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Storage in Virtual Machines – Why?

 A disk is an integral part of a normal computer
 Most operating systems work best with local 

disks
 Boot from NFS / iSCSI still has problems

 Simple integrated local storage is:
 Easier to setup than network storage
 More flexible to manage

 For the highend use PCI passthrough or Fibre 
channel NPIV instead



  

A view 10.000 feet 

 The host system or virtual machine (VMVM):
  exports virtual disks to the guest
 The guest uses them like real disks

 The virtual disks are backed by real devices..
 Whole disks / partitions / logical volumes

 .. or files
 Either raw files on a filesystem or image 

formats



  

A virtual storage stack

 We have two full 
storage stacks in the 
host and in the guest
 Potentially also two 

filesystem
 Potentially also a image 

format (aka mini 
filesystem)

Guest storage driver

Storage hw emulation

Image format

Host volume manager

Host filesystem

Guest filesystem

Host storage driver



  

Requirements (high level)

 The traditional storage requirements apply:
 Data integrityData integrity – data should actually be on disk 

when the user / application require it
 Space efficiencySpace efficiency – we want to store the user / 

application data as efficient as possible
 PerformancePerformance – do all of the above as fast as 

possible
 Additionally there is a strong focus on:

 ManageabilityManageability – we potentially have a lots of 
hosts to deal with



  

Requirements – guest

 None -  Guests should work out of the box
 Migrating old operating system images to virtual 

machines is a typical use case
 Any guest changes should be purely 

optimizations for:
 Storage efficiency or
 Performance



  

Requirements – host

 The host is where all the intelligence sits
 Ensures data integrity

 Aka: the data really is on disk when the guest 
thinks so

 Optimizantions of storage space usage



  

A practical implementation: QEMU/KVM

 KVM is the major virtualization solution for Linux
 Included in the mainline kernel, with lots of 

development from RedHat, Novell, Intel, IBM and 
various individual contributors



  

What is QEMU and what is KVM?

 QEMUQEMU primarily is a CPU emulator
 Grew a device model to emulate a whole 

computer
 Actually not just one but a whole lot of them

 KVMKVM is a kernel module to use expose hardware 
virtualization capabilities
 e.g. Intel VT-x or AMD SVM
 KVM uses QEMU for device emulation

 As far as storage is concerned they're the same



  

QEMU Storage stack overview
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Storage transports

 QEMU provides a simple Intel ATAATA controller 
emulation by default
 Works with about every operating systems 

because it is so common
 Alternatively QEMU can emulate a Symbios SCSISCSI 

controller



  

Paravirtualization

 ParavirtualizationParavirtualization means providing interfaces 
more optimal than real hardware
 AdvantageAdvantage: should be faster than full 

virtualization
 DisadvantageDisadvantage: requires special drivers for each : requires special drivers for each 

guestguest



  

Paravirtualized storage transport

 QEMU provides paravirtualized devices using the 
virtio framework

 Virtio-blk provides a simpler block driver ontop Virtio-blk provides a simpler block driver ontop 
of virtioof virtio
 Just simple read/write requestsJust simple read/write requests
 And SCSI requests through ioctlsAnd SCSI requests through ioctls
 And, and, and..And, and, and..



  

QEMU storage requirements - AIO

 The qemu main loop is effectively singe threaded:
 Time spent there blocks execution of the guest
 I/O needs to be offloaded as fast as possible



  

QEMU storage requirements - vectors

 Typical I/O requests from guest are split into 
non-contingous parts
 scatter/gather lists

 In the optimal case a whole SG list is sent to the 
host kernel in one request
 preadv/pwritev system calls 



  

Life of an I/O request
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Posix storage backend

 The primary storage backend
 Almost all I/O eventually ends up thereAlmost all I/O eventually ends up there

 Simply backs disk images using a regular file or 
device file
 Also forwards some management commands Also forwards some management commands 

(ioctls) in case of device files(ioctls) in case of device files



  

Posix storage backend

 Except life isn't  THATTHAT  simple..



  

Posix storage backend - AIO

 Needs to implement asynchronous semantics
 AIO support in hosts is severly lacking

 Use a thread pool to hand off I/O by default
 Alternatively support for native Linux AIO:

 Only works for uncached access (O_DIRECT)
 Still can be synchronous for many use cases



  

Posix storage backend – more fun

 Hosts often have I/O restrictions
 Uncached I/O requires strict alignment and 

specific I/O sizes
 Posix backed needs to perform 

read/modify/write cycles
 Want to pass-through commands (ioctls) to host 

devices
 Different for every OS or even driver



  

Performance – large sequential I/O
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Performance – 256 kilobyte random I/O
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Performance – 16 kilobyte random I/O
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The quest for disk image formats

 Users want volume-manager like features in 
image files
 Copy-on write snapshots
 Encryption
 Compression

 Also VM snapshots need to store additional 
metadata



  

Disk Image formats - Qcow2

 QcowQcow  was the initial QEMU image format to provide 
copy on write snapshots

 In Qemu 0.8.3 Qcow2Qcow2 was added to add additional 
features and now is the standard image format for 
QEMU
 Provides cluster based copy on write snaphots
 Supports encryption and compression
 Allows to store additional metadata for VM 

snaphots



  

Disk Image formats 

 QEMU also supports various foreign image formats:
 Cow - User Mode Linux
 Vpc - Microsoft Virtual PC
 Vmdk – Vmware
 Bochs
 Parallels
 Cloop – popular Linux compressed loop patch
 Dmg – MacOS native filesystem images



  

Non-image backends

 The The curlcurl backend allows using VM images from  backend allows using VM images from 
the internet over http and ftp connectionsthe internet over http and ftp connections.

 The nbdnbd backend allows direct access to nbd 
servers.

 The vvfatvvfat backend allows exporting host 
directories as image with a far format filesystem



  

Benchmarks..



  

Data integrity in QEMU / caching modes

 cache=none
 uses O_DIRECT I/O that bypasses the 

filesystem cache on the host
 cache=writethrough

  uses O_SYNC I/O that is guaranteed to be 
commited to disk on return to userspace

 cache=writeback
 uses normal buffered I/O that is written back 

later by the operating system 



  

Data integrity - cache=writethrough

 This mode is the safest as far as qemu is This mode is the safest as far as qemu is 
concernedconcerned
 There are no additional volatile write caches in There are no additional volatile write caches in 

the hostthe host
 The downside is that it's rather slowThe downside is that it's rather slow



  

Data integrity - cache=writeback

 When the guest writes data we simply put it When the guest writes data we simply put it 
in the filesystem cachein the filesystem cache
 No guarantee that it actually goes to diskNo guarantee that it actually goes to disk
 Which is actually very similar to how modern Which is actually very similar to how modern 

disks workdisks work



  

Data integrity - cache=writeback

 The guest needs to issue a cache flush command The guest needs to issue a cache flush command 
to make sure data goes to diskto make sure data goes to disk
 Similar to real modern disks with writeback Similar to real modern disks with writeback 

cachescaches
 Modern operating systems can deal with thisModern operating systems can deal with this

 And the host needs to actually implement the And the host needs to actually implement the 
cache flush command and advertise it:cache flush command and advertise it:
 The QEMU SCSI emulation has always done thisThe QEMU SCSI emulation has always done this
 IDE and virtio only started this very recentlyIDE and virtio only started this very recently



  

Data integrity - cache=none

 Direct transfer to disk should imply it's safeDirect transfer to disk should imply it's safe
 Except that it is not:Except that it is not:

 Does not guarantee disk caches are flushedDoes not guarantee disk caches are flushed
 Does not give any gurantees about metadataDoes not give any gurantees about metadata

 Thus also needs an explicit cache flush.Thus also needs an explicit cache flush.



  

Thin provisioning

 Technical term for overcommiting storage Technical term for overcommiting storage 
resourcesresources
 A simple example is a sparse file that A simple example is a sparse file that 

doesn't actually have blocks allocated to doesn't actually have blocks allocated to 
it before useit before use

 Full Thin Provisioning also means Full Thin Provisioning also means 
reclaiming space again when data is reclaiming space again when data is 
deletedelete

 A big topic both for high-end storage A big topic both for high-end storage 
arrays and virtualizationarrays and virtualization



  

Thin provisioning - standards

 The T10 SPC standard for SCSI disks / arrays The T10 SPC standard for SCSI disks / arrays 
contains TP support in it's newest revisionscontains TP support in it's newest revisions
 The UNMAP and WRITE SAME commands The UNMAP and WRITE SAME commands 

allow telling the storage device to free allow telling the storage device to free 
datadata

 Perfect use case for qemu to know that Perfect use case for qemu to know that 
the guest has freed the storagethe guest has freed the storage

 Needs extensive guest supportNeeds extensive guest support
 The ATA spec has a similar TRIM command The ATA spec has a similar TRIM command 

for Solid State Drives (SSDs)for Solid State Drives (SSDs)



  

Thin provisioning - implementation

 On the guest side leverage the support for SSDs / On the guest side leverage the support for SSDs / 
ArraysArrays

 On the host side the command decoding in On the host side the command decoding in 
qemu is easyqemu is easy

 But the standard filesystem API does not But the standard filesystem API does not 
allow punching holes into filesallow punching holes into files
 Some filesystem (e.g. XFS) offer Some filesystem (e.g. XFS) offer 

extensions for itextensions for it



  

Thin provisioning - demo



  

Avoiding duplicate data

 Often many similar virtual machines are running Often many similar virtual machines are running 
on one hoston one host
 Aim for stroing duplicate data only onceAim for stroing duplicate data only once

 Two approaches:Two approaches:
 Image clones – start with a common Image clones – start with a common 

image and track changes with a copy on image and track changes with a copy on 
write schemewrite scheme

 Data deduplication – find duplicate Data deduplication – find duplicate 
blocks and merge them after the factblocks and merge them after the fact



  

Backing images

 QEMU allows for backing devices in the QCOW2 QEMU allows for backing devices in the QCOW2 
format.format.
 Very easy to useVery easy to use

 LVM supports copy on writevolumesLVM supports copy on writevolumes
 Similarly easy to useSimilarly easy to use
 But requires a full block devices, not filesBut requires a full block devices, not files

 Filesystems like btrfs and ocfs allows file Filesystems like btrfs and ocfs allows file 
level snapshotslevel snapshots



  

Data deduplication
 All these have one common disadvantage:All these have one common disadvantage:

 The sharing needs to be planned from The sharing needs to be planned from 
the beginning.the beginning.

 Data deduplication is the process of Data deduplication is the process of 
finding these duplicates laterfinding these duplicates later
 It's an expensive and slow process It's an expensive and slow process 

without additional metadatawithout additional metadata
 Not currently implemented in a way Not currently implemented in a way 

usable by QEMU currentlyusable by QEMU currently



  

Questions?

 Thanks for your attention!
 Feel free to contact me at: hch@lst.de
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