计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 112-116.
赵中堂1,2, 郑小东1
ZHAO Zhong-tang1,2, ZHENG Xiao-dong1
摘要: 在机器学习的不同应用领域,出现了很多优秀的极限学习机分类模型。研究者往往愿意公开这些模型的结构以及参数,但不愿公开原始训练数据。针对如何仅利用现有的模型和少量具有新特征的样本得到一个更高效的识别模型的问题,提出一种特征增量极限学习机算法。该算法能从具有新特征的样本中学习知识,提高现有模型的识别精度。在真实世界图像和三轴加速度传感器数据集上的测试结果表明,该算法能有效地工作,在不需要以往训练样本参与的情况下,能一定程度上提高已有模型的识别精度,得到新的识别模型。
中图分类号:
[1]LOSING V,HAMMER B,WERSING H.Incremental on-linelearning:A review and comparison of state of the art algorithms[J].Neurocomputing,2018(275):1261-1274. [2]FRITZKE B.Fast learning with incremental RBF networks[J].Neural Process. Lett.,1994,1(1):2-5. [3]CARPENTER G A,GROSSBERG S,ROSEN D.Fuzzy ART:Fast stable learning and categorization of analog patterns by an adaptive resonance system[J].Neural Netw.,1991,4:759-771. [4]LIM C P,HARRISON R F.Probabilistic fuzzy artmap:An autonomous neural network architecture for Bayesian probability estimation[C]∥Proc. of Int. Conf. Artif. Neural Netw.,1995:148-153. [5]WANG Z L,JIANG M,HU Y H,et al.An Incremental Learning Method Based on Probabilistic Neural Networks and Adjustable Fuzzy Clustering for Human Activity Recognition by Using Wearable Sensors[J].IEEE Transactions on Information Technology in Biomedicine,2012,16(4):691-699. [6]HUANG G B,WANG D H,LAN Y.Extreme learning ma-chines:a survey[J].International Journal of Machine Learning and Cybernetics,2011,2(2):107-122. [7]LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17:1411-1423. [8]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. [9]王爱平,万国伟,程志全,等.支持在线学习的增量式极端随机森林分类器[J].软件学报,2011(9):2059-2074. [10]HUANG G B.What are Extreme Learning Machines? Fillingthe Gap between Frank Rosenblatt’s Dream and John von Neumann's Puzzle”[J].Cognitive Computation,2015,7:263-278. [11]HUANG G B,BAI Z,KASUN L L C,et al.Local Receptive Fields Based Extreme Learning Machine[J].IEEE Computational Intelligence Magazine,2015,10(2):18-29. [12]FENG G,HUANG G B,LIN Q,et al.Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J].IEEE Transactions on Neural Networks,2009,20(8):1352-1357. [13]CHEN Y Q,ZHAO Z T,WANG S Q,et al.Extreme learning machine based device displacement free activity recognition model[J].Soft Computing,2012,16(9):1617-1625. [14]HUANG G B,CHEN L.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(16):3460-3468. [15]GEPPERTH A,HAMMER B.Incremental learning algorithms and applications[C]∥European Sympoisum on Artificial Neural Networks (ESANN).2016. [16]徐经纬.基于无线传感器的人体行为感知研究[D].南京:南京大学,2012. [17]ZHAO Z T,CHEN Y Q,LIU J F,et al.Cross-people Mobile-phone based Activity Recognition[C]∥IJCAI2011.2011:2545-2550. [18]FIGO D,DINIZ P C,FERREIRA D R,et al.Preprocessing techniques for context recognition from accelerometer data[J].Personal and Ubiquitous Computing,2010,14(7):645-662. [19]WANG X L.High accuracy distributed target detection andclassification in sensor networks based on mobile agent framework[D].University of Tennessee,2004. [20]HAN J W,MICHELINE K,PEI J.Data Mining:Concepts and Techniques[M].Morgan Kaufmann,2000. |
[1] | 冷典典, 杜鹏, 陈建廷, 向阳. 面向自动化集装箱码头的AGV行驶时间估计 Automated Container Terminal Oriented Travel Time Estimation of AGV 计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028 |
[2] | 宁晗阳, 马苗, 杨波, 刘士昌. 密码学智能化研究进展与分析 Research Progress and Analysis on Intelligent Cryptology 计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053 |
[3] | 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇. 基于大数据的进化网络影响力分析研究综述 Survey of Influence Analysis of Evolutionary Network Based on Big Data 计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240 |
[4] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[5] | 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉. 基于边框距离度量的增量目标检测方法 Incremental Object Detection Method Based on Border Distance Measurement 计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132 |
[6] | 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩. 基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究 Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network 计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094 |
[7] | 张光华, 高天娇, 陈振国, 于乃文. 基于N-Gram静态分析技术的恶意软件分类研究 Study on Malware Classification Based on N-Gram Static Analysis Technology 计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203 |
[8] | 陈明鑫, 张钧波, 李天瑞. 联邦学习攻防研究综述 Survey on Attacks and Defenses in Federated Learning 计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079 |
[9] | 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述 Survey on Bayesian Optimization Methods for Hyper-parameter Tuning 计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208 |
[10] | 赵璐, 袁立明, 郝琨. 多示例学习算法综述 Review of Multi-instance Learning Algorithms 计算机科学, 2022, 49(6A): 93-99. https://doi.org/10.11896/jsjkx.210500047 |
[11] | 肖治鸿, 韩晔彤, 邹永攀. 基于多源数据和逻辑推理的行为识别技术研究 Study on Activity Recognition Based on Multi-source Data and Logical Reasoning 计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270 |
[12] | 姚烨, 朱怡安, 钱亮, 贾耀, 张黎翔, 刘瑞亮. 一种基于异质模型融合的 Android 终端恶意软件检测方法 Android Malware Detection Method Based on Heterogeneous Model Fusion 计算机科学, 2022, 49(6A): 508-515. https://doi.org/10.11896/jsjkx.210700103 |
[13] | 王飞, 黄涛, 杨晔. 基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究 Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion 计算机科学, 2022, 49(6A): 784-789. https://doi.org/10.11896/jsjkx.210400030 |
[14] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[15] | 许杰, 祝玉坤, 邢春晓. 机器学习在金融资产定价中的应用研究综述 Application of Machine Learning in Financial Asset Pricing:A Review 计算机科学, 2022, 49(6): 276-286. https://doi.org/10.11896/jsjkx.210900127 |
|