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What is NetworkX?

NetworkX is a Python package for creating and manipulating graphs and networks

The package, tutorial, and documentation are available at
http://networkx.lanl.gov

All examples were tested on Python 2.7.2 and NetworkX 1.6
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How to Install NetworkX?

Approach A:

The easiest option is to install Python, NetworkX, and several other modules using
the one-click distribution by Enthought available at www.enthought.com

The Enthought distribution is free for academic use

Approach B:

One can first install install a program called easy_install and then use that to
install NetworkX

Download ez_setup.py

Run it using python ez_setup.py or sudo python ez_setup.py

Download a NetworkX Python egg, e.g., networkx-1.5rc1-py2.6.egg

Run the Python egg using easy_install networkx-1.5rc1-py2.6.egg

Python egg? A way of distributing Python packages
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Nodes and Edges

We first need to import the NetworkX module:

1 import networkx as nx

We can create an instance of an undirected graph object:

1 G = nx.Graph()

Adding nodes (one or several at a time):

1 G.add_node (1)
2 G.add_nodes_from ([2 ,3])
3 G.add_nodes_from ([’Tim’, ’Tom’])

Adding edges (one or several at a time):

1 G.add_edge (1,2)
2 G.add_edge(’Tim’, ’Tom’)
3 G.add_edges_from ([(1 ,2) ,(1,3)])
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Nodes and Edges

List of all nodes (list of objects):

1 G.nodes()
2 type(_)

List of all edges (list of tuples of objects):

1 G.edges()
2 type(_)

Number of nodes:

1 G.number_of_nodes ()

Number of edges:

1 G.number_of_edges ()
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Nodes and Edges

We can also remove nodes and edges using similar methods:

1 G.remove_node (1)
2 G.remove_nodes_from ([1 ,2])
3 G.remove_edge (1,2)
4 G.remove_edges_from ([(1 ,2), (2,3)])

To check for the existence of certain nodes or edges (returns True or False):

1 G.has_node (1)
2 G.has_edge (1,2)

We can remove all nodes and all edges (the object G itself still remains):

1 G.clear()
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Nodes and Edges

Let’s use one of NetworkX’s network models to work with a slightly larger graph:

1 N = 100 # number of nodes
2 k = 6 # number of nearest neighbors
3 p = 0.05 # edge rewiring probability
4 G = nx.watts_strogatz_graph(N, k, p)

List of neighbors of a given node:

1 G.neighbors (1)

There is another more direct and faster way to find the neighbors of a node
Note: Use this only to read the dictionary; do not modify the dictionary directly

1 G[1]

{0: {}, 99: {}, 4: {}, 98: {}, 3: {}, 30: {}}
Degree by definition is the number of neighbors a given node has
Since the neighbors() method returns a list, we can use its length to get degree:

1 len(G.neighbors (1))

But more simply we can just use

1 G.degree (1)
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Nodes and Edges

We can use the degree() method to find the degrees of all nodes:

1 G.degree ()

This returns a dictionary with node-degree as key-value pairs

Quiz: How do we get just a list of node degrees?

1 G.degree ().values ()
2 sorted(G.degree ().values ())

The latter makes use of the built-in sorted() function to create a new list that has
the degrees ordered from low to high
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Nodes and Edges

Exercise 1: Write a script that loops through each node and prints out node ID
and node degree

0 6
...

Exercise 2: Write a script that loops through each node and prints out node ID
and a list of neighbor node IDs

0 [1, 2, 3, 97, 12, 98]
...

Exercise 3: Write a script that loops through each node and prints out node ID,
node degree, and its average nearest neighbor degree

0 6 6.16666666667
...
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Nodes and Edges

Exercise 1: Write a script that loops through each node and prints out node ID
and node degree

1 for node in G.nodes():
2 print node , G.degree(node)
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Nodes and Edges

Exercise 2: Write a script that loops through each node and prints out node ID
and a list of neighbor node IDs

1 for node in G.nodes():
2 print node , G.neighbors(node)
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Nodes and Edges
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Nodes and Edges

Exercise 3: Write a script that loops through each node and prints out node ID,
node degree, and its average nearest neighbor degree

1 for node in G.nodes():
2 cumdeg = 0
3 for neighbor in G.neighbors(node):
4 cumdeg += G.degree(neighbor)
5 print node , G.degree(node), float(cumdeg) / G.degree(node)

1 for node in G.nodes():
2 if G.degree(node) > 0:
3 cumdeg = 0
4 for neighbor in G.neighbors(node):
5 cumdeg += G.degree(neighbor)
6 print node , G.degree(node), float(cumdeg) / G.degree(node)

The first piece of code results in division by zero for isolated (degree zero) nodes,
which leads to a run-time error
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Basic Network Properties

NetworkX provides a number of methods for computing network properties
Note that the following are methods of the NetworkX module, not of graph objects
Clustering coefficient characterizes the connectedness of a node’s neighbors:

ci =
2ti

ki(ki − 1)

Here ti is the number of connections among the neighbors of node i, and ki is the
degree of node i

1 nx.clustering(G)
2 nx.clustering(G,1)
3 nx.clustering(G,[1,2,3,4])

Extract the subgraph induced by a set of nodes

1 g = nx.subgraph(G,[1,2,3,4,5,6])
2 g.number_of_edges ()

Extract connected components (returns a list of lists of the nodes in connected
components; the list is ordered from largest connected component to smallest)
Note that the method works for undirected graphs only

1 nx.connected_components(G)
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Basic Network Properties

Sometimes we are interested in the minimum spanning tree of a graph or
network (weighted or unweighted)

1 G = nx.watts_strogatz_graph (10000 ,6 ,0.2)
2 T = nx.minimum_spanning_tree(G)
3 T.number_of_nodes ()

10000

1 T.number_of_edges ()

9999
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File Operations on NetworkX

NetworkX has methods for reading and writing network files

Two useful formats are edge lists and adjacency lists

Column separator can be either a space (default), comma, or something else

By default comment lines begin with the #-character
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File Operations on Edge Lists

Unweighted edge list is a text file with two columns: source target
Weighted edge list is a text file with three columns: source target data
Reading edgelists happens with the following commands:

1 G = nx.read_edgelist("edgelist.txt")
2 G = nx.read_edgelist("edgelist.txt", comments="#", delimiter=",", nodetype=int)
3 G = nx.read_weighted_edgelist("edgelist_w.txt", comments="#", delimiter=",",

nodetype=int)
4 G.edges()
5 G.edges(data=True)

[(1, 2), (1, 3)]
[(1, 2, {’weight’: 5.0}), (1, 3, {’weight’: 5.0})]
Edge lists can be written using the following commands:

1 nx.write_edgelist(nx.path_graph (4), "edgelist.txt", delimiter=’ ’)

0 1 {}
...

1 nx.write_edgelist(nx.path_graph (4), "edgelist.txt", delimiter=’ ’, data=False)

0 1
...

1 nx.write_weighted_edgelist(G, "edgelist_w.txt", delimiter=’ ’)

0 1 5.0
...
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File Operations on Adjacency Lists

Adjacency lists are typically unweighted and have the following format:
source target_1 target_2 target_3 ...

Reading adjacency lists:

1 G = nx.read_adjlist("adjlist.txt")
2 G = nx.read_adjlist("adjlist.txt", comments=’#’, delimiter=’ ’, nodetype=int)

Writing adjacency lists can be done similarly:

1 G = nx.watts_strogatz_graph (100 ,6 ,0.2)
2 nx.write_adjlist(G,"adjlist.txt")
3 nx.write_adjlist(G,"adjlist.txt", delimiter=’ ’)
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Generating Random Graphs

NetworkX has some of the canonical random graphs readily implemented

Erdős-Rényi (ER) random graph (one of the implementations):

1 G_er = nx.erdos_renyi_graph (1000 , 0.15)

Watts-Strogatz (WS) random graph:

1 G_ws = nx.watts_strogatz_graph (1000, 3, 0.1)

Barabási-Albert (BA) random graph:

1 G_ba = nx.barabasi_albert_graph (1000 , 5)

Many others are available for creating, for example, Petersen graphs, Tutte
graphs, etc.
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Graph and Node attributes

Attributes (weights, labels, colors, etc.) can be attached to graphs, nodes, and
edges

Graph attributes are useful if you need to deal with (are lucky enough to have)
several graphs (e.g., in a longitudinal context)

1 G1 = nx.Graph(year =2004)
2 G2 = nx.Graph(year =2006)
3 G2.graph

{’year’: 2006}

1 G2.graph[’year’] = 2005
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Graph and Node Attributes

Node attributes can be used, for example, to represent demographic data (gender,
etc.), or the status of a node in a dynamic process (susceptible, infectious, etc.)

1 G.add_node(1, sex = ’f’)
2 G.add_node(2, sex = ’m’)
3 G.add_nodes_from ([3,4,5,7], sex = ’f’)

List the nodes with and without attributes:

1 G.nodes()
2 G.nodes(data=True)

[1, 2, 3, 4, 5, 7]
[(1, {’sex’: ’f’}), (2, {’sex’: ’m’}), (3, {’sex’: ’f’}), ... ]
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Graph and Node Attributes

We can look up node attributes

1 G.node
2 G.node [1]

{1: {’sex’: ’f’}, 2: {’sex’: ’m’}, 3: {’sex’: ’f’}, ... }
{’sex’: ’f’}

We can also modify node attributes

1 G.node [1][’status ’] = ’s’
2 G.node [2][’status ’] = ’i’

Make sure to keep these distinct:

1 G.nodes() # method yielding a list of node IDs
2 G.nodes(data=True) # method yielding a list of node IDs with node attributes
3 G.node # dictionary of node attributes
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Edge Attributes

Edge attributes can be used to represent edge-based data characterizing the
interaction between a pair of nodes

For example, in a communication network consisting of cell phone calls, we could
use the number of phone calls made between the two nodes over a period of time
(n) and the total duration of phone calls over a period of time (d) as edge weights

1 G.add_edge(1, 2, n = 12, d = 3125)
2 G.add_edge(1, 3, n = 9, d = 625)

List all edges with and without data

1 G.edges(data=True)
2 G.edges()

[(1, 2, {’d’: 3125, ’n’: 12}), (1, 3, {’d’: 625, ’n’: 9})]
[(1, 2), (1, 3)]
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Edge Attributes

The short-cut syntax for accessing node attributes also works for edge attributes

1 G[1]

{2: {’d’: 3125, ’n’: 12}, 3: {’d’: 625, ’n’: 9}}

1 G[1][2]

{’d’: 3125, ’n’: 12}

Adding weighted edges (one or several at a time):

1 # add one weighted edge
2 G.add_edge(1, 2, weight =1.3)
3 G.add_weighted_edges_from ([(1, 2, 1.3)]) # results in "weight" as the key
4
5 # add multiple weighted edges with a common weight
6 G.add_edges_from ([(1, 2), (2, 3)], weight =1.3)
7
8 # add multiple weighted edges with different weights
9 G.add_weighted_edges_from ([(1, 2, 1.3), (1, 3, 4.1)])

[(1, 2, {’d’: 3125, ’n’: 12, ’weight’: 1.3}), (1, 3, {’d’: 625,
’n’: 9, ’weight’: 4.1}), (2, 3, {’weight’: 1.3})]
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Edge Attributes

We now have an unweighted and weighted version (sometimes called node
strength) of degree:

1 G.degree ()
2 G.degree(weight="weight")
3 G.degree(weight="n")
4 G.degree(weight="d")

{1: 2, 2: 2, 3: 2}
{1: 5.3999999999999995, 2: 2.6, 3: 5.3999999999999995}
{1: 21, 2: 13, 3: 10}
{1: 3750, 2: 3126, 3: 626}
Number of edges in the network:

1 G.number_of_edges ()
2 G.size()

3
Total weight of edges in the network:

1 G.size(weight="weight")
2 G.size(weight="n")
3 G.size(weight="d")

6.699999999999999
22.0
3751.0

JP Onnela / Biostatistics / Harvard Analysis of Large-Scale Networks: NetworkX



Exercise: Edge Overlap

We used the concept of edge overlap to examine the so-called weak tie
hypothesis in “Structure and tie strengths in mobile communication networks” by
J.-P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz,
and A.-L. Barabasi, PNAS 104, 7332 (2007)
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Exercise: Edge Overlap

Write a function that computes the overlap Oij of an edge (i, j), defined as the
number of neighbors the nodes adjacent to the edge have in common, divided by
the total number of neighbors the two nodes have combined:

Oij =
nij

(ki − 1) + (kj − 1)− nij
(1)

Here ki and kj are the degrees of nodes i and j, respectively, and nij is the
number of neighbors the two nodes have in common

Hint: You will need to be able to find the degree of a given node, the neighbors of
a given node, and the intersection of the neighbors of two nodes. Sets might be
useful for this purpose.
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Exercise: Edge Overlap

Write a function that computes the overlap Oij of an edge (i, j), defined as the
number of neighbors the nodes adjacent to the edge have in common, divided by
the total number of neighbors the two nodes have combined:

Oij =
nij

(ki − 1) + (kj − 1)− nij

1 # overlap.py
2 # Function for computing edge overlap , defined for non -isolated edges.
3 # JP Onnela / May 24 2012
4
5 def overlap(H, edge):
6 node_i = edge [0]
7 node_j = edge [1]
8 degree_i = H.degree(node_i)
9 degree_j = H.degree(node_j)

10 neigh_i = set(H.neighbors(node_i))
11 neigh_j = set(H.neighbors(node_j))
12 neigh_ij = neigh_i & neigh_j
13 num_cn = len(neigh_ij)
14 if degree_i > 1 or degree_j > 1:
15 return float(num_cn) / (degree_i + degree_j - num_cn - 2)
16 else:
17 return None
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Exercise: Edge Overlap

Let’s examine the average overlap for a few Erdős-Rényi graphs

1 # overlap_test.py
2 # Explore edge overlap for ER graphs.
3 # JP Onnela / May 24 2012
4
5 import networkx as nx
6 import numpy as np
7 import matplotlib.pyplot as plt
8 from overlap import *
9

10 # Compute some overlap values for different ER networks.
11 ps = np.arange(0, 1.001 , 0.05)
12 os = []
13 for p in ps:
14 G = nx.erdos_renyi_graph (100, p)
15 os.append(np.mean([ overlap(G, edge) for edge in G.edges()]))
16
17 # Make a plot and save it to file.
18 fig = plt.figure(figsize =(10, 10))
19 line1 = plt.plot(ps, os, marker = "o", markersize = 10)
20 line2 = plt.plot(ps, ps)
21 plt.axis([0, 1, 0, 1])
22 plt.xlabel("Erdos -Renyi p-parameter", fontsize =15)
23 plt.ylabel("Average overlap <O>", fontsize =15)
24
25 #plt.show()
26 fig.savefig("../ figs/overlap_test.pdf")
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Exercise: Edge Overlap
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Figure : Average edge overlap 〈O〉 as a function of p for Erdős-Rényi networks. The figure was
computed using N = 1000 for each network. The green line is the identity mapping and is shown
for reference.
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Exercise: Edge Overlap

Consider an edge (i, j) in an Erdős-Rényi graph

The probability for i to be connected to a node k, excluding node j is p; therefore
the probability for both of them to be connected to node k is p2

Therefore the expected number of common neighbors is (N − 2)p2

The expected (average) degree is given by (N − 1)p

This yields the following expression for edge overlap:

Oij =
(N − 2)p2

2(N − 1)p− 2− (N − 2)p2

Taking the limit N →∞ this leads to

Oij =
Np2

2Np− 2−Np2
=

p

2− 2/Np− p
=

p

2− p
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Exercise: Edge Overlap

Figure : Plot of expected overlap p/(2− p) in an Erdős-Rényi network as a function of p.
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Network Visualization

NetworkX uses the Matplotlib module for some simple network visualizations
Let’s start with an Erdős-Rényi network with N = 100 and p = 0.11

Note that the actual drawing is deferred until the call to show()

1 import networkx as nx
2 import matplotlib.pyplot as plt
3
4 G = nx.erdos_renyi_graph (100 ,0.11)
5 plt.figure(figsize =(10 ,10))
6 nx.draw(G)
7 plt.axis("tight")
8 plt.show()
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Network Visualization

We can print the figure directly to file by capturing the figure object and then using
the savefig method

Figure format will be specified by the file extension

Possible to specify complete paths (absolute or relative)

1 import networkx as nx
2 import matplotlib.pyplot as plt
3
4 G = nx.erdos_renyi_graph (100 ,0.11)
5 fig = plt.figure(figsize =(10 ,10))
6 nx.draw(G, with_labels = False)
7 plt.axis("tight")
8 fig.savefig("../ figs/vis2.pdf")
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Network Visualization

Sometimes we want to keep the node positions fixed

It is possible to compute the node locations separately, resulting in a dictionary,
which can then be used subsequently in plotting

1 import networkx as nx
2 import matplotlib.pyplot as plt
3
4 G1 = nx.erdos_renyi_graph (100 ,0.01)
5 G2 = nx.erdos_renyi_graph (100 ,0.02)
6 G3 = nx.erdos_renyi_graph (100 ,0.04)
7 G4 = nx.erdos_renyi_graph (100 ,0.08)
8
9 fig = plt.figure(figsize =(10 ,10))

10 pos = nx.spring_layout(G4 ,iterations =500)
11 plt.subplot (2,2,1)
12 nx.draw(G1 , pos , node_size =40, with_labels=False); plt.axis("tight")
13 plt.subplot (2,2,2)
14 nx.draw(G2 , pos , node_size =40, with_labels=False); plt.axis("tight")
15 plt.subplot (2,2,3)
16 nx.draw(G3 , pos , node_size =40, with_labels=False); plt.axis("tight")
17 plt.subplot (2,2,4)
18 nx.draw(G4 , pos , node_size =40, with_labels=False); plt.axis("tight")
19 fig.savefig("../ figs/vis3.pdf")
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Network Visualization

Figure : Erdős-Rényi networks with different values for the p-parameter using fixed node locations.
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