Computer Science ›› 2018, Vol. 45 ›› Issue (7): 16-21.doi: 10.11896/j.issn.1002-137X.2018.07.003
• CCF Big Data 2017 • Previous Articles Next Articles
ZHAO Xing-wang,LIANG Ji-ye,GUO Lan-jie
CLC Number:
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions [J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [2]ZHU Y Y,SUN J.Recommender system:Up to now [J].Journal of Frontiers of Computer Science and Technology,2015,9(5):513-525.(in Chinese) 朱扬勇,孙婧.推荐系统研究进展[J].计算机科学与探索,2015,9(5):513-525. [3]LENG Y J,LU Q,LIANG C Y.Survey of Recommendation Based on Collaborative Filtering [J].Pattern Recognition and Artificial Intelligence,2014,27(8):720-734.(in Chinese) 冷亚军,陆青,梁昌勇.协同过滤推荐技术综述[J].模式识别与人工智能,2014,27(8):720-734. [4]GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry [J].Communications of the ACM,1992,35(12):61-70. [5]SHI Y,LARSON M,HANJALIC A.Collaborative filtering beyond the user-item matrix:A survey of the state of the art and future challenges[J].ACM Computing Surveys,2014,47(1):1-45. [6]LENG Y J,LIANG C Y,DING Y,et al.Method of neighborhood formation in collaborative filtering[J].Pattern Recognition and Artificial Intelligence,2013,26(10):968-974.(in Chinese) 冷亚军,梁昌勇,丁勇,等.协同过滤中一种有效的最近邻选择方法[J].模式识别与人工智能,2013,26(10):968-974. [7]WANG J,VRIES A P D,REINDERS M J T.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]∥29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2006. [8]LIANG C,LENG Y.Collaborative filtering based on information-theoretic co-clustering[J].International Journal of Systems Science,2014,45(3):589-597. [9]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].IEEE Computer,2009,42(8):30-37. [10]ZENG W,ZENG A,LIU H,et al.Uncovering the information core in recommender systems[J].Scientific Reports,2014,4:6140. [11]CAI Y,LEUNG H,LI Q,et al.Typicality-based collabora-tive filtering recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2010,2(3):97-104. [12]XU B,BU J,CHEN C,et al.An exploration of improving colla-borative recommender systems via user-item subgroups[C]∥International Conference on World Wide Web.2012:21-30. [13]LIU F,HONG J H.Use of social network information to enhancecollaborative filtering performance[J].Expert Systems with Applications,2010,37(7):4772-4778. [14]GUO G B,ZHANG J,THALMANN D.Merging trust in colla-borative filtering to alleviate data sparsity and cold start[J].Knowledge-Based Systems,2014,57(2):57-68. [15]GUO L J,LIANG J Y,ZHAO X W.Collaborative filtering re-commendation algorithm incorporating social network information[J].Pattern Recognition and Artificial Intelligence,2016,29(3):281-288.(in Chinese) 郭兰杰,梁吉业,赵兴旺.融合社交网络信息的协同过滤推荐算法[J].模式识别与人工智能,2016,29(3):281-288. [16]WALTMAN L,ECK N J V.A smart local moving algorithm for large-scale modularity-based community detection[J].European Physical Journal B,2013,86(11):1-14. [17]TANG J,HU X,LIU H.Social recommendation:A review[J].Social Network Analysis & Mining,2013,3(4):1113-1133. [18]BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C]∥14th Conference on Uncertainty in Artificial Intelligence.1998:43-52. [19]DESHPANDE M,KARYPIS G.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2014,22(1):143-177. [18]MCCLAIN J O,RAO V R.CLUSTISZ:A Program to Test for the Quality of Clustering of a Set of Objects.Journal of Marketing Research,1975,12(4):456-460. [19]DAVIES D L,BOULDIN D W.A cluster separation measure.IEEE Transactions on Pattern Analysis & Machine Intelligence,1979,PAMI-1(2):224-227. [20]INCORPORATED C S I.SAS - C Socket Library for TCP-IP,Release 5.01:SAS Technical Report C-111.SAS Publishing,1992. [21]ROUSSEEUW P.Silhouettes:A graphical aid to the interpretation and validation of cluster analysis.Journal of Computational & Applied Mathematics,1987,20(20):53-65. [22]KRZANOWSKI W J,LAI Y T.A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering.Biometrics,1988,44(1):23-34. [23]XIE X L,BENI G.A Validity Measure for Fuzzy Clustering.IEEE Transactions on Pattern Analysis & Machine Intelligence,1991,13(13):841-847. [24]HALKIDI M,VAZIRGIANNIS M,BATISTAKIS Y.QualityScheme Assessment in the Clustering Process∥Principles of Data Mining and Knowledge Discovery.Springer Berlin Heidelberg,2000:265-276. [25]HALKIDI M,VAZIRGIANNIS M.Clustering validity assessment:finding the optimal partitioning ofa data set∥IEEE International Conference on Data Mining.IEEE,2001:187-194. [26]AMORIM R C D,HENNIG C.Recovering the number of clusters in data sets with noise features using feature rescaling factors.Information Science,2015,324:126-145. [27]CAMPO D N,STEGMAYER G,MILONE D H.A new index for clustering validation with overlapped clusters.Expert Systems with Applications,2016,64(C):549-556. [28]FRIEDMAN H P,RUBIN J.On Some Invariant Criteria forGrouping Data.Publications of the American Statistical Association,1967,62(320):1159-1178. [29]SCOTT A J,SYMONS M J.Clustering Methods Based on Likelihood Ratio Criteria.Biometrics,1971,27(2):387-397. [30]HUBERT L J,LEVIN J R.A general statistical framework for assessing categorical clustering in free recall.Psychological Bulletin,1975,83(6):1072-1080. [31]MILLIGAN G W.An examination of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika,1980,45(3):325-342. [32]JAIN A K,MURTY M N,FLYNN P J.Data clustering:a review.Acm Computing Surveys,1999,31(3):264-323. [33]XU R,WUNSCH I D.Survey of clustering algorithms.IEEE Transactions on Neural Networks,2005,16(3):645-678. [34]LAROSE D T.Introduction to Data Mining.Boston:China Machine Press,2010. [35]SALTON G,HARMAN D.Information retrieval.Chichester:John Wiley and Sons Ltd.,2003. [36]MANNING C D,RAGHAVAN P,SCH TZE H.An Introduction to Information Retrieval.Journal of the American Society for Information Science & Technology,2008,61(4):852-853. [37]WITTEN D M,TIBSHIRANI R.A framework for feature selection in clustering.Publications of the American Statistical Association,2010,105(490):713-726. [38]SUN W,WANG J,FANG Y.Regularized k-means clustering of high-dimensional data and its asymptotic consistency.Electronic Journal of Statistics,2012,6(2):148-167. |
[1] | CHENG Zhang-tao, ZHONG Ting, ZHANG Sheng-ming, ZHOU Fan. Survey of Recommender Systems Based on Graph Learning [J]. Computer Science, 2022, 49(9): 1-13. |
[2] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[3] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[4] | SUN Xiao-han, ZHANG Li. Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace [J]. Computer Science, 2022, 49(7): 50-56. |
[5] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[6] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[7] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[8] | WEI Peng, MA Yu-liang, YUAN Ye, WU An-biao. Study on Temporal Influence Maximization Driven by User Behavior [J]. Computer Science, 2022, 49(6): 119-126. |
[9] | YU Ai-xin, FENG Xiu-fang, SUN Jing-yu. Social Trust Recommendation Algorithm Combining Item Similarity [J]. Computer Science, 2022, 49(5): 144-151. |
[10] | CHANG Ya-wen, YANG Bo, GAO Yue-lin, HUANG Jing-yun. Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR [J]. Computer Science, 2022, 49(4): 56-66. |
[11] | ZUO Yuan-lin, GONG Yue-jiao, CHEN Wei-neng. Budget-aware Influence Maximization in Social Networks [J]. Computer Science, 2022, 49(4): 100-109. |
[12] | GUO Lei, MA Ting-huai. Friend Closeness Based User Matching [J]. Computer Science, 2022, 49(3): 113-120. |
[13] | SHAO Yu, CHEN Ling, LIU Wei. Maximum Likelihood-based Method for Locating Source of Negative Influence Spreading Under Independent Cascade Model [J]. Computer Science, 2022, 49(2): 204-215. |
[14] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
[15] | WANG Jian, WANG Yu-cui, HUANG Meng-jie. False Information in Social Networks:Definition,Detection and Control [J]. Computer Science, 2021, 48(8): 263-277. |
|