
Jean Goubault-Larrecq

On a Generalization of a Result by

Valk and Jantzen

Research Report LSV-09-09

May 2009

On a Generalization of a Result by Valk and Jantzen

Jean Goubault-Larrecq1,2

1 LSV, ENS Cachan, CNRS, France goubault@lsv.ens-cachan.fr
2 INRIA Saclay, France

Abstract. We show that, under mild assumptions on the effective, well quasi-
ordered set X , one can compute a finite basis of an upward-closed subset U of
X if and only if one can decide whether U ∩ ↓ z is empty for every z ∈ bX . Here
bX is the completion of X as defined in Finkel and Goubault-Larrecq, Forward
Analysis for WSTS, Part I: Completions, STACS’09, pages 433-444, 2009. This
generalizes a useful result proved by Valk and Jantzen in 1985, which is the case
X = Nk.

1 Introduction

LetX be a well-quasi-ordered space.Wewrite≤ its quasi-ordering, ↓A is the downward-
closure of the subsetA, ↓x = ↓ {x}, ↑A is the upward-closure ofA, ↑x = ↑ {x}. Since
X is well-quasi-ordered, every upward-closed subset U ofX has a finite basis, i.e., a fi-
nite setA such that U = ↑A. One can even require the basis to be minimal, equivalently
to consist of the minimal elements of U .

A useful theorem by Valk and Jantzen [8, Theorem 2.14] states that, whenX = Nk,
one can effectively construct a basis of U if and only if one can decide whether U ∩ ↓ z
is empty, for every z ∈ Nk

ω . Here Nω is N plus a new top element ω, and U ∩ ↓ z &=
∅ reduces to checking that U contains a k-tuple (i1, . . . , ik) ∈ Nk satisfying some
constraints ij ≤ cj , for some constants cj ∈ N, and for certain values of j, 1 ≤ j ≤ k.
(Namely, for those values of j such that the j component of z is not ω; then cj is this j
component.) E.g., with k = 5, checking U ∩ ↓(1,ω, 2, 3,ω) &= ∅ means checking that
there is a tuple (i1, i2, i3, i4, i5) in U with i1 ≤ 1, i3 ≤ 2, and i4 ≤ 3.

Our purpose is to show that the Valk-Jantzen generalizes to many spaces X . Ab-
stractly, X needs only be an effective well poset satisfying the so-called effective com-
plement property (Definition 5). We argue that most well-quasi-ordered spacesX used
in verification satisfy these requirements. In fact, all the spaces obtained from any of
the data types of [4, Section 5] satisfy these requirements.

The Valk-Jantzen result has a number of applications. Valk and Jantzen combine
it with the construction of a coverability graph of a Petri net to show that it is decid-
able whether, starting from a given marking m0, one can fire an sequence of transitions
where each transition in a given set T̂ is fired infinitely often (the T̂ -continuality prob-
lem); whether each reachable marking from m0 allows at least one transition from T̂
to be fired (the T̂ -nonblockedness problem); whether there is at least one infinite se-
quence of transitions out of m0 (the liveness problem); whether there are infinitely
many markings reachable from m0 (the unboundedness problem); whether a signal net
is prompt, and a variety of other problems. Finkel et al. [5, Theorem 4.2] use it to show

that coverability of ω-well-structured nets (extending Petri nets strictly) is decidable.
The Valk-Jantzen result has also recently been used by Abdulla and Mayr [3] in their
study of priced timed Petri nets, where it is used in deriving fine decidability results on
ordinary Petri nets constructed from priced timed Petri nets.

It is not our purpose here to give any application of our generalized Valk-Jantzen
result. We hope it will be of practical use, and have some reason to. In fact, Theorem 2
is of use in some work by Dimino and Schnoebelen on lossy channel systems, which
should be published in the near future.

2 Outline and Capsule

Our main theorem is Theorem 1, which reads:
Theorem 1. Let X be a strongly effective well poset with the effective complement
property. Then there are Turing machines that convert from (minimal) finite basis rep-
resentations to strong oracle representations of upward-closed subsets and back.

While this does not look anywhere near the announced theorem by Valk-Jantzen, we
shall argue in Section 3 that this is really what the generalized Valk-Jantzen Theorem
should state. All missing notions are also introduced and explained in Section 3.

Theorem 1 implies a number of special cases, which we list in Section 4. These are
obtained by showing that the assumptions of Theorem 1 are satisfied whenever X is
given by any of the data types of [4, Section 5]: this will be Theorem 3 below. However,
more concretely, we obtain in particular the following new result:
Theorem 2. Let Σ be a finite alphabet, and order Σ∗ by the subword ordering, i.e.,
w ≤Σ∗ w′ iff w is of the form a1a2 . . . am, and w′ = w0a1w1a2w2 . . . wm−1amwm

for some words w0, w1, w2, . . . , wm−1, wm ∈ Σ∗.
For any upward-closed subset U ofΣ∗, one can effectively construct a basis of U if

and only if one can decide whether U ∩ !P "Σ∗ is empty, for every ∗-product P .
The ∗-Products P are special regular expressions, obtained as concatenations of

atomic expressions a? (a ∈ Σ) and A∗ (A a non-empty subset of Σ∗). If P is a concat-
enation e1e2 . . . en of atomic expressions e1, e2, . . . , en, the language !P "Σ∗ of P is
given as the set of words w1w2 . . . wn with wi ∈ !ei"Σ∗ , 1 ≤ i ≤ n; and

#
a?

$
Σ∗ is the

set {ε, a}, while !A∗"Σ∗ is the set of words whose letters are in A.
So Theorem 2 reduces the question of constructing a finite basis of an upward-

closed subset of words in the subword ordering to the question of whether it meets
certain regular languages.

Other similar results are presented in Theorem 4 for the multiset language generat-
ors, and in Theorem 5 for the word language generators of [2]. These are bricks in the
study of timed Petri nets.

We shall also state the following theorem, which deals with the case of finite se-
quences of k-tuples of natural numbers, as used in data nets [7]:
Theorem 6. For any upward-closed subsetU of (Nk)∗, one can effectively construct

a basis of U if and only if one can decide whether U ∩ !P "(Nk)∗ is empty, for every data
net product P .

Data net products P are concatenations of atomic expressions a? where a ∈ Nk
ω,

and A∗, where A is any finite subset of Nk
ω. When P is the concatenation e1e2 . . . en,

2

the language of P , !P "(Nk)∗ , is the set of sequences of the form w1w2 . . . wn with
w1 ∈ !e1"(Nk)∗ , w2 ∈ !e2"(Nk)∗ , . . . , wn ∈ !en"(Nk)∗ . In turn,

#
a?

$
(Nk)∗

is the set
consisting of the empty sequence, plus every sequence consisting of just one k-tuple
x ∈ Nk with x ≤ a; and !A∗"(Nk)∗ is the set of sequences of k-tuples x from Nk such
that x ≤ a for some a ∈ A.

We finally state the following theorem, which is of use in the context of multiset
vector addition systems with states (MVASS). The latter will be the object of a forth-
coming study.
Theorem 7. Let Q be a finite state space, with the trivial ordering (i.e., equality).

For any upward-closedU of
#
(Q × Nk)!

$
, one can effectively construct a basis ofU iff

one can decide whether U ∩ !A! * (q1, a1)
!? * . . . * (qn, an)

!? "(Nk)! is empty, for
every finite subset A ofQ×Nk

ω , and every elements q1, . . . , qn ∈ Q, a1, . . . ,an ∈ Nk
ω.

!A! * (q1, a1)
!? * . . . * (qn, an)

!? "Σ! is a set of multisets of pairs (q, x) with
q ∈ Q and x is a k-tuple of natural numbers. These multisets are those that contain an
arbitrary number of k-tuples of the form (q, x) for some (q, a) ∈ A such that x ≤ a,
plus at most one element of the form (q1, x1) with x1 ≤ a1, plus . . . plus at most one
element of the form (qn, xn) with xn ≤ an.

3 The Generalized Valk-Jantzen Theorem

Preliminaries. Our result will be based on the paper [4], which uses results from [6].
The reader is referred to these papers for basic notions, notations, and theorems. We
merely mention that a well-quasi-ordering on a setX is a quasi-ordering ≤ (a reflexive,
transitive binary relation) such that any infinite sequence (xn)n∈N

is such that there are
two indices i, j ∈ N with i < j and xi ≤ xj . Equivalently, a quasi-ordering is well iff
it is well-founded (no infinite descending chain) and has no infinite anti-chain (set of
incomparable elements). Equivalently again, iff every upward-closed subset of X has a
finite basis, as mentioned in the introduction.

The Valk-Jantzen Theorem as equivalence of representations. As we have stated it, the
Valk-Jantzen Theorem is formally meaningless, despite the fact that it is perfectly un-
derstandable. Indeed, to be able to effectively construct a basis of U , i.e., to compute a
basis, one first need to represent U as some data structure. We must therefore reformu-
late the theorem in such a way that the representation of upward-closed sets U is made
explicit.

Finite bases are the most canonical representation for upward-closed subsets of
a well-quasi-ordered set. However, representing upward-closed subsets by their finite
bases would make the theorem vacuous. One may instead represent U by an oracle that,
given an element x ∈ X , answers whether x ∈ U . (Call this the weak oracle represent-
ation of U .) This is fairly general, but not quite what the Valk-Jantzen Theorem states.
Indeed, this would assume that U is a recursive set, while no such assumption is made
by Valk and Jantzen.

Instead, one notes that being able to decide whetherU ∩↓ z is empty for all z ∈ Nk
ω,

as in the statement of the Valk-Jantzen Theorem, means that we do have a representation
of U , by means of an oracle that, given z ∈ Nk

ω, decides whether U ∩ ↓ z is empty.

3

Call this the strong oracle representation of U , while a finite basis of U will be a
finite basis representation of U . The Valk-Jantzen Theorem then formally means that
each representation is computable from the other one, i.e., that there are two algorithms,
each converting from one representation to the other.

Remark 1. The adjectives ‘strong’ and ‘weak’ are justified by the following fact: one
can compute a weak oracle representation of U from any strong oracle representation
of U . Indeed, the weak oracle takes x ∈ X and checks whether x ∈ U by checking
whether U ∩ ↓x, using the strong oracle.

Generalizing the Valk-Jantzen Theorem. Now generalize, and replace Nk by any well-
quasi-ordered set X . For the strong oracle representation to actually represent U , we
need the quasi-ordering ≤ to actually be an ordering. We shall assume so in the se-
quel. We also need to find a suitable equivalent of Nk

ω. This was solved in [4], where a
suitable completion X̂ of X is defined, which can be described either as the ideal com-
pletion Idl(X), or as the sobrification S(Xa) ofXa, the topological space obtained by
assigning the Alexandroff topology of ≤ toX . For now, we should be reassured by the
fact that, whenX = Nk, then X̂ = Nk

ω.
For our purposes, it is easier to describe X̂ as Idl(X) than as S(Xa). A subset F

of X is directed if and only if it is non-empty, and every two elements of F have a
common upper bound in F . An ideal is a downward-closed directed subset of X . Then
Idl(X) is the set of all ideals ofX , ordered by inclusion.

Then X embeds into X̂ through η : x +→ ↓x. (Check that ↓x is always an ideal.)
By embedding, we mean that η is injective, order-preserving, and order-reflecting. That
is, η is an order-isomorphism of X onto its image Im η. Up to isomorphism, X̂ is then
just X plus some new elements added.

We then need to be able to represent elements of X (and also of X̂ , this will come
later.)

Definition 1. An effective poset is a posetX together with a surjective map r : E → X
(the representation map), where E is an r.e. subset of N, so that the binary relation -
on E × E, defined by e1 - e2 iff r(e1) ≤ r(e2), is computable.

An effective well poset is an effective poset as above such that X is well-quasi-
ordered by ≤.

We say that - is computable on E × E iff the map e1, e2 +→ (e1 - e2) is partial
recursive from N2 to the Booleans, and its domain of definition contains E × E. More
informally, Definition 1 requires ≤ be decidable on X , and that elements of X can be
enumerated.

If r(e) is defined (if e is in E) and equals x, we say that e ∈ N is a code for x ∈ X .
It may however be the case that a given element x ∈ X has several codes. We shall
usually leave r and E implicit, and callX itself an effective poset.

Example 1. X = Nk is an effective well poset, with the componentwise ordering ≤.
Well-quasi-ordering is by Dickson’s Lemma. Effectiveness is (at least informally) clear:
one can compute whether i ≤ j, for any two tuples i, j ∈ Nk. ./

4

Example 2. Let Σ be a finite alphabet, and X = Σ∗ be the set of all finite words over
Σ, ordered by the subword ordering. This is the least relation such that a1a2 . . . an ≤
w0a1w1a2 . . . anwn, for all letters a1, a2, . . . , an ∈ Σ and words w0, w1, . . . , wn ∈
Σ∗. This ordering is a well-quasi-ordering by Higman’s Lemma. Effectiveness is also
clear, although finding a polynomial-time algorithm for ≤ is slightly trickier than in
Example 1 (use dynamic programming). ./

Definition 2 (Finite Basis Representation). Let X be an effective well poset, with
representation map r : E → X . A finite basis representation for an upward-closed
subset U of X is any finite subset A of E such that U = ↑ r(A).

For any finite subsetA ofE, ↑ r(A) is upward-closed. Conversely, every upward-closed
subset U of X is the upward-closure of some finite subset since X is well-quasi-
ordered, and this finite subset is of the form r(A), since r is surjective. So the sets
that have a finite basis representation are exactly the upward-closed subsets ofX .

Remark 2. One is often interested in a minimal finite basis representation of U . How-
ever, it is easy to compute one from any given finite basis, since- is computable on the
set E of codes of elements ofX .

To define a generalization of strong oracle representations, we first require elements
of X̂ , and not justX , to have codes. Recall thatX embeds into X̂ through η : x +→ ↓x
[4].

Definition 3 (Strongly Effective Well Poset). A strongly effective well poset is any
effective well poset X , together with two surjective maps r : E → X (the subspace
representation map) and r′ : E′ → X̂ (the complete representation map), such that:

1. E ⊆ E′ ⊆ N;
2. r′ extends r, in the sense that r′(e) = η(r(e)) for all e ∈ E;
3. E is r.e.;
4. the binary relation - on E × E′ defined by e - e′ iff r(e) ∈ r′(e′) is computable,

i.e., it is partial recursive and its domain of definition contains E × E′.

It is sometimes convenient to equateX with the subset η(X) of X̂ , up to isomorphism.
Under this so-called subspace convention, every element of X is in X̂ , and X̂ contains
additional, so-called limit elements. Note that in strongly effective well posets, we re-
quire all elements, including limit elements, to have codes, although only the non-limit
elements, in X , are required to form an r.e. set. We also require the ability to decide
when x ≤ bX z for x ∈ X and z ∈ X̂ (where ≤ bX is the ordering on X̂ , i.e., inclusion;
this is the last item: observe that e - e′ iff r′(e) ⊆ r′(e′)).

We shall sometimes decide to use the subspace convention, sometimes not. While it
has the merit of removing some clutter in concrete cases, it causes some type confusions
in statements and proofs of theorems.

All strongly effective well posets X are in particular effective well posets, with
representation map r, and ordering on codes e1, e2 ∈ E defined by restricting - to
E×E. Indeed, e1 - e2 iff r(e1) ∈ r′(e2) iff r(e1) ∈ ↓ r(e2) (item 2), iff r(e1) ≤ r(e2),
matching Definition 1.

5

Conversely, one may ask when an effective well poset X can be turned into a
strongly effective well poset. That r′ must be onto requires X̂ to be countable. Since r
is onto, X is countable, so we may use the following.

Lemma 1. For any countable well poset X , X̂ is countable.

Proof. X has countably many upward-closed subsets, since all of them can be described
by a finite basis, as X is well. Since X is countable, there are only countably many
such finite bases. It follows thatX only has countably many downward-closed subsets,
since the latter are exactly the complements of upward-closed subsets. Now notice that
elements of X̂ are certain downward-closed subsets of X . ./

The same ideas shows that every effective well poset can be turned into a strongly
effective well poset:

Proposition 1. LetX be an effective well poset, with representation map r0 : E0 → X .
Then one can equip X with subspace representation maps r : E → X and complete
representation maps r′ : E′ → X̂ , turning X into a strongly effective well poset.

Proof. Fix an injective map from the set of finite subsets of N to N, say A +→ !A" =∑
n∈A 2n. Call !A" the code of A. For any finite subset A of E0, let r′1(!A") = X \

↑ r0(A). Define a limit code as any integer of the form !A" such that r′1(!A") is in X̂
(that is, is not just downward-closed, but also directed), and not of the form ↓x for any
x ∈ X . Note that every limit element of X̂ , i.e., every element outside the range of η,
is of the form r′1(n) for some limit code n.

Now define E as {2n | n ∈ E0}, r(2n) = r0(n), E′ as the (disjoint) union of E
with {2n + 1 | n ∈ E′

1}, r′(2n) = ↓ r0(n) for all n ∈ E0, r′(2n + 1) = r′1(n) for
all n ∈ E′

1. Items 1 through 3 of Definition 3 are clear. (Note that E is r.e. since E0

is; however, there is no reason why E′
1, hence E′, should be r.e.) As far as item 5 is

concerned, for every e, e′ ∈ E′, define - by e - e′ iff r(e) ∈ r′(e′); also, define -0 on
E0 × E0 by m -0 n iff r0(m) ≤ r0(n): this is computable by assumption. For every
e = 2m ∈ E (i.e., m ∈ E0) and e′ ∈ E′, e - e′ iff either e′ = 2n for some n ∈ E0

and m -0 n, or e′ = 2!A" + 1 for some finite subset A of E0, and for every n ∈ A,
m &-0 n. So - is computable on E × E′. ./

Proposition 1 may lead one to think that the notion of strongly effective well poset
is useless. However, an effective well poset may be strongly effective in more than one
way, i.e., for different pairs of representation maps r, r′, some of which being more
practical than others. The crucial effective complement property below (Definition 5)
will depend on both r and r′, and is therefore more easily defined on strongly effective
well posets than on effective well posets.

Example 3. X = Nk is strongly effective, as it is effective. However, instead of rep-
resenting limit elements (in X̂ , outside of X) as certain complements of subsets of the
form ↑A, where A are certain finite subsets of Nk, it is more convenient to realize that,
as we have mentioned earlier, X̂ = Nk

ω, up to order-isomorphism, with the compon-
entwise ordering. So the limit elements will be k-tuples (j1, . . . , jk) in Nk

ω, where at
least one component jp, 1 ≤ p ≤ k, equals ω. Then, the ordering on Nk

ω is decidable,

6

hence also its restriction to X × X̂ (encoded through - in Definition 3), defined by
(i1, . . . , ik) ≤ (j1, . . . , jk) iff, for every p, 1 ≤ p ≤ k, either jp = ω or ip ≤ jp.
Moreover, one can enumerate the elements of X in an effective way, so Nk is strongly
effective. ./

Example 4. When Σ is a finite alphabet, X = Σ∗, with the subword ordering, is also
strongly effective, with representation maps that are again more natural than the canon-
ical ones obtained in Proposition 1. We rely on [4, Proposition 4.1], where elements
of X̂ are obtained as certain regular expressions that were called products there, and
which we call ∗-products here. Recall from [1] that an atomic expression is any regular
expression of the form a?, with a ∈ Σ (this denotes the set {ε, a}), or A∗, where A is
a non-empty subset of Σ (this denotes the set of all finite words whose letters are all
taken from A). A ∗-product is any regular expression of the form e1e2 . . . en (n ∈ N),
where each ei is an atomic expression. Such a ∗-product denotes the set of all words
w1w2 . . . wn, where w1 is taken from e1,w2 from e2, . . . ,wn from en. A simple regular
expression, or SRE, is a sum, either ∅ or P1+. . .+Pk, where P1, . . . , Pk are ∗-products.
Sum is interpreted as union.

Proposition 4.1 of [4] states that X̂ is exactly the set of (denotations of) ∗-products.
The ordering on X̂ (inclusion of denotations of ∗-products) can be decided in quadratic
time, as shown by Abdulla et al. [1]. Since this is decidable and one can effectively
enumerate all elements of Σ∗, Σ∗ is strongly effective.

By the way, this is one case where the subspace convention hinders readability. The
embedding η maps each word w = a1a2 . . . an to the ∗-product η(w) = a?

1a
?
2 . . . a?

n.
Using the subspace convention would force us to equate a1a2 . . . an with a?

1a
?
2 . . . a?

n,
which is awkward at best. ./

Definition 4 (Strong Oracle Representation).LetX be a strongly effective well poset,
with complete representation map r′ : E′ → X̂ . A strong oracle representation for an
upward-closed subsetU ofX is any code of a Turing machineM that, on input e′ ∈ E′,
accepts if U ∩ r′(e′) &= ∅, and rejects otherwise.

So M is a Turing machine that is required to terminate on all inputs e′ from E′. In
effect, we require to be able to decide whether U ∩ r′(e′) is empty or not, for all codes
e′ ∈ E′ of elements of X̂ .

Note that r′(e′) is in X̂ , and elements of X̂ are certain subsets of X , so U ∩ r′(e′)
makes sense. However, this statement is more readable if one uses the subspace conven-
tion, whereby the set r′(e′) really is the set of elements ofX that are below the element
r′(e′) in the larger space X̂ . That is, under the subspace convention, we require to be
able to decide whether U ∩ ↓ bX(r′(e′)) is empty or not. (We write ↓ bX to make it clear
that the downward-closure is taken in X̂ .) Or, in slightly less formal terms, whether
U ∩ ↓ bX z is empty or not for all z ∈ X̂ .

To state our generalization of the Valk-Jantzen Theorem, we shall require a final
assumption on X . To appreciate it, one has to realize the following first. Given any
upward-closed subset U of X , its complement X \ U is downward-closed in X . But
(under the subspace convention) any downward-closed subset F of X has a finite dual
basis {z1, . . . , zn} ⊆ X̂ , i.e., F = X ∩ ↓ bX{z1, . . . , zn}. This is a reformulation of [4,

7

Proposition 4.2] using the subspace convention. In other words, we may either represent
U through one of its finite bases ({x1, . . . , xm} ⊆ X , so that U = ↑X{x1, . . . , xm}),
or through one of the finite dual bases of its complement. However, there is no reason
to think that one could compute each representation from the other one.

So we shall require the following effective complement property. Under the sub-
space convention, and ignoring representation maps, this states that we can always com-
pute a finite dual basis of the complement of an upward-closed subset U , represented
through one of its finite bases.

Definition 5 (Effective Complement Property). Let X be a strongly effective well
poset, with subspace representation map r : E → X , and complete representation map
r′ : E′ → X̂ .

We say that X has the effective complement property iff there is a Turing machine
that, on input {e1, . . . , em} ⊆ E, computes a finite set {e′1, . . . , e′n} ⊆ E′ such that
{r′(e′1), . . . , r

′(e′n)} is a finite dual basis of the complement of ↑{r(e1), . . . , r(em)},
i.e., such that:

X \ ↑{r(e1), . . . , r(em)} = r′(e′1) ∪ . . . ∪ r′(e′n)

Remark 3. The canonical representation maps built in Proposition 1 may lead one to
erroneously think that it is trivial to compute such a representation, because both go
through complements. More precisely, let U = ↑{x1, . . . , xm}, then we would like to
represent U through the finite dual base with just one element z1 = X \ U . However,
z1 is not in general even an element of X̂; while it is downward-closed, it is in general
not directed, so this fails. We shall make this more explicit in Example 6 below.

Example 5. X = Nk is easily seen to have the effective complement property, using
the strongly effective presentation of X̂ as Nk

ω (see Example 3). For example, the com-
plement of ↑(1, 3, 2) (if k = 3) is the intersection of X = N3 with ↓ bX{(0,ω,ω),
(ω, 2,ω), (ω,ω, 1)}: not being above (1, 3, 2) means having at least one component
that is too low, i.e., having a first component less than or equal to 0, a second compon-
ent less than or equal to 2, or a third complement less than or equal to 1. In general,
the complement of ↑(i1, i2, . . . , ik) in X = Nk is equal to X ∩ ↓ bX{(ω, . . . ,ω, ij −
1,ω, . . . ,ω) | 1 ≤ j ≤ k, ij ≥ 1}. The complement of ↑{x1, . . . ,xm} can then be
computed as the intersection of the complements of ↑x1, . . . , ↑xm. In turn, one can
compute intersections ↓ bX{y1, . . . ,ym} ∩ ↓ bX{z1, . . . ,zp} as ↓ bX{min(yi, zj) | 1 ≤
i ≤ m, 1 ≤ j ≤ p}, where minima min(yi, zj) are computed componentwise, e.g.,
min((1,ω, 3,ω, 2), (3, 5, 0,ω,ω)) = (1, 5, 0,ω, 2). ./

Example 6. Let us try to compute a finite dual basis of U = ↑{(1, 3, 2)} in X = N3,
using the canonical representation maps of Proposition 1 instead of the representation
of X̂ as N3

ω. The minimal finite dual basis is {z1, z2, z3}, where z1 is the comple-
ment of ↑{(1, 0, 0)}, z2 is the complement of ↑{(0, 3, 0)}, and z3 is the complement
of ↑{(0, 0, 2)}. Check indeed that z1, z2, z3 are not only downward-closed but also
directed. These elements are easily seen to be the set of tuples that are respectively
below (0,ω,ω), (ω, 2,ω), (ω,ω, 1); i.e., this is in one-to-one correspondence with the
finite dual basis given in Example 5. We hope the reader will share our opinion that the

8

representation of X̂ as elements of Nk
ω, as in Example 5, makes the finite dual basis

representation clearer.

Example 7. X = Σ∗ also has the effective complement property, using the descrip-
tion of X̂ through ∗-products (Example 4). For any word w ∈ Σ∗, say a1a2 . . . an,
↑w is a regular language, namely Σ∗a1Σ

∗a2Σ
∗ . . .Σ∗anΣ

∗. From any finite basis
{w1, . . . , wm} of an upward-closed subset U , we can therefore compute a regular ex-
pression whose language is exactlyU . One can compute its complement as a regular ex-
pression, using standard automata-theoretic techniques. Then we must show that, given
any regular expression E whose language is downward-closed, we can effectively con-
vert it into an SRE. This is well-known, although the construction is usually presented
as a way of showing that any downward-closed language is the language of some SRE,
without any particular stress on computability.

First, we can always assume thatE is a regular expression from the following gram-
mar:

E ::= a?

| ε
| ∅
| E + E
| EE
| E∗

That is, we can assume that no letter occurs in E except under a question mark. Oth-
erwise, convert each letter a not under a question mark to a?. Since E denotes a
downward-closed language, it is easy to see that this transformation preserves lan-
guages. Moreover, every sub-expression of E now denotes a downward-closed subset
as well.

We now recurse on the syntax of E to convert it to an SRE. It is easy to see that
a?, ε, ∅ are already SREs, that sums of SREs are SREs, that products of SREs can
be converted to SREs by distributing product over sum. It only remains to show how
to convert L∗ to an SRE, where L is any SRE. Define the following rewrite relation,
where P denotes any ∗-product, L denotes any sum of an SRE and of isolated letters:

∅∗ → ∅ (a?P + L)
∗
→ (P + a + L)∗

({a1, . . . , an}∗P + L)∗ → (P + a1 + . . . + an + L)∗

Under the above assumptions on P and L, which imply that the languages of P and
L are downward-closed, these rules preserve languages. Moreover, they terminate, as
each of the last two rules decreases the sum of the lengths of ∗-products under the star
sign. Its only normal forms are ∅ and expressions of the form L∗, where L is a sum
of isolated letters a1 + . . . + an; we then convert the latter to the ∗-product A∗, where
A = {a1, . . . , an}. ./

Dual bases provide a third way of representing upward-closed subsets, by repres-
enting their complements. This deserves a definition:

Definition 6 (Finite Dual Basis Representation). Let X be a strongly effective well
poset, with complete representation map r′ : E′ → X̂ . A finite dual basis representation

9

for an upward-closed subset U of X is any finite subset A = {e′1, . . . , e
′
n} of E′ such

that X \ U = r′(e′1) ∪ . . . ∪ r′(e′n).

Proposition 4.2 of [4] (already cited above) states that every downward-closed subset
ofX is a finite union C1∪ . . .∪Cn of elements C1, . . . , Cn of X̂ , as soon asX is well-
quasi-ordered. The fact that r′ : E′ → X̂ is surjective entails that we can write each
Ci as r′(e′i) for some e′i ∈ E. So every upward-closed subset U of X has a finite dual
basis representation (and, of course, every set that has a finite dual basis representation
is upward-closed).

The effective complement property states that we can compute a finite dual basis
representation from any finite basis representation of an upward-closed set.

We now claim:

Theorem 1 (Valk-Jantzen, Generalized). LetX be a strongly effective well poset with
the effective complement property. Then there are Turing machines that convert from
(minimal) finite basis representations to strong oracle representations of upward-closed
subsets and back.

More informally, this states the exact analogue of the Valk-Jantzen Theorem on strongly
effective well posets with the effective complement property: for any upward-closed
subset U of X , we can compute a (minimal) finite basis {x1, . . . , xm} if and only if,
for any z ∈ X̂ , we can decide whether U ∩ ↓ bX z is empty.

Proof of Theorem 1. For any representations A, B of upward-closed subsets, write
A %⇒ B for the property: “there is a Turing machine that, on input anyA-representation
of an upward-closed subset U of X , computes a B-representation of U .” The effective
complement property is Finite Basis %⇒ Finite Dual Basis.

AssumingX to be a strongly effective well poset, we shall prove:

– Finite Basis %⇒ Strong Oracle.
– if Finite Basis %⇒ Finite Dual Basis, then Strong Oracle %⇒ Finite Basis.

Proposition 2. Let X be a strongly effective well poset. Then Finite Basis %⇒ Strong
Oracle.

Proof. Intuitively, given U = ↑{x1, . . . , xn} ⊆ X , the oracle checks whether its input
x ∈ X̂ is such that xi ≤ x for some i, 1 ≤ i ≤ n.

More formally, let r : E → X be the subspace representation map, r′ : E′ → X̂
the complete representation map. Let also - be the relation such that, for all e ∈ E,
e′ ∈ E′, e - e′ iff r(e) ∈ r′(e′).

From a finite basis representation {e1, . . . , en} ⊆ E we compute the code of the
following Turing machineM. On input e′ ∈ E′,M must check whether ↑{r(e1), . . . ,
r(en)} ∩ r′(e′) &= ∅. We claim that this is simply done by checking whether ei - e′

for some i, 1 ≤ i ≤ n. Indeed, ↑{r(e1), . . . , r(en)} ∩ r′(e′) &= ∅ iff r(ei) ∈ r′(e′) for
some i, since r′(e′), as an ideal, is downward-closed. ./

We now show that Strong Oracle %⇒ Finite Basis under the effective complement
property. We first make Remark 1 formal.

10

Lemma 2. LetX be a strongly effective well poset. From any strong oracle representa-
tion, one can compute a weak oracle representation of the same upward-closed subset.

Proof. Let r : E → X be the subspace representation map, r′ : E′ → X̂ the complete
representation map. Given any strong oracle representation M for an upward-closed
subset U , we compute a weak oracle as follows. The weak oracle takes e ∈ E, and
checks whether r(e) ∈ U , equivalently, whether ↓ r(e) intersects U . Since ↓ r(e) =
η(r(e)) = r′(e), this amounts to checking whether U ∩ r′(e) &= ∅: then useM. ./

Proposition 3. Let X be a strongly effective well poset. If X has the effective comple-
ment property, then Strong Oracle %⇒ Finite Basis.

Proof. Let r : E → X be the subspace representation map, r′ : E′ → X̂ the complete
representation map. We build a Turing machineM that takes a strong oracle represent-
ation of an upward-closed subset U of X , and outputs a finite basis of U .

Since E is r.e., enumerate its elements e (i.e., enumerate the codes of elements of
X), and test whether r(e) ∈ U . This can be done by a weak oracle representation for U ,
deduced from the strong oracle (Lemma 2). We can therefore enumerate the codes e1,
e2, . . . , of elements of U . Eventually, all the minimal elements, i.e., the elements of the
minimal finite basis, of U will have been enumerated. So there is an integerm such that
U = ↑{r(e1), . . . , r(em)}. To complete the description ofM, we need to detect when
this happens: i.e., for each m ∈ N, M checks whether U ⊆ ↑{r(e1), . . . , r(em)}; if
so, it stops and outputs the finite basis {e1, . . . , em}, otherwise it goes on. (This finite
basis need not be minimal, however we can convert it to a minimal one, see Remark 2.)

So we need to show that we can decide whether U ⊆ ↑{r(e1), . . . , r(em)}. By
the effective complement property (Definition 5), we compute a finite set of codes
e′1, . . . , e

′
n ∈ E′ such that X \ ↑{r(e1), . . . , r(em)} = r′(e′1) ∪ . . . ∪ r′(e′n). Now

U ⊆ ↑{r(e1), . . . , r(em)} iffU does not intersect r′(e′1)∪. . .∪r′(e′n), iffU∩r′(e′1) = ∅
and . . . and U ∩ r′(e′n) = ∅. These conditions can be checked by calling the strong or-
acle on e′1, . . . , e′n. ./

Other Results. We explore which other relations A %⇒ B between representations do
hold.

Corollary 1. LetX be a strongly effective well poset. IfX has the effective complement
property, then Strong Oracle %⇒ Finite Dual Basis.

Proof. We obtain Strong Oracle %⇒ Finite Basis %⇒ Finite Dual Basis: the second %⇒ is
the effective complement property, and the first one is Proposition 3. ./

Lemma 3. Let X be a strongly effective well poset. Then Finite Dual Basis %⇒ Strong
Oracle.

Proof. Intuitively, because (X\↓ bX{z1, . . . , zn})∩↓ bX z = ∅ iff ↓ bX z ⊆ ↓ bX{z1, . . . , zn},
iff z ≤ bX zi for some i, 1 ≤ i ≤ n. The details are left to the reader. ./

Combining this with Proposition 3, we obtain:
Corollary 2. LetX be a strongly effective well poset. IfX has the effective complement
property, i.e., if Finite Basis %⇒ Dual Finite Basis, then Dual Finite Basis %⇒ Finite
Basis.

11

4 Special Cases

Nk. Examples 1, 3, and 5 show that the assumptions of Theorem 1 are satisfied for
X = Nk. Then Theorem 1 specializes to the original Valk-Jantzen Theorem.

Σ∗. Examples 2, 4, and 7 show that the assumptions of Theorem 1 are satisfied for
X = Σ∗. Then Theorem 1 specializes to the following new result, which we phrase in
the slightly more informal style of the original Valk-Jantzen Theorem:

Theorem 2. Let Σ be a finite alphabet, and order Σ∗ by the subword ordering. For
any upward-closed subset U of Σ∗, one can effectively construct a basis of U if and
only if one can decide whether U ∩ !P "Σ∗ is empty, for every ∗-product P .

Here !P "Σ∗ is the language of the product P . Recall that ∗-products are concatenations
of atomic expressions a? (a ∈ Σ) and A∗ (A a non-empty subset of Σ∗).

Other. We generalize the above constructions to any space X that can be constructed
from the hierarchy of data types of [4, Section 5]. Such data types D are given by the
following grammar:
D ::= N natural numbers

| A≤ finite set A, ordered by ≤
| D1 × . . . × Dk finite product
| D1 + . . . + Dk finite, disjoint sum
| D

∗ finite words
| D

! finite multisets
Any data typeD denotes a well poset !D", with an ordering we call≤D, defined by:

!N" is the set of natural numbers with its usual ordering, !A≤" is the finite setA, ordered
by ≤. (The data types of [4] only require ≤ to be a quasi-ordering, however we need it
to be a partial ordering for A to have strong oracles at all.) Then, !D1 × . . . × Dk" =
!D1"× . . .× !Dk", with the componentwise ordering, !D1 + . . . + Dk" is the disjoint
sum of !D1", . . . , !Dk", with the ordering induced by each summand.

!D∗" is the set of finite words over !D". When D is a finite set A≤, with equality
as ordering ≤, !D∗" will simply be the set of words over A, with the subword ordering,
which we have dealt with in Theorem 2. In general, !D" is not a finite alphabet, and
is usually equipped with a non-trivial ordering ≤D. The partial ordering ≤D∗ on !D∗"
is the embedding ordering defined by: w ≤D∗ w′ iff, writing w as the sequence of m
letters a1a2 . . . am from !D", one can write w′ as w0a

′
1w1a

′
2w2 . . . wm−1a

′
mw′

m with
a1 ≤D a′

1, a2 ≤D a′
2, . . . , am ≤D a′

m. This is a well-quasi-ordering, as soon as ≤D is,
by Higman’s Lemma.

!D!" is the set of finite multisets {|x1, . . . , xn|} of elements of !D", and is partially
ordered by ≤D! , defined as: {|x1, x2, . . . , xm|} ≤D! {|y1, y2, . . . , yn|} iff there is an
injective map r : {1, . . . , m} →{ 1, . . . , n} such that xi ≤D yr(i) for all i, 1 ≤ i ≤ m.

We recall from [4, Theorem 5.3] that !̂D" is characterized, computationally (and up
to order-isomorphism) for each data type D as follows. We shall always describe !̂D"
through a simpler order-isomorphic space, which we shall call D̂. We also describe the
order-isomorphism z ∈ D̂ +→ !z"D ∈ !̂D" in each case; note that, in particular, !z"D

will be an ideal in, hence a set of elements of !D".

12

– N̂ is Nω, with the usual ordering; the order-isomorphism is given by !n"
N

= ↓N n
for each n ∈ N, and !ω"

N
= N.

– Â≤, for finite A, is A itself, with ≤ as ordering; !a"A≤
= ↓A a for all a ∈ A.

– When D = D1 × . . . × Dk, D̂ is the product of D̂1, . . . , D̂k, with the product
ordering; for all z1 ∈ D̂1, . . . , zk ∈ D̂k, !(z1, . . . , zk)"D1×...×Dk

= !z1"D1
×

. . . × !zk"Dk
.

– whenD = D1 + . . .+Dk, D̂ is the disjoint union of D̂1, . . . , D̂k, with the induced
ordering; for each i, 1 ≤ i ≤ k, for every z ∈ D̂i, !z"D1+...+Dk

= !z"Di
.

– D̂∗ is the set of ∗-products, defined again as sequences P of atomic expressions a?

(with a ∈ D̂) or A∗ (with A a non-empty finite subset of D̂). Atomic expressions
are ordered by a? ≤D∗ a′? iff a ≤D a′, a? ≤D∗ A′∗ iff a ≤D a′ for some a′ ∈ A′,
A? ≤D∗ A′? iff for every a ∈ A, there is an a′ ∈ A′ such that a ≤D a′. This is
extended to ∗-products by: ε ≤D∗ P ′ always; P ≤D∗ ε iff P = ε; eP ≤D∗ e′P ′

(where e, e′ are atomic expressions, P , P ′ are ∗-products) iff (1) e &≤D e′ and
NP ≤D∗ P ′, or (2) e = a?, e′ = a′?, a ≤D a′, and P ≤D∗ P ′, or (3) e′ = A′∗,
e ≤D∗ A′∗ and P ≤D∗ e′P ′.
The order-isomorphism is given by: for each ∗-product P = e1e2 . . . en, where e1,
e2, . . . , en are atomic expressions, !P "D∗ = {w1w2 . . . wn | w1 ∈ !e1"D∗ , . . . ,
wn ∈ !en"D∗}, where !e"D∗ is defined for atomic expressions e by:

#
a?

$
D∗ =

{ε}∪!a"D (where in !a"D, we equate letters in !D"with one-letter words in !D∗"),
and !A∗"D∗ is the set of words over the alphabet

⋃
a∈A !a"D.

– D̂! is the set of #-products, defined as expressions of the form A! * a
!?
1 * . . .*

a
!?
n , where A is a finite subset of D̂ (possibly empty), n ∈ N, and a1, . . . , an ∈ D̂.
They are ordered by P ≤D! P ′, where P = A! * a

!?
1 * a

!?
2 * . . . * a

!?
m and

P ′ = A′!*a′
1

!? *a′
2

!? * . . .*a′
n

!? , iff: (1) for every a ∈ A, there is an a′ ∈ A′

with a ≤D a′, and (2) letting I be the subset of those indices i, 1 ≤ i ≤ m, such
that ai ≤D a′ for no a′ ∈ A′, there is an injective map r : I → {1, . . . , n} such
that ai ≤D a′

r(i) for all i ∈ I .
The order-isomorphism is given by: !A! * a

!?
1 * . . . * a

!?
n " is the set of all multis-

ets that can be written as an arbitrary multiset of elements of
⋃

a∈A !a"D, plus at
most one element of !a1"D, at most one element of !a2"D, . . . , and at most one
element of !an"D.

For any data type D, !D" is well-quasi-ordered, and partially ordered by ≤D. The
definition above makes it clear that D̂ is a strongly effective well poset. In fact, the set
of elements of !D" and of D̂ are not just r.e., but recursive.

We proceed to show that !D" has the effective complement property for all data
typesD as above. We first note:

Remark 4. For every data type D, !D" has a finite dual basis.

This is because every downward-closed subset of !D" has one, and !D" is certainly
downward-closed in itself. Concretely, we can build one by induction on D. A dual
basis of !N" consists in the single element ω, a dual basis of !A≤" is given by the
maximal elements of A, ordered by ≤. A dual basis of !D1 × . . . × Dk" is given by

13

all k-tuples (z1, . . . , zk), where each zi is taken from a dual basis of !D"i, 1 ≤ i ≤ k.
A dual basis of !D1 + . . . + Dk" is given by the disjoint union of dual bases of each
!Di", 1 ≤ i ≤ k. A dual basis of !D∗" (resp. !D!") is given by the single ∗-product
A∗ (resp., A!), where A is a finite dual basis of !D".

Second, we note that we can compute binary intersections of elements of !D",
whence we shall be able to compute any finite intersection of such elements. We leave
representation functions implicit. Accordingly, the finite set {z1, . . . , zn} ⊆ D̂ is a
dual basis of a downward-closed subset F of !D" iff F =

⋃n
i=1 !zi"D (compare with

Definition 6).

Lemma 4. For every data type D, one can compute a finite dual basis of the intersec-
tion !z"D ∩ !z′"D, from any z, z′ ∈ D̂.

Proof. First, !z"D ∩ !z′"D always has such a finite dual basis, since it is downward-
closed, as the intersection of two downward-closed subsets of !D". That it is comput-
able needs a separate argument. We induct on the structure of D.

OnN, !ω"
N
∩!z′"

N
= !z′"

N
, !z"

N
∩!ω"

N
= !z"

N
, and !n"

N
∩!n′"

N
= !min(n, n′)"

N

for all n, n′ ∈ N.
On A≤ (A finite), !z"A≤

∩ !z′"A≤
is computed by enumerating its elements, and

e.g., keeping only the maximal ones. (Moreover, this result can be tabulated in terms of
z, z′.)

If D = D1 × . . . × Dk, then z can be written as a tuple (z1, . . . , zk) and z′ as
(z′1, . . . , z

′
k), so that !z"D∩!z′"D =

∏k
j=1(!zj"Dj

∩
#
z′j

$
Dj

). Using recursion, compute
a finite dual basis z′′ji, 1 ≤ i ≤ nj for each !zj"Dj

∩
#
z′j

$
Dj
, 1 ≤ j ≤ k. The desired

dual basis is obtained by distributing unions over products, as the collection of all tuples
(z′′1i1

, . . . , z′′kik
), with 1 ≤ i1 ≤ n1, . . . , 1 ≤ ik ≤ nk.

If D = D1 + . . . + Dk, then z is in some Dj and z′ in some Dj′ , 1 ≤ j, j′ ≤ k. If
j &= j′, then compute !z"D ∩ !z′"D as ∅; otherwise, this is computed by a recursive call
on z, z′ ∈ Dj .

On the data type D∗, z and z′ must be ∗-products. Note that: (∗) for every finite
subset A of !D", letting !A"D =

⋃
a∈A !a"D, one can compute a finite dual basis

of !A"D ∩ !a′"D for any a′ ∈ !D", or of !A"D ∩ !A′"D for any finite subset A′ of
!D", by induction hypothesis and by distributing unions over intersections. The desired
intersection !z"D∗ ∩ !z′"D∗ is computed by using the following equations, which can
either be proved directly, or derived from [4, Lemma E.14, long version, available on
the Web]. These are then used to define a procedure that recurses on the length of z, z′
first, and on D second.

– !ε"D∗ ∩ !P "D∗ = !P "D∗ ∩ !ε"D∗ = !ε"D∗ for every ∗-product P .
–

#
a?P

$
D∗∩

&
a′?P ′

'

D∗
is the union of: (1) the union over all elements a′′ of a finite

dual basis of !a"D ∩ !a′"D (recursing on D) and over all elements P ′′ of a finite
dual basis of !P "D∗ ∩ !P ′"D∗ of

#
(a′′)?P ′′

$
D∗ ; (2)

#
a?P

$
D∗ ∩ !P ′"D∗ ; and (3)

!P "D∗ ∩
#
(a′)?P ′

$
D∗ .

–
#
a?P

$
D∗ ∩

#
A′∗P ′

$
D∗ is the union of: (1) the union over all elements a′′ of a

finite dual basis of !a"D ∩ !A′"D (using (∗)) and over all elements P ′′ of a finite
dual basis of !P "D∗ ∩

#
A′∗P ′

$
D∗ of

#
(a′′)?P ′′

$
D∗ ; and (2)

#
a?P

$
D∗ ∩ !P ′"D∗ .

14

– !A∗P "D∗ ∩
#
A′∗P ′

$
D∗ is the union over all elements a′′ of a finite dual basis

of !A"D ∩ !A′"D (using (∗) again) of: (1) the union over all elements P ′′ of a
finite dual basis of !A∗P "D∗ ∩ !P ′"D∗ of

&
a′′?P ′′

'

D∗
, and (2) the union over all

elements P ′′ of a finite dual basis of !P "D∗ ∩
#
A′∗P ′

$
D∗ of

&
a′′?P ′′

'

D∗
.

On the data typeD!, z and z′ must be#-products. Let z = A! *a
!?
1 * . . .*a

!?
m ,

z′ = A′! * a′
1

!? * . . . * a′
n

!? . Call a partial injection f : {1, . . . , m} →{ 1, . . . , n}
any bijection from some subset of {1, . . . , m} (the domain dom f) to some subset of
{1, . . . , n} (the codomain cod f). Then a finite dual basis of !z"D! ∩ !z′"D! is given
by enumerating all partial injections f : {1, . . . , m} → {1, . . . , n} (let k below be
the cardinality of its domain), and for each one, outputting an expression of the form
A′′! * b

!?
1 * . . . * b

!?
m−k * c

!?
1 * . . . * c

!?
n−k * d

!?
1 * . . . * dk

!? , where:

1. A′′ is a finite dual basis of !A"D ∩ !A′"D;
2. b1, . . . , bm−k are each taken from finite dual bases of the m − k downward-closed
subsets !ai"D ∩ !A′"D, i ∈ {1, . . . , m} \ dom f ;

3. c1, . . . , cn−k are each taken from finite dual bases of the n − k downward-closed
subsets !A"D ∩

#
a′

j

$
D
, j ∈ {1, . . . , n} \ cod f ;

4. d1, . . . , dk are each taken from finite dual bases of the k downward-closed subsets
!ai"D ∩

&
a′

f(i)

'

D
, i ∈ dom f .

Indeed, any multiset in !z"D! ∩ !z′"D! can be split asm0 5m1 5m2 5m3, where
m0 is a multiset of elements in !A"D ∩ !A′"D, m1 is a multiset of elements in some
!ai"D ∩ !A′"D, 1 ≤ i ≤ m, m2 is a multiset of elements in some !A"D ∩

#
a′

j

$
D
,

1 ≤ j ≤ n, and finallym3 is a multiset of elements in some !ai"D ∩
#
a′

j

$
D
, for some

i, j with 1 ≤ i ≤ m, 1 ≤ j ≤ n. Pairing the latter is with the corresponding js, we
obtain a partial injection f , with domain dom f = {i1, . . . , ik}, so thatm3 is a multiset
with k elements taken from !ai1"D ∩

&
a′

f(i1)

'

D
, . . . , !aik

"D ∩
&
a′

f(ik)

'

D
respectively:

so m3 ∈ !d !?
1 * . . . * d

!?
k "D! for some d1, . . . , dk as in item 4 above. Similarly, the

at most m − k elements of m1 are in some
#
b
!?
1 * . . . * b

!?
m−k

$
D! , for some b1, . . . ,

bm−k as in item 2 above; and m2 is in
#
c
!?
1 * . . . * c

!?
n−k

$
D! for some c1, . . . , cn−k

as in item 3 above. Finally,m0 is in !A"D ∩ !A′"D, hence in !A′′"D, matching item 1.
The converse inclusion is easy, and left to the reader. ./

Lemma 5. For every data type D, one can compute a finite dual basis representation
of ↑x for every x ∈ !D".

Proof. On N, the complement of ↑n in N is computed as N∩ ↓Nω
(n− 1) if n &= 0, and

as ∅ if n = 0.
Given any finite setA, partially ordered by ≤, it is trivial to compute a dual basis of

any downward-closed subset of A; in fact one can just tabulate them all.
If D = D1 × . . . × Dk, one can compute the complement of ↑(x1, . . . , xk) as

the union of Ei = !D1" × . . . × !Di−1" × (!Di" \ ↑xi) × !Di+1" × . . . × !Dk"
over i, 1 ≤ i ≤ k. In turn, each !Dj" (j &= i) has a finite dual basis by Remark 4,
and one can compute a finite dual basis of !Di" \ ↑xi by induction hypothesis. One

15

gets a finite dual basis of Ei by distributing unions over products, i.e., as all tuples
(z1, . . . , zi−1, zi, zi+1, . . . , zk), where zj is taken from a finite dual basis of !Dj" (for
each j &= i) and zi is taken from a finite dual basis of !Di" \ ↑xi.

IfD = D1 + . . .+Dk, one can compute the complement of ↑xi (where xi ∈ !Di")
as the disjoint union of all !Dj", j &= i, with the complement (in !Di") of ↑xi. This is
done using Remark 4 and the induction hypothesis, and is left to the reader.

OnD∗, one is led to compute the complement of ↑w, for some wordw = a1a2 . . . an.
When n = 0, this is ∅. Otherwise, this is the complement of the language !D∗" (↑ a1)
!D∗" (↑ a2) !D∗" . . . !D∗" (↑ an) !D∗", and is given by [4, Lemma E.5, long version,
available on the Web], as the union of all

&
A∗

1a
′?
1A

∗
2a

′?
2 . . . a′?

n−1A
∗
n

'

D∗
, where for

each i, 1 ≤ i ≤ n, Ai is a finite dual basis of the complement of ↑ ai, obtained by
induction, and a′

1, a′
2, . . . , a′

n−1 range over (n − 1)-tuples of elements of a finite dual
basis of !D" itself, using Remark 4.

On D!, one must compute the complement of ↑m, for some multiset m = {|x1,
. . . , xn|}. We claim that this is equal to the union over all proper subsets I of {1, . . . , n},
say of cardinality k, of

#
A!

I * D
!? * . . . * D

!?
$

D! , where there are k copies of
D

!? , and AI is a finite dual basis of ↓{xi | i ∈ {1, . . . , n} \ I}. Therefore, a finite dual
basis of the complement of ↑m is given as the union over all such I , and over k-tuples
a′
1, . . . , a

′
k of elements of a finite dual basis of !D", of

#
A!

I * a′
!?
1 * . . . * a′

!?
k

$
D! .

Indeed, write - the ordering on multisets defined by {|a1, . . . , ak|} - {|b1, . . . , b#|}
iff k = %, and there is a permutation π of {1, . . . , k} such that ai ≤D bπ(i) for all i,
1 ≤ i ≤ k. Som ≤D! m′ iffm′ can be split asm′

0 5 m′
1 withm - m′

0. Any multiset
m′ can be split asm′

0 5m′
1, and correspondinglym can be split asm0 5m1, in such a

way that m0 - m′
0, and the cardinality k of m0 (and of m′

0) is maximal. Now assume
m′ is in the complement of ↑m, and let I be a subset of those indices i ∈ {1, . . . , n}
chosen so thatm0 = {|xi | i ∈ I|}. Sincem′ &∈ ↑m, I is a proper subset of {1, . . . , n}.
By maximality, for every x′ ∈ m′

1, there can be no x ∈ m1 with x ≤ x′, so x′ is in
the complement of !AI". It follows thatm′ is in

#
A!

I * D
!? * . . . * D

!?
$

D! , where
there are k copies of D !? . The converse inclusion is obvious. ./

Proposition 4. For every data type D, !D" has the effective complement property.

Proof. One can compute the complement of ↑{x1, . . . , xm} as the intersection of the
complements of ↑xi, 1 ≤ i ≤ n. The latter are computed by Lemma 5. Finite intersec-
tions are computed by Remark 4 (ifm = 0) or by iterating Lemma 4 (if m ≥ 2). ./

From Theorem 1, it follows immediately:
Theorem 3. For every data type D, and any upward-closed subset U of !D", one can
effectively construct a basis of U if and only if one can decide whether U ∩ !z"D is
empty, for every z ∈ D̂.

WhenD is Nk, i.e., the k-fold product of N, Theorem 3 specializes to the original Valk-
Jantzen Theorem. When D = Σ∗, where Σ is any finite set with the trivial ordering
(i.e., equality), one retrieves Theorem 2.

Here are a few other special cases. The (normal) multiset language generators of
[2, Section 5] are elements of !Σ!", where Σ is some finite alphabet (with the trivial
ordering =). These are used in the study of timed Petri nets.

16

Theorem 4 (Multiset Language Generators). Let Σ be a finite alphabet. For any
upward-closed subset U of !Σ!", one can effectively construct a basis of U if and only
if one can decide whether U ∩ !A! * a

!?
1 * . . . * a

!?
n "Σ! is empty, for every subset

A of Σ, and every letters a1, . . . , an ∈ Σ.

The word language generators of [2, Section 6] are elements of the slightly more com-
plex space !(Σ!)∗". So:

Theorem 5 (Word LanguageGenerators). LetΣ be a finite alphabet. For any upward-
closed subset U of !(Σ!)∗", one can effectively construct a basis of U if and only
if one can decide whether U ∩ !P "(Σ!)∗ is empty, for every ∗-product P . Here ∗-
products are products of atomic expressions of the form (A! * a

!?
1 * . . . * a

!?
n)?, or

{A!
1 *a

!?
11 * . . .*a

!?
1n1

, . . . , A!

k *a
!?
k1 * . . .*a

!?
knk

}∗, where ai, aij ∈ Σ, A, Ai ⊆ Σ
for all i, j.

Explicitly,
#
(A! * a

!?
1 * . . . * a

!?
n)?

$
(Σ!)?

is the set of sequences of multisets that
are either the empty set, or consist of just one multiset with as many letters from A as
one wishes, plus at most one a1, . . . , at most one an. The denotation of {A!

1 * a
!?
11 *

. . . * a
!?
1n1

, . . . , A!

k * a
!?
k1 * . . . * a

!?
knk

}∗ is the set of sequences of multisetsm such
that, for some i, 1 ≤ i ≤ k, m consists of an arbitrary number of elements from Ai,
plus at most one ai1, . . . , at most one aini

.
The region generators of [2, Section 7] are elements of !Σ! × (Σ!)∗ × P!",

where P is a finite set with the trivial ordering=, andΣ = P×{0, . . . , max},max be-
ing a fixed non-negative integer. Again Theorem 3 applies, although we believe stating
the corresponding result would not bring much, and is now an easy exercise.

The data nets of [7] are transition systems over (Nk)∗.

Theorem 6. For any upward-closed subset U of (Nk)∗, one can effectively construct a
basis of U if and only if one can decide whether U ∩ !P "(Nk)∗ is empty, for every data

net product P in (̂Nk)∗.

Because of the definition of (Nk)∗, data net products P are therefore concatenations of
atomic expressions a? where a ∈ Nk

ω, andA∗, whereA is any finite subset ofNk
ω. When

P is the concatenation e1e2 . . . en, the language of P , !P "(Nk)∗ , is the set of sequences
of the form w1w2 . . . wn with w1 ∈ !e1"(Nk)∗ , w2 ∈ !e2"(Nk)∗ , . . . , wn ∈ !en"(Nk)∗ .
In turn,

#
a?

$
(Nk)∗

is the set consisting of the empty sequence, plus every sequence
consisting of just one k-tuple x ∈ Nk with x ≤ a; and !A∗"(Nk)∗ is the set of sequences
of k-tuples x from Nk such that x ≤ a for some a ∈ A.

We finish this series of special cases with the case D = (Q × Nk)!, with Q finite
(with the trivial ordering), a data type we shall use in our forthcoming study of MVASS
(multiset vector addition systems with states).

Theorem 7. For any upward-closed U of
#
(Q × Nk)!

$
, one can effectively construct

a basis ofU iff one can decide whetherU∩!A! * (q1, a1)
!? * . . . * (qn, an)

!? "(Nk)!

is empty, for every finite subset A of Q × Nk
ω, and every elements q1, . . . , qn ∈ Q,

a1, . . . ,an ∈ Nk
ω.

17

Explicitly, !A! * (q1, a1)
!? * . . . * (qn, an)

!? "Σ! is a set of multisets of pairs (q, x)
where q ∈ Q and x is a k-tuple of natural numbers. These multisets are those that
contain an arbitrary number of k-tuples of the form (q, x) for some (q, a) ∈ A such
that x ≤ a, plus at most one element of the form (q1, x1) with x1 ≤ a1, plus . . . plus
at most one element of the form (qn, xn) with xn ≤ an.

Acknowledgments

Philippe Schnoebelen gets the credit, both for asking me whether I had a proof of The-
orem 2, and for suggesting numerous improvements to the paper.

References

1. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with unbounded,
lossy Fifo channels. In 10th CAV, pages 305–318. Springer Verlag LNCS 1427, 1998.

2. P. A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Forward reachability analysis of timed
Petri nets. In Y. Lakhnech and S. Yovine, editors, FORMATS/FTRTFT, volume 3253 of Lec-
ture Notes in Computer Science, pages 343–362. Springer, 2004.

3. P. A. Abdulla and R.Mayr. Minimal cost reachability/coverability in priced timed petri nets. In
L. de Alfaro, editor, Proc. FOSSACS 2009, 12th International Conference on Foundations of
Software Science and Computation Structures, pages 348–363, York, UK,Mar. 2009. Springer
Verlag LNCS 5504.

4. A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions. In
S. Albers and J.-Y. Marion, editors, Proceedings of the 26th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’09), pages 433–444, Freiburg, Germany, Feb. 2009.

5. A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for analysing Petri
net extensions. Information and Computation, 195(1-2):1–29, 2004.

6. J. Goubault-Larrecq. On Noetherian spaces. In 22nd LICS, pages 453–462, Wrocław, Poland,
July 2007. IEEE Computer Society Press.

7. R. Lazic, T. C. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens which
carry data. In ICATPN, volume 4546 of LNCS, pages 301–320. Springer, 2007.

8. R. Valk and M. Jantzen. The residue of vector sets with applications to decidability problems
in Petri nets. Acta Informatica, 21:643–674, 1985.

18

	On a Generalization of a Result by Valk and Jantzen
	 Jean Goubault-Larrecq

