
Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Desktop Patterns and Data Binding

Karsten Lentzsch

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Goal

Learn how to organize presentation logic
and how to bind domain data to views

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

Domain Object

Presentation Logic

Presentation (View)

Refers toNotifies

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

● Domain/business logic
● Examples:

● Book
● Person
● Address
● Invoice

● More generally:
object graph

Domain Object

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

● Handlers for:
● List selection changes
● Check box selection
● Drag drop end

● UI models
● ListModel
● TableModel
● TreeSelectionModel

● Swing Actions

Presentation Logic

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Event Handling vs. Presentation Logic
● Toolkit handles fine-grained events:

● Mouse entered, exited
● Mouse pressed
● Radio button pressed, armed, rollover

● Application handles coarse-grained events:
● Radio button selected
● Action performed
● List items added
● Domain property changed

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

● Container:
● JPanel, JDialog, JFrame

● Contains components:
● JTextField, JList, JTable

● Component initialization
● Panel building code
● GUI state:

● Check box pressed
● Mouse over

Presentation (View)

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

● Role1 and Role2
“sit together” in a class

● Can access each other

● Separated layers

Role2

Role1

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Legend

● A refers to B
● A holds a reference to B

● B indirectly refers to A
A

B

Refers toNotifies

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation Logic

Presentation (View)

All Mixed Together

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation Logic

Presentation (View)

Pattern: Separated Presentation

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Business Logic

Presentation Logic

Presentation (View)

Business Logic in the Presentation

Domain

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Decouple Domain from Presentation
● The domain shall not reference the presentation
● Presentation refers to domain and modifies it

● Advantages:
● Reduces complexity
● Multiple presentations

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation Logic

Presentation (View)

Refers toNotifies

Separated Presentation with Observer

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Presentation Logic

Presentation (View)

Pattern: Autonomous View

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Autonomous View
● Often one class per window or screen
● Often a subclass of JDialog, JFrame, JPanel
● Contains:

● Fields for UI components
● Component initialization
● Panel building/layout
● Model initialization
● Presentation logic: listeners, operations

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Example GUI

Composer field is enabled, if classical is selected

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Autonomous View Sample (1/2)
public class AlbumDialog extends JDialog {

private final Album album;

private JTextField artistField;
...

public AlbumDialog(Album album) { ... }

private void initComponents() { ... }

private void initPresentationLogic() { ... }

private JComponent buildContent() { ... }

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Autonomous View Sample (2/2)
class ClassicalChangeHandler
 implements ChangeListener {

 public void stateChanged(ChangeEvent e) {
 // Check the classical state.
 boolean classical = classicalBox.isSelected();

 // Update the composer field enablement.
 composerField.setEnabled(classical);
 }

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Autonomous View: Tips
● Build dialogs, frames, panels
● Extend JDialog, JFrame, JPanel if necessary.

Do you extend or use HashMap?

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Autonomous View
● Common and workable
● Has disadvantages:

● Difficult to test logically
● Difficult to overview, manage, maintain, and debug,

if the view or logic is complex
● Consider to separate the logic from the view

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation LogicPresentation (View)

Presentation Logic Separated

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Separated Logic: Advantages I
● Allows to test the presentation logic logically
● Simplifies team synchronization
● Each part is smaller and easier to overview
● Allows to build “forbidden zones”

● For team members
● Before you ship a new release

● Layout changes allowed
● Design is done, but bug fixes in the logic are still allowed

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Separated Logic: Advantages II
● Thin GUI:

● Easier to build, understand, maintain
● Can follow syntactical patterns
● More team members can work with it

● Logic can ignore presentation details,
e.g. component types (JTable vs. JList)

● Logic can be reused for different views

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Separated Logic: Disadvantages
● Extra machinery to support the separation
● Extra effort to read and manage multiple sources

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Separating Logic from the View

● Can simplify or add complexity
● Separation costs vary with the pattern used
● Opinion: typically you benefit from the separation

My personal guideline for team projects:
● Use Autonomous View for message dialogs
● Otherwise separate the logic from the view

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Model

PresenterView

Pattern: Model View Presenter (MVP)

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Model

•Holds domain data
•Provides business logic

Presenter

•Reads domain data
•Sets GUI state
•Presentation Logic
•Changes the domain

View

•Holds UI components
•Holds GUI state
•Inits components
•Builds panel

Model View Presenter

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumDialog

Album Example: Autonomous View

JTextField

JTextField

JCheckBox

JTextField
ChangeHandler

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPresenterAlbumView

Album Example: Model View Presenter

JTextField

JTextField

JCheckBox

JTextField
ChangeHandler

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

From Autonomous View ...
public class AlbumDialog extends JDialog {

private JTextField artistField;
public AlbumDialog(Album album) { ... }
private void initComponents() { ... }
private JComponent buildContent() { ... }

private final Album album;
private void initPresentationLogic() { ... }
private void readGUIStateFromDomain() { ... }
private void writeGUIStateToDomain() { ... }
class ClassicalChangeHandler implements ...
class OKActionHandler implements ...

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

... to Model View Presenter
class AlbumView extends JDialog {

JTextField artistField;
public AlbumView() { ... }
private void initComponents() { ... }
private JComponent buildContent() { ... }

}
public class AlbumPresenter {

private final AlbumView view;
private Album album;
private void initPresentationLogic() { ... }
private void readGUIStateFromDomain() { ... }
private void writeGUIStateToDomain() { ... }
class ClassicalChangeHandler implements ...
class OKActionHandler implements ...

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

... to Model View Presenter
class AlbumView extends JDialog {

JTextField artistField;
public AlbumView() { ... }
private void initComponents() { ... }
private JComponent buildContent() { ... }

}
public class AlbumPresenter {

private final AlbumView view;
private Album album;
private void initPresentationLogic() { ... }
private void readGUIStateFromDomain() { ... }
private void writeGUIStateToDomain() { ... }
class ClassicalChangeHandler implements ...
class OKActionHandler implements ...

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Presenter: Example Logic

class ClassicalChangeHandler
 implements ChangeListener {

 public void stateChanged(ChangeEvent e) {
 // Check the view's classical state.
 boolean classical =
 view.classicalBox.isSelected();
 // Update the composer field enablement.
 view.composerField.setEnabled(classical);
 }
}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation ModelView

Pattern: Presentation Model

ViewView

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Domain

Presentation Model

•Reads domain data
•Holds relevant state
•Presentation Logic
•Fires state changes
•Changes the domain

View

•Holds UI components
•Holds all GUI state
•Inits components
•Builds panel
•Listens to PM changes

Presentation Model

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Action

•Holds relevant state
•Fires state changes

JButton

•Holds all GUI state
•Listens to Action changes

Reminder: Swing Actions

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

From Autonomous View ...
public class AlbumDialog extends JDialog {

private JTextField artistField;
public AlbumDialog(Album album) { ... }
private void initComponents() { ... }
private JComponent buildContent() { ... }

private final Album album;
private void initPresentationLogic() { ... }
private void readGUIStateFromDomain() { ... }
private void writeGUIStateToDomain() { ... }
class ClassicalChangeHandler implements ...
class OKActionHandler implements ...

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

... to Presentation Model
class AlbumView extends JDialog {
 private final AlbumPresentationModel model;

private JTextField artistField;
public AlbumView(AlbumPM model) { ... }
private void initComponents() { ... }
private JComponent buildContent() { ... }

}
public class AlbumPresentationModel {

private Album album;
private void initPresentationLogic() { ... }
private void readPMStateFromDomain() { ... }
private void writePMStateToDomain() { ... }
class ClassicalChangeHandler implements ...
class OKActionHandler implements ...

}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

AlbumPMAlbumView

AlbumPresentationModel

JTextField

JTextField

JCheckBox

JTextField

Text Model

Text Model

Selection Model

Text Model

Album

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPMAlbumView

AlbumPresentationModel: Logic

JTextField

JTextField

JCheckBox

JTextField

ChangeHandler

Text Model

Text Model

Selection Model

Text Model

Enablement ModelChangeHandler

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPMAlbumView

AlbumPresentationModel: Logic

JTextField

JTextField

JCheckBox

JTextField

ChangeHandler

Text Model

Text Model

Selection Model

Text Model

Enablement ModelChangeHandler

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPMAlbumView

AlbumPresentationModel: Logic

JTextField

JTextField

JCheckBox

JTextField

ChangeHandler

Text Model

Text Model

Selection Model

Text Model

Enablement ModelChangeHandler
Updates

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPMAlbumView

AlbumPresentationModel: Logic

JTextField

JTextField

JCheckBox

JTextField

ChangeHandler

Text Model

Text Model

Selection Model

Text Model

Enablement ModelChangeHandler Notifies

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Album

AlbumPMAlbumView

AlbumPresentationModel: Logic

JTextField

JTextField

JCheckBox

JTextField

ChangeHandler

Text Model

Text Model

Selection Model

Text Model

Enablement ModelChangeHandler

Updates enablement

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

No Worries: Actions Again

● Swing uses a similar machinery for Actions
● Actions fire PropertyChangeEvents
● JButton listens to the Action and updates its state

● Swing synchronizes Action state and GUI state
● All you need to write is:
 new JButton(anAction)

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Action
•Text
•Icon
•Enablement
•Mnemonic

JButton

Action with Multiple Views

JButton JMenuItem

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Presentation Model: Multiple Views I

Presentation Model

Panel with List and Button

JList

ListModel

JButton

Action

Domain

PopupMenu

JMenuItem

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Presentation Model: Multiple Views II

Presentation Model

Display List

JList

ListModel Action

Domain

Table with Button

JTable JButton

TableModelAdapter

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

MVP vs. Presentation Model:
GUI State

● MVP
● View holds the GUI state
● Presenter holds no state
● Avoids having to synchronize copied GUI state

● Presentation Model
● View holds all GUI state
● PM holds the relevant GUI state
● Must synchronize PM state and View state

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

MVP vs. Presentation Model:
Testing

● MVP
● Allows to test the Presenter with a View stub
● Allows to preview the View without the Presenter

● Presentation Model
● Allows to test the Presentation Model without the View
● Allows to preview the View with a PM stub

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

MVP vs. Presentation Model:
Transformation Differences
● Some Autonomous Views use low-level GUI state
● Presenter can keep “dirty” low-level ops

● Split to MVP is easier to do
● Split to MVP may costs less

● Split to PM may require extra work
● Find and add GUI state abstractions
● Add handlers to the view

● You may benefit from the extra cleaning

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

MVP vs. Presentation Model:
General
● Developers are used to operate on view state
● Presenter depends on GUI component types
● MVP addresses problems many faced with PM

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Agenda

Introduction
Autonomous View
Model View Presenter
Presentation Model
Data Binding

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Data Binding
● Synchronizes two data sources
● One-way or two-way
● Typically supports type conversion
● May provide a validation

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Binding Examples

Presentation Model

View

JTableJButton

TableModelAction

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Binding Examples

View

JTextFieldJCheckBox

enabled=trueselected=true

Album

classical=true

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Binding Examples
GUI Form

JTextField JCheckBox JFormattedTextField

Database

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Useful Swing Bindings

Presentation Model

View

JList

ListModel

JTable JButton

TableModel Action

JTree

TreeModel

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Swing Binding to Low-Level Models

Presentation Model

View

JTextField

Document

JCheckBox JFormattedTextField

ToggleButtonModel Document

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Wanted: Higher-Level Binding

Presentation Model

View

JTextField

Text Model

JCheckBox JFormattedTextField

Boolean Model Date Model

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Wanted: Full Binding Path

Presentation Model

View

JTextField

Text Model

JCheckBox JFormattedTextField

Boolean Model Date Model

Album

classical=trueartist=”John” released=05/16/06

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

JGoodies Binding

● Uses Swing bindings:
● JList, JTable, JComboBox, JTree, JButton

● Fills the gap where Swing uses low-level models:
● JTextField, JCheckBox, ...

● Converts Bean properties to a uniform model
(ValueModel)

● Makes the hard stuff possible
● Makes simple things a bit easier

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

AlbumView: Init & Bind Components

private void initComponents() {
 artistField = Factory.createTextField(
 presentationModel.getModel(“artist”));
 classicalBox = Factory.createCheckBox(
 presentationModel.getModel(“classical”));
 songList = Factory.createList(
 presentationModel.getSongsAndSelection());
 okButton = new JButton(

 presentationModel.getOKAction());
}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

AlbumView: EnablementHandler

private void initPresentationLogic() {
 // Synchronize field enablement
 // with the PresentationModel state.
 PropertyConnector.connect(
 presentationModel,
 “composerEnabled”,
 composerField,
 “enabled”);
}

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

JSR 295: Beans Binding

● Synchronizes a data source with a target
(often two bound bean properties)

● Shall support type conversion and validation
● Has a BindingContext as a container

for multiple bindings

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Copying ...

● Easy to understand
● Works in almost all situations
● Easy to debug; all data operations are explicit

● Difficult to synchronize views
● Needs discipline in a team
● Coarse-grained updates
● Leads to a lot of boilerplate code

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

... vs. Automatic Binding

● Fine-grained updates
● Simplifies synchronization
● Harder to understand and debug
● Extra work for method renaming and obfuscators

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Costs for Automatic Binding

● Increases learning costs
● Decreases production costs a little
● Can significantly reduce the change costs

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Summary
● Starting point: Separated Presentation
● Common and workable: Autonomous View
● MVP works with view GUI state
● PM copies state and requires synchronization
● Swing has some Presentation Model support

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

Advice
● Use Separated Presentation whenever possible
● Split up Autonomous Views if appropriate
● Read Fowler's “Organizing Presentation Logic”

● Use an automatic binding only if
● it's reliable and flexible
● at least one expert in the team masters it

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

For More Information

Web Resources
● Fowler's Further P of EAA – martinfowler.com/eaaDev

● SwingLabs data binding – databinding.dev.java.net
● Eclipse 3.2 data binding – www.eclipse.org
● Oracle ADF – otn.oracle.com, search 'JClient'
● JGoodies Binding – binding.dev.java.net
 Binding tutorial contains Presentation Model examples
● JSR 295 Beans Binding – jcp.org/en/jsr/detail?id=295

Desktop Patterns and Data Binding

J-Fall 2006

JGoodies

For More Information

Book
● Scott Delap: Desktop Java Live

Presentations - www.JGoodies.com/articles
● Desktop Patterns & Data Binding
● Swing Data Binding

http://www.JGoodies.com/articles

