOProposmon : Consider the net. obtained by enforcing
P onanES3PR net,N' = (Ps U PyU Pr, T, W, M), a set of

completion, no matter what is the running loading pattern., ! . .
it has been shown [4], [7] that, for a large class of procesmequallty constraints of the type expressed by Equation 23

oo . Sccording to the theory of control-place invariants. Therder
resource nets, the net reversibility is a concept equivadetine 9 Y b

netlivenessin addition, the possession of these two pro ertigs],e assumption that}| > 0, i, the net’ is alsoES°PR.
' P prop Proof: The conditions expressed by items 1, 2, 5, (7a)

by a process-resource net qf thls. qlass, 1S contlng.ent Upen \I:md (7b) of Definition 5 are immediately satisfied by the fact
absence of certain types of insufficiently marked siphoomfr

- . 3 . .
its reachability space. For the particular caseé=sf> PR nets, thgt the original ngt/\/ Is BS .PR' The co_n_dmon (.)f item

. : . s 3 is met by Equation 27, while the condition of item (7c)
the following result is a direct implication of Corollary 3@

Theorem 2 in [7]: results from Equation 27 and the facts thiits a binary matrix

) i 3 B and b; € Z*, VI. The condition of item 4 is satisfied by
Theorem 3"6.‘ W?” marked £ PR netN N @S VU Equation 25 and the facts thdt is a binary matrix and each
Pgr, T, W, M,) is live and reversibleff all its siphons are

controlled process sub-neY;, i € Iy, of N is a state machine (c.f. item

Algebraic Liveness-Enforcing Supervisors (LES) for 2 of Definition 5). Finally, the condition expressed by item 6

ES?PR netsIn general, the condition of Theorem 3 will not.Of Definition 5 is satisfied by the fact that the original viét

be immediately satisfied by any given well-mark&d> PR IS con.nected, and the pos?d a.ssumptlon ot > 0, vi. ™

net. However, it has been shown in the literature [10] that I\-Iot.|ce that the assump.t|o|mul| > 0,9, must be naturally

it is possible to establish the liveness and reversibility Gaused bzy an algebraic LES OJ thde type expressed bﬁl
these nets by imposing on their operation an additional uation .3 that contalqs no redundant constraints; suc
of linear inequalities to be observed by the net marking. O LE.S will be charact_erlzed _as:e_ll-str_uctL_Jred Then, the
particular type of these inequalities seeks to constram tollowmg co_rqllary.ls an immediate implication of Theoredn
number of process instances that are simultaneously emxgcu nd Proposition 2:

certain subsets of processing stages. Infis8 PR modelling ¢ C_orollary 455?]22'0'6:?\? jetl\jfc th;t 'SPOb?'di;y en-
framework, these inequalities take the form: orcing on an netN = (PsURU PR, T, W, Mo), &

well-structured algebraic LES of the type expressed by Equa
A-Mg<b (23) tion 23, according to the theory of control-place invarsant,



is live and reversibléff all its siphons are controlled.

Next, we derive acorrectness sufficiency te$or well-
structured algebraic LES of the type expressed by EquaBion 2
based on Corollary 4 and the results of Section Ill. For tieat,

N = (PsUPyUPg, T, W, My) denote a non-live?S® PR net
and(A,b) define a tentative well-structured algebraic LES for
this net, of the type expressed by Equation 23. Furthermore,
let V. denote the corresponding control net, asitf denote P o
the set ofminimal siphons of netV... SM can be partitioned g
to the setsSMC and SMY, where SM¢ denotes the subset
of minimal siphons corresponding to the support of sgme
semiflow of V.., andSMV = SM\ SMC  Finally, for each row
iof A, A, let v' denote theZC'M generator ofV, obtained
by “padding” A; .} with zeros for every place ¢ Ps. Then,
we have the following theorem:

Theorem 4:Consider anES®PR net N = (PsU Py U 5
Pr. T, W, My), under the control of the algebraic LES defined'9 3 The£S”PL nets A and Nl of Example 2
by the tuple(A,b) and Equation 23. Also, let the vector set
{v%} denote theGC'M generator set that is induced for the

controlled netV, by the rows of matrix4, and further assume remaining uncqntrolled sphon_Sk., k= 9,10,11, can kbe
. MU . . expressed as linear combinations of the net flaWws'(v")

that, for every siphot$ € S}, there exists a possibly emptycorres onding to th&C M generator vectors. 1 — 1 6

GCM generator sefv’}, such that b g 9 A

. resented in Table Il; notice that the vector g€t [ = 1,2, 3}
1) the net flow vectorV F'(\s) can be expressed as IInearEorresponds to th€C M generator sefv'} of Theorem 4,
combination of the vector§N F'(v*) } U{N F (v})}, and

- o . ; while the vector sefv!, | = 4,5,6} corresponds to the set
2) S satisfies one of the criteria of Section Il with respec vj} for all three siphonsSy, & — 9,10,11. Table Il also
i J ST ) - Y 4L
to the GCM generator sefv }_U{vs}' provides the bound&CM (v') and GCM (v') used in the
Then, the netV is live and reversible. evaluation of G”, during the application of the criterion of
~ Proof: Cleﬁtrjly, under the assumptions of Theorem 4, 8l orgllary 3 to the siphonsSy, k = 9,10,11. The values
siphonsS € S}*% are controlled. Furthermor.e, the _S|phon§f GCM(v') are obtained immediately by noticing that (i)
S € SMC are controlled by the correspondingsemiflow. ;7,1 - 0, VI, (ii) v'(p) > 0 = p € Ps, Vp € P, and (i)
Hence, all siphons alV. are controlled. But then, the validity Mo(p) :_0’ Vp € Ps. The values ofzC M (v') were obtained

of Theorem 4 is immediately implied by Corollary 4. = by solving the following MIP for eacti € {1,...,6}:
The next example demonstrates the application of Theo-

rem 4, by (re-)establishing the correctness of some algebra GOM(v') = mex MT o (29)
LES originally studied in [5]. '
Example 2 Consider theES3 PR net A/ depicted by solid st
lines in Figure 3, under_the superv?sion of the algebraic LES Equations 17 and 18
expressed by the following constraints:

The coefficients; (s, ), I =1,...,6, k = 9,10, 11, for the
M(pn) expansionsN F(\s,) = 3.0, ai(\s, )NF(v!) are tabulated

1 1 1 1 M(pi2) 1 in Table 1lI. Table IIl provides also the values obtained ttoe

11 11 %(pw) = | 2 | (28) left-hand-side of the inequality that is employed by the tés

1 1 1 1 (p21) 1 Corollary 3 (c.f. Equation 20), based on the aforementioned
M(p22) expansions and bounds. Since all the obtained values are
M(p23) strictly greater than zero, it is concluded that the nétis

The control sub-net enforcing the constraints of Equatign #ve, and the LES of Equation 28 is a correct LES for the

on A is also depicted in Figure 3, through dashed lines. Tlusiginal net\.

resulting controlled ned, is known to be live, since the LES The work of [5] has also established that the LES obtained

of the Equation 28 constitutes an implementation of the RUBY replacing the right-hand-side of Equation 28 with theteec

LES for the considered net’; the reader is referred to [5] for (2 4 2)7, is another correct LES for net’. Interestingly, the

a statement of RUN LES and a proof of its correctness. Heapplication of the test of Corollary 3, based on €' M

we re-establish the liveness of n&t, and the correctness ofgenerator sefv'} of Table I, fails to recognize the ability of

the LES expressed by Equation 28, by applying Theorem thjs new LES to control the siphorn$ and S; of Table I.

based on the siphon control criterion of Corollary 3. On the other hand, this effect is successfully recognized by
The characteristic vectors of the minimal siphons in thiae more powerful test of Corollary 2. We leave the relevant

controlled netV, of Figure 3 are tabulated in Table I. Siphonsomputational details to the reader.

S1—Sg correspond to the support pfsemiflows, and therefore, Finally, it is interesting to notice that in the computation

they are already controlled. The net flowsF(S;) of the of the G”(S) values tabulated in Table Ill, the first term in



TABLE |
EXAMPLE 2: THE MINIMAL SIPHONS OF THE CONTROLLED NETA,

siphon|| pio P11 P12 P13 | P20 P21 P22 P23 | T1 T2 T3 | wp we w3
S1 1 1 1 1 0 0 0 0O0|/0 O 0] O 0 0
So 0 0 0 0 1 1 1 110 0 0| O 0 0
S3 0 1 0 0 0 0 0 111 0 0| O 0 0
Sy 0 0 1 0 0 0 1 0O|l0 1 0] O 0 0
Ss 0 0 0 1 0 1 0 O|l0 O 1|0 0 0
Se 0 1 0 0 0 1 1 110 0 0] 1 0 0
Se 0 1 1 0 0 1 1 0O0|/0 O 0] O 1 0
Sg 0 1 1 1 0 1 0 0|0 O O] O 0 1
So 0 0 1 0 0 0 0 171 1 0|0 0 0
S10 0 0 0 1 0 0 1 o|l0 1 1|0 0 0
S11 0 0 0 1 0 0 0 1/1 1 1|0 0 0
TABLE I

EXAMPLE 2: THE GC'M GENERATORS v!, EMPLOYED FOR THE EXPANSION OF THE NET FLOW VECTOR® F(\g, ), k = 9,10, 11, AND THE
ASSOCIATED BOUNDS USED IN THE EVALUATION OF THE CRITERION OICOROLLARY 3

generator|| pjo P11 P12 P13 | P20 P21 P2 P23 | T1 T2 13 | wp we ws | GCM(v') | GOM(v')
vl 0 1 0 0 0 1 1 1,10 O 0| O 0 0 0 1
V2 0 1 1 0 0 1 1 o0 O O] O 0 0 0 2
V3 0 1 1 1 0 1 0 0 0 0 0| O 0 0 0 1
v? 0 1 0 0 0 0 0 0 0 0 0] O 0 0 0 1
v° 0 0 1 0 0 0 0 0 0 0 0| O 0 0 0 1
08 0 0 0 0 0 1 0 0|0 O 0] O 0 0 0 1
TABLE Il
EXAMPLE 2: THE COORDINATES FOR THE EXPANSIONS OB F'()g, ), k = 9,10, 11, AS LINEAR COMBINATIONS OF NF(v!), 1 = 1,...,6, AND THE

OBTAINED VALUES FOR THE TEST OFCOROLLARY 3

siphon aq as as ay as aeg )\gMO + GN(S)
Sy 0.0 -1.0 0.0 00 1.0 1.( 3-2=1
S10 0.0 00 00 00 -1.0 -1.( 3-2=1
S11 00 -10 0.0 00 0.0 0( 4-2=2

the right-hand-side of Equation 19 is identically zero, #&m&l algebraic LES of the type expressed by Equation 23, in order
only term that essentially defines the value@f(S) is the to obtain an even broader class of LES for the considered clas
second term in that sur. of process-resource nets.

The above example renders clear the mechanism through.iveness Enforcing Supervision of S3PR nets through
which theGC' M generator concept, introduced in Section Illexplicit control of “elementary” siphons The class o5* PR
explains the correctness of LES like RUN, that do not fallets constitutes a sub-classiof> PR nets, which is obtained
into the LES scope covered in [8]. Furthermore, the sanhg further stipulating that (i) every plage € Ps belongs to
example also reveals that, in this generalized regime, ttkee support of only one of thg-semiflowsY,, introduced in
second term in the right-hand-side of Equation 19, and titem 3 of Definition 5, and (i), (p) € {0,1} for all p € Ps
pertinent selection of the upper bounds involved in thister andr; € Pg.% In order to develop an LES fo$® PR nets, [8]
can have an impacting role in the establishment of deadlockarts with the observation that, according to Theorem &, th
freedom and/or the liveness and reversibility/o6° PR nets liveness and reversibility of any give$? PR net, N' = (PsU
through implicit siphon control. In the remaining part ofsth P, U Pg, T, W, M), could be possibly enforced by adding a
section, we briefly review the key results presented in [8nonitor” place for every uncontrolled minimal siphon 6f,
regarding the liveness enforcing supervision through icitpl S € SMY, that imposes the inequality:
siphon control for a sub-class of thBS®PR nets, known T
as S®PR nets; this discussion will outline the connection of AsM = &g (30)
those past results to the results of Section Ill, and it wiba o _ , ,

A more intuitive |nterpretat|on of these two requwements hattevery

reveal that it is possible ti‘_mix” the control ngic underlying processing stage requires orgye unit from a single resource type for its
the methodology of [8] with the control logic underlying theexecution.



In Equation 30,\s is the characteristic vector &f, M is constitute a“unifying framework” for interpreting and ex-
the marking of net\V, and (s is an integer such thal < tending many of the past results available in the literature
&5 < My(S). However, the direct imposition of Constraint 30with respect to the liveness enforcing supervisioiofS* PR
on the behavior of the original nét’, through the theory of nets. The complete characterization of the implicationthisf
control-place invariants, might lead to a controlled nétthat new framework, and its potential for developing ever more
is not PT-ordinary, and therefore, it cannot have its ligsnepermissive supervisors foES3PR nets, while maintaining
tested according to the criterion of Theorem 3. For thisoras computational tractability, are important issues for Hiert
Constraint 30 is enforced upon the original nétthrough the research.
enforcement of another inequality, of the type:

KEMs < Mo(S) — &5 | N V. CONCLUSIONS |
This paper (i) introduced some new tests for siphon control

In Equation 31,xs is a binary vector with its non-zeroin marked PN systems, and (ii) it demonstrated the ability of
elements corresponding to some plages Pg. Hence, the these tests to (re-)interpret, generalize and unify a nurabe
inequality of Equation 31 is of the same type with that gbast results regarding the deadlock avoidance and theskgen
Equation 23, and it can be enforced on the originalKieby enforcing supervision of certain PN classes modelling ergqu
the super-imposition of a monitor place such that the rigplt tial resource allocation systems. Our future work will seek
net NV, belongs to the class df.S3® PR nets. Furthermore, the to extend these results to broader PN classes, and to unravel
support of the vectokg is selected in a way ensuring thatheir complete potential regarding the deadlock-freedom a
(i) the satisfaction of Constraint 31 implies the satistattof liveness enforcing supervision of these nets.

Constraint 30, and (ii) the resulting controlled rét does not
possess any additional uncontrolled siphons; the fedgiloil

such a selection is established in [3] and we refer the readﬁﬁ
to that work for the relevant details.

(1)
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