SOFTWARE QUALITY IN 2008: A SURVEY OF THE STATE OF THE ART

Capers Jones Founder and Chief Scientist Emeritus

January 30, 2008

SOURCES OF SPR'S QUALITY DATA

SPR clients from 1984 through 2008

- About 650 companies (150 clients in Fortune 500 set)
- About 35 government/military groups
- About 12,500 total projects
- New data = about 75 projects per month
- Data collected from 24 countries
- Observations during more than 15 lawsuits

<u>INDUSTRY</u> HAZARD

Airlines Safety hazards

Air traffic control problems

Flight schedule confusion

Navigation equipment failures

Maintenance schedules thrown off

Delay in opening Denver airport

Passengers booked into non-existent seats

Passengers misidentified as terror suspects

<u>INDUSTRY</u> HAZARD

Defense Security hazards

Base security compromised

Computer security compromised

Strategic weapons malfunction

Command, communication network problems

Aircraft maintenance records thrown off

Logistics and supply systems thrown off

Satellites malfunction

<u>INDUSTRY</u> HAZARD

Finance

Financial transaction hazards

Interest calculations in error

Account balances thrown off

Credit card charges in error

Funds transfer thrown off

Mortgage/loan interest payments in error

Hacking and identity theft due to software security flaws

Denial of service attacks due to software security flaws

<u>INDUSTRY</u> HAZARD

Health Care Safety hazards

Patient monitoring devices malfunction

Operating room schedules thrown off

Medical instruments malfunction

Prescription refill problems

Hazardous drug interactions

Billing problems

Medical records stolen or released by accident

<u>INDUSTRY</u> HAZARD

Insurance Liability, benefit hazards

Policy due dates in error

Policies cancelled in error

Benefits and interest calculation errors

Annuities miscalculated

Errors in actuarial studies

Payment records in error

<u>INDUSTRY</u> HAZARD

State, Local Governments

Local economic hazards

School taxes miscalculated

Jury records thrown off

Real-estate transactions misfiled

Divorce, marriage records misfiled

Alimony, child support payment records lost

Death records filed for wrong people

Traffic light synchronization thrown off

Errors in property tax assessments

<u>INDUSTRY</u> HAZARD

Manufacturing

Operational hazards

Subcontract parts fail to arrive

Purchases of more or less than economic order quantities

Just-in-time arrivals thrown off

Assembly lines shut down

Aging errors for accounts receivable and cash flow

Aging errors for accounts payable and cash flow

Pension payments miscalculated

<u>INDUSTRY</u> HAZARD

National Government

Citizen record hazards

Tax records in error

Annuities and entitlements miscalculated

Social Security payments miscalculated or cancelled

Disbursements miscalculated

Retirement benefits miscalculated

Personal data stolen or released by accident

<u>INDUSTRY</u> HAZARD

Public Utilities Safety hazards

Electric meters malfunction

Gas meters malfunction

Distribution of electric power thrown off

Billing records in error

Nuclear power plants malfunction

<u>INDUSTRY</u> HAZARD

Telecommunications

Service disruption hazards

Intercontinental switching disrupted

Domestic call switching disrupted

Billing records in error

SOFTWARE QUALITY HAZARDS ALL INDUSTRIES

 Software is blamed for more major business problems than any other man-made product.

2. Poor software quality has become one of the most expensive topics in human history.

- 3. Software executives, managers, and technical personnel are regarded by many CEO's as a painful necessity rather than top professionals.
- 4. Improving software quality is a key topic for all industries.

BASIC DEFINITIONS

SOFTWARE QUALITY

Software that combines the characteristics of low defect rates and high user satisfaction

USER SATISFACTION

Clients who are pleased with a vendor's products, quality levels, ease of use, and support

DEFECT PREVENTION

Technologies that minimize the risk of making errors in software deliverables

DEFECT REMOVAL Activities that find and correct defects in software deliverables

BAD FIXES

Secondary defects injected as a byproduct of defect repairs

FUNDAMENTAL SOFTWARE QUALITY METRICS

Defect Potentials

 requirements errors, design errors, code errors, document errors, bad fix errors, test plan errors, and test case errors

Defects Removed

- by origin of defects
- before testing
- during testing
- during deployment

Defect Removal Efficiency

- ratio of development defects to customer defects
- Defect Severity Levels (Valid defects)
 - fatal, serious, minor, cosmetic

FUNDAMENTAL SOFTWARE QUALITY METRICS (cont.)

- Duplicate Defects
- Invalid Defects
- Defect Removal Effort and Costs
 - preparation
 - execution
 - repairs and rework
 - effort on duplicates and invalids
- Supplemental Quality Metrics
 - complexity
 - test case volumes
 - test case coverage
 - IBM's orthogonal defect categories

FUNDAMENTAL SOFTWARE QUALITY METRICS (cont.)

- Standard Cost of Quality
 - Prevention
 - Appraisal
 - Failures
- Revised Software Cost of Quality
 - Defect Prevention
 - Non-Test Defect Removal
 - Testing Defect Removal
 - Post-Release Defect Removal
- Error-Prone Module Effort
 - Identification
 - Removal or redevelopment
 - repairs and rework

U.S. AVERAGES FOR SOFTWARE QUALITY

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	1.00	77%	0.23
Design	1.25	85%	0.19
Coding	1.75	95%	0.09
Documents	0.60	80%	0.12
Bad Fixes	<u>0.40</u>	<u>70%</u>	<u>0.12</u>
TOTAL	5.00	85%	0.75

(Function points show all defect sources - not just coding defects)

BEST IN CLASS SOFTWARE QUALITY

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	0.40	85%	0.08
Design	0.60	97%	0.02
Coding	1.00	99%	0.01
Documents	0.40	98%	0.01
Bad Fixes	<u>0.10</u>	<u>95%</u>	<u>0.01</u>
TOTAL	2.50	96%	0.13

OBSERVATIONS

Most often found in systems software > SEI CMM Level 3

POOR SOFTWARE QUALITY - MALPRACTICE

(Data expressed in terms of defects per function point)

Defect Origins	Defect Potential	Removal Efficiency	Delivered <u>Defects</u>
Requirements	1.50	50%	0.75
Design	2.20	50%	1.10
Coding	2.50	80%	0.50
Documents	1.00	70%	0.30
Bad Fixes	<u>0.80</u>	<u>50%</u>	<u>0.40</u>
TOTAL	8.00	62%	3.05

OBSERVATIONS

Most often found in large client-server projects (> 5000 FP).

GOOD QUALITY RESULTS > 90% SUCCESS RATE

- Formal Inspections (Requirements, Design, and Code)
- Joint Application Design (JAD)
- Software Six-Sigma methods (tailored for software projects)
- Quality Metrics using function points
- Quality Metrics using IBM's Orthogonal classification
- Defect Removal Efficiency Measurements
- Automated Defect tracking tools
- Active Quality Assurance (> 5% SQA staff)
- Utilization of TSP/PSP approaches
- => Level 3 on the SEI capability maturity model (CMM)
- Formal Test Plans for Major Projects
- Quality Estimation Tools
- Automated Test Support Tools
- Testing Specialists
- Root-Cause Analysis

MIXED QUALITY RESULTS: < 50% SUCCESS RATE

- Total Quality Management (TQM)
- Independent Verification & Validation (IV & V)
- Independent quality audits
- Six-Sigma quality programs (without software adjustments)
- Baldrige Awards
- IEEE Quality Standards
- Testing only by Developers
- DOD 2167A and DOD 498
- Reliability Models
- Quality circles
- Clean-room methods
- Cost of quality without software modifications

POOR QUALITY RESULTS: < 25% SUCCESS RATE

- ISO 9000 9004 Quality Standards
- Informal Testing
- Agile development methods > 5000 function points
- Passive Quality Assurance (< 3% QA staff)
- Token Quality Assurance (< 1% QA staff)
- LOC Metrics for quality (omits non-code defects)
- Cost per defect metric (penalizes quality)
- Rapid Application Development (RAD) > 5000 func. Pts.

A PRACTICAL DEFINITION OF SOFTWARE QUALITY (PREDICTABLE AND MEASURABLE)

- Low Defect Potentials (< 2.5 per Function Point)
- High Defect Removal Efficiency (> 95%)
- Unambiguous, Stable Requirements (< 2.5% change)
- Explicit Requirements Achieved (> 97.5% achieved)
- High User Satisfaction Ratings (> 90% "excellent")
 - Installation
 - Ease of learning
 - Ease of use
 - Functionality
 - Compatibility
 - Error handling
 - User information (screens, manuals, tutorials)
 - Customer support
 - Defect repairs

SOFTWARE QUALITY OBSERVATIONS

Quality Measurements Have Found:

- Individual programmers -- Less than 50% efficient in finding bugs in their own software
- Normal test steps -- often less than 75% efficient (1 of 4 bugs remain)
- Design Reviews and Code Inspections -- often more than 65% efficient; have topped 90%
- Reviews or inspections plus formal testing -- are often more than 95% efficient; have hit 99%
- Reviews and Inspections -- lower costs and schedules by as much as 30%

SOFTWARE DEFECT ORIGINS

• 1) Requirements: Hardest to prevent and repair

• 2) Design: Most severe and pervasive

• 3) Code: Most numerous; easiest to fix

• 4) Documentation: Can be serious if ignored

• 5) Bad Fixes: Very difficult to find

• 6) Bad Test Cases: Common and troublesome

• 7) Data quality: Common but hard to measure

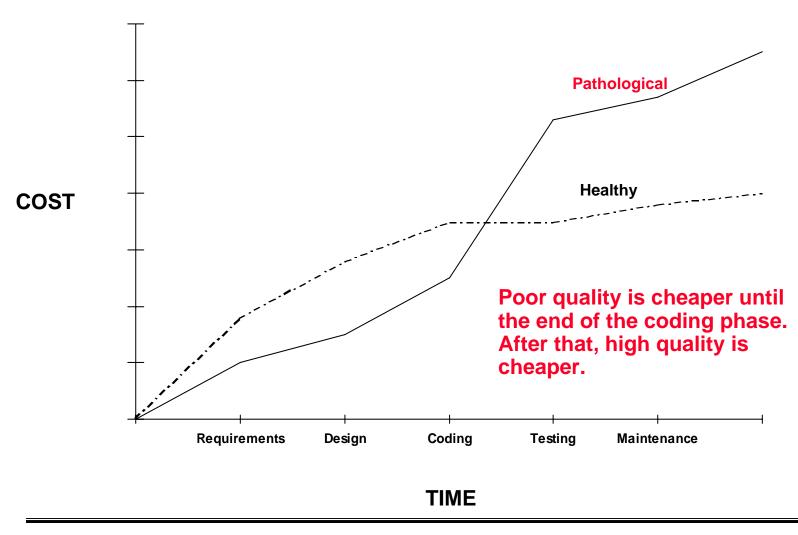
• 8) Web content: Unmeasured to date

SOFTWARE DEFECT SEVERITY CATEGORIES

Severity 1: TOTAL FAILURES 1% at release

Severity 2: MAJOR PROBLEMS 20% at release

Severity 3: MINOR PROBLEMS 35% at release


Severity 4: COSMETIC ERRORS 44% at release

INVALID USER OR SYSTEM ERRORS 15% of reports

DUPLICATE MULTIPLE REPORTS 30% of reports

ABEYANT CAN'T RECREATE ERROR 5% of reports

HOW QUALITY AFFECTS SOFTWARE COSTS

U. S. SOFTWARE QUALITY AVERAGES CIRCA 2008

(Defects per Function Point)

	System Software	Commercial Software	Information Software	Military Software	Outsource Software
Defect Potentials	6.0	5.0	4.5	7.0	5.2
Defect Removal Efficiency	94%	90%	73%	96%	92%
Delivered Defects	0.4	0.5	1.2	0.3	0.4
First Year Discovery Rate	65%	70%	30%	75%	60%
First Year Reported Defects	0.26	0.35	0.36	0.23	0.30

U. S. SOFTWARE QUALITY AVERAGES CIRCA 2008

(Defects per Function Point)

	Web Software	Embedded Software	SEI-CMM 3 Software	SEI-CMM 1 Software	Overall Average
Defect Potentials	4.0	5.5	3.0	5.5	5.1
Defect Removal Efficiency	72%	95%	95%	73%	86.7%
Delivered Defects	1.1	0.3	0.15	1.5	0.68
First Year Discovery Rate	95%	90%	60%	35%	64.4%
First Year Reported Defects	1.0	0.27	0.09	0.52	0.43

SOFTWARE SIZE VS DEFECT REMOVAL EFFICIENCY

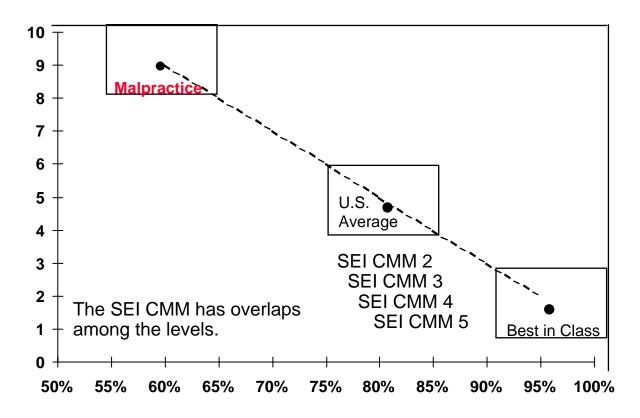
(Data Expressed in terms of Defects per Function Point)

Size	Defect Potential	Defect Removal Efficiency	Delivered Defects	1st Year Discovery Rate	1st Year Reported Defects
1	1.85	95.00%	0.09	90.00%	0.08
10	2.45	92.00%	0.20	80.00%	0.16
100	3.68	90.00%	0.37	70.00%	0.26
1000	5.00	85.00%	0.75	50.00%	0.38
10000	7.60	78.00%	1.67	40.00%	0.67
100000	9.55	75.00%	2.39	30.00%	0.72
AVERAGE	5.02	85.83%	0.91	60.00%	0.38

SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

(Data Expressed in Terms of Defects per Function Point For projects nominally 1000 function points in size)

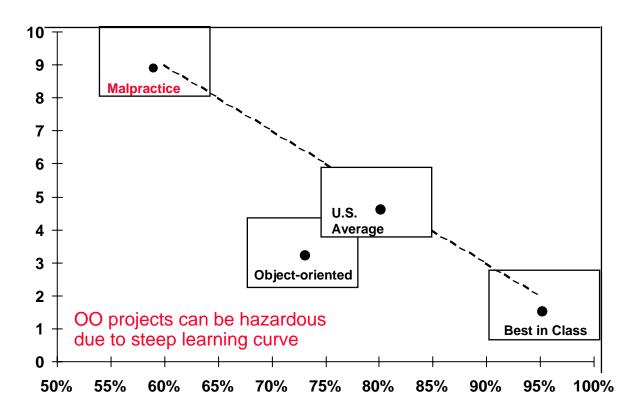
SEI CMM Levels	Defect Potentials	Removal Efficiency	Delivered <u>Defects</u>
SEI CMM 1	5.00	80%	1.00
SEI CMM 2	4.00	90%	0.40
SEI CMM 3	3.00	95%	0.15
SEI CMM 4	2.00	97%	0.08
SEI CMM 5	1.00	99%	0.01
SEI CMM 6 (TSP/PSP)	1.00	99.5%	<0.01


SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

(Data Expressed in Terms of Defects per Function Point For projects > 5000 function points in size)

SEI CMM Levels	Defect Potentials	Removal Efficiency	Delivered Defects
SEI CMM 1	5.50	73%	1.48
SEI CMM 2	4.00	90%	0.40
SEI CMM 3	3.00	95%	0.15
SEI CMM 4	2.50	97%	0.008
SEI CMM 5	2.25	98%	0.005
SEI CMM 6 (TSP/PSP)	2.00	99%	0.004

MAJOR SOFTWARE QUALITY ZONES


Defects per FP

Defect Removal Efficiency

SOFTWARE QUALITY IMPROVEMENT (cont.)

Defects per FP

Defect Removal Efficiency

INDUSTRY-WIDE DEFECT CAUSES

Ranked in order of effort required to fix the defects:

- 1. Requirements problems (omissions; changes, errors)
- 2. Design problems (omissions; changes; errors)
- 3. Interface problems between modules
- 4. Logic, branching, and structural problems
- 5. Memory allocation problems
- 6. Testing omissions and poor coverage
- 7. Test case errors
- 8. Stress/performance problems
- 9. Bad fixes/Regressions
- 10. Documentation errors

OPTIMIZING QUALITY AND PRODUCTIVITY

Projects that achieve 95% cumulative Defect Removal Efficiency will find:

- 1) Minimum schedules
- 2) Maximum productivity
- 3) High levels of user and team satisfaction
- 4) Low levels of delivered defects
- 5) Low levels of maintenance costs
- 6) Low risk of litigation

INDUSTRY DATA ON DEFECT ORIGINS

Because defect removal is such a major cost element, studying defect origins is a valuable undertaking.

IBM Corporation (MVS)		SPR Corporation (client studies)	
45%	Design errors	20%	Requirements errors
25%	Coding errors	30%	Design errors
20%	Bad fixes	35%	Coding errors
5%	Documentation errors	10%	Bad fixes
<u>5%</u>	Administrative errors	5%	Documentation errors
100%		100%	

TRW Corporation	Mitre Corporation	Nippon Electric Corp.
60% Design errors 40% Coding errors	36% Coding errors	60% Design errors 40% Coding errors
100%	100%	100%

SOFTWARE QUALITY AND PRODUCTIVITY

- The most effective way of improving software productivity and shortening project schedules is to reduce defect levels.
- Defect reduction can occur through:
 - Defect <u>prevention</u> technologies
 Structured design and JAD
 Structured code
 Reuse of certified components
 - 2. Defect <u>removal</u> technologies
 Design inspections
 Code inspections
 Formal Testing

DEFECT PREVENTION METHODS

DEFECT PREVENTION

- Joint Application Design (JAD)
- Quality function deployment (QFD)
- Software reuse (high-quality components)
- Root cause analysis
- Six-Sigma quality programs for software
- Usage of TSP/PSP methods
- Climbing > Level 3 on the SEI CMM
- IBM "clean room" methods

DEFECT PREVENTION - Continued

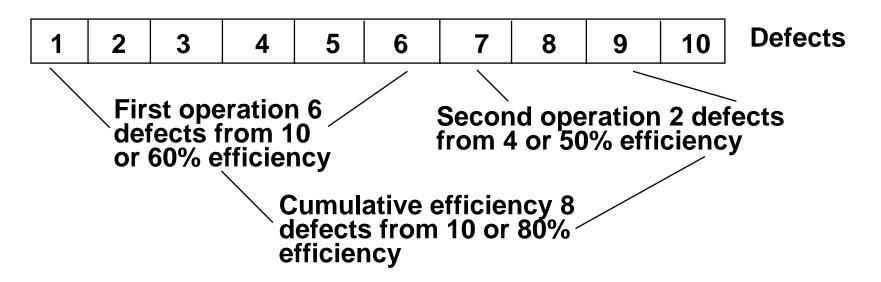
DEFECT PREVENTION

- Total quality management (TQM)
- Quality measurements
- Quality Circles
- Orthogonal defect analysis
- Defect tracking tools
- Formal design inspections
- Formal code inspections
- Embedding users with development team (Agile methods)

DEFECT REMOVAL METHODS

DEFECT REMOVAL

- Requirements inspections
- Design inspections
- Test plan inspections
- Test case inspections
- Code inspections
- User manual inspections
- Data quality inspections
- All forms of testing (more than 15 kinds of test)


DEFECT REMOVAL EFFICIENCY

Defect removal efficiency is a key quality measure

• Removal efficiency = Defects found Defects present

"Defects present" is the critical parameter

DEFECT REMOVAL EFFICIENCY - continued

Defect removal efficiency =

Percentage of defects removed by a single level of review, inspection or test

Cumulative defect removal efficiency =

Percentage of defects removed by a series of reviews, inspections or tests

DEFECT REMOVAL EFFICIENCY EXAMPLE

DEVELOPMENT DEFECTS

Inspections 500

Testing 400

Subtotal 900

USER-REPORTED DEFECTS IN FIRST 90 DAYS

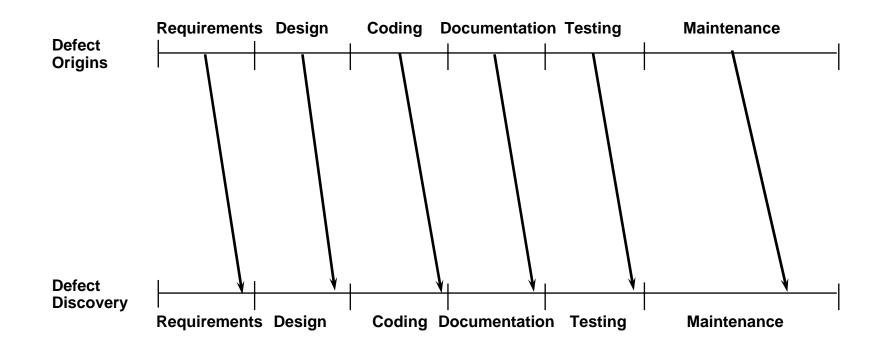
Valid unique defects 100

TOTAL DEFECT VOLUME

Defect totals 1000

REMOVAL EFFICIENCY

Dev. (900) / Total (1000) = 90%


RANGES OF DEFECT REMOVAL EFFICIENCY

	Lowest	Median	<u> Highest</u>
1 Requirements review	20%	30%	50%
2 Top-level design reviews	30%	40%	60%
3 Detailed functional design reviews	30%	45%	65%
4 Detailed logic design reviews	35%	55%	75%
5 Code inspections	35%	60%	85%
6 Unit tests	10%	25%	50%
7 New Function tests	20%	35%	55%
8 Integration tests	25%	45%	60%
9 System test	25%	50%	65%
10 External Beta tests	<u>15%</u>	40%	<u>75%</u>
CUMULATIVE EFFICIENCY	75%	97%	99.99%

NORMAL DEFECT ORIGIN/DISCOVERY GAPS

DEFECT ORIGINS/DISCOVERY WITH INSPECTIONS

SOFTWARE DEFECT REMOVAL RANGES

WORST CASE RANGE

Lowest

TECHNOLOGY COMBINATIONS

DEFECT REMOVAL EFFICIENCY

Median

40%

1. No Design Inspections	30%
No Code Inspections	
No Quality Assurance	
No Formal Testing	

Highest

50%

SINGLE TECHNOLOGY CHANGES

TECHNOLOGY COMBINATIONS DEFECT REMOVAL EFFICIENCY Median Lowest **Highest** 32% 45% 2. No design inspections 55% No code inspections FORMAL QUALITY ASSURANCE No formal testing 3. No design inspections 37% 53% 60% No code inspections No quality assurance **FORMAL TESTING** 4. No design inspections 43% 57% 65% FORMAL CODE INSPECTIONS No quality assurance No formal testing

45%

60%

No formal testing

No code inspections No quality assurance

5. FORMAL DESIGN INSPECTIONS

68%

TWO TECHNOLOGY CHANGES

TECHNOLOGY COMBINATIONS DEFECT REMOVAL E		REMOVAL EF	FFICIENCY	
	Lowest	Median	Highest	
6. No design inspections No code inspections FORMAL QUALITY ASSU FORMAL TESTING	50% JRANCE	65%	75%	
7. No design inspections FORMAL CODE INSPECT FORMAL QUALITY ASSU No formal testing		68%	78%	
8. No design inspections FORMAL CODE INSPECTION No quality assurance FORMAL TESTING	55% TIONS	70%	80%	

TWO TECHNOLOGY CHANGES - continued

TECHNOLOGY COMBINATIONS DEFECT RE		REMOVAL EF	EMOVAL EFFICIENCY	
	Lowest	Median	Highest	
9. FORMAL DESIGN INSPECTIONS No code inspections FORMAL QUALITY ASSURANCE No formal testing	60%	75%	85%	
10. FORMAL DESIGN INSPECTIONS No code inspections No quality assurance FORMAL TESTING	65%	80%	87%	
11. FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS No quality assurance No formal testing	70%	85%	90%	

THREE TECHNOLOGY CHANGES

TECHNOLOGY COMBINATIONS		DEFECT REMOVAL EFFICIENCY		
12.	No design inspections FORMAL CODE INSPECTIONS FORMAL QUALITY ASSURANCE FORMAL TESTING	Lowest 75%	Median 87%	Highest 93%
13.	FORMAL DESIGN INSPECTIONS No code inspections FORMAL QUALITY ASSURANCE FORMAL TESTING	77%	90%	95%
14.	FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS FORMAL QUALITY ASSURANCE No formal testing	83%	95%	97%
15.	FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS No quality assurance FORMAL TESTING	85%	97%	99%

BEST CASE RANGE

TECHNOLOGY COMBINATIONS

DEFECT REMOVAL EFFICIENCY

1.	FORMAL DESIGN INSPECTIONS
	FORMAL CODE INSPECTIONS
	FORMAL QUALITY ASSURANCE
	FORMAL TESTING

Lowest Median Highest 95% 99% 99.99%

DISTRIBUTION OF 1500 SOFTWARE PROJECTS BY DEFECT REMOVAL EFFICIENCY LEVEL

Defect Removal Efficiency Level (Percent)	Number of Projects	Percent of Projects
> 99	6	0.40%
95 - 99	104	6.93%
90 - 95	263	17.53%
85 - 90	559	37.26%
80 - 85	408	27.20%
< 80	161	10.73%
Total	1,500	100.00%

SOFTWARE QUALITY UNKNOWNS IN 2008

SOFTWARE QUALITY TOPICS NEEDING RESEARCH:

Errors in software test plans and test cases

Errors in web content such as graphics and sound

Mass update costs and effectiveness

Supply chain defect removal

Error content of data bases, repositories, warehouses

Causes of bad-fix injection rates

Impact of complexity on quality and defect removal

Impact of creeping requirements

2008 QUALITY RESEARCH TOPICS

Quality levels of Agile projects

Quality levels of Extreme (XP) programming

Quality levels of object-oriented (OO) development

Quality levels of web applications

Quality levels of Microsoft applications

Quality levels of Linux and open source software

Quality levels or ERP applications

Effectiveness of automatic testing methods

CONCLUSIONS ON SOFTWARE QUALITY

- No single quality method is adequate by itself.
- Six-Sigma provides the broadest quality focus
- Formal inspections are most efficient
- Inspections + testing most often > 95% efficient.
- Defect prevention + removal best overall
- Quality excellence has ROI > \$15 for each \$1 spent
- High quality benefits both schedules and productivity
- High quality raises both customer and team morale!

REFERENCES ON SOFTWARE QUALITY

- Gilb, Tom & Graham, Dorothy; Software Inspection; Addison Wesley, 1993.
- Jones, Capers; Estimating Software Costs, McGraw Hill, 2007.
- Jones, Capers; Assessments, Benchmarks, and Best Practices, Addison Wesley, 2000.
- Jones, Capers; Applied Software Measurement; McGraw Hill, 1996. (3rd edition due in the Spring of 2008)
- Jones, Capers; Software Quality: Analysis and Guidelines for Success; International Thomson; 1995.
- Kan, Steve; Metrics and Models in Software Quality Engineering, Addison Wesley, 2003.
- Radice, Ron; High-quality, Low-cost Software Inspections, Paradoxican Publishing, 2002.
- Wiegers, Karl; Peer Reviews in Software, Addison Wesley, 2002.