
Petri Net Supervisors for DES with
Uncontrollable and Unobservable Transitions

Technical Report of the ISIS Group

at the University of Notre Dame
ISIS-99-004

http://www.nd.edu/ isis/tech.html

February, 1999

John O. Moody

Lockheed Martin Federal Systems
1801 State Rt. 17C, MD 0210

Owego, NY 13827-3998
john.moody@lmco.com

Panos J. Antsaklis
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556
Panos.J.Antsaklis.1@nd.edu

Interdisciplinary Studies of Intelligent Systems

The partial financial support of the National Science Foundation (ECS95-31485) and the Army Research

Office (DAAG55-98-1-0199) is gratefully acknowledged.

Petri Net Supervisors for DES with
Uncontrollable and Unobservable Transitions

Abstract

A supervisor synthesis technique for Petri net plants with uncontrollable and unobservable
transitions that enforces the conjunction of a set of linear inequalities on the reachable markings
of the plant is presented. The approach is based on the concept of Petri net place invariants.
Each step of the procedure is illustrated through a running example involving the supervision
of a robotic assembly cell. The controller is described by an auxiliary Petri net connected to the
plant’s transitions, providing a unified Petri net model of the closed loop system. The synthesis
technique is based on the concept of admissible constraints. An inadmissible constraint can
not be directly enforced on a plant due to the uncontrollability or unobservability of certain
plant transitions. Procedures are given for identifying all admissible linear constraints for a
plant with uncontrollable and unobservable transitions, as well as methods for transforming
inadmissible constraints into admissible ones. When there are multiple transformations of this
kind, a technique is described for creating a modified Petri net controller that enforces the
union of all these control laws. It is shown how a variety of supervisory control problems
can be formulated and solved using the method proposed here. The method is practical and
computationally inexpensive in terms of size, design time, and implementation complexity.

1 Introduction

1.1 Modeling DES with Petri Nets

It is often necessary to regulate or supervise the behavior of discrete event systems (DES)

in order to meet safety or performance criteria, e.g., preventing automated guided vehicles from
colliding on a factory floor by restricting their access to certain mutually traveled zones. DES

supervisors are used to insure that the behavior of the plant does not violate a set of constraints
under a variety of operating conditions. The regulatory actions of the supervisor are based on

observations of the plant state, resulting in feedback control.

It is common to see discrete event systems modeled as finite automata [22, 28]. Methods exist

for designing controllers based on automata system models, however these methods often involve
exhaustive searches or simulations of system behavior, making them impractical for systems with

large numbers of states and transition causing events.

Modeling discrete event systems with Petri nets (PN’s) may help address some of these diffi-

culties. Petri nets [3,20,21,24] have a simple mathematical representation employing linear matrix
algebra making them particularly useful for analysis and design. Petri net models are normally

more compact than automata based models that represent the same system behavior and are bet-
ter suited for the representation of systems with repeated structures and flows but large reachable
state spaces. Petri nets allow for the simultaneous occurrence of multiple events without suffering

from increased model complexity, as is the case with automata. In addition they have an appealing
graphical representation that makes it possible to visualize the state-flow of a system and to quickly

see dependencies of one part of a system on another.

The intuitive graphical representation and the powerful algebraic formulation of Petri nets has

lead to their use in a number of practical fields. Petri nets are used to model multiprocessor com-
puter systems, computer networks, digital communication protocols, process control plants, queuing

systems, and flexible manufacturing cells, among others. Often times the graphical representation
of a plant as a Petri net model is enough for an engineer to design a controller or supervisor for

the plant. Many control techniques exist that involve recognizing and then manipulating certain
structures that commonly appear in Petri net models. Other techniques exist for automatically
verifying the reliability of these control designs. A survey of a variety of a variety of supervisory

control procedures for Petri nets can be found in [8]. Representing the controller itself as a Petri
net makes the verification of the combined plant/controller system simpler, as well as reducing the

number of computational tools required to model the overall system. Unfortunately, even when
the controller is modeled as a Petri net, this cyclic technique of design and verification can become

quite cumbersome when the plant model is large. This leads to the desire for an efficient method
for the automatic generation of controllers based on the plant and constraint data.

1.2 Invariant Based Controllers and Linear State Constraints

A method for automatically deriving supervisory controllers for discrete event systems described

by Petri nets appears in [19, 32]. The control designer is presented with a Petri net model of a
DES and a set of linear constraints on the state space of the DES, and the control goal is to

insure that the constraints are met during the plant’s operation. The method is based on the
idea that specifications representing desired plant behaviors can be enforced by making them place

invariants of the feedback controlled system. The resulting controllers are themselves Petri nets and
are identical to the monitors [7] of Giua et al., which were derived independently using a different

methodology. This technique forms the basics of the synthesis procedure described in this paper
and is summarized in section 3.

Linear inequalities can be used to describe a large class of forbidden state problems. The basic
synthesis procedure requires that the set of allowed states be a convex region described by the

conjunction of several linear inequalities. The modified control structure of section 6 expands the
class of realizable forbidden state problems by allowing nonconvex feasible regions in the form of
disjunctions of linear state inequalities. Thus the control procedure can be applied to many common

problems seen in flexible manufacturing, process control, and communication networks, including
serial, parallel and general mutual exclusion problems [4, 7], and the modeling and allocation of

shared resources [17].

Insuring system liveness or avoiding deadlock is a common and important supervisory control

goal. The existence of liveness-insuring supervisors for Petri nets with uncontrollable transitions
has been studied by Sreenivas [26, 27]. Techniques for deadlock avoidance have been proposed by

a variety of researchers; see [1, 2, 5, 10, 11, 29] for details. These techniques involve analysis of the
siphons or other similar structures within the Petri net plant. Often the resulting controllers can

be expressed in terms of supervisors enforcing sets of linear inequalities on the reachable plant
states. Combining these techniques with the supervision approach of this paper can then be used

to prevent deadlock or insure liveness for plants with uncontrollable and unobservable transitions.

Some supervisory control specifications may seem outside the scope of the technique presented in

2

this paper because they are not normally expressed as linear inequalities or because they deal with

events or time, rather than particular states. However many of these problems can be expressed as
constraints on the state and enforced using the invariant based controllers of this paper. Established

and systematic techniques exist for transforming a class of logical predicates on plant behavior into
linear state inequalities [31]. Conditions involving the occurrence of events and particular regions of

the state space or conditions involving the concurrence of individual events can also be expressed as
state-based inequalities [15,32]. The addition of “clock” and “timer” structures to timed Petri nets
provides an interface between continuous time and the event driven world of supervisory control.

This allows for the synthesis of controllers for timed Petri nets with control specifications involving
real time [15, 16].

A major goal in the field of discrete event system control is the synthesis of supervisors under
conditions where certain state to state transitions can not be prevented by any action from the

supervisor, i.e., conditions under which certain transitions are uncontrollable. The problem is then
to design a controller that prevents states from occurring that violate the behavioral constraints

directly or that might lead to a violation of the constraints through the action of uncontrollable
transitions.

Li and Wonham [13] have made important contributions regarding the enforcement of linear
constraints on Petri net plants with uncontrollable transitions. These authors show that optimal, or

maximally permissive, control actions that account for uncontrollable transitions can be found by
repeated applications of an integer linear programming problem (ILP), assuming that valid control

actions actually exist and that the uncontrollable portion of the net contains no loops. They
also give sufficient conditions under which the solution to the ILP has a closed form expression.

In these cases, the control law can be enforced by a feedback Petri net supervisor of the type
described in section 3 or 6 of this paper. The computation of the control law, described in sections
4 and 5 presented here involves only matrix algebra and is more desirable, computationally, than

analytically solving an ILP. The tree structure assumed by Li and Wonham is only sufficient, not
necessary, for example, the structure of the uncontrollable part of the plant in section 6.2 does not

have a “tree structure,” in fact it contains a loop, however a maximally permissive supervisor was
found and implemented using a modified Petri net of the kind described in section 6.

The concept of uncontrollability is associated with the dual concept of unobservability. It is
possible that a DES plant might contain certain state to state transitions that can not be detected

by the supervisor. The mathematical representation of these unobservable events is analogous to
uncontrollable transitions. Both uncontrollable and unobservable transitions are covered by the

design procedures of this paper.

1.3 Summary of Contents

Following the review of the algebraic model of Petri nets in section 2, a brief summary of the
basic synthesis procedure of [32] appears in section 3. The primary contribution of this paper is

the extension of these results to the synthesis of PN supervisors for plants with uncontrollable
and unobservable transitions. One possible approach to this problem is to construct a supervisor

that searches through the uncontrollably reachable markings of the plant at every iteration of
the plant’s evolution. This potentially expensive search is avoided here through the concept of

3

admissible constraints, introduced in section 4. A constraint is called admissible when, among the

states that satisfy the constraint, none could lead (uncontrollably) to a state that does violate
the constraint. Admissible constraints may be simply and directly enforced on a plant without

requiring that the supervisor search through uncontrollably reachable markings. Computational
techniques for generating admissible constraint transformations are presented in the appendix, and

supervisors for enforcing admissible constraints can be synthesized using the technique of section
3.

Section 5 shows how to characterize all admissible linear constraints for a given Petri net.
When a constraint is found to be inadmissible, this characterization can be used to find the set of
all admissible constraints that have feasible regions that lie within the feasible region of the original

constraint. Section 6 shows how to construct a supervisor that will enforce the logical union of all
these admissible constraints (a disjunction of linear inequalities), thus providing for a high degree

of plant freedom while accounting for uncontrollable and unobservable transitions.

Section 7 shows how a variety of supervisory control problems can be formulated and solved

using the proposed method. These problems include the modeling of finite resources, constraints on
allowed events (as opposed to states), constraints expressed as logical predicates on plant behavior,

and real time constraints for timed Petri nets.

Concluding remarks are given in section 8.

2 Petri Net Fundamentals

A Petri net is a directed bipartite graph. The structure of a Petri net is described by (P, T,D+, D−)
where P and T are disjoint sets representing the vertices of the graph, known as places and transi-
tions, and D+ and D− are integer matrices with nonnegative elements representing the flow relation
between the two vertex types.

Places in a Petri net hold tokens, the distribution of which indicates the net’s state or its

marking. Transitions direct the flow of tokens between places, thus the firing of a transition is
a state changing event in a DES model. A Petri net’s incidence matrix represents the weighted

connections of directed arcs between its places and transitions. It is composed of two matrices,D−,
representing arcs from places to transitions, and D+, representing arcs from transitions to places.

D = D+ −D− (D+, D− ≥ 0)

The incidence matrix is used to construct a difference equation that describes the evolution of
the net’s state.

µ(k + 1) = µ(k) +Dq(k)

µ(0) = µ0
(1)

where
µ ∈ ZZn, q ∈ ZZm, µ, q ≥ 0 (2)

where ZZ is the set of integers, µ is the net’s state or marking vector, q is the input or firing vector,
and D ∈ ZZn×m. The notation µ, q ≥ 0 indicates that every element of the marking and firing

4

vectors is nonnegative at all times. This element-by-element interpretation of inequalities will be

used throughout this paper whenever vectors or matrices appear on either side of the inequality
symbol.

The nonnegativity conditions in (2) lead to the Petri net transition enabling rule. A firing
vector q is feasible (represents a valid set of transition firings) if q ≥ 0 and

D−q ≤ µ (3)

where the iteration counter k has been dropped for convenience. If the Petri net’s transitions contain
no self loops, i.e., the positions of the nonzero elements in D+ and D− are mutually exclusive, then
the transition enabling rule can be written

µ+Dq ≥ 0 (4)

Care must be taken when using (3) or (4) when q indicates the concurrent firing of multiple

transitions. There are a variety of different techniques for handling concurrency. Concurrency may
not be allowed at all, in which case q would be a zero vector with a single element equal to one.

Concurrency may be allowed only when each of the indicated transition firings could occur one
after the other in any order. In this case q must satisfy (3), or each transition firing indicated in q
must independently satisfy (4) as well as the complete q vector. If (4) is used without this check

for independently enabled transitions, then certain concurrent firings may be allowed even though
some or all of the individual transitions indicated in the firing could not fire by themselves. The

choice of which of these methods to use is dictated by the modeling requirements and the particular
plant.

Petri net place invariants are fundamental to the supervisor synthesis technique described in
the following section. A place invariant is an integer vector x that satisfies

∀ reachable µ, xTµ = xTµ0
Thus xTµ is a constant for all reachable states if x is a place invariant. Place invariants can be
computed by finding solutions to the equation

xTD = 0

3 Invariant Based Control Synthesis

3.1 Description of Method

The system in need of supervision, the plant net, is modeled by a Petri net with n places and
m transitions. The plant’s incidence matrix is Dp ∈ ZZn×m. The controller net is a Petri net with
incidence matrix Dc ∈ ZZnc×m made up of the plant’s transitions and a separate set of places. The
controlled system or controlled net is the Petri net with incidence matrix D ∈ ZZ(n+nc)×m made up
of both the original plant and the added controller. The control goal is to force the plant to obey
constraints of the form

Lµp ≤ b (5)

5

where µp ∈ ZZn, µp ≥ 0 is the marking vector of the plant, L ∈ ZZnc×n, and b ∈ ZZnc . The inequality
is with respect to the individual elements of the two vectors Lµp and b and can be thought of as
the logical conjunction of nc separate linear inequalities.

Inequality (5) can be transformed into an equality by introducing an external Petri net controller
that contains places that represent nonnegative “slack variables.” The constraint then becomes

Lµp + µc = b (6)

where µc ∈ ZZnc , µc ≥ 0 is the marking of the controller. Note that µc ≥ 0 because the number of
tokens in a PN place can not become negative; thus equation (6) implies inequality (5). The closed
loop system has the following Petri net structure.

D =

[
Dp

Dc

]
µ0 =

[
µp0
µc0

]
(7)

The controller is computed by observing that the introduction of slack variables forces a set
of place invariants on the overall controlled system defined by equation (6). The results in the

propositions below have been introduced and discussed in [15, 18, 19, 32]

Theorem 1. Invariant based controller synthesis. If

b− Lµp0 ≥ 0 (8)

then a Petri net controller, Dc ∈ ZZnc×m with initial marking µc0 ∈ ZZnc

Dc = −LDp (9)

µc0 = b− Lµp0 (10)

enforces constraint (5) when included in the closed loop system (7), assuming that the plant’s
transitions are controllable and observable.

If inequality (8) is not true, then the constraints can not be enforced by any controller since
the initial conditions of the plant lie outside the range allowed by the constraints.

Proof. If inequality (8) is not true, then obviously Lµp0 6 ≤b, and there is at least one row of
L, li, such that l

T
i µp0 > bi and the initial conditions of the plant violate the constraint. If the

inequality is true, then equation (10) shows that the initial conditions of the controller are defined
as a vector representing the slack in each of the constraints represented by Lµp ≤ b.
Equation (9) forces equation (6) to be place invariants of the closed loop system (see [18,19,32]),

thus inequality (5) will be true for all reachable markings of the closed loop system.

Proposition 2. Invariant based controllers are maximally permissive. Given a plant

and a set of enforceable constraints (5), a controller constructed according to the rules of Theorem
1 only acts to disable transitions when the firing indicated by the given q vector leads to a state

forbidden by (5).

6

Proof. According to the rules of PN evolution, the controller will only disable transitions when

the firing indicated by q would cause the marking of at least one of its places to become negative.
Since (6) represents a set of invariants in the closed loop system, any negative element in µc indicates

a violation of (5), and all states allowed by (5) correspond to nonnegative values in µc.

It has also been shown in [32] that the controller only induces place invariants in the closed

loop system that are specifically described by equation (6). All place invariants of the closed loop
system are accounted for by those originally present in the plant and those specifically required to

enforce the constraints.

p1

t4p2 p3 p4

p5

p6

p7

t2

t3 t9

t5

t6

t7 t8

t1

p8

c1

c2

c3

Figure 1: The piston rod robotic assembly cell with its initial controller.

3.2 Example – The Piston Rod Robotic Assembly Cell

The piston rod assembly cell application is partially based on a similar plant described in chapter
8 of [4]. The Petri net model of the plant is shown in Figure 1, and Table 1 details the meaning

of each place in the net. The number of tokens in each place signifies the number of resources or
robots engaged in the activities described in Table 1. The assembly of each part requires work by

two different robots. An S-380 robot is used to prepare and align the parts for assembly, and an
M-1 robot installs the cap on the piston rod. Places c1, c2 and c3 in Figure 1 are the components

of a supervisory controller, the design of which is covered here.

p1 Engine block and crank shaft are ready to be processed.

p2 S-380 robot aligns the crank shaft.

p3 S-380 robot picks up new piston rod and positions it in work space.

p4 Engine block prepared and ready for work by M-1 robot.

p5 M-1 robot picks up a piston pulling tool.

p6 M-1 robot pulls the piston rod into the engine block, returns pulling tool.

p7 M-1 robot positions a cap on the piston rod.

p8 M-1 robot bolts the cap to the piston rod.

Table 1: Place descriptions for Figure 1.

There are three S-380 and three M-1 robots available in the assembly cell. There are two piston

pulling tools. These resource constraints are translated into linear inequalities on the state space

7

of the plant:

µ2 + µ3 ≤ 3 (three S-380 robots) (11)

µ5 + µ6 + µ7 + µ8 ≤ 3 (three M-1 robots) (12)

µ5 + µ6 ≤ 2 (two piston pulling tools) (13)

Each inequality is enforced by a separate controller place. The connections of these three places,
c1, c2, and c3, to the plant and their initial markings are calculated using Theorem 1, resulting in

the maximally permissive supervisor shown in Figure 1.

Dc = −

 0 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0




︸ ︷︷ ︸
L




1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0

0 0 0 1 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0

0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1




︸ ︷︷ ︸
Dp

=


 0 −1 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 0 1

0 0 0 0 −1 0 1 0 0




µc0 =


 33
2




︸ ︷︷ ︸
b

−Lµp0 =

 33
2




4 Admissible Constraints and Controls

4.1 Uncontrollable and Unobservable Transitions

A transition is called uncontrollable if the firing of that transition may not be inhibited by an
external action. The freedom of an uncontrollable transition to fire is limited solely by the structure

and state of the plant.

In order for a Petri net controller to inhibit a transition, it must contain an arc from a controller

place to the transition. The transition will be disabled if the number of tokens in the control place
is less than the arc weight.

A transition is called unobservable if the firings of that transition can not be directly detected
or measured. Since the firing of an unobservable transition can not be detected, a controller state

change can not be triggered by such a firing.

For a Petri net based controller, both input and output arcs to the plant transitions are used

to trigger state changes in the controller. A Petri net controller can not have any connections to

8

an unobservable transition, thus all unobservable transitions are also implicitly uncontrollable, of

course an uncontrollable transition may or may not be unobservable. One can imagine a situation
where the occurrence of some event in a plant could be blocked without the controller ever receiving

any feedback relating directly to that event, but, in practical situations, the ability to inhibit an
event is usually coupled with the ability to detect occurrences of that event. For this reason, this

limitation on Petri net based controllers is not too severe.

4.2 Constraint Transformations

Given a set of constraints, Lµp ≤ b, a supervisor must work to insure that the constraints are
never violated directly and may never be violated through the firing of uncontrollable transitions or

through incomplete knowledge due to unobservable transitions. In order to avoid expensive online
searches by the supervisor through the uncontrollably reachable markings of the plant, the approach

taken here is to actually modify the constraints themselves such that the new constraints account
for uncontrollability and unobservability. The following definitions are useful in understanding the
motivation for the transformation of constraints. The definitions are with respect to a plant with

possible uncontrollable or unobservable transitions and constraints on the marking behavior of the
plant in the form Lµp ≤ b. Unobservable transitions are also assumed to be uncontrollable.

Definition 3. An admissible marking µp is a marking such that

1. Lµp ≤ b, and
2. For all markings µ′p reachable from µp through the firing of uncontrollable transitions, Lµ′p ≤ b.

If either of these conditions is not met, then the marking is inadmissible.

Definition 4. Given a plant with initial marking µp(0) = µp0, an admissible constraint
satisfies two conditions:

1. Lµp0 ≤ b, and
2. For all µp(N) reachable from µp(0) through any path of consecutively reachable markings,

µp(0)→ µp(1)→ · · · → µp(N), where

Lµp(i) ≤ b, for1 ≤ i ≤ N,

µp(N) is an admissible marking.

If a constraint does not satisfy both of these conditions, then it is inadmissible.

If a constraint is admissible, then condition 2 of Definition 4 indicates that the firing of un-

controllable transitions can never lead from a state that satisfies the constraint to a new state

9

that violates that constraint. Note that the admissibility of a particular marking does not imply

that the marking is actually reachable, either due to the initial marking of the plant or due to the
restrictions of a supervisor.

An admissible constraint will only allow admissible markings, however there may exist admis-
sible markings that could be reached by the uncontrolled plant that can not be reached under

maximally permissive supervision. Definition 4 incorporates this by checking the admissibility of
markings that were achieved by following paths in which all intermediate markings satisfy the

constraint. This set of reachable, admissible markings is similar to the set Re(G, P) defined in [12].

t2t1

p1

t3

t4

p3p2

Figure 2: Transitions 2 and 3 are uncontrollable.

Example. The Petri net of Figure 2 contains two uncontrollable transitions: t2 and t3. Tokens

in places p2 and p3 can not be prevented from freely traveling between these two places. However
t1 can be used to stop the introduction of new tokens into p2 and p3, and t4 can be used to prevent
tokens from leaving.

The constraint
µ3 ≤ 1 (14)

is inadmissible. The initial state of the plant µ0 =
[
1 2 1

]T
satisfies the constraint, but the

uncontrollable firing of t3 would lead to the state µ =
[
1 1 2

]T
, which violates (14). The

constraint fails condition 2 of Definition 4.

The constraint
µ1 ≤ 1 (15)

is admissible. The current state of the plant satisfies the constraint, and for any state that satisfies

the constraint, there is no firing of uncontrollable transitions that would lead to a state that does
not satisfy it. The marking of p1 is affected only by the firings of transitions t1 and t4, both of

which are controllable.

If Lµp ≤ b is inadmissible, then it is desirable to find another constraint L′µp ≤ b′ such that
L′µp ≤ b′ is an admissible constraint, and for all µp such that L′µp ≤ b′, Lµp ≤ b is also true. In
the example above, we could replace constraint (14) with

µ2 + µ3 ≤ 1 (16)

10

This constraint is admissible according to Definition 4, and all reachable states that satisfy (16)

also satisfy (14). Thus constraint (14) could be enforced by designing a controller for constraint
(16) using the technique of section 3. Unfortunately a controller designed this way may not be

maximally permissive. The method of handling uncontrollable/unobservable transitions in section
5 of this paper follows along these lines, but it also includes the idea of finding all constraints

L′µp ≤ b′ that meet the criteria above. Section 6 then shows how to construct a controller that
enforces the disjunction of these inequalities allowing for a high degree of plant freedom.

4.3 Petri Net Modeled Supervisors

The supervisors used in this paper are modeled by Petri nets. Uncontrollable and unobservable

transitions can cause problems for PN based supervisors due to limitations in their modeling power,
however Petri net supervisors are still useful for several reasons. Unified plant/controller models

are elegant, facilitating implementation and closed loop system analysis. The evolution of Petri net
models is inexpensive to compute, facilitating their use in real time control applications. Desirable
Petri net qualities, such as automatic handling of concurrent events, are maintained with unified

plant/controller PN models. Though the decision power of a Petri net supervisor is not unlimited,
a good variety of DES control problems can be effectively and efficiently solved through their use.

Recognizing the controller as a Petri net facilitates understanding of what can and can not be done
with the supervisor. This will become evident in the material below.

For an invariant based Petri net supervisor to be realizable on a plant with uncontrollable and
unobservable transitions, the constraint it is enforcing must be admissible. Proposition 5 provides

necessary and sufficient conditions for any behavioral constraint to be admissible. Definitions 3
and 4 are written specifically for linear state-based constraints, however, they can be thought of in

terms of general behavioral constraints. That is, Definition 3 requires that a particular marking and
all behaviors achieved through the firing of uncontrollable transitions from that marking conform

to the constraint. Definition 4 requires that the initial condition of a plant satisfy the constraint,
and that all markings visited through any behavior that conforms to the constraint are admissible

markings.

The behavior of a maximally permissive supervisor is analyzed in Proposition 5. Here the

term maximally permissive is used in the sense of section 3, where all transitions are assumed to
be controllable. In this case, a maximally permissive controller only prevents firings that lead to
states that directly violate the given constraint.

Proposition 5. General constraint admissibility. A constraint on the marking and/or firing
behavior of a Petri net is admissible iff

1. The initial conditions of the plant satisfy the constraint, and

2. There exists a maximally permissive controller (constructed under the assumption that all

transitions are controllable) that enforces the constraint and does not inhibit any uncontrol-
lable transitions that would otherwise be enabled.

11

Proof. Clearly, if the initial conditions of a plant violate a constraint, then that constraint can

not be enforced and is inadmissible according to condition 1 of Definition 4. Furthermore, if the
constraint is admissible, then a maximally permissive controller would have no need to attempt to

disable otherwise enabled uncontrollable transitions, as per Definition 4.

A maximally permissive controller will only allow reachable states or behaviors that do not

violate the constraint. Thus, if a maximally permissive controller never attempts to inhibit an oth-
erwise enabled uncontrollable transition, then the constraint it is enforcing is admissible according

to Definition 4.

Corollary 6. Place-constraint admissibility. The single vector constraint lTµp ≤ b is ad-
missible iff the controller with incidence matrixDc = −lTDp and initial marking µc0 = b−lTµp0 ≥ 0
will never attempt to disable an uncontrollable transition that would otherwise be enabled.

Proof. If µc0 6≥ 0, then the initial conditions of the plant violate the constraint, and that con-
straint can not be enforced and is inadmissible according to condition 1 of Definition 4. Invariant
based controllers are maximally permissive according to Proposition 2; if the constraint is admissi-

ble, then this maximally permissive controller would have no need to attempt to disable otherwise
enabled uncontrollable transitions, as per Definition 4.

Invariant based controllers only allow reachable states that do not violate the constraint by
inhibiting the firing of any transition that would directly lead to a marking that violates the

constraint. Thus, if it never attempts to inhibit an otherwise enabled uncontrollable transition,
then the constraint it is enforcing is admissible according to Definition 4.

Remark. Corollary 6 deals with individual inequality constraints rather than the vector inequal-

ity Lµp ≤ b because each of the inequalities in Lµp ≤ b can be handled independently. Certain
constraints in Lµp ≤ b may be admissible, while others may not.

Equations (9) and (10) from Theorem 1 show that it is possible to construct the incidence
matrix Dc of a maximally permissive Petri net controller as a linear combination of the rows of

the incidence matrix of the plant. Negative elements in Dc correspond to arcs from controller
places to plant transitions. These arcs act to inhibit plant transitions when the corresponding

controller places are empty, and thus they can only be applied to plant transitions that permit such
external control. If we group all of the columns of Dp that correspond to transitions that can not

be controlled into the matrix Duc, we obtain the following corollary.

Corollary 7. lTDuc ≤ 0 implies admissibility. Given a plant with uncontrollable transitions
described by the incidence matrix Duc and a constraint l

Tµp ≤ b, if

lTDuc ≤ 0 (17)

then the constraint is admissible for the given plant.

12

Proof. The proof follows from Corollary 6 and the construction of the Petri net controller

whose incidence matrix is Dc = −lTDp as described in section 4.1. Inequality (17) insures that the
controller draws no arcs to uncontrollable transitions.

Example. Corollary 7 can be used to verify the results from the example in section 4.2. Since

transitions t2 and t3 are uncontrollable in the Petri net of Figure 2, Duc is composed of the second
and third columns of the plant incidence matrix.

Dp =



−1
1

0

0 0
1 −1
−1 1︸ ︷︷ ︸

Duc

1
0

−1




Constraint (14) fails to meet condition (17) of the corollary.[
0 0 1

]
Duc =

[
−1 1

]
Constraints (15) and (16) both meet condition (17) and are both admissible.[

1 0 0
]
Duc =

[
0 0

]
[
0 1 1

]
Duc =

[
0 0

]

Remark. Corollary 7 provides only a sufficient condition for constraint admissibility. There

exist situations for which lTDuc 6≤ 0, but lTµp ≤ b is still an admissible constraint (see [15, 16]).
However, for most practical examples, constraints that fail condition (17) are inadmissible and will

need to be transformed if they are to be enforced.

As discussed in section 4.1, it is illegal for the controller to change its state based on the firing
of an unobservable transition, because there is no direct way for the controller to be told that such

a transition has fired. Both input and output arcs from the controller places are used to change the
controller state based on the firings of plant transitions. Let the matrixDuo represent the incidence

matrix of the unobservable portion of the Petri net. This matrix is composed of the columns of Dp

that correspond to unobservable transitions, just as Duc is composed of the uncontrollable columns
of Dp.

Corollary 8. lTDuo = 0 implies admissibility. Given a plant with unobservable transitions
described by the incidence matrix Duo and a constraint l

Tµp ≤ b, if
lTDuo = 0 (18)

then the constraint is admissible.

13

Proof. As with Corollary 7, the proof follows from Corollary 6 and the construction of the Petri

net controller whose incidence matrix is Dc = −lTDp as described in section 4.1. Equation (18)
insures that the controller draws no arcs to or from unobservable transitions.

Remark. Corollaries 7 and 8 indicate that it is possible to observe a transition that we can not
inhibit, but it is illegal to directly inhibit a transition that we can not observe.

Suppose, given a set of constraints Lµp ≤ b, we construct the matrices LDuc and LDuo and

observe that there are violations to conditions (17) and/or (18). What other constraints, of the
form L′µp ≤ b′, will also maintain the original constraint Lµp ≤ b?

Lemma 9. Constraint transformation structure.

Let R1 ∈ ZZnc×n satisfy R1µp ≥ 0 ∀ µp. (19)

Let R2 ∈ ZZnc×nc positive definite diagonal matrix (20)

If L′µp ≤ b′ where
L′ = R1 +R2L (21)

b′ = R2(b+ 1)− 1 (22)

and 1 is an nc dimensional vector of 1’s, then Lµp ≤ b.

Proof. The transformed constraint is (R1+R2L)µp ≤ R2(b+1)−1. Because all of the elements
are integers, the inequality can be transformed into a strict inequality:

(R1 +R2L)µp < R2(b+ 1)

Because R2 is diagonal and positive definite,

R−12 R1µp + Lµp < b+ 1

Assumptions (19) and (20) imply that all elements of the vector R−12 R1µp ≥ 0, therefore Lµp ≤ b.

Lemma 9 shows a class of constraints, L′µp ≤ b′, which, if enforced, will imply that Lµp ≤ b is
also enforced. The following lemma is used to show the conditions under which a particular set of

constraints can be enforced on a particular Petri net.

Lemma 10. Initial condition check for transformed constraints. The constraint L′µp ≤
b′, where L′ 6= 0 and b′ are defined by (21) and (22), can be enforced on a Petri net with initial
marking µp0 iff

0 ≤ R1µp0 ≤ R2(b+ 1− Lµp0)− 1 (23)

14

Proof. Substituting L′ and b′ into (23) gives 0 ≤ b′−L′µp0 , which is equivalent to the condition
L′µp0 ≤ b′ that states that the initial conditions of the plant must fall within the acceptable region
of the constraints. Clearly, if a controller does exist, then the initial conditions of the plant must

not violate the constraints. Furthermore, as shown in section 3, if the initial conditions lie within
the acceptable region of the plant (inequality (8)), a controller to enforce the conditions can be

computed with incidence matrix Dc = −L′Dp and initial marking µc0 = b
′ − L′µp0.

Theorem 11 combines Corollaries 7 and 8 with the conditions for creating a valid set of trans-

formed constraints in lemmas 9 and 10 to show how to construct a Petri net controller.

Theorem 11. Constraint transformation and supervisor synthesis. Let a plant Petri

net with incidence matrix Dp be given with a set of uncontrollable transitions described by Duc
and a set of unobservable transitions described by Duo. A set of linear constraints on the net

marking, Lµp ≤ b, are to be imposed. Assume R1 and R2 meet (19) and (20) with R1 + R2L 6= 0
and let [

R1 R2
] [Duc Duo −Duo µp0

LDuc LDuo −LDuo Lµp0 − b− 1
]
≤
[
0 0 0 −1

]
(24)

Then the controller
Dc = −(R1 +R2L)Dp = −L′Dp (25)

µc0 = R2(b+ 1)− 1− (R1 +R2L)µp0 = b′ − L′µp0 (26)

exists and causes all subsequent markings of the closed loop system (7) to satisfy the constraint

Lµp ≤ b without attempting to inhibit uncontrollable transitions and without detecting unobserv-
able transitions.

Proof. According to (9) and (10), equations (25) and (26) define a controller that enforces the
constraint L′µp ≤ b′. Lemma 9 shows that if assumptions (19) and (20) are met then a controller
that enforces a particular constraint L′µp ≤ b′ will also enforce the constraint Lµp ≤ b. The fourth
column of inequality (24) indicates that the condition in lemma 10 is satisfied, thus the controller

exists and the control law can be enforced. The first column of (24) indicates that L′Duc ≤ 0, thus
condition (17) is satisfied and no controller arcs are drawn to the uncontrollable transitions. The

second and third columns of (24) indicate that L′Duo = 0, thus condition (18) is satisfied and no
arcs are drawn between the controller places and the unobservable plant transitions.

Remark.
[
R1 R2

]
, which is used to describe the constraint transformation, is a left multiplier

in (24), thus this matrix represents the use of rows from Duc to eliminate positive elements from

LDuc, and the use of rows from Duo to zero the elements of LDuo.

The usefulness of Theorem 11 for specifying controllers to handle plants with uncontrollable

and unobservable transitions lies in the ease in which the matrices R1 and R2 can be generated.
Two computational techniques for computing these matrices can be found in the appendix. The

first technique is an integer program that searches through feasible solutions satisfying (17) and

15

(18) along directions dictated by (23). The second technique finds appropriate transformations

through the use of constrained integer row operations. Full details of each algorithm are included
in the appendix.

4.4 Example – Uncontrollable and Unobservable Transitions in the Assembly Cell

Uncontrollable and unobservable transitions are introduced into the robotic assembly cell ex-

ample from section 3.2. The operation of the M-1 robots is now considered to be governed by a
separate, independent controller. Transitions t6, t7, and t8 can neither be observed nor inhibited

by the resource supervisor of section 3.2.

The uncontrollable and unobservable portion of the plant is described by the matrix Duo, which

is composed of the sixth through eighth columns of Dp. Of the three constraints, (11), (12), and
(13), only (13) fails the test of Corollary 8, since[

0 0 0 0 1 1 0 0
]
Duo =

[
0 −1 0

]
(27)

If the plant transitions were merely uncontrollable and not unobservable as well, then the constraint
would be admissible according to Corollary 7, but Corollary 8 indicates that lTDuo = 0 is the
sufficient condition for admissibility with unobservable transitions.

The right hand side of (27) can be zeroed by adding to it the seventh and eighth rows of Duc.
In terms of Theorem 11, this corresponds to a constraint transformation using

R1 =
[
0 0 0 0 0 0 1 1

]
R2 = 1

The transformed constraint,

µ5 + µ6 + µ7 + µ8 ≤ 2 (28)

is admissible and represents the maximally permissive admissible control law for enforcing (12).

The new configuration for c3 is shown in Figure 3. Note that places c2 and c3 now have the exact
same connections to the plant. It would be possible to eliminate c2, since its action is now implied
by c3, but instead, both places will be maintained in order to account for dynamic changes in the

number of available resources or sensors (see [16, 17]).

p1

t4p2 p3 p4

p5

p6

p7

t2

t3 t9

t5

t6

t7 t8

t1

p8

c1 c2

c3

Figure 3: The modified assembly cell and supervisor after the introductions of uncontrollable and

unobservable transitions.

16

5 Structure of Admissible Constraints and Controls

Given a plant with uncontrollable/unobservable transitions, it is useful to seek methods for
transforming inadmissible constraints into admissible ones, but it is also logical to ask, in general,

what are the admissible constraints for this plant? Is there a way to characterize all or most of these
constraints? Section 5.1 provides a method for just such a characterization. Section 5.2 shows how

this characterization may be used to synthesize controllers for plants with unobservable transitions,
and section 5.3 covers the synthesis problem for plants with uncontrollable transitions.

5.1 Characterization of Admissible Constraints

As in the previous sections, let the matrixDuo represent the incidence matrix of the unobservable

portion of the Petri net. It is illegal for the controller Dc = −LDp to contain any arcs in the
unobservable portion of the net, thus an admissible set of constraints will satisfy

LDuo = 0 (29)

as indicated in Corollary 8.

Any L that satisfies (29) will lie within the kernel of Duo. Let X satisfy

XDuo = 0 (30)

where X ∈ ZZ(n−rank Duo)×n. The rows of X form a linearly independent basis for the kernel of Duo
(X is full rank). The process of finding X is equivalent to finding the place invariants (an algorithm

appears in [14]) of the unobservable portion of the plant Petri net. All realizable constraints must
lie within the basis described by the rows of X , and thus can be formed as linear combinations

of these rows. Every admissible constraint can be described by kTX where k ∈ ZZ(n−rank Duo). In
general, the coefficient matrix of any set of admissible constraints L′ ∈ ZZnc×n can be written

L′ = KX (31)

where K ∈ ZZnc×(n−rank Duo).
A characterization of all admissible constraints is not quite as transparent for the case of un-

controllable transitions as it is for unobservable ones. For unobservable transitions we have an

equality, LDuo = 0, which must be satisfied, but for uncontrollable transitions it is an inequality,
LDuc ≤ 0, so we can not simply find the kernel of Duc. In this case, the following equality can be
formed

LDuc +∆ = 0

where ∆ is a matrix of nonnegative slack variables. The previous equation is rewritten

[
L ∆

] [Duc
I

]
= 0

A kernel X , solving

X

[
Duc
I

]
= 0

17

can then be used to construct a basis for all admissible linear constraints that may be placed

on the plant. X must be computed so as to insure that the elements that correspond to ∆ are
nonnegative. Each element of the kernel will have n + nuc scalar components, where nuc is the

number of uncontrollable transitions. The final nuc elements of each kernel vector correspond to
the slack variables in ∆. Additional row operations may need to be performed on X to insure that

the final nuc elements in each vector are nonnegative. After insuring that none of the slack variables
are negative, all admissible constraint matrices L can be found in the the linear combinations of
X that leave nonnegative values in the final nuc slack columns. The first n components of a given

kernel vector represent an admissible value for a row of L, as long as the final nuc components of
the kernel vector are nonnegative.

5.2 Constraint Transformations for Unobservability

Suppose we have a set of constraints Lµ ≤ b such that LDuo 6= 0. It is necessary to create new
constraint matrices (L′, b′) with two properties.

1. L′Duo = 0

2. ∀µp, L′µp ≤ b′ → Lµp ≤ b

Property 1 is necessary to insure that the new controller will not utilize the unobservable transitions,
while property 2 indicates that the new constraints must be at least as restrictive as the original

ones. Lemma 9 from section 4.3 is used to deal with this condition.

To perform the transformation, it is necessary to determine values for the matrices R1 and R2
defined in lemma 9 that meet assumptions (19) and (20). It is possible for a designer to determine
the values of R1 and R2 by using the kernel of Duo. Combining equations (21) and (31) we see that

L′ = KX = R1 + R2L

The designer should premultiply each constraint in L by some positive integer (which will determine

the diagonal elements in R2) and add new positive coefficients (which will determine R1) such that
the new constraint is a linear combination of the rows of X . This process will yield the L′ matrix,
and b′ can be calculated using R2 and equation (22).

When multiple distinct transformations exist, the technique of section 6 can be used to enforce

the disjunction of all these inequalities.

5.3 Constraint Transformations for Uncontrollability

The invariant based control method yields maximally permissive supervisors for enforcing linear
constraints of the form Lµp ≤ b. When these constraints are transformed, because of the uncon-

trollability and unobservability of certain transitions, into L′µp ≤ b′, the invariant based control
method will still yield a maximally permissive realization of the transformed constraint. Unfor-

tunately, the new constraint itself may not represent the most permissive admissible control law

18

corresponding to the original constraint. The maximally permissive admissible constraint associ-

ated with a linear predicate on the plant’s marking may be a nonlinear predicate that can not be
optimally controlled by a standard invariant based controller.

At this time, a complete description of the conditions under which an optimal transformation
of linear constraints is another set of linear constraints is unknown. Li and Wonham [13] have

shown that when the uncontrollable portion of the plant has a “type 1 tree structure,” the optimal
transformation will be a disjunction of linear predicates1, while a “type 2” structure will yield a

linear transformation. However these conditions are only sufficient, not necessary.

Given an inadmissible constraint lTµp ≤ b, a permissive control law for the enforcement of this
constraint can be synthesized using the following steps.

1. Find all inequalities l′Tµp ≤ b′ that are
(a) Valid transformations of lTµ ≤ b according to Lemma 9 and
(b) Admissible constraints according to the theory developed in section 5.1.

There may be an infinite number of inequalities that meet these two requirements, but they
may be expressed with a finite number of inequalities since linearly dependent constraints
do not represent different restrictions on the behavior of the plant. Detailed instructions for

carrying out this step can be found in [16].

2. Construct the controller incidence matrices associated with these constraints using Dc =
−l′TDp.

3. Enforce the union of the individual control laws by following the procedure of section 6.

The procedure above is similar to the idea of the supremal controllable sublanguage [22, 28]

from the supervisory control literature. In both cases, all of the valid behaviors of the plant
are characterized based on the plant’s structure and the desired constrained behavior, and the

supervisor is then used to insure that the behavior of the plant is limited to this set of admissible
behaviors.

To say that the procedure above will always result in a maximally permissive control law, the
following two points would have to be proved.

1. The maximally permissive control law associated with a plant and constraint lTµp ≤ b can
always be expressed as the disjunction of other linear state inequalities.

2. The transformation procedure in Lemma 9 covers all valid constraint transformations, i.e., if
for all µp ≥ 0 such that l′Tµp ≤ b′, lµp ≤ b is also true, then (l′, b′) can be expressed as a
linear function of (l, b) according to the rules and assumptions of Lemma 9.

Li and Wonham [13] have shown that condition 1 is true when the uncontrollable portions of a

plant have a certain “tree structure” (see [13]). But for the general case, the answer is not known.

1A Procedure for enforcing these with a modified PN controller is presented in section 6.

19

6 Enforcing Disjunctions of Linear Constraints

6.1 Description of Method

The inequality

Lµp ≤ b (32)

represents the logical intersection, or conjunction, of nc separate linear inequalities. That is, if li is
the ith row of L and bi is the i

th element of b, then (32) is equivalent to

nc∧
i=1

lTi µp ≤ bi

The feasible solutions to the inequalities form a convex region [6], and the behavior of a Petri net

can be restricted to this region by adding further PN structures to the net as was shown in section
3. A logical union, or disjunction, of linear constraints is, in general, nonconvex and can not be

enforced with maximal permissivity on a Petri net through the use of other Petri net structures
due to the linear nature of reachable PN state spaces. A proof of this claim appears in [15].

This section will show how a slight modification to the evolution rules of the controller net
can be made such that it will act as a maximally permissive supervisor for a class of nonconvex

constraints.

The following disjunction of linear inequalities is to be enforced on the marking of a plant with

initial marking µp0 ∈ ZZn (all elements nonnegative) and incidence matrix Dp ∈ ZZn×m.
nc∨
i=1

lTi µp ≤ bi (33)

where li ∈ ZZn and bi ∈ ZZ. Let
Dci = −lTi Dp (34)

and
µci0 = bi − lTi µp0 (35)

for 1 ≤ i ≤ nc. This procedure is the same as detailed in section 3, thus each pair (Dci , µci) is a

maximally permissive PN supervisor for enforcing the constraint lTi µp ≤ bi. However if all of these
supervisor elements were to be simultaneously enforced on the plant, then the result would be the
logical intersection of the constraints rather than their union.

In order for the controller to enforce a disjunction of inequalities, at least one of the inequalities

lTi µp ≤ bi must be true at every transition firing iteration of the net’s evolution. Let

L =
[
l1 l2 · · · lnc

]T
so that

Dc = −LDp (36)

and

µc0 = b− Lµp0 (37)

20

which is identical to the controller construction from section 3. However, the enabling rule for the

controller portion of the net must be changed such that it insures that at least one of the inequalities
is being obeyed at all times rather than all of them at all times.

A firing vector q is valid (indicates the firing of an enabled transition) iff

D−p q ≤ µp (38)

and
µci +Dciq ≥ 0 for some i ∈ 1 . . .nc (39)

Inequality (38) is the standard PN enabling condition for a plant that may include transitions with
self loops. The enabling condition for the controller (39) does not include any D−ci terms because
controllers constructed according to the rules in section 3 do not contain self loops. Condition (39)
may also be written

nc
max
i=1
(µci +Dciq) ≥ 0 (40)

Note that it is still true that

Lµp + µc = b (41)

however, unlike the standard nonnegative slack variables from before, many of the elements of
this µc may be negative. The restriction placed by condition (40) insures that at least one of the

elements is nonnegative, and thus at any time, at least one of the inequalities in (33) is being
satisfied.

Proposition 12. Maximal permissivity of disjunction-enforcing controllers. A con-
troller constructed according to (36) and (37) using enabling rule (40) is a maximally permissive

supervisor for the enforcement of constraint (33) on the plant (Dp, µc0) iff

µci0 ≥ 0 for some i ∈ 1 . . .nc. (42)

Proof. If condition (42) is not met, then the initial conditions of the plant violate the constraint
(33) according to equation (37), and the constraint can not be enforced.

Equation (41) shows that the state space of the closed loop system being outside the bounds
of constraint (33) is equivalent to the situation when all the elements of µc are negative. However

this is the only condition that is prevented by enabling rule (40). The only time the controller will
intervene to disable a transition is when the firing of that transition would cause a direct violation

of constraint (33), and thus the supervisor is maximally permissive.

Remark. The simple rules that govern ordinary Petri net behavior are what help to make the

PN model so attractive both for analysis and implementation. The reluctance to modify this model
for the enforcement of nonconvex constraints on PN plants is overcome for the following reasons.

1. The ability to handle the disjunction of linear constraints as well as their conjunction is a
powerful advancement in the utility of the method and is necessary for the proper solution of

problems in many applications.

21

2. Disjunctions of linear constraints are important for the permissive enforcement of linear con-

straints under conditions in which transitions may be uncontrollable or unobservable.

3. The modified rules for controller state evolution involve only a slight modification of the
ordinary transition enabling rule. Analysis and implementation are very similar to that of
ordinary Petri nets.

p1

t4

p2

p3 p4

p5

p6

p7

t2

t3

t9

t5

t6

t7 t8

t1

p8

p9p10

t10

t11

t12

c1a

c1b
c2

c3

Figure 4: The final structure of the assembly cell and supervisor. Places c1a and c1b obey the
modified PN enabling rule (40) in order to enforce the nonconvex constraint (45).

6.2 Example – An Uncontrollable Loop is Added to the Assembly Cell

The robots of the piston rod robotic assembly cell are not 100% reliable. It is possible that the
M-1 robot will fail to properly secure a piston cap to its rod. The plant is now augmented with an

error recovery loop that is considered to be under the supervision of an auxiliary controller. The
modified structure is shown in Figure 4. The uncontrollable firing of transition t10 indicates that a

fault has occurred. Place p9 is then marked with the number of M-1 robots that have experienced
faults and have entered the recovery loop. Tokens in p10 represent the combined actions of M-1 and
S-380 robots to replace and realign the appropriate parts so that the procedure can begin again at

p6. The new transitions, t10, t11, and t12 are all considered uncontrollable and unobservable to the
resource managing supervisor.

Constraints (11) and (12) need to be rewritten to account for the use of the two robots in the
recovery loop. An S-380 robot is used in p10, and the M-1 robot is required in both p9 and p10.

The new constraints are then

µ2 + µ3 + µ10 ≤ 3 (three S-380 robots) (43)

µ5 + µ6 + µ7 + µ8 + µ9 + µ10 ≤ 3 (three M-1 robots) (44)

Following the procedure of section 5.2, the kernel, X , of the unobservable incidence matrix,

22

Duo, is computed: 

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1




︸ ︷︷ ︸
X

Duo = 0

Admissible constraints will be linearly dependent with the rows of X . The left hand side of (44) is

equal to row five of X , thus the constraint is admissible and requires no transformation. In order
to make the left hand side of (43) an element of the kernel of Duo, we can either add the missing

elements from row four or row five of X . Because there is a choice, the transformed constraint will
be written as a disjunction of the two candidate inequalities.

(µ2 + µ3 + µ4 + µ6 + µ7 + µ8 + µ9 + µ10 ≤ 3)∨ (µ2 + µ3 + µ5 + µ6 + µ7 + µ8 + µ9 + µ10 ≤ 3) (45)

A controller is calculated to enforce (45) using the procedure described in section 6.1. The
supervisor, shown with its connections to the plant in Figure 4, is maximally permissive.

7 Control Specifications

Constraints of the form Lµp ≤ b (inequality (5)) are useful for representing a large variety of
forbidden state problems. This section will show how several common varieties of system constraints

can be written in the form of (5), enabling the use of invariant based control.

Section 7.1 shows how the management of finite resources can be handled using invariant based

control. Section 7.2 discusses equality constraints and demonstrates how attempts to enforce them
with invariant based controllers can lead to deadlock. Section 7.3 explains how both direct and

indirect enforcement of constraints on events, i.e., linear inequalities involving the firing vector, can
be handled using the invariant based control method. In section 7.4, a class of logical predicates on

plant behavior are transformed into systems of linear inequalities to be enforced by a supervisor.
Section 7.5 explains how the techniques for supervision of ordinary Petri nets can be expanded to

timed Petri nets and real-time constraints.

7.1 Modeling of Finite Resources

A finite resource is a tool or material with limited supply that is required by one or more agents
for the completion of a job or to carry out some action. The availability of finite resources places

implicit constraints on feasible actions within a system. These constraints can be written as linear
inequalities on the state. Let bi be the total number of available units for resource i. Let Ri be

a set of places associated with finite resource i. Every token in the places making up the set Ri
represents the use of one of the resources. A linear constraint on the marking can then be written∑

µj∈Ri
µj ≤ bi (46)

23

Suppose that a resource suddenly becomes available or the number of available resources changes

in some other way during the operation of the plant. This situation could be handled by modifying
the token count in the appropriate controller slack place, i.e., the number bi on the right hand side

of (46) could be modified dynamically. According to Theorem 1, dynamic modifications to b in a
constraint inequality will not change the structure of the controller. The arcs and their associated

weights will remain the same. The only change would be in the marking of a controller place to
correspond to the new slack value. Though this scheme would work, it is not very elegant from the
point of view of Petri nets, i.e., tokens should not appear and disappear from a net without the

corresponding firing of transitions.

Figure 5 shows how the resource controller places can be augmented with two uncontrollable

transitions and a place in order to model the loss of finite resources while maintaining the standard
Petri net framework of the model. Under normal operation, the token in the resource place is used

to permit the firing of the plant transition. However the loss of the finite resource now corresponds
to the firing of an uncontrollable transition which robs the “resource is available” place of its token

and stalls the operation of the plant. Another uncontrollable transition is then used to replace the
missing token when the resource once again becomes available.

Plant
place

Resource
is available

Uncontrollable
Transition

Resource is
unavailable

Uncontrollable
Transition

Figure 5: Modeling the loss of a finite resource using uncontrollable transitions.

Remark. It may seem odd that the structure shown in Figure 5 contains uncontrollable transi-

tions connected directly to the PN controller places. The reason these transitions have been marked
uncontrollable is because it may not be possible to know when they will fire, and it does not matter

to the controller. The “Resource is available” place in the controller represents the standard invari-
ant based controller place that keeps track of the slack associated with its given constraint. The

“Resource is unavailable” place can “steal” tokens from the primary place, thus reducing the slack
and reducing the number of resources that can be allocated to the plant. The associated transitions

here may be considered uncontrollable, but they still must obey standard PN rules, thus a resource
will not suddenly become unavailable if it is currently in use in the plant. If resources that are

currently in use may become unavailable at any time, the modeling and management of them must
be handled differently by incorporating this behavior in the plant model itself.

24

7.2 Equality Constraints

Though rare, in some circumstances the control designer may wish to insure that the token
count in a set of places remains constant. For example, suppose we have a Petri net describing
the task distribution in a multiprocessor computer, and the designer wants to insure that there are

always two processors (no more and no less) available to handle I/O. Consider a chemical processing
plant where tokens representing reactants in a set of places must be kept constant to maintain a

desired chemical equilibrium. Constraints like these may take the form of an equalities, rather than
inequalities.

Equality constraints have the form
Lµp = b (47)

Equation (47) defines place invariants on the original process net. This is really a specification for
the system and should have been incorporated into the Petri net model before attempting to use

supervisory control. If this invariant is not already part of the Petri net model, it should become
one by modifying the incidence matrix Dp of the plant. The new elements of Dp represent the arcs

that should be added to the Petri net so that the place invariants are enforced.

It may seem feasible to use the place invariant control method to force Lµp ≤ b and Lµp ≥ b

to achieve the constraint of equation (47). Unfortunately this approach will produce undesirable
results as described by the following proposition.

Proposition 13. Enforcement of equality constraints leads to deadlock. Enforcing con-

straint (47) by creating invariant based controllers for the constraints

Lµp ≤ b, and (48)

−Lµp ≤ −b (49)

will

1. have no effect on the plant’s behavior, or

2. create a local deadlock in the plant (the system will not be live).

Proof. Suppose that the natural behavior of the plant already meets the desired constraint. In

this case, L describes a set of place invariants in the plant and LDp = 0. Equation (9) shows that
the controller for constraint (48) or (49) is given by Dc = ±LDp = 0. Thus the controller will have

no arcs to the plant transitions, and it will have no effect on the plant’s behavior.

Now suppose that L does not include natural invariants of the plant. In this case, the controller

incidence matrices for (47) and (48) are given by

Dc1 = −LDp 6= 0
Dc2 = LDp = −Dc1

25

Since Dc1 = −Dc2, all output arcs of the places in Dc1 are input arcs of the places in Dc2 and vice

versa. Thus the set of control places forms a siphon.

The initial marking, µp0, of the plant must satisfy Lµp0 = b or it would not have been feasible

to attempt to enforce (47). Equation (10) gives the initial markings of the control places:

µc10 = b− Lµp0 = 0
µc20 = −b+ Lµp0 = 0

Thus the set of control places forms an unmarked siphon and all of the transitions to which

these places are connected will be dead.

7.3 Constraints involving the Firing Vector

Certain control goals may involve the firing vector of the Petri net as well as or opposed to the

places. For example one might need to insure that two transitions do not fire simultaneously or
that a certain transition is never allowed to fire when a certain place holds a token. There are two

ways that constraints like these may be viewed. For the constraint

µi + qj ≤ 1 (50)

do we mean that transition j should be disabled whenever place i contains a token, or do we mean

that all plant states that would allow transition j to be enabled are forbidden whenever place
i contains a token? The answer to this question lies in the particulars of a given plant and its

operation. Both means of enforcing the constraint can be useful for different problems.

Section 7.3.1 describes rules for enforcing firing vector constraints using the “direct” interpre-

tation, i.e., transitions are explicitly disabled in order to satisfy the inequality. Algebraic schemes
for handling the “indirect” interpretation of firing vector constraints were proposed in [32]. A new
approach is presented in section 7.3.2 that uses the concept of uncontrollable transitions to force

a correct interpretation of each constraint, thus avoiding the enumeration of separate cases that
appeared in [32].

7.3.1 Direct Realization

Assume that the plant must satisfy constraint (50). The direct interpretation of this constraint
implies that transition tj cannot fire if place pi is marked, and, of course, place i can never contain

more than one token. To bring this constraint to a form that contains elements of the marking
vector only, the plant is transformed as follows. Transition j is replaced by two transitions and a

place between them, as shown in Figure 6. This transformation is artificial and will not affect the
Petri net model of the process. Its sole purpose is to introduce the place pj

′, which records the firing
of the transition tj. After the controller has been computed the plant will be transformed back to
its original form.

The marking µj
′ of pj ′ replaces qj in constraint (50), which becomes

µi + µj
′ ≤ 1 (51)

26

tj tj pj tj’’

Figure 6: Transformation of a Transition.

The constraint now contains only µ’s and a controller can now be computed. After the controller

structure is computed, the two transitions and the place of the transformation collapse to the
original transition thus restoring the original form of the plant while maintaining the enforcement

of the new constraint. The same transformation is done to all the transitions that appear in the
constraints. Constraints that contain only q’s, i.e., constraints on allowable firing vectors with no

concern for specific markings, are treated in the same way.

In terms of Figure 6, output arcs from the controller would normally be connected to transition

tj , and input arcs to the controller would be connected to t
′
j. The act of collapsing the transformed

structure back to its original form will cause both the input and output arcs to be connected to the

original transition tj . Unlike standard invariant based controllers, this means that the controller
may contain self loops to the transitions indicated in the constraints. Separate D+c and D

−
c matrices

must be maintained for the controller and used when determining enabled and disabled transitions.

In summary, given a plant (Dp, µp0) and constraint

lTµp + f
T q ≤ b, f ≥ 0 (52)

the invariant based controller (Dc = D
+
c −D−c , µc0) is given by

D+c = max(0, D+lc −D−fc) +max(0, D+fc−D−lc) (53)

D−c = max(0, D−lc −D+fc) +max(0, D−fc−D+lc) (54)

µc0 = b− lTµp0 (55)

where
D+fc = D

−
fc = f

T (56)

and

D+lc = max(0, Dlc) (57)

D−lc(j) = max(0,−Dlc) (58)

where

Dlc = −lTDp (59)

and the notation max(0, a) refers to a vector equal to a but with all negative elements replaced with

zeros. The equations above account for both the transformation of transitions and the collapse of
the transitions back to the original form of the net. Equations (53) and (54) allow arcs from the

Dlc and Dfc portions of the control to cancel each other, but do not allow the self loops in D
+
fc and

D−fc to cancel each other.

27

The remainder of this subsection provides an analysis of the admissibility of firing vector con-

straints using the direct interpretation. Similar to Corollary 6, the following corollary defines when
a constraint on the firing vector of a Petri net is admissible.

Corollary 14. Transition-constraint admissibility. The single vector constraint fT q ≤ b,
where f, b ≥ 0, is admissible under direct transition-constraint implementation on a plant with
controllable transitions Tc, if ∀j s.t. fj 6= 0, tj ∈ Tc.

Proof. The proof is by Proposition 5 on general constraint controllability. The direct transition-
constraint enforcement method for the constraint fT q ≤ b is maximally permissive since it is

constructed as an invariant based controller. The initial marking of the controller µc0 = b is valid if
b ≥ 0. The incidence matrix of the controller D+c = D−c = fT contains input arcs to all transitions
j such that fj 6= 0. If all of these transitions are controllable, then the controller draws no arcs to
uncontrollable transitions and the constraint is admissible.

The admissibility of combined marking/firing constraints, lTµp + f
T q ≤ b, will be discussed for

the situation in which the constraints are uncoupled.

Definition 15. A constraint of the form (52), where f ≥ 0, is called uncoupled if

Tl ∩ Tf = ∅

where Tl is the set of transitions that are connected to the controller induced by the l
Tµp portion of

the constraint (transitions tj such that Dlc(j) 6= 0 in equation (59)), and Tf is the set of transitions
connected to the controller induced by the fT q portion of the constraint (transitions tj such that
fj 6= 0).

Constraint (52) is uncoupled if the transitions involved in the lTµp and f
T q portions of the

constraint are mutually exclusive.

Remark. When constraints are uncoupled, equations (53) and (54) reduce to

D+c = D+lc +D
+
fc

D−c = D−lc +D
−
fc

Proposition 16. Uncoupled place/transition constraints. A vector constraint of form (52)

is uncoupled iff
∀i s.t. fi 6= 0, lTDpei = 0 (60)

where ei is a zero-vector with a 1 in the i
th place.

28

Proof. The set of plant transitions that will contain arcs to or from the controller is determined

from the controller synthesis equations. This set is the union of the transitions connected by arcs
induced by the lTµp and f

T q portions of the constraint, i.e., Tf ∪ Tl. Equation (56) indicates that

Tf = {tj|fj 6= 0} (61)

and equations (57) and (58) show

Tl = {tj|lTDpej 6= 0} (62)

Combining these with condition (60) implies

Tl ∩ Tf = ∅ (63)

The sets of transitions used by the two portions of the controller are mutually exclusive and

the constraint is uncoupled according to definition 15.

It is easy to see that if the constraints are uncoupled, i.e. Tl ∩ Tf = ∅, then (60) must be true
by working backward through the development above. If (60) were not true, then there would exist
some ti ∈ Tf and ti ∈ Tl, which would imply through equations (61) and (62) that Tl ∩ Tf 6= ∅ and
the constraints were coupled.

Proposition 17. Place/transition constraint admissibility. An uncoupled vector con-

straint of form (52) is to be imposed on a plant (Dp, µp0) with uncontrollable transitions Tuc
and controllable transitions Tc, Tuc ∩ Tc = ∅.
if the constraints

lTµp ≤ b (64)

fT q ≤ |b| (65)

are both admissible then lTµp + f
T q ≤ b is admissible.

Proof. If the admissibility of constraints (64) and (65) imply that (52) is admissible, then the
inadmissibility of (52) will imply that either (64) or (65) is inadmissible or both. For lTµp+f

T q ≤ b
to be inadmissible, it must lie outside the range of the plant’s initial conditions, or a maximally
permissive controller that enforces the constraint would attempt to inhibit an otherwise enabled
transition in the set Tuc. Because (52) is uncoupled, the transitions that are connected to the

controller places, Tf and Tl, are mutually exclusive. This means that at least one of the following
three cases must be true for lTµp + f

T q ≤ b to be inadmissible.

1. The initial conditions of the plant violate the constraint.

2. The controller would attempt to inhibit a transition tj ∈ Tuc, where tj ∈ Tf .
3. Or the controller would attempt to inhibit an otherwise enabled transition tj ∈ Tuc, where
tj ∈ Tl.

29

Case 1: The initial state of the plant is µp0. The firings indicated by the vector q are determined

after the system commences its run, thus if the initial conditions of the plant violate constraint
(52), then

lTµp0 > b

This condition would also indicate that the constraint lTµp ≤ b is inadmissible according to Corol-
lary 6.

Case 2: According to the construction of the maximally permissive controller for direct transi-

tion constraints, the transitions in the set Tf are identical to the transitions that receive controller
arcs in the constraint fT q ≤ |b|. If the controller attempts to inhibit an uncontrollable transition
in this set, then the constraint fT q ≤ |b| is inadmissible according to Corollary 14.
Case 3: The construction of the maximally permissive controller for the constraint lTµp ≤ b

shows that the transitions that receive controller arcs for this constraint are identical to the set Tl.
If the controller for constraint (52) attempts to disable an otherwise enabled transition in the set
Tl, then the constraint l

Tµp ≤ b will be inadmissible according to Corollary 6.
Thus if both lTµp ≤ b and fT q ≤ |b| are admissible, then lTµp + fT q ≤ b is also admissible.

The use of the propositions and definitions above are illustrated using a process control example

in [16].

7.3.2 Indirect Realization

Firing vector constraints can be realized by preventing the states that would allow the unde-

sirable transition firing; this situation is analogous to the case when a transition is uncontrollable
but is involved with regular marking constraints. Illegal states are prevented in the presence of

uncontrollable transitions by preventing those states which could lead, through uncontrollable tran-
sitions, to the explicitly forbidden states. The results for uncontrollable transitions can be applied

to constraints involving the firing vector through utilization of the graph transformations discussed
in the previous section.

The procedure is illustrated in the example below.

Example. For the plant of Figure 7a, we wish to enforce the constraint

µ2 + q3 ≤ 1 (66)

Place p2 is never to have more than one token and transition t3 should never fire when this place is

occupied. This problem could be solved simply by applying the technique of the previous section,
but suppose instead of directly controlling the transition we want to prevent the states that could

lead to the constraint being violated. Because the Petri net is so simple, we can see by inspection
that the job can be done by enforcing the constraint µ2+µ3 ≤ 1. But how can this new constraint
be generated automatically based on (66)?

30

a)

p2 p3

p1

t2

t1 t3

b)

p2 p3

p1

t2

t1

t3

t3’

p3’

Figure 7: a) A simple net that will have a firing constraint enforced. b) The graph-transformed
net of the net in Figure 7a.

Suppose we perform the graph transformation on this net as shown in Figure 7b. The transfor-
mation changes (66) to

µ2 + µ
′
3 ≤ 1 (67)

If we continue to follow the procedure described in section 7.3.1, we would end up with a controller
that directly enables and disables transition t3. In order to prevent this from occurring, we will

label transition t3 as uncontrollable and then continue with the procedure.

Applying the method from section 4.3 to (67), we obtain the following transformed constraint:

µ2 + µ3 + µ
′
3 ≤ 1 (68)

The controller that enforces this constraint can be automatically generated using the place invariant
method and is shown in Figure 8a.

The final stage is then to collapse the controlled net back to the form it had before the graph
transformation was performed. The final controlled version of the net is shown in Figure 8b.

Transition t3 will not fire when place p2 contains a token because the controller only allows one
token at a time in places p2 and p3, which is the desired result.

The procedure used in the example is summarized below. Given a constraint

lTµp + f
T q ≤ b (69)

(where l may be zero, indicating a constraint on the firing vector alone,) first perform a transfor-
mation of the plant such that each transition specified by a nonzero entry in f includes a dummy

place to mark its firing as described in section 7.3.1. The marking vector µ′ is associated with the
dummy places and the constraint becomes

[
lT fT

] [µp
µ′

]
≤ b (70)

31

a)

p2 p3

p1

t2

t1

t3

t3’

p3’

b)

p2 p3

p1

t2

t1 t3

Figure 8: a) The net of Figure 7b with its Petri net controller. b) The untransformed net of Figure
7a with its Petri net controller.

Next mark all transitions specified by nonzero entries in f as uncontrollable. Use established
techniques for the handling of uncontrollable transitions to find an admissible constraint that en-

forces the inadmissible constraint (70) and construct a supervising controller for this constraint.
This will have the effect of preventing the states that could lead to (70) being violated. It will
prevent the transitions specified by f from being enabled such that constraint (69) could be vio-

lated. Finally, collapse the net back to its original form by removing the dummy places and extra
transitions as described in section 7.3.1.

7.4 Logical Constraints on System Behavior

The transformation of logic-based constraints on system behavior into systems of linear inequal-
ities has been studied by Yamalidou and Kantor [30,31]. These transformations apply to safe nets,

meaning that no place in the network can have more than one token at any time. In this case, all
places have two states: either they contain a token or they do not. Similarly all transitions can be

viewed as having two states: either they will fire in the current iteration of the system’s evolution
or they will not. This means that both places and transitions have binary valued states in a safe

net and they can be viewed as boolean variables.

Consider the simple network in Figure 9a. We wish to enforce the constraint

if µ1 6= 0, then q3 = 0 (71)

One method of doing this would be to introduce an inhibitor arc into the Petri net model as shown

in Figure 9b. The arc between p1 and t3 is terminated with a circle indicating that the arc will
inhibit the firing of transition 3 whenever place 1 contains any tokens. Unfortunately, with the

addition of an inhibitor arc, we are no longer dealing with an ordinary Petri net and have lost some
of the ability to analyze the net in a convenient manner due to the increased complexity of the

transition enabling rule.

32

a)

p2t1

p1 t3

p3t2

b)

p2t1

p1 t3

p3t2

c)

p2t1

p1 t3

p3t2

Figure 9: Two methods (b and c) of enforcing constraint (71) on the network in a.

If we assume that the net is safe, constraint (71) can be implemented by transforming it into a

linear inequality:
µ1 + q3 ≤ 1 (72)

The controller for enforcing this linear inequality is shown in Figure 9c. It was constructed using

the direct method for implementation of firing vector constraints (section 7.3.1).

If the network in Figure 9a were not safe, i.e., transition 1 could fire multiple times allowing
tokens to pile up in p1, then it is still true that the controller in Figure 9c would enforce constraint
(71). Unfortunately it also has the secondary effect of preventing p1 from ever containing more

than one token. This is due to the literal interpretation of inequality (72) and thus, if the net were
not safe, constraint (72) would be more restrictive than constraint (71) and the supervisor could

not be considered maximally permissive.

A formal procedure for translating logical implications into linear inequalities appropriate for

use as constraints on Petri net behavior appears in [30] (see also [9]). The general form for an
implication is

A→ Φ (73)

where A is an action (transition firing) or the result of an action (place marking). Φ is a “well

formed” boolean expression describing the state of the system. It contains boolean variables (place
markings) and any of the logical operators And, Or, Not, Implication, or Equivalence. Assuming

the net is safe, (73) may be transformed into a set of linear inequalities through the following
procedure.

First Φ must be written in conjunctive normal form (product-of-sums form). For example, the
boolean expression A + BC would be transformed to (A + B)(A + C). At this point, implication

(73) has become
A→ φ1φ2 · · ·φg (74)

33

where

φi = ψ1 + ψ2 + · · ·+ ψh (75)

Each variable ψ is boolean and is valued true or false according to the marking of a corresponding

Petri net place (which can only be 1 or 0 since the net is assumed to be safe).

The implication can now be broken down into a system of g simultaneous linear inequalities,

where g is the number of product terms in (74). Each inequality will have the form

(1− µψ1) + (1− µψ2) + · · ·+ (1− µψh) + A ≤ h (76)

where h is number of summed terms in the corresponding φ value and µψi is the marking of the
place associated with ψi.

Example. A system of inequalities will be derived to enforce the constraint

if transition 1 fires then places 1 and 2 must contain tokens

on a safe Petri net. The action, A, is the firing of transition 1, while Φ is the logical AND of the
truth of places 1 and 2 containing tokens. Though it is a slight notational abuse, for convenience

the implication is expressed as
q1 → µ1µ2

which is in conjunctive normal form. Following the procedure outlined above, the transformation

into a system of linear inequalities results in

1− µ1 + q1 ≤ 1

1− µ2 + q1 ≤ 1
⇒ q1 − µ1 ≤ 0

q1 − µ2 ≤ 0

which will insure that the original implication is true when the inequalities are enforced on the
system behavior using either direct or indirect methods from section 7.3.

7.5 Constraints Involving Time

Supervisory controllers are generally driven by sequences of events (firings of transitions) oc-

curring in the plant. Some transitions fire before others, some may fire simultaneously. The states
of the plant and controller evolve through time, but there is no direct representation of time. The

controller may respond to the firing of transition ti and then respond to the firing of transition tj,
but there is no indication of how much time has elapsed between the firings of these two transitions.

This section will be used to discuss the issues that arise when time is introduced into the control
framework.

The most common way of introducing time into a Petri net model of a system is through the
use of timed Petri nets [23, 25]. A timed net works like an ordinary Petri net but includes a new

function defined on either the transitions or the places of the net. The function indicates the

34

amount of time required for particular transitions to fire or the amount of time that must elapse

between the arrival of a token in a place and when it is allowed to take part in enabling and firing
another transition. In many cases the function is simply a constant vector that indicates the timing

requirements for each of the net’s transitions or places, but it may also be quite complicated with
the firing times relying on the state of the net, the current time, and other factors.

Timed nets are a useful extension of ordinary nets because they do not alter the basic behavior
of these nets, they simply provide more information about their evolution. This means that the

standard PN definitions, including structural invariants, still hold true. A controller that enforces
certain state constraints and sequential behaviors on an ordinary Petri net will enforce these same
behaviors on the net after timing information is added to it.

The invariant based control method is implemented through new places and arcs that connect

to existing plant transitions. If the timing information of the plant net were associated with the
transitions, then the control method could be used without any changes in the method itself.
Because the controller has no new transitions of its own, it is not necessary to establish any

new timing properties for the controller. It will react to the firings of the plant and will evolve
naturally using the plant’s own timing. Control goals such as mutual exclusions, deadlock avoidance,

regulation of finite resources, or avoiding forbidden states may be implemented on timed Petri nets
using the method exactly as described. When the elapse of time is associated with transition

firings, the resulting behavior of the controlled plant may not be entirely what the control designer
expected. Consider the simple constraint

µ1 + q1 ≤ 1

In standard untimed nets, transition firings are considered to be instantaneous. Because of this, the
constraint above means two things: 1) place 1 may never have more than 1 token, and 2) transition

1 may not fire if p1 contains a token. Now consider if this constraint were to be placed on a Petri
net that contained timed transitions. The constraint would take on a third meaning: 3) place 1
may not contain any tokens while transition 1 is in the process of firing. In some cases, this may

be exactly what the designer wants, however the designer must be aware of these subtle changes in
the meaning of the constraint inequalities when designing the system.

It is possible to maintain the original meaning of the constraint inequalities by using nets
that place their timing information on the places rather than the transitions. Transitions undergo

instantaneous firing in these nets, just like in ordinary Petri nets. Constraints may be enforced on
nets with timed places using the supervisory control techniques of this paper. The controller will

add places to the plant net, and because this is a timed net, timing information must be associated
with these new controller places. The tokens in a controller place are used to keep track of the

plant’s state. They are the controller’s bookkeeping device, and do not represent a process that
requires lengthy amounts of time compared to the time associated with the evolution of the plant.

For this reason, the time delay associated with controller places is defined as zero.

Difficulties may arise when supervisory control specifications deal directly with time rather

than events. Because the controller has no direct access to a clock, it is not possible to directly
realize constraints that reference absolute time or relative timing offsets. Some of these kinds of

situations may be tackled by including Petri net structures in the plant that the controller can use

35

as an interface between its event-driven world and the world of continuous time. Clock and timer

structures are described in the example below.

Example. Consider a plant with five places and seven transitions and the following two con-

straints.

1. Transition t6 may not fire between 6:00 PM and 12:00 AM.

2. Transition t7 may not fire until at least 2 minutes has elapsed since the last firing of transition
t4. If t4 has never fired, then the firing of t7 is unrestricted.

The supervisory controllers presented here have no access to the current time of day, nor are
they informed regarding the amount of time that separates the events to which they react. In order

to enforce these constraints, new PN structures will be added to the plant, allowing an interface
between the controller and time.

A one-way loop of timed PN places with a single token can be used to create a clock indicating
the current time of day. For example, twenty-four places connected in a ring, with a one hour

delay for each place, can be used to indicate the current hour of the day. It is not necessary that
the delay in every place of the clock be equal, but the firing rules for the clock must indicate that

enabled transitions fire instantly. Item 1 above indicates that we are concerned with the six hour
period between 6:00 PM and 12:00 AM. The controller will gain access to the current time through

the use of the two-place clock shown in Figure 10a. The time delays for the two places are

Times for

[
p6
p7

]
=

[
18
6

]
hours

a)

p7

p6

t8t9

b)

t4

p8

t10

Figure 10: a) A two place time-of-day clock. b) Place 8 contains tokens whenever fewer than two
minutes has elapsed since the last firing of t4.

The clock is initialized with a single token in p6 at 12:00 midnight. After eighteen hours, the
token in p6 will be available to fire t8. The token in p6 will transfer to p7 at 6:00 PM, and it will

remain there until midnight. Thus constraint 1 can be enforced with the inequality µ7 + q6 ≤ 1.
Constraint 2 does not involve the time of day, rather it involves a relative offset in time after the

firing of transition 4. Transition 7 must wait at least two minutes after the last firing of t4 before

36

it is allowed to fire. A structure is added to the plant to indicate when less than two minutes has

elapsed after the last firing of t4. This can be done using the net shown in Figure 10b, where the
time delay for p8 is two minutes. As with the clock of Figure 10, the firing rules must indicate that

t10 fires whenever it is enabled.

Using the net of Figure 10b, we know that transition 7 should never be allowed to fire when place

8 contains tokens. An initial guess might suggest that we then enforce the constraint µ8 + q7 ≤ 1,
but item 2 says nothing about limiting the ability of t4 to fire, and this constraint would prohibit

p8 from ever containing more than one token, indirectly inhibiting the freedom of t4. Let M be the
maximum number of tokens that could ever appear in place 8. This number could be determined
through temporal analysis of the plant, or the designer may simply choose M as a number so

ridiculously large that t4 could never fire that many times in a reasonable amount of time. Using
this value, the following constraint is then placed on the plant,

µ8 +Mq7 ≤M (77)

This constraint will insure that t7 never fires if place 8 contains any tokens. If M is too small, then
transition t4 may be indirectly inhibited by constraint (77), so it is necessary to determine a large

enough value of M to avoid this situation.

In summary, the control designer should be aware of the following points when introducing

timing requirements into the invariant based control method.

• Defining time delays on the places of a net, rather than its transitions, avoids certain am-
biguities in the meanings of combined state/event constraints. Either method may be used,
but the meanings of the constraints in each case must be understood.

• When time is defined on the places of a net, time delays associated with the controls are
defined as zero to avoid artificial delays in the evolution of the plant.

• Standard supervisory control constraints dealing with the plant state or mutual exclusions
can be implemented seamlessly on place-timed Petri net plants.

• External clock and timer structures with appropriate time delays may be added to the plant
to provide an interface between the event sequences of supervisory control and real time.

• The accuracy of clocks and timers is insured by firing rules that insist on the instantaneous
firing of enabled transitions for these structures.

• Upper bounds such as M in the example can be used to avoid unwanted consequences of

state/event related constraints that deal with the conditions of timers and clocks.

8 Conclusions

Petri nets possess many assets as models for discrete event systems. Concurrent processes and

events can be easily modeled within the framework. They provide for larger reachable state spaces,

37

more compact representation, and increased behavioral complexity compared to automata based

models. The goal of this paper has been to present an approach to Petri net supervisory control
that is unified and tractable as well as comprehensive and practical.

The primary technical tools required for the use and analysis of the control methods presented
here involve Petri net theory and matrix algebra. The main synthesis technique is based on the idea

that specifications representing desired plant behavior can be enforced by making them invariants
of the closed loop system. Most of the other tools in this paper also revolve around the creation or

characterization of invariants or an analysis of the interrelation between control specifications and
plant and controller structure.

Because an invariant based controller is itself a Petri net, the unified plant/controller system
facilitates the use of established synthesis and analysis methods. The closed loop system can be

designed, analyzed, simulated, verified, and augmented using tools already established for Petri
nets.

Unobservable transitions have received little attention in the DES PN control literature, but they
present an important problem, and systems that incorporate unobservable events are of practical

concern. Here the problem of unobservability has been presented and analyzed concurrently and
analogously to uncontrollability.

A method has been described for characterizing all feasible invariant based controllers for en-
forcing a linear constraint on a plant with uncontrollable and unobservable transitions. This char-
acterization can be combined with an extended PN controller definition to enforce the logical union

of all these feasible controls. Supervisors designed this way will have a high degree of permissiv-
ity. Unfortunately it has not been demonstrated that these controllers will always be maximally

permissive, since it is not known if there is a situation where the maximally permissive control
law corresponding to a linear predicate is ever something other than a disjunction of other linear

predicates.

A wide variety of supervisory control goals can be handled with the proposed method. Inequal-

ity (5) is not only appropriate for formulating a large range of forbidden state problems, generalized
mutual exclusion constraints [7], and finite resource management problems, but it is also appropri-

ate for specifying a number of supervision goals that are not normally thought of as state-based
constraints. Temporary transformations of the graph structure of the plant will allow event-based

constraints to be specified in terms of (5); two distinct approaches to enforcing these event-based
constraints were presented here. A class of logical predicates on plant behavior can be transformed

into linear inequalities for the case of safe nets. The addition of timer and clock structures to a
timed Petri net plant model will permit real time based constraints to be represented in the form
of (5). A number of approaches to deadlock avoidance and liveness insurance can also be reduced

to the enforcement of linear inequalities. The integration of these techniques with the invariant
based control method is a current research topic.

Computational efficiency is one of the goals of the supervision techniques presented here. An
invariant based controller is computed very efficiently by a single matrix multiplication, and its size

grows polynomially with the number of specifications. Since the controller is a Petri net, control
actions are also simple to compute online.

38

Handling uncontrollable and unobservable transitions does not add any complexity to the online

computation of control actions. The increased complexity is encountered only in the initial control
design. Computationally tractable techniques have been presented for this process involving the

solution of an integer linear program or through the triangularization of integer matrices through
constrained row operations.

Invariant based supervisors are viable models for real time control implementations. The speed
and efficiency with which they are computed also makes them appropriate for online control recon-

figuration due to sensor or actuator faults, or dynamically modified system specifications.

APPENDIX

A Generating Constraint Transformations

A.1 An Integer Linear Program for calculating R1 and R2

The conditions of Theorem 11 can be converted into an integer linear programming problem

(ILP) in the standard form. We will consider only a single constraint on the system; multiple
constraints can be handled individually and independently. Thus nc = 1, L and R1 are vectors,

and b and R2 are scalars.

Let

R =
[
R1 R′2 R3

]
where R′2 = R2 − 1 and R3 ∈ ZZnuc is a vector of slack variables. The ILP is defined as

min
R


z(R) = R


 µp0
Lµp0 − b− 1

0






s.t.



R


 Duc Duo
LDuc LDuo
I 0


 = −L

[
Duc Duo

]
R ≥ 0 (integer)

(78)

After solving (78), if the minimum of the objective function z∗ = z(R∗) is greater than b−Lµp0
then the problem can not be solved as there are no values of R1 and R2 that will satisfy the

condition in lemma 10. If the minimum is less than or equal to b− Lµp0 , then transform R′2 back
into R2 and generate the controller using the formulae in Theorem 11.

Remark. There may be minor difficulties encountered when using this method of generating
R1 and R2. For a controller to exist, we need the objective function of the ILP, z(R) ≤ b− Lµp0,
however it not clear that we should attempt to minimize this function. Oftentimes, this function
will have an unbounded minimum, making it necessary for the designer to introduce an additional

constraint in order to achieve a bounded solution. Care must also be taken such that the ILP
does not yield the pathological transformation L′ = R1 + R2L = 0, when there are other nonzero

possibilities for L′.

39

Algorithm 1 (Constraint Transformation).

Input: L ∈ ZZnc×n, b ∈ ZZnc , Duc ∈ ZZn×nuc , Duo ∈ ZZn×nuo , µp0 ∈ ZZn
if (LDuc ≤ 0 and LDuo = 0) then

R1 := 0nc×n, R2 := Inc×nc
else

M :=

[
Duc Duo
LDuc LDuo

I

]

Let M(i, j) represent the (i, j)th element of matrix M.

Zero all positive elements in the LDuc portion of M

following the procedure in Algorithm 2.

if M(n+1 . . .n+nc, 1 . . .nuc) has any positive elements then

FAILURE: Controller arcs were introduced by the row

operations into the uncontrollable portion of the

plant, and they can not be eliminated due to lack

of negative elements in Duc.

end if

Zero all elements in the LDuo portion of the M matrix

following the procedure in Algorithm 3.

if M(n + 1 . . .n + nc, nuc + 1 . . .nuc + nuo) has any nonzero
elements then

FAILURE: The unobservable portion of the plant

contains arcs which can not be eliminated.

end if

R1 :=M(n+ 1 . . .n + nc, nuc + nuo + 1 . . .nuc + nuo + n)

R2 :=M(n+ 1 . . .n + nc, nuc + nuo + n + 1 . . .nuc + nuo + n + nc)

end if

L′ := R1 +R2L
b′ := R2(b+ 1)− 1
if L′µp0 > b′ then
FAILURE: Control law is infeasible.

end if

Output: L′ and b′.

A.2 Matrix Row Operations

It is possible to obtain appropriate constraint transformations by performing row operations on

a matrix containing the uncontrollable and unobservable columns of the plant incidence matrix.
The computational part of this procedure involves little more than the integer triangularization of
a matrix, and thus it is simpler to compute R1 and R2 using this method than by using the ILP

presented in the previous section. When using the algorithm, recall that Duc ∈ ZZn×nuc corresponds

40

to the uncontrollable transitions in the plant that may be observed, while all unobservable transitions

are represented in Duo ∈ ZZn×nuo .

Algorithm 2 (Elimination of positive elements from Duc).
Input: Working matrix M ∈ ZZ(n+nc)×(nuc+nuo+n+nc)
i := 1

while i ≤ min(nuc, n)
if M(i . . .n, i) has any negative elements then

Let j be the index of a row in M(i . . .n, i) which
contains a negative element.

Exchange rows i and j of M

Use the negative pivot value at M(i, i) to eliminate

all positive integers in the column M(i . . .n + nc, i)
(See Algorithm 4.)

else if M(n+ 1 . . .n+ nc, i) has any positive elements then

FAILURE: A controller arc can not be eliminated

because there are no negative elements in the

corresponding column of Duc.

end if

i := i+ 1

end while

Output M and i

As was done in section A.1, we shall insure that condition (19) is met by making R1 ≥ 0. In
terms of row operations, this means that elements in rows are eliminated strictly through addition,
never through subtraction, and that rows can be premultiplied only by positive integers. Algorithm

1 presents the procedure for determining R1 and R2. The procedure for zeroing out the elements
in a column of numbers that have the opposite sign of the “pivot” is given in Algorithm 4.

Algorithm 1 insures that condition (20) is met because the procedure for choosing the “pivot”
elements never picks from the LDuc and LDuo portions of theM matrix. Combined with the zeroing

procedure of Algorithm 4, these steps insure that the R2 portion of the M matrix is diagonal with
strictly positive elements.

Algorithms 2 and 3 (called by Algorithm 1) are used to make sure that the transformed con-
straints meet conditions (17) and (18). The feasibility check at the end of Algorithm 1 directly tests

the condition of lemma 10 to insure that the controller does exist. The instructions for picking
positive or negative elements to act as pivots in the two main loops are left specifically vague.

Different methods of choosing the pivot will lead to different constraint transformations. It would
be possible, for instance, to find a basis for all valid constraint transformations by repeating the

procedures in Algorithm 1 whenever there was a choice of more than one pivot for a given column.

41

References

[1] K. Barkaoui and I. B. Abdallah, “Deadlock avoidance in FMS based on structural theory of
petri nets”, In IEEE Symposium on Emerging Technologies and Factory Automation, volume 2,

pp. 499–510, Piscataway, NJ, 1995. IEEE.

[2] S. Bogdan and F. L. Lewis, “Matrix approach to deadlock avoidance of dispatching in multi-
class finite buffer reentrant flow lines”, In Proceedings of the 1997 IEEE International Sym-
posium on Intelligent Control, pp. 397–402, Piscataway, NJ, July 1997. IEEE.

[3] J. Desel and J. Esparza, Free Choice Petri Nets, Cambridge University Press, 1995.

[4] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing Systems,

IEEE Press, Piscataway, NJ, 1995.

[5] J. Ezpeleta, J. M. Colom, and J. Mart́ınez, “A Petri net based deadlock prevention policy

for flexible manufacturing systems”, IEEE Transactions on Robotics and Automation, vol. 11,
no. 2, pp. 173–184, April 1995.

[6] S.-C. Fang and S. Puthenpura, Linear Optimization and Extensions: Theory and Algorithms,

Prentice Hall, Engelwood Cliffs, NJ, 1993.

[7] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion constraints on nets with

uncontrollable transitions”, In Proceedings of the 1992 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 974–979, Chicago, IL, October 1992.

[8] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of Petri net methods for controlled

discrete event systems”, Discrete Event Dynamic Systems: Theory and Applications, vol. 7,
no. 2, pp. 151–190, April 1997.

[9] J. N. Hooker, “A qualitative approach to logical inference”, Decision Support Systems, no. 4,
pp. 45–69, 1988.

[10] H.-H. Huang, F. L. Lewis, and D. A. Tacconi, “Deadlock analysis using a new matrix-based

controller for reentrant flow line design”, In IECON Proceedings (Industrial Electronics Con-
ference), volume 1, pp. 463–468. IEEE, Los Alamitos, CA, 1996.

[11] F. L. Lewis, H. Huang, D. Tacconi, A. Gürel, and O. Pastravanu, “Analysis of deadlocks and
circular waits using a matrix model for discrete event systems”, Technical report, Automa-

tion and Robotics Research Institute, The University of Texas at Arlington, Ft. Worth, TX,
October 1995.

[12] Y. Li and W. M. Wonham, “Controllability and observability in the state-feedback control of
discrete-event systems”, In Proceedings of the 27th Conference on Decision and Control, pp.

203–208, Austin, TX, December 1988.

[13] Y. Li and W. M. Wonham, “Control of vector discrete event systems II – controller synthesis”,
IEEE Transactions on Automatic Control, vol. 39, no. 3, pp. 512–530, March 1994.

42

[14] J. Martinez and M. Silva, “A simple and fast algorithm to obtain all invariants of a generalized

Petri net”, In Advances in Petri Nets, number 52 in Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1980.

[15] J. O. Moody, Petri Net Supervisors for Discrete Event Systems, PhD thesis, Department of
Electrical Engineering, University of Notre Dame, Notre Dame, IN., 1998.

[16] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event Systems Using Petri

Nets, Kluwer Academic Publishers, 1998.

[17] J. O. Moody, P. J. Antsaklis, and M. D. Lemmon, “Automated design of a Petri net feedback
controller for a robotic assembly cell”, In Proceedings of 1995 INRIA/IEEE Symposium on
Emerging Technologies and Factory Automation, volume 2, pp. 117–128, Paris, France, October

1995.

[18] J. O. Moody, P. J. Antsaklis, and M. D. Lemmon, “Feedback Petri net control design in
the presence of uncontrollable transitions”, In Proceedings of the 34th IEEE Conference on

Decision and Control, volume 1, pp. 905–906, New Orleans, LA, December 1995.

[19] J. O. Moody, K. Yamalidou, M. D. Lemmon, and P. J. Antsaklis, “Feedback control of Petri

nets based on place invariants”, In Proceedings of the 33rd IEEE Conference on Decision and
Control, volume 3, pp. 3104–3109, Lake Buena Vista, FL, December 1994.

[20] T. Murata, “Petri nets: Properties, analysis, and applications”, Proceedings of the IEEE,

vol. 77, no. 4, pp. 541–580, 1989.

[21] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Engelwood

Cliffs, NJ, 1981.

[22] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event systems”, Proceedings
of the IEEE, vol. 77, no. 1, pp. 81–97, 1989.

[23] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asynchronous concurrent
systems using Petri nets”, IEEE Transactions on Software Engineering, vol. 6, no. 5, 1980.

[24] W. Reisig, Petri Nets, Springer-Verlag, Berlin; New York, 1985.

[25] J. Sifakis, “Performance evaluation of systems using Petri nets”, In Advances in Petri Nets,
W. Brauer, Eds., number 84 in Lecture Notes in Computer Science. Springer-Verlag, Berlin;

New York, 1979.

[26] R. S. Sreenivas, “On commoner’s liveness theorem and supervisory policies that enforce liveness
in free-choice Petri nets”, Systems & Control Letters, vol. 31, no. 1, pp. 41–48, June 1997.

[27] R. S. Sreenivas, “On the existence of supervisory policies that enforce liveness in discrete-event
dynanic systems modeled by controlled Petri nets”, IEEE Transactions on Automatic Control,

vol. 42, no. 7, pp. 928–945, July 1997.

[28] W. M. Wonham and P. J. G. Ramadge, “On the supremal controllable sublanguage of a given
language”, SIAM Journal of Control Optimization, vol. 25, no. 3, pp. 637–659, 1987.

43

[29] K.-Y. Xing, B.-S. Hu, and H.-X. Chen, “Deadlock avoidance policy for Petri net modeling

of flexible manufacturing systems with shared resources”, IEEE Transactions on Automatic
Control, vol. 41, no. 2, pp. 289–295, February 1996.

[30] E. Yamalidou, Modeling, Optimization and Control of Discrete-Event Chemical Processes
using Petri Net Theory, PhD thesis, Department of Chemical Engineering, University of

Notre Dame, Notre Dame, IN., February 1991.

[31] K. Yamalidou and J. C. Kantor, “Modeling and optimal control of discrete-event chemical
processes using Petri nets”, Computers in Chemical Engineering, vol. 15, no. 7, pp. 503–519,

1991.

[32] K. Yamalidou, J. O. Moody, M. D. Lemmon, and P. J. Antsaklis, “Feedback control of Petri

nets based on place invariants”, Automatica, vol. 32, no. 1, pp. 15–28, January 1996.

44

Algorithm 3 (Zeroing of all elements in Duo).

Input: Working matrix M ∈ ZZ(n+nc)×(nuc+nuo+n+nc) and i
while i ≤ min(nuc + nuo, n)
if M(i . . .n, i) contains any negative elements then
Let j be the index of a row in M(i . . .n, i) which
contains a negative element.

Exchange rows i and j of M

k := 1

else

k := 0

end if

if M(i . . .n, i) has any positive elements then

Let j be the index of a row in M(i . . .n, i) which
contains a positive element.

Exchange rows i+ k and j of M

Use the positive pivot value at M(i+k, i) to eliminate
all negative integers in the column

M(i+ k . . . n+ nc, i) (See Algorithm 4.)

end if

if k = 1 then
Use the negative pivot value at M(i, i) to eliminate

all positive integers in the column M(i . . .n + nc, i)

end if

if M(n+ 1 . . .n + nc, i) has nonzero elements then
FAILURE: Controller arc(s) can not be eliminated from

the unobservable portion of the plant.

end if

i := i+ 1

end while

Output M

45

Algorithm 4 (Column Zeroing).
Input: Working matrix M ∈ ZZ(n+nc)×(nuc+nuo+n+nc) and pivot
position (p, j).

i := p+ 1

while i ≤ n+ nc
if M(i, j) is opposite M(p, j) in sign then

while M(i, j) 6= 0
if |M(p, j)|> |M(i, j)| then

d := floor (−M(p, j)/M(i, j))
if (mod(M(p, j),M(i, j)) = 0) then

d := d− 1 (Don’t zero-out the pivot!)
end if

M(p, .) :=M(p, .) + dM(i, .) (row operation)

else

d := floor (−M(i, j)/M(p, j))
M(i, .) :=M(i, .) + dM(p, .) (row operation)

end if

end while

end if

i := i+ 1

end while

Output M

46

