Computer Science ›› 2017, Vol. 44 ›› Issue (3): 168-174.doi: 10.11896/j.issn.1002-137X.2017.03.037
Previous Articles Next Articles
YE Jun-yao, ZHENG Dong and REN Fang
[1] ZHAO S R.New Discrete Logarithm Problems over FiniteFields[D].Jinan:Shandong University,2014:14-20,5-50.(in Chinese) 赵书让.有限域上新的离散对数问题[D].济南:山东大学,2014:14-20,5-50. [2] SHOR P.Polynomial-Time Algorithms For Prime Factorization and Discrete Logarithms on A Quantum Computer[J].Siam Review,1997,41(5):1484-1509. [3] GERSHENFELD N,CHUANG I.Quantum Computing withMolecules[J].Scientific American,1998,282(6):86-93. [4] MCELIECE R.A public key cryptosystem based on algebraiccoding theory[J].DSN Progress Report,1978,2(44):114-116. [5] PATARIN J.Hidden Fields Equations (HFE) and Isomor-phisms of Polynomials (IP):Two New Families of Asymmetric Algorithms[M]∥Advances in Cryptology — EUROCRYPT ’96.Springer Berlin Heidelberg,1996:33-48. [6] STERN J.A New Identification Scheme Based On Syndrome Decoding[C]∥Crypto’93.1993:13-21. [7] VERON P.Improved Identification Schemes Based On Error-Correcting Codes[J].Applicable Algebra in Engineering,Communication and Computing,1997,8(1):57-69. [8] 杨波.现代密码学[M].北京:清华大学出版社,2015:198-199 [9] FIAT A,SHAMIR A.How to Prove Yourself:Practical Solutions to Identification and Signature Problems[C]∥Odlyzko AM(ed) Advances in Cryptology-CRYPTO’86.LNCS,Sprin-ger,Berlin,1987:186-194. [10] YI H,LI W.Fast Three-Input Multipliers over Small Composite Fields for Multivariate Public Key Cryptography[J].International Journal of Security & Its Applications,2015,9(9):165-178. [11] GABORIT P.Shorter Seys For The McEliece Cryptosystem[J].Proceedings of WCC,2005,30(6):124-133. [12] WANG X M.Digital Signature scheme based on error-correcting codes[J].Electronics Letters,1990,26(13):898-899. [13] ALABBADI M,WICKER S B.Security of Xinmei Digital Signature Scheme[J].Electronics,1992,8(9):890-891. [14] ALABBADI M,WICKER S B.Digital Signature Scheme Based on Error-Correcting Codes[C]∥IEEE International Symposium on Information Theory.IEEE,1993:9-19. [15] HARN L,WANG D C.Cryptoanalysis and Modification of Di-gital Signature Scheme Based on Error-Correcting Codes[J].Electronics Letters,1992,8(2):157-159. [16] KABATIANSKII V,KROUK E,SMEETS B J M.A DigitalSignature Scheme Based on Random Error-Correcting Codes[M]∥Crylography and Coding.Springer Berlin Heidelberg,1997:161-167. [17] CAYREL P L,OTMANI A,VERGNAUD D.On Kabatianskii-Krouk-Smeets Signatures[M]∥Carlet S C,Sunar B,eds.Arithmetic of Finite Fields.Springer,Heidelberg, 2007:237-251. [18] COURTOIS N,FINIASZ M,SENDRIER N.How to achieve a McEliece-based digital signature schem[M]∥Advances in cryptology-ASIACRYPT 2001.LNCS,vol 2248,Springer,Berlin,2001:157-174. [19] DALLOT L.Towards a Concrete Security Proof of Courtois,Finiasz and Sendrier Signature Scheme[M]∥ Research in Cryptology.LNCS 4945,Springer,2007:65-77. [20] FAUGRE J C,GAUTHIER V,OTMANI A,et al.A distinguisher for high rate mceliece cryptosystems:Report 2010/331[R/OL].http://eprint.iacr.org. [21] PREETHA M P,VASANT S,R ANGAN C P.On Provably Secure Code based Signature and Signcryption Scheme:Report 2012/585[R].2012. [22] SIDI M,PIERRE-LOUIS C,RACHID E.Code-Based Identification and Signature Schemes in Software[M]∥ Security Engineering and Intelligence Informatics.Germany,LNCS 8128.2014:122-136. [23] PIERRE-LOUIS C,VERON P,ALAOUI S.A Zero-Knowledge Identification Scheme Based on The Q-ary Syndrome Decoding Problem[C]∥2013 Eighth Asia Joint Conference on Selected Areas in Cryptography 2011.Berlin:Springer,2013:171-186. [24] RONG H,MOROZOV K,TAKAGI T.On Zero-KnowledgeIdentification Based on Q-ary Syndrome Decoding[C]∥ 2013 Eighth Asia Joint Conference on Information Security (Asia JCIS).IEEE,2013:12-18. [25] GABORIT P.Method of authentication using a decoding of an error correcting code on the basis of a public matrix:US,US8817972 [P].2014. [26] GADAT B,VAN N,RIES L.Method Of Decoding A Correcting Code,For Example A Turbo-code,By Analysis Of The Extended Spectrum Of The Words Of The Code:US,US20140351667[P].2014. [27] El YOUSFI A.Code-based Identification and Signature Schemes[D].Technische Universitat Darmastadt.2013. [28] BERLEKAMP E R,MCELIECE R J, TILBORG H C A V.On The Inherent Intractability Of Certain Coding Problems[J].IEEE Transactions on Information Theory,1978,4(3):384-386. [29] 岳殿武.信息论与编码简明教程[M].清华大学出版社,2015:166-178. [30] GABORIT P,ZEMOR G.Asymptotic improvement of the Gilbert Varshamov bound for linear codes[J].IEEE Transactions on Information Theory,208,4(9):3865-3872. |
No related articles found! |
|