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Abstract. Fukuma, Hosono and Kawai (FHK) [8] introduced Lattice Topo-

logical Field Theories (2D-LTFTs) to understand certain invariants of 3-manifolds.
These “toy models” are not only useful for understanding their more “serious”

analogs, but also turn out to be interesting in their own right. In partic-

ular, they provide an elementary machinery to calculate certain topological
invariants. Here we present a reformulation of the FHK construction through

diagrammatic methods, following the approach of Baez [5], to prove the main

theorem: a 2D-LTFT is a semisimple algebra. As an application, we will prove
Mednykh’s formula using the elementary machinery of LTFTs, following the

approach of Snyder [10].
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The reader is assumed to be familiar with elementary notions from algebra (as-
sociative algebras, characteristic polynomials) and category theory (functors, nat-
urality and monoidal categories). Ideas from linear algebra which will form the
backbone of this paper will be re-phrased in terms of string diagrams. As this
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1. Introduction

In 1994, Fukuma, Hosono and Kawai (FHK) constructed a topological invariant
of surfaces via triangulations, termed Lattice Topological Quantum Field Theory
(LTFT). The reader is forgiven her skepticism, given that the Euler characteristic
has been extremely successful in 2-manifold theory as a topological invariant. In
fact, LTFTs were never intended to be “serious” constructions in the context of
2-manifold theory or physics — it is essentially a “toy model” to understand its
higher dimensional analogs.

While the LTFT finds its way in numerous ”serious” applications of mathematics
(see Section 1 of [9] for a good proselytization), this paper finds its construction
interesting in itself. Firstly, it provides a preview of the power of “diagrammatic
linear algebra” in which categorical arguments (i.e. diagram chasing) are trans-
lated into more intuitive one/two-dimensional “topological” arguments, involving
strings. Secondly, the punchline of 2D-LTFTs was actually invented very early on
in mathematics — we will show that, while the 2D-Topological Quantum Field
Theories (TQFTs) are “merely” commutative Frobenius algebras, 2D-LTFTs are
“merely” semisimple algebras, due to a classical result by L.E. Dickson. Indeed, the
crux of this construction is the translation of Dickson’s theorem into the modern
language of string diagrams. Thirdly, the construction of 2D-LTFTs turns out to
be a powerful computational method for topological invariants, as it provides a very
elementary proof of Mednykh’s formula, which we will provide at the end of this
paper.

This paper will start with an elucidation of the main language of the construc-
tion — diagrammatic linear algebra. As opposed to the original paper by FHK,
this approach will be index-free. Next, we will provide a concise elucidation of
associative algebras, geared towards Dickson’s theorem. We will then define what
a 2D-LTFT is (which will turn out to be a rather lengthy set of instructions), and
prove the main theorem of 2D-LTFTs. Lastly, we will discuss Mednykh’s formula
and its proof using the elementary machinery of 2D-LTFTs.

2. Diagrammatic Linear Algebra

Linear algebra is on the one hand, the study of finite-dimensional vector spaces
and linear maps between them, and on the other hand, the study of a particular class
of objects (in particular, the dualizable ones) in the monoidal category (VectK, ⊗,
K). We present this perspective using string diagrams, which will form the basic
language of this paper.

2.1. Introduction. We first work in any monoidal category, (C, ⊗, I), with the
primary example being (VectK, ⊗, K), then specialize to a symmetric monoidal
category with duals in the next section.

In category theory, objects are typically represented by 0-dimensional data (points)
and morphisms are represented by 1-dimensional data (arrows). In diagrammatic
linear algebra, we reverse this notation, and represent objects by 1-dimensional
arrows and morphisms by 0-dimensional “beads”.

Definition 2.1. Given, V,W ∈ Ob(C), and f ∈ Hom(V,W ), we write:
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f

V

W

We call a representation of an object a “string,” and a representation of a mor-
phisms a “bead.” A representation of specific objects and morphism(s) between
them is called a “string diagram.” Notice that string diagrams are completely de-
termined by a hom-set; stating a particular morphism in our category is sufficient
information for us to draw a string diagram. Note also, that the directionality of
the string is important in distinguishing Hom(V,W ) from Hom(W,V ). In particu-
lar, if we fix the convention ”down-arrow” to represent an object, then we will soon
see that an “up-arrow” will refer to its dual object.

In any category we have to define two morphisms — the composition and iden-
tity.The identity morphism is represented as:

V

=

V

VId

And given two morphisms, f ∈ Hom(V,W ) and g ∈ Hom(W,Z), we represent
g ◦ f ∈ Hom(V,Z) as:

V

W

Z

f

g

Next, we need a notation to capture the monoidal structure of C. In particular,
we need representations for the functor ⊗ : VectK ×VectK −→ VectK, and the
distinguished object I. Hence, the following:

Definition 2.2. Given, f ∈ Hom(V,W ) and g ∈ Hom(V ′,W ′), we write f ⊗ g :
V ⊗ V ′ −→W ⊗W ′ as:

V W

f

V ′ W ′

g

Now, let I be the unit object in our monoidal category. Analogous to representing
identity morphisms as invisible beads, we represent the unit object as an invisible
arrow. Hence, while it makes no sense to draw the unit object the way we draw
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other objects, it makes sense to think of elements in a unit object as morphisms,
say c, between I and I, which is just a bead with invisible strings:

c

Note why it makes sense to represent this particular object as 0-dimensional.
This ambiguous notation allows us to write the distinguished element as both an
object and a morphism (a linear mapping from K to K), since an element c ∈ I
can also be thought of as a map from I to I (formally, in any monoidal category,
any object V is naturally isomorphic to Hom(I, V ) where I is the distinguished
object).

The point of this notation is that we would like to manipulate these string
diagrams and obtain the results of linear algebra (related to the monoidal structure
of Vectk). The basic idea is that the monoidal structure allows us to define some
essential string diagrams; in particular, they are the dual, coevaluation, evaluation
and braid.

2.2. Essential String Diagrams. This subsection and the next are dedicated to
the string diagrams and valid moves that define a symmetric monoidal category
with duals. We will provide a complete definition of what this means at the end of
this section, choosing instead to first familiarize the reader with the string diagrams
and valid moves that will feature heavily in the main theorem of this paper. For
a full treatment of such a category in terms of string diagrams, the reader should
refer to [12].

2.2.1. Evaluation and Coevaluation. In any monoidal category, there exists a uni-
versal property for an object to be dualizable.

Definition 2.3. Fix an object V . Then V is dualizable with W as its dual object
when there exist morphisms: ηV : K −→ V ⊗W and εV : W ⊗ V −→ K such that
the two diagrams commute:

K ⊗ V
ηV ⊗idV//

∼= &&NNNNNNNNNNN V ⊗W ⊗ V

idV ⊗ε
��

V ⊗K

W ⊗K
idW⊗ηV//

∼= ''OOOOOOOOOOO W ⊗ V ⊗W

ε⊗idW
��

K ⊗W

In string diagrams, the the evaluation map, εV is represented by:

V V

and the coevaluation map ηV is represented by:
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V V

Remark 2.4. We have implicitly defined the string diagram representation of a dual
object V . That is, the string diagram with the arrow pointing upwards. Hence,
with this convention, there is no need to label this string as V ∗, since a string
with an arrow pointing upwards labelled V is understood to be V ∗. Obviously, this
string diagram only exists if the object in our monoidal category is dualizable.

We will later show that this definition coincides with the familiar definition of a
dual object in our primary example, (Vectk,⊗,K).

2.2.2. Dual and adjoint. From these two strings, we can then define the dual of a
morphism f : V −→ W for dualizable objects V and W . We call this morphism
the adjoint.

Definition 2.5. Let V and W be dualizable objects in a monoidal category. Then
given, f ∈ Hom(V,W ), its adjoint is the following morphism:

f

V

W

As a shorthand, we denote the above string in this way:

V

f∗

W

This string is obtained by rotating the string that corresponds to f : V −→ W
by 180 degrees. In this case, the ”special” morphism is really the adjoint of f ,
written as f∗.

2.2.3. Braid. Lastly, we have the braid which represents a special morphism from
the object V ⊗W to the object W ⊗ V :
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V W

In particular, a braiding turns our monoidal category into a braided monoidal
category if is natural and satisfies certain coherence conditions.

2.3. Manipulation of String Diagrams. We now turn our interest towards “in-
variant” manipulations of the string diagrams, i.e manipulations of a string diagram
from an initial state to a final state that do not change what it represents. We will
call such “invariant” manipulations valid moves. The way one should think about
these valid moves is that they represent certain universal properties on objects in
the category. For example, we can describe the properties of a monoidal object in
a category by drawing the valid moves for associativity and unitality.

2.3.1. Shifting. Shifting is a move that is valid for all objects in any monoidal
category; we claim the following:

Proposition 2.6. Let f ∈ Hom(V, V ′) and g ∈ Hom(W,W ′). Then the following
is a valid move:

= =g

g

g

f

f

f

WV W WV V

V’ V ′ V ′W ′ W ′
W ′

This claim follows immediately from the functoriality of ⊗.

Proof. It suffices to show validity for the first move. On the left hand side, the first
string represents the composition idV ◦ f and the second string represents g ◦ id′W ,
hence the entire string diagram is determined by the morphism ((idV ⊗ g) ◦ (f ⊗
idW )). By functoriality of ⊗, this is just (idV ◦ f) ⊗ (g ◦ idW ) = (f ⊗ g) which
determines the string in the middle. �

We will soon see that shifting, albeit being almost a triviality, is a particularly
useful move in proofs using string diagrams.

Henceforth, we will assume that we are working with the object V unless stated
otherwise, hence we do not label any string.
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2.3.2. Associating. We define multiplication, a linear map µ : V ⊗V −→ V , gener-
ically as this string:

Assuming that all string diagrams of the above form refers to the same multi-
plication, we can state the associativity axiom of a monoid without writing stating
what the bead is.

=

2.3.3. Taking Units. We also need the string diagrams for the valid move of taking units
(completing the axioms for a monoid). First we define the unital map η : I −→ V :

η

Then the valid move, taking units, is the following:

= =

η η

2.3.4. Straightening I. Straightening is the condition for an object to be dualizable
(stated in (2.3)). Let us state this definition in terms of string diagrams.

Definition 2.7 (Straightening I). Let V be an object in a monoidal category. Then
V is dualizable, with V ∗ as its dual if the evaluation and coevaluation satisfies the
following valid moves:

=

=
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Note why this should be “morally” true: thinking of the diagram as an oriented 1-
manifold, we see that both diagrams have an “in-boundary” and an “out-boundary”
determined by the directionality of the arrows (this applies to string diagrams in
general). In this regard, both diagrams are “topologically” the same. Indeed,
this is the way in which most “valid moves” are a priori verified. Let us briefly
check that this coincides with our usual understanding of duals in linear algebra,
i.e V ∗ = Hom(V,K) for V , a finite-dimensional vector space. Hence we claim:

Proposition 2.8. Let V be an object in the category of (VectK, ⊗, K), and let
V ∗ be Hom(V,K). Let the evaluation map be that map that sends f ⊗ v to f(v)
where f is a linear functional and v is a vector, and let the coevaluation map be
that map that sends 1K to 1 ∈ End(V ) ∼= V ⊗ V ∗. If V is a finite-dimensional
vector space, then V is dualizable, and Hom(V,K) is its dual object.

Proof. It suffices to show that, with V ∗ assigned as Hom(V,K), the first move in
(2.7) is valid (the second move follows analogously).

To this end, we claim that if we compute an arbitrary vector through the string
on the left-hand, then we will obtain the same vector. First, fix a basis {ei}n1 of V
and choose the corresponding basis {fi}n1 of Hom(V,K), where fi(ej) = δij . The
computation is done in the following way:

(V ⊗ V ∗)⊗ V

V ⊗K

V ⊗ (V ∗ ⊗ V )

K ⊗ V

V

V

λV

ηV ⊗ idV

αV,V,V

idV ⊗ ε

ρV

Now, since we have chosen the basis, the coevaluation map ηV is that map that
sends the element 1k ∈ K to the element 1 ∈ End(V ) which corresponds to the
element

∑n
i=1 ei ⊗ fi of V ⊗ V ∗. Furthermore, by hypothesis, εV sends an element

f ⊗ v ∈ V ∗⊗V into f(v) ∈ K, and λV , ρV , αV,V,V are natural isomorphisms which
exist in any monoidal category. With this information, one can choose an arbitrary
element v =

∑
βiei and check that the coeffiecients are preserved after applications

of all the maps above.
�

2.3.5. Straightening II. There is a second form of straightening that we can do
with dualizable objects, and it arises from one of the most central concepts in
our construction — nondegeneracy. In particular, we discuss nondegeneracy on
one object — the ideas and proofs can be easily generalized to isomorphic, and
even arbitrary objects. We will state two definitions of nondegeneracy and invite
the reader to check that they are equivalent. We also invite the reader to draw
connections regarding these two forms of straightening.
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Definition 2.9 (Straightening II). Let V be an object. A pairing on V is a
morphism g : V ⊗ V → I. For convenience, the image under g of the vector v ⊗ w
is written as (v, w). The string diagram for g is written as:

g

Definition 2.10. Let V be an object, and fix a pairing g : V ⊗ V → I. Then g is
nondegenerate if there exists a morphism, ḡ : I →W ⊗ V called a copairing:

ḡ

such that the following moves are valid:

ḡ

g

= =

ḡ

g

Definition 2.11. Let V be an object, and let g be a pairing on V . Then g is
nondegenerate when the composition of g with the coevaluation map is a map, g
from V to V ∗, i.e the following move is valid:

g

=

g

and the map is an isomorphism, i.e there exists a map,

ḡ

such that the following moves are valid:
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=

g

ḡ

=

ḡ

g

The next proposition should not be surprising, and one can prove it via a string-
diagrammatic argument (we omit the proof for brevity, but we will use the two
definitions of interchangeably throughout the paper).

Proposition 2.12. The two definitions of nondegeneracy are equivalent.

In other words, a nondegenerate pairing is a nondegenerate pairing, and Straightening II
refers to any one of the valid moves above. One proves this proposition by starting
with one definition, then constructing the obvious string diagram that “looks like”
the string diagram needed in the other definition, and check that the moves are
valid.

Specializing to our primary example, the following corollary is immediate since a
bijection (a morphism that is both mono and epi) is equivalent to an isomorphism
in the category of vector spaces:

Corollary 2.13. Let V be a finite-dimensional vector space. Fix a pairing g :
V ⊗ V −→ K. Then the induced map, g : V −→ V ∗, v 7−→ (v,−) is a bijection if
and only if the pairing g is nondegenerate.

Furthermore, we claim the following:

Proposition 2.14. Suppose that there exists a nondegenerate pairing, g, on V .
Then V is finite-dimensional.



2-DIMENSIONAL LATTICE TOPOLOGICAL FIELD THEORIES 11

Proof. Without loss of generality, we can define a copairing as that map that sends
1K to a vector

∑n
i=1 vi⊗wi. Pick an arbitrary v ∈ V and “feed” it through the the

first string diagram in the valid move defined in 2.10, and we obtain
∑n
i=1(v, vi)wi.

Now since g is nondegenerate, we have the first valid move in 2.10 which literally
says that v =

∑n
i=1(v, vi)wi. Since v was chosen arbitrarily, we have that {wi}ni=1

spans V , and it is therefore finite-dimensional. �

Notice that having a nondegenerate pairing is a powerful statement in string
diagrams - if we can identify any object with its dual isomorphically, then there
is no reason to put arrows in our string diagrams, and there is only one kind of
straightening.

2.3.6. Braid moves. We will focus on three kinds of braid moves: sliding, unbraiding I
and unbraiding II. Recall that in a braided monoidal category, the braiding is a
natural isomorphism between the functors − ⊗ − and − ⊗ − precomposed with
the covariant functor that takes C × C into its opposite category. Denoting the
braiding functor as B, the following diagram must commute for every pair of ob-
jects V,W , and morphisms f ∈ Hom(V, V ′) and g ∈ Hom(W,W ′) in our monoidal
category.

V ⊗W
BV,W //

f⊗g
��

W ⊗ V

g⊗f
��

V ′ ⊗W ′
BV ′,W ′

// W ′ ⊗ V ′

The above diagram commuting, gives us the valid move which we call sliding:

V W

W

gf

W ′ V ′

V W

W

g f

W ′ V ′

=

Note, that the above diagram states that the order in which the morphisms
BV,W , and g ⊗ f are applied does not matter - hence we can slide the beads past
each other.

Next, the isomorphism condition states that for every braiding morphism BV,W :
V ⊗W −→W ⊗ V , then there exists an inverse morphism:

W

V

V

W

such that the following move unbraiding I is valid:
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V W

=

WV

V W

.
Lastly, if our braided monoidal category is also symmetric, which is the case for

our primary example, then if we apply braiding twice we have another valid move
called unbraiding II:

V W

=
V W

V W

It is important to note that the unbraiding I holds generally, while unbraiding II
holds only in a symmetric monoidal category.

2.4. A Final Remark. We will end off by capturing what we have done so far in
a definition. Essentially, we have introduced some interesting morphisms that can
be defined for any monoidal category, but not all objects in that monoidal category.
Hence, it will be useful to actually define a category in which every object has the
essential string diagrams, and obeys the valid moves above. Indeed, there exists
such a category:

Definition 2.15. Let (C, ⊗, I) be a (without loss of generality, strict) monoidal
category. Then (C, ⊗, I) is a symmetric monoidal category with duals if (1) every
object is dualizable and (2) every braiding is self-inverse (i.e unbraiding II is a valid
move move for any pair of objects).

Note that we can assume (C, ⊗, I) to be a strict monoidal category due to Mac
Lane’s coherence theorem. The reader can easily verify that the subcategory of
(VectK, ⊗, K), whereby the objects are finite-dimensional vector spaces, is such a
category.

3. Semisimple Algebras and Dickson’s Theorem

In this section, we give a modern re-dress of L.E. Dickson’s classification theorem
of semisimple algebras, stating its conclusion in the language of string diagrams.
For completion, we will define an (associative and unital) algebra:

Definition 3.1. An (associative and unital) K-algebra, denoted by A, is an object
with two morphisms, the mutiplication

µ : A⊗A→ A
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and the unit

η : K → A

η

such that the these moves are valid:

=

= =

η η

We will now define a semisimple algebra

Definition 3.2. Let K be an arbitrary field, and let A, be a K-algebra. A left
ideal, I ⊂ A, is nilpotent if there exists an integer n such that In = 0.

This is to say, that there exists an integer, n, such that if one multiplies an
element x of I on the left n times by itself, then one will obtain 0. Obviously, a
nilpotent ideal is an ideal.

Definition 3.3. A finite dimensional K-algebra A is semisimple if the only left
nilpotent ideal is the {0} subspace

This means that there exists no proper left nilpotent ideal of A (the empty ideal
and A itself are the only nilpotent ideals).

Definition 3.4. Let K be an arbitrary field, and A a K−algebra. The left-action
of an element a ∈ A is the linear transformation:

La : A −→ A

b 7−→ ab

It is easy to check that this is indeed a linear operator. Obviously, to each linear
operator we can associate with it a matrix. The following definition thus makes
sense for any K-algebra:
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Definition 3.5. Let K be an arbitrary field, and A a K-algebra. The trace form
on A is a pairing of A with A:

Tr : A⊗A −→ K

a⊗ b 7−→ Tr(LaLb)

Note that the trace form is just a particular form of morphism in the category
(VectK, ⊗, K), hence it determines a string diagram. We claim that the following
is the string diagram for the trace form of any linear map f : V −→ V :

f

Proof. Note that the above diagram is a map from K to K, hence we our compu-
tation should yield an element of the ground field (or a complex number if C is our
ground field. We will adopt the Einstein summation notation for convenience (see
[7] for details). Fix a basis ei for A and let ek be a basis for A∗ such that ekei = δki .
The first map sends the identity in our field to the element ei ⊗ ei, while the next
map sends this to f(ei) ⊗ ei = fki ek ⊗ ei. By sliding, the braiding map sends this
element to fki e

i⊗ ek and taking the evaluation map, we have fki δ
i
k which evaluates

the trace of the matrix of f . �

We will now state Dickson’s theorem:

Theorem 3.6. (Dickson) Let K be an algebraically closed field of characteristic
zero, and A a finite-dimensional K-algebra. An element x of A is zero or properly
left nilpotent if and only if Tr(LaLx) = 0 for any a ∈ A.

Proof. See [4] for proof. The proof utilizes elementary techniques in linear algebra
involving characteristic polynomials

�

The corollary follows immediately:

Corollary 3.7. A necessary and sufficient condition for a finite-dimensional K-
algebra over an algebraically closed field of characteristic zero to be semisimple is
for its trace form to be nondegenerate.

To formulate the conclusion diagrammatically, note that (VectK, ⊗, K) is a
symmetric monoidal category, which means that a natural braiding exists. Hence,
we can define the following string diagrams in terms of the strings diagrams that
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we already have, namely the evaluation and the braid (the reader should convince
herself that such an assignment is well-defined):

=

We know that we can always equip any algebra with a pairing defined by the
trace form:

=

Hence, if we are given an algebra (over an algebraically closed field of charac-
teristic zero) with a pairing (the string diagram on the right) such that the above
move is declared to be valid (i.e the pairing is given to us as the trace form) and,
furthermore, that the pairing is nondegenerate, then the given algebra is indeed
semisimple!

Note that the above arguments work as well for two-sided or right ideals — the
definition of semisimplicity can be applied to any sidedness of the ideal. Hence,
from hereon in, we will not distinguish the sidedness of our ideals.

4. Triangulated Constructions on 2-Cobordisms

We are now ready to define the notion of an FHK construction with the goal
of defining a 2D-LTFT. Essentially, the scheme for constructing a 2D-LTFT is as
follows:

Nondegenerate Triangulated Construction

��
FHK Construction

��
2D − LTFT

Roughly speaking, a nondegenerate triangulated construction is a map that takes
(1) a 2-cobordism along with (2) a pre-determined set of instructions, and returns
us a string diagram in the category of (VectK, ⊗, K). An FHK construction is
a triangulated construction with some restrictive conditions on the pre-determined
set of instructions. Out of an FHK construction, we can construct a functor (i.e.
specify where objects and morphisms go to) from the category of 2−Cob to the
category of VectK. It turns out that this functor is symmetric monoidal, i.e. a
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2D-TQFT (for a treatment of the subject of 2D-TQFTs, we recommend [2] and
[3]).

First, some topological preliminaries from the theory of 2D-TQFTs:

Definition 4.1 (Oriented 2-Cobordism). Let X and Y be oriented 1-manifolds.
An oriented 2-cobordism from X to Y is a compact, oriented 2-manifold M together
with two smooth maps X −→ M ←− Y such that X maps diffeomorphically onto
the in-boundary M and Y maps diffeomorphically onto the out-boundary of M .

Definition 4.2 (Cobordism Class). Given two oriented 2-cobordism from X to Y ,
call them M and M ′, we say that they are equivalent if there is an orientation-
preserving diffeomorphism φ making this diagram commute:

M ′

X

==||||||||

!!B
BB

BB
BB

B Y

``BBBBBBBB

}}||
||

||
||

M

φ

OO

A 2-cobordism class is an equivalence class of cobordisms under the above equiva-
lence relation.

Taking the convention that the in-boundary will be denoted with an arrow going
into the 2-cobordism and the out-boundary will be denoted with an arrow going out
of the 2-cobordism, we can represent a cobordism class by drawing a representative
element. For example, we draw the following to represent the cobordism class that
takes the oriented 1-manifold S1 to the oriented one 1-manifold S1 q S1.

For further details, one should consult [2] and [3]. Henceforth, when we say a
2-cobordism, we really mean a 2-cobordism class.

4.1. Nondegenerate Triangulated Construction.

Definition 4.3 (Nondegenerate Triangulated Construction). Fix a vector space A,
g a nondegenerate bilinear pairing, and µ a multiplication. A nondegenerate triangulated
construction associated with the 3-tuple (A, g, µ) is a map that takes a triangulated
2-cobordism 4M to a string diagram in the category (VectK, ⊗, K) constructed
in the following way:

(1) We do not assume that 4M is path connected. Let us carry out the
construction on each connected component.

(2) We draw the dual of the triangulation of 4M . To do this, for each edge of
a triangle, draw a string intersecting it; for each face, draw a vertex that
connects the three lines together:
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(3) To a dual diagram obtained from a triangulated 2-cobordism, we wish to
associate the string diagram of a morphism in the category (VectK, ⊗, K).
To do this, we first have to specify directionality of arrows on the string.
There are three cases to consider.
(a) For a 2-cobordism with an in-boundary, we (1) assign an orienta-

tion to the string diagram associated with each triangle with an edge
at the boundary in this way: all string diagrams should have arrows
pointing towards the out-boundary. Then, (2) demand that all arrows
in a single string (not separated by a vertex) face the same direction
and (3) all arrows should be oriented towards the“out-boundary.” We
see that this is sufficient to construct a well-defined string diagram
(with orientation of arrows), by an “inductive argument” : without
loss of generality, assume that the triangles are assigned “row by row”
and “column by column.” Then, if we assign an orientation to the
dual diagram asscociated with a triangle with an edge at the boundary
in the manner stated above, our second demand forces only one pos-
sible definition on the entire ”row” (in particular, all triangles with
vertices at the boundary):

δM δM

−→

Looking at the diagram above, we see that each “row” is induced with
an orientation by the assignment of arrows at the boundary vertex. By
the third requirement, we induce the orientation of our string down
the “column,” i.e the interior of the surface.

(b) For a 2-cobordism without boundary, we fix the direction of the dual
diagram of one triangle, and demand that all arrows in a single string
(not separated by a vertex) face the same direction. It is easy to see
that this is sufficient to assign a string diagram.

(c) For a 2-cobordism with an out-boundary but no in-boundary, we (1)
assign an orientation to the string diagram associated with each trian-
gle with an edge at the out-boundary in this way: all string diagrams
should have arrows pointing towards the out-boundary. Then, (2) de-
mand that all arrows in a single string (not separated by a vertex)
face the same direction and (3) all arrows should be oriented towards
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the “out-boundary.” Applying a similar argument as the case with of
a 2-cobordism with an in-boundary, we see that such an assignment
induces an orientation to the dual string diagram “upwards.” Again,
this assignment is well-defined.
Defined this way, all arrows in a our string diagram are oriented to-
wards the out-boundary, hence associate all arrows with the vector
space A.

(4) With this construction, we see that there are only two possibilities for the
string diagram associated with a triangle, either:

or

Hence, we need to specify the linear maps associated with the first and
second diagram.

(5) The linear map corresponding to the first string diagram is associated with
the fixed multiplication µ.

(6) Given µ and a nondegenerate pairing g we can define a δ, a comultiplication
to deal with the second diagram since we have a copairing ḡ:

=

Similarly, this map is well-defined and linear.
(7) Carry out the steps 2–6 for each connected component and we obtain a

string diagram. The associated string diagram with 4M is obtained by
taking tensor products of the string diagrams obtained from each connected
component.

(8) Completing this construction, we see that we have obtained a string dia-
gram. We read it as morphism in (VectK, ⊗, K).

Essentially, the construction associates with every triangulated 2-cobordism, a
linear map. The associated linear map with 4M is defined to be that map with
domain A⊗n and codomain A⊗m where n and m are the number of edges at the
boundary of 4M (if any) obtained by reading the resultant diagram above as a
string diagram as a morphism in (VectK, ⊗, K). Such a map is obviously linear
as it is the composition of linear maps.
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4.2. FHK Construction. We can now define the notion of an FHK construction
as a particular type of a triangulated construction. The motivation behind the
FHK construction is that it should, after some adjustment, produce a functor that
is invariant under triangulation.

Theorem 4.4. Let T1 and T2 be two triangulations of M , compact surface with
∂M = ∅. Then there exists a finite sequence of Pachner moves that transforms T1
into T2

The Pachner moves come in two flavors:
(2-2) move:

←→

←→

(1-3) move

←→

Since the triangulated construction associates a linear map to a triangulated 2-
cobordism by considering its dual as a string diagram, the moves on triangulations
will also affect the moves on duals. Thus, the definition of an FHK construction
should not be surprising.

Definition 4.5 (FHK construction). An FHK 3-tuple consists of a vector space
A, a nondegenerate form g and a multiplication µ such that, after the construction
of comultiplication above, the multiplication µ and the comultiplication δ satisfies
the valid moves for associativity and coassociativity, along with these valid moves:

(2-2) move

= =

(1-3) move

=

=
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An FHK construction is any triangulated construction associated with an FHK-
tuple.

Note that these valid moves are just the string diagrams corresponding to the
duals of the two Pachner moves defined above. In particular, the 2-2 move results
in four valid moves (because, by construction, there are 4 possibilities for the string
diagram associated with every pair of triangles) and the 1-3 move results in 2 valid
moves (each for multiplication and comultiplication). We can prove a theorem that
essentially defines an LTFT.

Proposition 4.6. Given an FHK construction, we can construct a 2D-TQFT, i.e.
a strong symmetric monoidal functor, F : 2−Cob −→ VectK that is triangulation-
independent.

Proof. First and foremost, fix an FHK construction, i.e fix the FHK 3-tuple (A, g,
c).

We begin by noting that any triangulated 2-cobordism, determines a triangu-
lation of its in and out-boundary components; in particular they are diffeomor-
phic to some 1-manifold with triangulation. We say that two triangulated 2-
cobordisms, 4M : 4X −→ 4Y , 4′M ′ : 4′Y −→,4′Z are composable if there
exists 4′′M ′M : 4X −→ 4′Z such that 4M ′M is a representative of the 2-
cobordism class obtained by composing the (untriangulated) 2-cobordisms M and
M ′.

Furthermore, 4′′M ′M is diffeomorphic to 4′M ′ q4Y 4M . Hence, it is imme-
diate that two 2-cobordisms are composable if and only if 4Y is diffeomorphic to
4′Y as 1-manifolds.

Therefore, denoting the FHK construction on any triangulated 2-cobordism,
4N , by F̄ (4N) we see that, up to diffeomorphism,

(4.7) F̄ (4′′M ′M) = F̄ (4′M ′ ◦ 4M) = F̄ (4M) ◦ F̄ (4M ′)

From hereon in, we will consider all “=” relations up to diffeomorphism. The
functor construction goes through a sequence of steps.

(1) We claim that F̄ ((4((S1)n × [0, 1])) is idempotent for n = 0, 1, 2, 3...

Proof. The n = 0 case is trivial. Otherwise, fix a triangulation of (S1)n ×
[0, 1] and denote it as 41((S1)n × [0, 1]). We want to show that the linear
operator obtained by applying the functor F̄ idempotent, i.e. F̄ (41((S1)n×
[0, 1]))2 = F̄ (41((S1)n × [0, 1])) ◦ F̄ (41((S1)n × [0, 1])) = F̄ (41((S1)n ×
[0, 1])).

Note that 41((S1)n × [0, 1]) may not be composable with itself, but
we can always re-triangulate 41((S1)n × [0, 1]) using a finite sequence of
Pachner moves to get 42((S1)n × [0, 1]), such that 41((S1)n × [0, 1]) and
42((S1)n × [0, 1]) are composable. Hence,

F̄ (41((S1)n × [0, 1]))2 = F̄ (41((S1)n × [0, 1])) ◦ F̄ (42((S1)n × [0, 1]))

= F̄ (41((S1)n × [0, 1]) ◦ 42((S1)n × [0, 1]))

= F̄ (41((S1)n × [0, 1]))

�
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(2) We construct F by first stating where it sends objects of 2−Cob; denote
Range(G) by RanG, where G is any morphism in VectK. Then define:

(4.8) F (n) = RanF̄ (4((S1)n × [0, 1]))

Since F̄ is an FHK construction, we have that F (n) depends only on the
value of n.

(3) Let us state where the morphisms of 2−Cob is sent to. LetM ∈ Hom(n,m),
and 4M be a triangulation. then define:

(4.9) F (M) = F̄ (4M) |F (n)

(4) Finally, we claim that this is a strong symmetric monoidal functor from the
category 2−Cob to VectK:

Proof. We check the necessary axioms.
(a) We claim that given a 2-cobordism, M , F preserves domain and codomain.

To see this, fix M ∈ Hom(n,m), and fix a triangulation of M , 4M .
Then,

F (M)(F (n)) = F̄ (4M)RanF̄ (4((S1)n × [0, 1]))

= RanF̄ (4M ◦ 4((S1)n × [0, 1]))

where triangulation of ((S1)n × [0, 1]) is induced by the triangluation
of M.
Now, 4M ◦ 4(S1)n × [0, 1] is diffeomorphic to some triangulation of
M, 4′M , hence RanF̄ (4M ◦ 4((S1)n × [0, 1])) = RanF̄ (4′M) =
RanF̄ (4M) by triangulation invariance. Analogously, 4((S1)m ×
[0, 1])◦4M is diffeomorphic to some triangulation of M, 4′′M ; hence,
by triangulation invariance,

RanF̄ (4M) = RanF̄ (4′′M)

= RanF̄ (4((S1)m × [0, 1]) ◦ 4M)

which is a subset of RanF̄ (4((S1)m × [0, 1])) = F (m).
(b) We check that identities are preserved. Fix, n. We claim that F (Idn) =

IdF (n). This follows from the fact that F (Idn) = F̄ (4((S1)n× [0, 1]))

(up to diffeomorphism) and that F̄ (4((S1)n× [0, 1])) is an idempotent
operator.

(c) We check that composition is preserved. Given two composable 2-
cobordisms, M and M ′, the property that F (M ◦M ′) = F (M)◦F (M ′)
is inherited from (5.9).

(d) By construction of F̄ , we note that F is obviously a strong monoidal
functor. Lastly, F is symmetric due to the auxiliary theorem (5.1).

�

Hence, we conclude that we have constructed a 2D-TQFT from an FHK
construction.

�

Furthermore, one can easily check the following corollary as a consequence of
the construction above:

Corollary 4.10. Fix an FHK construction. Then it determines a unique 2D-
TQFT up to natural isomorphism.
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Proof. To see this, for any nondegenerate triangulated construction (A, g, c), the
resulting linear map associated with each 2-cobordism depends only on triangula-
tion since we fixed g and c and constructed µ and δ by hand. If, furthermore, our
nondegenerate triangulated construction is an FHK construction, then the linear
map associated with each 2-cobordism is independent of triangulation. �

We finally have the definition:

Definition 4.11. A 2-dimensional Lattice Topological Field Theory (LTFT) is a
2D-TQFT constructed from an FHK construction by (4.9) up to natural isomor-
phism.

5. The Main Theorem

We will now prove the main theorem of 2D-LTFTs, which is in similar vein as the
main theorem of 2D-TQFTs. Our proof differs from the original one, and follows
the general approach of Baez.

Note that our construction above does not necessitate that a 2D-LTFT exists.
The problem is that to have an FHK construction, we need to associate the machin-
ery defined above with a 3-tuple that works. The main theorem first shows that,
by choosing A to be a finite-dimensional semisimple algebra, with a multiplication
µ and g to be its trace form, we can define an FHK 3-tuple. And, conversely, an
FHK 3-tuple must confer a semisimple structure on A.

Theorem 5.1 (Sufficiency). Let A be a semisimple algebra with multiplication µ
and g as its trace form. Then, (A, g, µ) is an FHK 3-tuple

Proof. Let (A, µ) be a finite-dimensional semisimple algebra. By Dickson’s theorem
[1.3], we have a nondegenerate pairing, the trace form. Call this pairing g. Hence,
there exists a nondegenerate triangulated construction associated with A. The valid
move for associativity is immediately satisfied by any algebra.

We first prove the valid move:
←→

(1) First, define an function: c : A⊗A⊗A −→ K by c = g(µ⊗ idA). We note
that the the trace is an associative pairing, hence c̄ = g(idA ⊗ µ). Hence,

representing c as , we have the following valid moves:

= =

(2) We claim that we can recover our multiplication this way:

= =

Proof. We prove the first relation, since the second follows immediately
from (1). First, apply shifting on all the incoming and outgoing arrows,
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then use the valid move in 1. Using the fact that g is nondegenerate, we
can use Straightening II as a valid move and the proof is complete.

= = =

�

(3) It follows immediately, from the definition of comultiplication from a non-
degenerate triangulated construction that:

= = =

(4) We are now ready to prove the claim:

Proof. The claim follows by showing that can we apply a sequence of valid
moves to go from the right hand side to an intermediary step. Going
from the left hand side to the intermediary step is completely analagous.
First, we apply the definition of a comultiplication, then apply shifting and
associating. Lastly, we re-apply the definition of a comultiplication.

= = = =

�

We omit the proof for coassociativity since the argument is lengthy, but
the crux of the proof is noting that c is invariant under cyclic permutations
of its domain, and applying the definition of comultiplication, the valid
move follows.

We now show the valid move associated with the 1-3 move.
(5) We start with the following lemma:

Lemma 5.2. The 1-3 move is equivalent to the 2-2 move and the bubble
move.

Proof. The following is a bubble move defined by FHK:

←→
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Assuming that we have the 2-2 move and the bubble move, we can first
apply the bubble move, then the 2-2 move:

↔ ↔ ↔

Assuming that we have the 1-3 move and the 2-2 move, we can first
apply the 1-3 move, then the 2-2 move:

↔↔ ↔

�

(6) Hence, it suffices to show that the move arising out of the dual of the bubble
move is valid. Recall that the multiplication is recovered in in this way:

= =

Since comultiplication is defined by “gluing” another copairing, we can
think of our triangulated construction as associating every triangle with
the morphism c : A⊗A⊗A :−→ K.

Now, the requirement that no two arrows on an edge of the dual diagram
face each other, ensures that all copairings composed with c is associated
with the pairing g such that their composition straightens. Therefore, every
edge of the original triangulation is associated with both a pairing and a
copairing. Hence we can choose to associate each edge with either the
pairing g or the copairing ḡ. Without loss of generality, we choose g.

Therefore, the dual of an edge of a triangle is just g that we started with.
Hence the following is the valid move that we obtain from the bubble move
(with the triangles drawn in):

=

The validity of this diagram is true by the computation for the trace
form in Section 3, and the fact that we started the construction by using
the trace form as g.

�

Theorem 5.3 (Necessity). If (A, g, µ) is an FHK 3-tuple, then necessarily g is
its trace form, and (A, µ) is a semisimple algebra.

Proof. By the previous theorem, we know that a such a 3-tuple exists. A is obvi-
ously an algebra (not necessarily associative or unital) and the condition that g is
nondegenerate necessitates that A is finite-dimensional by [2.14].
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Now, by lemma 5.2, we could have defined an FHK 3-tuple in terms of the valid
move arising out dual of the bubble move instead of the valid moves arising out of
the dual of the 1-3 move. Now, the valid moves in the definition of an FHK 3-tuple
tells us that A, µ and g must be chosen such that µ and δ satisfies the valid moves
arising out of the 2-2 move and the bubble move. In particular, A is necessarily
an associative algebra. We need only show two more things: that A is unital, and
that A is semisimple.

(1) We claim that A is unital.

Proof. Note that since g is nondegenerate, we can fix an identification of A
with A∗ as vector spaces - namely, via g itself. Therefore, there is no need to
draw arrows, and there is only one kind of straightening - in particular, we
can always straighten strings whenever there are two curves. Now, define
the unit as the map µ ◦ ḡ : K −→ A:

=

I

With this definition, we check that the valid move for unitality is satisfied
via the diagram below. We first, apply associativity, then note that the
boxed region of the string diagram is a multiplication and we apply the
valid moves in (5.1.1). Apply the valid move arising out of the bubble move
in the next boxed region to see that we get two curves which straightens.

= = = =

�

(2) Lastly, we claim that A is semisimple. By the argument in (5.1.6), we see
that g is necessarily the trace form since the 1-3 move is defined to be valid.
Now g is assumed to be nondegenerate, hence A is a semisimple algebra.

�

5.1. The Auxiliary Theorem: Symmetry Requirements. In this section, we
complete the proof that the functor we constructed out of an FHK construction
(4.6) is indeed a 2D-TQFT by showing that the functor is symmetric. In particular,
we are done if our functor maps objects of 2−Cob into the centre of the algebra,
Z(A). We need only show this on the generator for objects, 1.

Theorem 5.4. F (1) = Z(A)
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Proof. Let us compute the linear map F̄ (4(S1 × [0, 1])). Pick the simplest trian-
gulation of S1 × [0, 1] and then draw the dual diagram, noting that, by (5.3.1) we
need not draw arrows.

Now, identifying the edges of the triangle (and hence the dual diagram) the linear
map is represented by this string:

which is the map: µ ◦BA,A ◦ δ : A −→ A.
We first claim that if a ∈ Z(A) then a ∈ F (1) = RanF̄ (4(S1 × [0, 1])). For

convenience set φ as the linear map F̄ (4(S1 × [0, 1])). Since φ is idempotent, it
suffices to show that for any a ∈ Z(A), φ(a) = a. Fixing a, it suffices to show that
the following move is valid:

=

a a

First, use sliding to a position where we can apply associativity. However, instead
of applying associativity immediately, we use the fact that a is in Z(A) to move it
inside the “bubble.” In this way applying associativity is the same as twisting two
strings past one (this can easily be checked by (5.1.1)). Now, move slide a back
to the top and use untwist I to see that we obtain a string diagram which we can
validly turn into the string diagram for a by the argument in (5.3.1):
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=

a

= = =
a

a

a a

On the other hand, it suffices to show that for any a ∈ A, µ(φ(a)⊗b) = µ(b⊗φ(a))
for all b ∈ A:

aa

=

First, we claim that the following move is valid:

a

a

This is true since we have a natural isomorphism between V ⊗K and K ⊗ V .
Hence, if we had labelled K by a, the same move will be valid. Now to prove our
claim, simply use associativity on the region marked by the box, then use sliding
to get the appropriate diagram for application of the above move:



28 ELDEN ELMANTO

=

a

a

=

a a a aa a

= = = =

a

�

6. An Elementary Proof of Mednykh’s Formula

As an application of 2D-LTFTs, we provide an elementary proof of the following
theorem due to Mednykh:

Theorem 6.1 (Mednykh, 78). Let G be a finite group, and S be a closed, orientable
surface. Then the following formula is true:

(6.2)
∑
V ∈Ĝ

dim(V )χ(S) = #Gχ(S)−1#Hom(π1(S), G)

Here, Ĝ refers to the set of isomorphism classes of irreducible representations of
G, dim(V ) refers to the dimension of V, χ(S) is the Euler characteristic of S and
π1(S) is the fundamental group of S. It is noteworthy that this formula traverses
many areas of mathematics! First, recall three basic theorems from representation
theory of finite groups.

Theorem 6.3 (Maschke). If K is a field of characteristic zero, then the group
algebra K[G] is semisimple.

Theorem 6.4 (Artin-Wedderburn). Let K be a field of characteristic zero. Let
ρi : G −→ GL(Wi) be a class of irreducible representations of G (there are finitely
many of them for a finite group). Extend ρi to an algebra homomorphism ρi :
K[G] −→ End(Wi) ∼= Mni(K), where ni is the dimension of Wi Then we have the
isomorphism of algebras:

(6.5) K[G] ∼= Πh
i=1Mni(K)

Theorem 6.6. Let G be a finite group, and let 1 the identity element of its group
algebra over the complex numbers. Then Tr(1) = #G and Tr(s) = 0 for g 6= 1.

Proof. Follows from the fact that this is true for the regular representation of G
which uniquely extends to the C[G] module C[G]. �
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Hence, as shown above, the semisimple algebra, C[G], defines an FHK construc-
tion. We will denote by FC[G](4M), the linear map associated with a triangulated
2-cobordism 4M via FHK construction (suppressing the choice of g and µ). In
this case, we are interested in 2-cobordisms without boundary, i.e closed orientable
surfaces. Note that the linear map associated with the 2-cobordism via an FHK
construction has C as domain and codomain — it is simply a complex number.

Now, by a flag, we mean a pair (face, edge) such that the edge is contained in
the face. A pair of triangles thus have 6 flags. We note by (5.1.5) that in the FHK
construction, we associate each flag with A, and we can choose to associate with
each edge, a copairing of g denoted by ḡ (this is a more convenient choice for our
current purposes), and each edge with a linear map Tr◦(µ⊗idA) = Tr◦(µ⊗idA) =
c : A⊗A⊗A −→ K.

The next definition requires us to be more careful:

Definition 6.7. Let G be a finite group and 4S a triangulated closed surface.
By a consistent labelling of 4S by G we mean a way of labeling all flags of 4S
such that (1) the product around each triangle is 1 and (2) an edge shared by two
triangles (hence, two flags) are assigned the group element and its inverse.

This is an example of a consistent labelling of two triangles using the generators
of the dihedral group, D8:

r3

r5

s2
1

s

s

Note We call the number of consistent labelings on 4S by G as Z(G,4S).

Proposition 6.8. Let S be a closed, orientable surface and G a finite group, ḡ

a nondegenerate copairing that sends the identity to
∑
g⊗g−1

#G , and c = Tr(µ ⊗
idC[G]. Fix a triangulation on S and call the triangulated closed surface 4S.

Then, FC[G](4S) = #G#F−#EZ(G,4S). Moreover, for any other triangula-
tion of S, 4′S, FC[G](4S) = FC[G](4′S). Therefore, we can write FC[G](S) =

#G#F−#EZ(G,S)

Note that it suffices to show for one triangulation of S since FC[G](S) is triangulation-
invariant.

Proof. We note that, by construction, FC[G](4S) : K = K⊗#edges −→ C[G]⊗#flags −→
K⊗#faces = K. by first applying the map ḡ : K −→ C[G] ⊗ C[G] and Tr :
C[G]⊗C[G]⊗C[G] −→ K. Note that we can write a labeling as an ordered array:⊗
g ⊗ g−1. Moreover, by theorem 6.6, it follows that

(6.9) Tr(
⊗

g ⊗ g−1) =

{
#G if

⊗
g ⊗ g−1 consistent

0 otherwise

WIth this, we can carry out the computation:
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1 7→
⊗
edges

(1/#G
∑

g ⊗ g−1)

= #G−#edges(
∑

flag labelings

(
⊗
edges

g ⊗ g−1))

7→ #G−#edges#G#facesZ(G,4S)

�

Theorem 6.10. FC[G](S) = #Gχ(S)−1#Hom(π1(S), G)

Proof. Fix a base vertex of S, v0, and fix oriented paths Pv from v0 to every other
vertex v. To see this, we construct a bijection between the consistent labellings
of 4S and the set GV−{v0} × Hom(π1(S), G), Φ : {Consistent Labelings} −→
GV−{v0} ×Hom(π1(S), G)

Consider a consistent labelling f as a map from the oriented edges of 4S to G.
We first compute the group element in GV−{v0} associated with f . For a vertex v 6=
v0, we can compute its associated group element with respect to v0 by multiplying
the group elements on the edges traversed by the path, Πedge∈Pv

f(edge). Compute
this for every vertex and we obtain a #(V − {v0})-tuple, which is an element in
GV−{v0}. Since we have fixed the oriented paths, we see that this computation is
well-defined. Now, for every loop, we assign the group homomorphism that takes
a loop class [L] ∈ π1(S, v0) to the group element obtained by multiplying all group
elements associated with the edges traversed in this loop, Πedge∈[L]f(edge). By the
consistency condition, we see that this assignment only depends on the loop class
of L. Hence, this map is injective.

Conversely, if we have a set of cardinality V − {v0}, {f(Pv)}v 6=v0 , consisting
of group elements which tells us which group elements correspond to each Pv for
all v, and a fixed homomorphism that assigns a loop class [L] to a group ele-
ment, we can recover the consistent labelings on 4S. We compute the labeling
on an arbitrary edge, E from v to v′: Let L be the loop Pv′−1 ◦ E ◦ Pv. Then
f(E) = f(P ′v)f(L)f(P−v 1). Obviously, the value of f(E) depends only the the
choice of {f(Pv)}v 6=v0 and the chosen homomorphism. Therefore, FC[G](S) =

#G#F−#EZ(G,S) = #G#F−#E−#V−1#Hom(π1(S), G). Since χ(S) = #F −
#E −#V − 1, the result follows.

�

Analogously, we can define Z(Mn,4S) as the number of consistent flag labelings
of 4S by the basis of the matrix algebra Mn(C) which we write as ej . We say that
a flag labeling is consistent when two flags sharing the same edge is labelled by
(i, j) and (j, i), and a flag adjacent to (i, j) is labelled (j, k). With this, we claim
an analogous result:

Proposition 6.11. Let S be a closed, orientable surface, Mn(C) the matrix alge-
bra over a complex numbers, ḡ a nondegenerate copairing that sends the identity to∑

i,j ei,j⊗ej,i
n , and c sends all triples of the form ei,j ⊗ ej,k ⊗ ek,i to n and 0 other-

wise. Fix a triangulation on S and call the triangulated closed surface 4S. Then,
FMn(C)(4S) = n#F−#EZ(Mn,4S).

Moreover, for any other triangulation of S, 4′S, FMn(C)(4S) = FMn(C)(4′S).

Therefore, we can write FMn(C)(S) = #n#F−#EZ(Mn, S)
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Proof. Completely analogous to [6.8]. �

Now, we note that Z(Mn, S) = n#V . To see this, simply note that a consistent
label is equivalent to a way in which we associate each vertex with a number k,
1 ≤ k ≤ n. Therefore we have FMn(C)(S) = #nχ(S). Hence, we can finally prove
Mednykh’s formula:

∑
V ∈Ĝ

dim(V )χ(S) =
∑

FMdim(V )(C)(S)

= FC[G](S)

= #Gχ(S)−1#Hom(π1(S), G)

The first equality is given by by FMn(C)(S) = #nχ(S), the second equality is
given by Theorem 6.4 and the last equality is given by Theorem 6.10.
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