

The KVM/qemu storage stack

Christoph Hellwig

Storage in Virtual Machines – Why?

 A disk is an integral part of a normal computer
 Most operating systems work best with local

disks
 Boot from NFS / iSCSI still has problems

 Simple integrated local storage is:
 Easier to setup than network storage
 More flexible to manage

 For the highend use PCI passthrough or Fibre
channel NPIV instead

A view 10.000 feet

 The host system or virtual machine (VMVM):
 exports virtual disks to the guest
 The guest uses them like real disks

 The virtual disks are backed by real devices..
 Whole disks / partitions / logical volumes

 .. or files
 Either raw files on a filesystem or image

formats

A virtual storage stack

 We have two full
storage stacks in the
host and in the guest
 Potentially also two

filesystem
 Potentially also a image

format (aka mini
filesystem)

Guest storage driver

Storage hw emulation

Image format

Host volume manager

Host filesystem

Guest filesystem

Host storage driver

Requirements (high level)

 The traditional storage requirements apply:
 Data integrityData integrity – data should actually be on disk

when the user / application require it
 Space efficiencySpace efficiency – we want to store the user /

application data as efficient as possible
 PerformancePerformance – do all of the above as fast as

possible
 Additionally there is a strong focus on:

 ManageabilityManageability – we potentially have a lots of
hosts to deal with

Requirements – guest

 None - Guests should work out of the box
 Migrating old operating system images to virtual

machines is a typical use case
 Any guest changes should be purely

optimizations for:
 Storage efficiency or
 Performance

Requirements – host

 The host is where all the intelligence sits
 Ensures data integrity

 Aka: the data really is on disk when the guest
thinks so

 Optimizantions of storage space usage

A practical implementation: QEMU/KVM

 KVM is the major virtualization solution for Linux
 Included in the mainline kernel, with lots of

development from RedHat, Novell, Intel, IBM and
various individual contributors

What is QEMU and what is KVM?

 QEMUQEMU primarily is a CPU emulator
 Grew a device model to emulate a whole

computer
 Actually not just one but a whole lot of them

 KVMKVM is a kernel module to use expose hardware
virtualization capabilities
 e.g. Intel VT-x or AMD SVM
 KVM uses QEMU for device emulation

 As far as storage is concerned they're the same

QEMU Storage stack overview

Host KernelHost Kernel

ATAATA SCSISCSI VirtioVirtio

VMDK / etc..VMDK / etc..Qcow2Qcow2

Raw PosixRaw Posix

LinuxLinux
 GuestGuest

OthersOthers
GuestsGuests

WindowsWindows
 GuestGuest

QEMUQEMU

TransportsTransports

Image FormatsImage Formats

BackendBackend

Storage transports

 QEMU provides a simple Intel ATAATA controller
emulation by default
 Works with about every operating systems

because it is so common
 Alternatively QEMU can emulate a Symbios SCSISCSI

controller

Paravirtualization

 ParavirtualizationParavirtualization means providing interfaces
more optimal than real hardware
 AdvantageAdvantage: should be faster than full

virtualization
 DisadvantageDisadvantage: requires special drivers for each : requires special drivers for each

guestguest

Paravirtualized storage transport

 QEMU provides paravirtualized devices using the
virtio framework

 Virtio-blk provides a simpler block driver ontop Virtio-blk provides a simpler block driver ontop
of virtioof virtio
 Just simple read/write requestsJust simple read/write requests
 And SCSI requests through ioctlsAnd SCSI requests through ioctls
 And, and, and..And, and, and..

QEMU storage requirements - AIO

 The qemu main loop is effectively singe threaded:
 Time spent there blocks execution of the guest
 I/O needs to be offloaded as fast as possible

QEMU storage requirements - vectors

 Typical I/O requests from guest are split into
non-contingous parts
 scatter/gather lists

 In the optimal case a whole SG list is sent to the
host kernel in one request
 preadv/pwritev system calls

Life of an I/O request

Guest KernelGuest Kernel

Host KernelHost Kernel

QEMUQEMU

MMIO/PIOMMIO/PIO CompletionCompletion
InterruptInterrupt

InterruptInterrupt
InjectionInjectionTrapTrap

DMADMA

Posix storage backend

 The primary storage backend
 Almost all I/O eventually ends up thereAlmost all I/O eventually ends up there

 Simply backs disk images using a regular file or
device file
 Also forwards some management commands Also forwards some management commands

(ioctls) in case of device files(ioctls) in case of device files

Posix storage backend

 Except life isn't THATTHAT simple..

Posix storage backend - AIO

 Needs to implement asynchronous semantics
 AIO support in hosts is severly lacking

 Use a thread pool to hand off I/O by default
 Alternatively support for native Linux AIO:

 Only works for uncached access (O_DIRECT)
 Still can be synchronous for many use cases

Posix storage backend – more fun

 Hosts often have I/O restrictions
 Uncached I/O requires strict alignment and

specific I/O sizes
 Posix backed needs to perform

read/modify/write cycles
 Want to pass-through commands (ioctls) to host

devices
 Different for every OS or even driver

Performance – large sequential I/O

sequential read 8GBsequential read 8GB sequential write 8GBsequential write 8GB
0 MB/s0 MB/s

20 MB/s20 MB/s

40 MB/s40 MB/s

60 MB/s60 MB/s

80 MB/s80 MB/s

100 MB/s100 MB/s

120 MB/s120 MB/s

140 MB/s140 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

Performance – 256 kilobyte random I/O

random read 256KBrandom read 256KB random write 256KBrandom write 256KB
0 MB/s0 MB/s

20 MB/s20 MB/s

40 MB/s40 MB/s

60 MB/s60 MB/s

80 MB/s80 MB/s

100 MB/s100 MB/s

120 MB/s120 MB/s

140 MB/s140 MB/s

160 MB/s160 MB/s

180 MB/s180 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

Performance – 16 kilobyte random I/O

random read 16KBrandom read 16KB random write 16KBrandom write 16KB
0 MB/s0 MB/s

10 MB/s10 MB/s

20 MB/s20 MB/s

30 MB/s30 MB/s

40 MB/s40 MB/s

50 MB/s50 MB/s

60 MB/s60 MB/s

70 MB/s70 MB/s

80 MB/s80 MB/s

NativeNative
QEMU pthreadsQEMU pthreads
QEMU AIOQEMU AIO

The quest for disk image formats

 Users want volume-manager like features in
image files
 Copy-on write snapshots
 Encryption
 Compression

 Also VM snapshots need to store additional
metadata

Disk Image formats - Qcow2

 QcowQcow was the initial QEMU image format to provide
copy on write snapshots

 In Qemu 0.8.3 Qcow2Qcow2 was added to add additional
features and now is the standard image format for
QEMU
 Provides cluster based copy on write snaphots
 Supports encryption and compression
 Allows to store additional metadata for VM

snaphots

Disk Image formats

 QEMU also supports various foreign image formats:
 Cow - User Mode Linux
 Vpc - Microsoft Virtual PC
 Vmdk – Vmware
 Bochs
 Parallels
 Cloop – popular Linux compressed loop patch
 Dmg – MacOS native filesystem images

Non-image backends

 The The curlcurl backend allows using VM images from backend allows using VM images from
the internet over http and ftp connectionsthe internet over http and ftp connections.

 The nbdnbd backend allows direct access to nbd
servers.

 The vvfatvvfat backend allows exporting host
directories as image with a far format filesystem

Benchmarks..

Data integrity in QEMU / caching modes

 cache=none
 uses O_DIRECT I/O that bypasses the

filesystem cache on the host
 cache=writethrough

 uses O_SYNC I/O that is guaranteed to be
commited to disk on return to userspace

 cache=writeback
 uses normal buffered I/O that is written back

later by the operating system

Data integrity - cache=writethrough

 This mode is the safest as far as qemu is This mode is the safest as far as qemu is
concernedconcerned
 There are no additional volatile write caches in There are no additional volatile write caches in

the hostthe host
 The downside is that it's rather slowThe downside is that it's rather slow

Data integrity - cache=writeback

 When the guest writes data we simply put it When the guest writes data we simply put it
in the filesystem cachein the filesystem cache
 No guarantee that it actually goes to diskNo guarantee that it actually goes to disk
 Which is actually very similar to how modern Which is actually very similar to how modern

disks workdisks work

Data integrity - cache=writeback

 The guest needs to issue a cache flush command The guest needs to issue a cache flush command
to make sure data goes to diskto make sure data goes to disk
 Similar to real modern disks with writeback Similar to real modern disks with writeback

cachescaches
 Modern operating systems can deal with thisModern operating systems can deal with this

 And the host needs to actually implement the And the host needs to actually implement the
cache flush command and advertise it:cache flush command and advertise it:
 The QEMU SCSI emulation has always done thisThe QEMU SCSI emulation has always done this
 IDE and virtio only started this very recentlyIDE and virtio only started this very recently

Data integrity - cache=none

 Direct transfer to disk should imply it's safeDirect transfer to disk should imply it's safe
 Except that it is not:Except that it is not:

 Does not guarantee disk caches are flushedDoes not guarantee disk caches are flushed
 Does not give any gurantees about metadataDoes not give any gurantees about metadata

 Thus also needs an explicit cache flush.Thus also needs an explicit cache flush.

Thin provisioning

 Technical term for overcommiting storage Technical term for overcommiting storage
resourcesresources
 A simple example is a sparse file that A simple example is a sparse file that

doesn't actually have blocks allocated to doesn't actually have blocks allocated to
it before useit before use

 Full Thin Provisioning also means Full Thin Provisioning also means
reclaiming space again when data is reclaiming space again when data is
deletedelete

 A big topic both for high-end storage A big topic both for high-end storage
arrays and virtualizationarrays and virtualization

Thin provisioning - standards

 The T10 SPC standard for SCSI disks / arrays The T10 SPC standard for SCSI disks / arrays
contains TP support in it's newest revisionscontains TP support in it's newest revisions
 The UNMAP and WRITE SAME commands The UNMAP and WRITE SAME commands

allow telling the storage device to free allow telling the storage device to free
datadata

 Perfect use case for qemu to know that Perfect use case for qemu to know that
the guest has freed the storagethe guest has freed the storage

 Needs extensive guest supportNeeds extensive guest support
 The ATA spec has a similar TRIM command The ATA spec has a similar TRIM command

for Solid State Drives (SSDs)for Solid State Drives (SSDs)

Thin provisioning - implementation

 On the guest side leverage the support for SSDs / On the guest side leverage the support for SSDs /
ArraysArrays

 On the host side the command decoding in On the host side the command decoding in
qemu is easyqemu is easy

 But the standard filesystem API does not But the standard filesystem API does not
allow punching holes into filesallow punching holes into files
 Some filesystem (e.g. XFS) offer Some filesystem (e.g. XFS) offer

extensions for itextensions for it

Thin provisioning - demo

Avoiding duplicate data

 Often many similar virtual machines are running Often many similar virtual machines are running
on one hoston one host
 Aim for stroing duplicate data only onceAim for stroing duplicate data only once

 Two approaches:Two approaches:
 Image clones – start with a common Image clones – start with a common

image and track changes with a copy on image and track changes with a copy on
write schemewrite scheme

 Data deduplication – find duplicate Data deduplication – find duplicate
blocks and merge them after the factblocks and merge them after the fact

Backing images

 QEMU allows for backing devices in the QCOW2 QEMU allows for backing devices in the QCOW2
format.format.
 Very easy to useVery easy to use

 LVM supports copy on writevolumesLVM supports copy on writevolumes
 Similarly easy to useSimilarly easy to use
 But requires a full block devices, not filesBut requires a full block devices, not files

 Filesystems like btrfs and ocfs allows file Filesystems like btrfs and ocfs allows file
level snapshotslevel snapshots

Data deduplication
 All these have one common disadvantage:All these have one common disadvantage:

 The sharing needs to be planned from The sharing needs to be planned from
the beginning.the beginning.

 Data deduplication is the process of Data deduplication is the process of
finding these duplicates laterfinding these duplicates later
 It's an expensive and slow process It's an expensive and slow process

without additional metadatawithout additional metadata
 Not currently implemented in a way Not currently implemented in a way

usable by QEMU currentlyusable by QEMU currently

Questions?

 Thanks for your attention!
 Feel free to contact me at: hch@lst.de

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41

