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Abstract—We show that electrical impedance tomography
(EIT) image reconstruction algorithms with regularization based
on the Total Variation (TV) functional are suitable for in vi vo
imaging of physiological data. This reconstruction approah helps
to preserve discontinuities in reconstructed profiles, sut as step
changes in electrical properties at inter-organ boundaris, which
are typically smoothed by traditional reconstruction algaithms.
The use of the TV functional for regularization leads to the nin-
imization of a non-differentiable objective function in the inverse
formulation. This cannot be efficiently solved with traditional
optimization techniques such as the Newton Method. We expie
two implementations methods for regularization with the TV
functional: the Lagged Diffusivity method and the Primal Dual —
Interior Point Method (PD—IPM). First we clarify the implem en-
tation details of these algorithms for EIT reconstruction. Next, we
analyze the performance of these algorithms on noisy simuied
data. Finally, we show reconstructed EIT images ofn-vivo data
for ventilation and gastric emptying studies. In comparism to
traditional quadratic regularization, TV regularization shows
improved ability to reconstruct sharp contrasts.

transitions in conductivity. The ability thus of reconstiing
sharp changes should lead to a better estimation of the
boundaries and also to a better accuracy in the estimated
values. For example, in the case of lung imaging, sharp
boundaries can occur within a diseased lung, at the interfac
between ventilated and collapsed regions. Sharp imagas all
therefore to better identify the boundary between the two
regions. Other applications of EIT that might benefit from
sharp reconstructions are those related to cancer detettio
these applications, where EIT has the potential to be used as
a screening tool, it is important to detect small localized-c
ductivity contrasts. Quadratic algorithms blur such casiis
and make more difficult to estimate the size and the contrast
value, due to the partial volume effect that occurs. Sharper
reconstructions would allow better detection.

To date, almost alin-vivo studies use quadratic regulariza-
tion or backprojection algorithms, which are known to blur
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I. INTRODUCTION

Electrical Impedance Tomography (EIT) uses surface el

trodes to make measurements from which an image of & ) ) . .
g - tion (normal and diseased) and gastric emptying. In thiskwor

electrical conductivity distribution within some mediura

computed. The inverse conductivity problem is ill-posed [1
consequently regularization techniques have been addxp)ted:
order to stabilize the inversion. Most common regularzati

Edge preserving algorithms like the ones that use TV
regularization have not been used as they are more complex
to implement and thought not to be robust enough. In this
paper we develop a normalized time—difference EIT image

e[g_construction using TV regularization, and show that itkgo

Il for imaging ofin—vivo experimental data of lung ventila-

we use time difference EIT for reconstructing the change in
onductivity between data frames. This method is widelyduse
to alleviate systematic errors from instrument and elelgro

methods impose (explicitly or implicitly) a penalty on ncmpositioning inaccuracies in medical applications [2].

smooth regions in a reconstructed image. Such methodsrconf

stability to the reconstruction process, but limit the dailigy
of describing sharp variations in the sought parameter.

dn Section Il we introduce the general problem of EIT
reconstruction, we introduce quadratic regularizatiod #re
properties of the TV functional. In Section Il we discusg th

One technique to permit image regularization without inractical problems that TV regularization poses in terms of

posing smoothing is the Total Variation (TV) formulatio

of regularization. The Total Variation functional is assom
an important role in the regularization of inverse proble
belonging to many disciplines, thanks to its ability to mnes
discontinuities in the reconstructed profiles. Edge predtem,

if it works successfully, has clear clinical benefits. Thees

mhon—differentiability and we introduce the Lagged Diffity

and the Primal-Dual Interior Point Method algorithms, whic

mue apply to impedance tomography. In Section IV we evaluate

the proposed methods on syntectic andremivo data, show-
ing the characteristics of TV regularized images and that TV
regularization can be applied successfully to clinicalad#n

explored in this work include images of the lungs and stomac%eCtion V we draw conclusions regarding the work and results

which have well defined organ boundaries that present sh

Copyright (c) 2009 IEEE. Personal use of this material isnyed.
However, permission to use this material for any other psepomust be
obtained from the IEEE by sending a request to pubs-peronis@ieee.org.
A. Borsic is with the Thayer School of Engineering, Dartnfo@pllege, USA,
email: Andrea.Borsic@Dartmouth.edu, B. M. Graham is with School of
Information Technology and Engineering, University of @®if, Canada, A.
Adler is with the Department of Systems and Computer EngingeCarleton
University, Canada, W. R. B. Lionheart is with the School oathematics,
University of Manchester, Manchester, UK

EQ'rrgsented in this manuscript.

Il. IMAGE RECONSTRUCTION

In EIT a set of electrodes are attached to the patient, cisrren
are passed through the electrodes and the resulting padgenti
are measured. By using a numerical model of the experiment
the conductivity is reconstructed as a least squares fitting
problem.



A. Forward Model regularization functional that stabilizes the inversiés. we

The forward problem is modeled with a low-frequency aFponsider difference measurements, the conductivity olhang
proximation, where the electric field is considered coratire  © With respect to the reference; can take both positive
and the conduction currents dominant with respect to tR8d negative values, so (6) is an unconstrained minimizatio
displacement currents, which leads to the following phrti@roblem.
differential equation:

V.oVu=0 onQ 1) C. Quadratic Regularization Functionals

. - o In practice the forward model is implemented with a Finite
where o is the conductivity or admittivity of the body to Element Method or, less commonly, with a Finite Difference
be imaged,u is the electric potential, anél the body to |, ' ’

. . - Method, and the conductivity is thus discretized. In thisteat
be imaged. Electrodes are modeled with boundary Condltl(érﬁ% functional:(©) is often assumed to be of the form:
that in the EIT field are referred to as Complete Electrode '

Model [3]. The electrode model accounts for the contact G(O) =|Le|? (8)

impedance by stating that for each portion of the bounda\%ere we indicate with the bold charactér the vector of

94 underneath electrode discrete conductivity values and whefeis a regularization
w+ 7 Ua_g -V, ondy (=1...L ) matr?x. In the literature the_re are sever_al choices f(_)r_ the
on matrix L, for example the identity matrix [4], a positive
wherez, is the contact impedancé,is the electrode number, diagonal matrix [5], approximations of first and second orde
V4 is the potential resulting at electrodeandL is the number differential operators [6], and the inverse of a Gaussiatrima
of electrodes. For each electrode the flux of the currentifend7]. Algorithms of this class fall into general framework:

through the contact surface must equal the injected current 1 ) )
erec:a’rg%n§|‘w(®)_d” +CY||L®H (9)

/ Ua—l_jZZIg onan {=1...L (3)

o0, On The framework expressed by eq (9) can be called quadratic

where ], is the injected current at electrode regularization since the 2-norm is used. A norm guarantees

Underneath the inter—electrode gaps no current should fighat the regularization functional is always non-negatasea

and the following condition is applied: penalty term should be, and more important, in the case of
S the 2-norm, the resulting functional is differentiableadé@ng
— =0 ondN\ {092, U... U900} (4) to well embellished and easy to implement solutions of the
o minimization problem. Quadratic regularization, becao$e

B. Parameter Estimation its differentiability, has been the common framework for

We consider difference imaging, where the goal of thsﬁo]l\[/éﬁ‘s]sg]e[g inverse problems, and particularly for EIT

reconstruction is to recover the conductivity differendeg L . L :
: . . .__In practical implementations the optimization problemi€9)
to physiological changes, that have occurred in the regign . . . :

! . L . ) Solved iteratively by using the Gauss Newton method, leadin
of interest during a certain time interval. This approach 1 4 conductivity undate:
common in medical applications of EIT, as it reduces diffi¢ere yup '
types of image artifacts, for example breathing artifactd a 60, = —(JLJ, + o LTL) 1T (W (O4) —d) — aLTLO,]
movement artifacts [2]. (10)

In difference imaging, a first data set of voltagé$o) is where k is the iteration number§®, is the conductivity
acquired at timg; corresponding to a reference conductivityipdate at iteratiork, and .J, is the Jacobian of the forward
distributiono, a second set of voltage d&#&(o) is acquired operatorW (®) computed for® = ©. The drawback in
at timet,, corresponding to a conductivity distributien. The using quadratic regularization schemes is that, regasdés
vector of data difference is formed as: the choice ofl,, the technique cannot reconstruct step changes,

as smooth solutions are favored.
d=V(o2) — V(o) %)

The goal is to reconstruct the conductivity change=
oy — o1 with respect to the reference conductivity, by o ) i o
predicting with the forward model the simulated dat&(o) There are situations in almost every field of application of

D. Total Variation Regularization Functional

corresponding to a change in conductivity: EIT where the imaged conductivity has discontinuities.He t
medical field an example is that of the inter organ boundaries
W(©)=V(s1 +06)-V(mn) (6) where each organ has its own electrical properties. Several

and fitting the model to the data in the least-squares sens pproaches have been investigated in order to overcome thes
imitations. Often they can be considered a way to introduce

Oree = argminl W (©) —d||” +a G(©) (7) Prior information. An example is anisotropic regularipati
e 2 [10][11] where the structure of the expected sudden chaisges
The estimation is regularized with a Tikhonov style regulanssumed to be roughly known. The smoothness constraints are
ization, wherea is the Tikhonov factor, and7(©) is the relaxed therefore in the direction normal to the discorities.



In this way the algorithm better describes rapid variations i-th edge, shared by the FEM elementgi) and n(i), the
the object, however prior structural information needs & Bump in conductivity is:|®m(i) — @n(i)\. The variation over
known in order to adopt such methods. Recently combinatitire whole image can be found by integrating this jump over
of level set methods and TV regularization have been praposadl the edges of the mesh:

as well for elliptic inverse problems [12] and specificalbyr f

EIT [13]. These methods can be used where the imaged body TV(®) = Z l; yem(i) - en(i)‘ (13)

is known a priori to have regions of constant conductivity. !

In many least squares formulations (9), regularization mg#herel; is the length of the-th edge in the meshy (i) and
trices L are discrete representations of differential operatorgi) are the indices of the two elements sharingittie edge,
and are used in conjunction with the 2—norm. A differer@nd the index ranges over all the edges. Equation (13) can
approach is represented by the choice of the total variatibg expressed in terms of matrices as:
functional, which is still a differential operator but leado
a L' regularization scheme. The total variation (TV) of a TV(e) = Z'Li@l (14)

conductivity image© is defined as: ) o )
whereL is a sparse matrix, with one row per each edge in

TV (©) :/|V®| dQ (11) the mesh. Every rowL; has two non zero elements in the

2 columnsm(i) andn (i) : L; = [0, ...,0,1;,0,...,0, —;,0...0].
TV regularization is therefore of thé&' kind: it is a sum
of absolute values. The absolute value guarantees the pos-
itivity of the penalty function but unfortunately results i
non—differentiability in the points wher®,,;) = ©,.

where ) is the region to be imaged.

B The numerical problem thus needs to be addressed properly.
; ; However, the important gain is that tiié regularization does
f, not penalize image discontinuities.
~N —t
~f, [1l. SOLVING THE TV REGULARIZED EIT PROBLEM
A Two different approaches have been proposed in the past

for application of TV regularization to EIT, the first by Rundi
. . _ _[14] and Dobson [15] and the second by Somersalo [16] and
_F|g. 1.‘ Two points A and B connected by three different mono_toylcall . . L
increasing functions f, f2, f3), all of them have the same Total Variation. by Kolehmainen [17]. Rudin and Dobson use a deterministic
framework and replace the absolute value function in the

The TV functional was first employed by Rudin [14] forneighborhood of zero by a polynomial to obtain a contin-
regularizing the restoration of noisy images. The effestivuously differentiable function. Somersalo and Kolehmaine
ness of the method in recovering discontinuous images cpPly Markov Chain Monte Carlo (MCMC) methods to solve
be understood by examining the following one dimensionfie TV regularized inverse problem. Probabilistic methods
situation. such as MCMC, offer central estimates by sampling the
Suppose that the two points A and B of Figure 1 are connecte@sterior probability density of the sought parameters and
by a path. Three possible functiofi$z) connecting them are therefore differentiability is not required (smoothingtbé TV
shown. As the functions are monotonically increasing, thfe Tfunctional). Though this method is successful, the sargplin
of each is: process involves a substantial computational effort ared th
image reconstruction can be lengthy. Deterministic method
on the other hand require differentiability and a number of
different approaches has been developed.

Deterministic numerical methods have been used for the
which is the same value for each function. TV tregis f» regularization of image de-noising and restoration pnuisie
and f3 in the same way and when used as a penalty temmith the TV functional. The numerical efficiency and statili
in a Tikhonov regularized inverse problem, will not bias thare the main issues to be addressed. Most of the deterministi
result towards a smooth solution. On the other hand,/the methods draw from ongoing operations research advances, as
norm yields different values fofy,f> and f3. When used as TV minimization belongs to the important classes of proldem
a penalty term thel.? norm will bias the solution towards known as “minimization of sum of norms” [18] and “linear
smoother functions, for which thé? norm assumes smaller L' problems” [19] .
values. Another way to understand the differences withrothe Recent developments in operations research [18] have pro-
techniques is to consider the discretized version of eqoativided new classes of methods to deal efficiently with the
(11). In our implementation we describe the conductivity geroblems of minimizing the sum of absolute values. Chan
piecewise constant, using a 2D finite element mesh. Being 28] has drawn from these advances and investigated the
conductivity constant over each FEM elemeéwi® is non-null  problem of restoring images with Primal Dual-Interior Roin
only on the edges between elements, where the conductiigthods (PD-IPM). In this paper we introduce and compare
presents a step change from one element to the other. Forttiee performance of two methods: the “Lagged Diffusivity”

B
TV(f) = / f@)de=f(B) - f(A)  (12)
A



method, which is straightforward to implement but requireand that, by expandingy, this can be written as
smoothing of the TV functional to avoid numerical instetiili

2

and an algorithm based on the PD—IPM theory, which is more 3} J;, + « LTE, 'L — a LTE} ' diag (@) L (23)
efficient and has no stability problems. d

it has been proposed [22] to drop the negative semidefinite

matrix

L 9
A. Methods Based on Approximations of TV _LTE diag (|Lz®2k| ) L (24)
Early algorithms for TV regularization in image denois- i

ing applications approximate the TV functional in diffetenleading to the update equation
manners in order to remove the non—differentiability. Tisis T Tl \—1
achieved by substituting the absolute value with a function 00y = —(Jpdp +a LTEL)™ (25)

that has a smooth corner near the origin of the axes and that (W (Or) —d) —a LTE, 'LOy]
approximates the absolute value function elsewhere [2]]] [2
[23] [24] [25] [26], [17]. In the following we definel'V3(O)
as

This method, sometimes referred to as “Lagged Diffusivity”
was used by Vogel [22] and Dobson [23] as an alternative
to Newton’s Method. The method is believed to have better
TVs(O) = / VIVOP? + 5 (15) convergence properties with respect to Newton Method thank
¢ to dropping the negative semidefinite matrix from the Hessia
The method is globally convergent, though local convergenc
is only linear [23]. As discussed in the remainder of the pnés
work, we have implemented this method for comparison pur-
poses with respect to the primal dual - interior point altoni
introduced next. Though the Lagged Diffusivity method show
and when the conductivity is discretized this becomes ~ Petter convergence properties than the Newton's Methdl, st
it converges slowly or becomes unstable for small values
O, = arg minl |W(©) — d||2 +a Z VIL:®]2 + 3 of § [28]. Continuation strategies are required for starting
e 2 ; the algorithm with larger values of and progressively and

_ ) _ (17) carefully reducings as the algorithm progresses.
where L is as in equation 14. In order to minimize the

objective function in (16), the Newton's Method has been
considered in several works [22], [24], [25]. In this case thB- Primal Dual - Interior Point Methods

for 3 > 0 the functional is differentiable an@'V3(©) —
TV (©) for 5 — 0. We formulate the TV regularized inverse
problem as

Orec = argm@in% IW(©)—d|* +a TVs(©)  (16)

iterative update equation becomes: An efficient method for dealing with the non—
60, = -1k +a LTE,'FL) - (18) differentiability of the TV _regularlzanon func_'uonal hdmer_l _
. e proposed by Chan [20] in the context of image denoising
' [Jk (W(Br) —d) —a LE; L@k] applications. The method is based on the primal-dual theory
with developed by Andersen [18].
We will label as primal (P) the TV regularized inverse
ni =/ ILi Okl 4+ 8 (19)  problem formulation
1 2
Ey, — diag(n;) (20) (P) argméni W (@) —d|” + a; IL;® (26)
e (1 L2 o noting that for each
kg 7 IL©® = max x,L:© 27)
X,:\X,\<1

The convergence properties of the Newton's Method hav
been studied by Vogel [27] and by Chan [24] in the contevé erex |s a vector of scalar auxiliary variables. By applying
of image denoising problems. Both authors report that t Y) IO fglsecond beiquwgllent problem, which is a maxi-
method results convergent only for values @fwhich are mization probiem, 1S obtaine
sufficiently large; in other words the method has a small 2
D = —d L,©® (28
convergence region, with respect fo Vogel reports that for ) XT,?T(gmm H () I+ az Xi (28)

small values ofg the size of the convergence region can
shown to be proportional t@?/2, therefore decreasing W|tht?IIS problem is called dual (D) and the auxmary variabjes

beta decreasing. The same difficulties have been found in [fée Iabele_d dual variables. qu fe-aS|bIe pqmts [18] of thald
in the context of EIT. It is obviously desirable to solve (1aJ) problem (i.e.[x;| < 1) the objective func.t|on. of (P) can be
small values of3 for approximating a true TV regularization,Shown to take greater values than the objective functiohef t
but this is difficult in practice dual problem (D). The two objective functions take the same
: L ; o .. value at a single point, which is the optimal point both for
Noting that the approximated Hessian matrix in (18) is (P) and for (D). Such optimal point can therefore be sought
3 +a LTES'FL (22) Dby nulling the difference between the two objective funesip



called theprimal-dual gap:

1 2 NFAN PR I 50, | JE(W(O) —d) +aLTx
§||W(®)—d|| +OCZ|L1'®|_ [ Kil —Ep 7 LOx — Exx, *
: o | (36)
+§ [W(©)—d[” - O‘ZXiLi@ (29) with X(»k)L'@k
¢ Kp=diag [1 - 2—""2 (37)
i

=a) (L8| -xL®)
g Equation (36) leads to the following update for the primal

The primal—-dual (PD) gap is null if for eagheitherL,® =0 variables:

or x; = |L;®|/(L;®). The condition that nulls the PD gap B 4

is therefore 00 = — [J5dx + oL TEL KL - (38)

[ W(©y)-d LTE 'Le

(L;®| —x,Li®) =0 i=1,....n (30) [9% (W (%) ) +a k ¢]

_ . . and the following for the dual variables:
and it is calledcomplementarity conditionThe complemen-

tarity condition captures the optimality of both (P) and (D) OXr = —Xi + E,;lLG)k + ExKiL 00y (39)
An important class of algorithms, called Primal-Dual liger

Point Methods (PD-IPM) is based on a framework th
enforces the complementarity condition, the primal feésib

(if any) and the dual feasibility (if any) [18] [29].

gquations (38) and (39) can therefore be applied iteratiicel
solve the non-linear inversion (26). In our work we start the
iterative procedure by initializing the primal variablestiw
a single step of the quadratic reconstruction, and the dual
The PD-IPM framework for the TV regularized EIT inversevariables tox, = 0, which is a feasible point for the dual
problem can be written noticing that 28 can be simplified byariables.
enforcing the condition Some care must be taken on the dual variable update, to
maintain dual feasibility. A traditional line search prdcee
3(©)"[W () —d/ +al® =0 (31)  [30] with feasibility checks is not suitable as the dual ueda
which is the first order condition for the inner minimizatiorflirection is not guaranteed to be an ascent direction for the

problem on®, and thus (D) can be rewritten as: modified dual objective functiofDg).
1 2 _ The simplest way to compute the update is calledsttading
(D) ;ﬁiﬁgl 2 IW(®) - d|I” + azi: xiLi® - (32) rule [18] which is defined to work as follows
with © : J(©)T[W(©) — d] + aL® =0 x*HY = o* (x(’“) + 5x) (40)

The PD-IPM framework is written thus enforcing the comwhere* is a scalar value such that

plementarity condition for (P) and (D) and by maintaining th . (k) )
feasibility conditions, obtaining: ¢ =sup {‘P e ‘Xi +ox; <1, i=1... 7”} (41)
X, <1 i=1,...,n (33) An alternative way is to calculate the exact step length & th
B boundary, applying what is called tlstep length rulg18]
JO)TW(O)—-d +al® =0 (34)
x* D = x® 4+ min (1, 0%) 0x (42)

wherep* is a scalar value such that
The systems of equations (33), (34), (35) constitutes the

framework and needs to be solved jointly (®, x). Here as " = sup {%7 :
well the absolute value in (35) needs to be smoothed Simi|ali|

to (15) in order to obtain differentiability, though the nmézg n the co_nte_xt of EI'_I', and m_tomography in general, the
of this smoothing is different in the context of the PD-IP omputation involved in calculating the exact step lengthe

framework than in (L5). This is done by replacifig ©| by oundary of the dual feasibility region is negligible comgzh

V/|L;®|? + 3 in (35). The smoothed feasibility condition is:O th; V\;h?rl]e altgorltlhm |ttr(]erat||on. Ithllshcpnvenlent the.re‘ort
called thecentering conditionf18] and it leads to a smooth pair 0 adopt the step lengih rule, which in our experiments

of optimization problemsP;) and (D). The effect of such resulted _in a better convergence. T_he scaling rule has the
condition is that solutions are approachedais decreased, further disadvantage of always placing on the boundary

from points away from the the boundagy: |x,| — 1 of the of the feasible region, which prevents the algorithm from

feasible region, from which the name of centering conditiofr?llow'ng the_gentral_ path (sequence of points |n_the hiaterl
and of the notion of interior point methods. of the feasibility region that converges to the optimal ppin

Concerning the updates on the primal variable, the update
The Gauss Newton method can now be applied to solde&ection @ is a descent direction fofPs) therefore a
smoothed primal—dual problem, obtaining the following-sydine search procedure could be appropriate. In our nunierica
tem for the update$® and dx of the primal and dual experiments we have found that for relatively small corngras
variables: (e.g. 3:1) the primal line search procedure is not needed, as

X+ o x| <1, i:l,...,n} (43)



the steps are unitary. For larger contrasts a line searchen A. Simulated Data

primal variable guarantees the stability of the algorithm. We consider a 16 electrode EIT system using adjacent

As a side note it interesting to observe that at the firgtimulation and measurement (this matches the experitnenta
iteration, with the initializationy, = 0, the matrix X results measurements we consider in the next subsection). A sim-
equal to the identity and therefore the update for the primgjated phantom was generated using a 2—dimensional mesh
variable (38) is equal to the update of the Lagged Diffugivityith 1024 first order triangular elements (see Figure 2),rethe
method (18). As the algorithm progresses, the maffitends  electrodes are described with the Complete Electrode Model
to the matrixF” of the Newton’s method, therefore the Primal-The distribution of the simulated conductivity that has bee
Dual Interior point method can be seen as an interpolatiged for the tests provides sharp inclusions and also psvid
between the Lagged Diffusivity, away from the optimal ppinty challenge for the reconstruction as there is a narrow gap
and the Newton method, which has quadratic convergence, Between the two inclusion regions. The simulated phantesn ha
only in a neighborhood of the optimal point. a background conductivity df Sm2, in the bottom part of the
phantom there is a larger inclusion with a value of 1.5 $m
in the top part of the phantom there is a smaller inclusion
with a conductivity value of 0.5 Sm'. Time—difference data
were simulated by computing simulated data on a reference
distribution (homogenous phantom with a conductivity lof

In order to evaluate the properties of TV regularized aBm~') and by taking the difference of such data with the data
gorithms we have implemented the Lagged Diffusivity (wgomputed on the phantom with the conductivity distribution
will label this algorithm as “LD") and the Primal Dual —just described and shown in Figure 2. Images are reconsttuct
Interior Point Method (we will label this algorithm as “PD")on a two dimensional mesh with 576 elements not matching
and tested them against a traditional quadratic recornsiruc the mesh used for forward computations, in order to avoid
algorithm as in (9) (we will label this algorithm as “QR”).what is referred as afnverse crime[31]. In addition to
Tests were conducted an vivo data and on simulated dataihis, in order to simulate systematic and random errors in
The in vivo data is time—difference data, collected with 16he data acquisition process, a synthetic noise vector was
electrode EIT systems implementing the adjacent protadol [ generated, this to be added to the data in different noisgdev
Though we introduced a fully non-linear framework in th&uch vectorv, with the same length as the data difference
previous sections, we use for reconstruction of medicah daftectord, was generated extracting each sample from a Normal

a linearized version of the algorithms. The choice of usingistribution with zero mean and standard deviation of 1, and
a linearized reconstruction is common in EIT medical timethen normalized as:

difference applications: the not perfectly known geomeify std(d)
the patient, the not perfectly known position of the eledé® = Vstd(u)
and the time—changing contour of the imaging region con-
tribute significant errors to measured data. These erras #herestd(-) is the standard deviation of a vector. We specify
typically much greater than those resulting from lineawizihe noise levels in percentages, for example we indicate thgynoi
forward operator. We linearize therefore the forward ofmra data produced ad + 0.01v to have a % level of noise.

as V(o1 + ©) = V(o1) + JO, whereJ is the Jacobian
computed fow = 0. From this follows thaW? (©) ~ JO© and B
the general formulation of the inverse problem (7) becomes:

IV. EVALUATION PROCEDURE

(45)

. Convergence Behavior

1 We use a first series of numerical experiments for high-
Oec = argmin = IO — d||* + a G(O) (44) lighting the typical convergence behavior of the LD and PD
e 2 algorithms. As we have linearized the forward operator, the
Equations (9) (16) and (26) change accordingly. The quidraguadratic solution QR can be achieved with a single step
problem can be solved with a single step of (10) usingf (10), while LD and PD remain iterative. The respective
Ji; = J(o1), while the LD and PD algorithms remain iterativeiterative update equations for LD and PD, (18) and (38),
as (18) and (38) (39) depend on the CondUCtiVity dlstrlbuthjepend on the productSTElzlL and LTEflKL, where the
through the matrices€ and K. The TV regularized prob- diagonal matrix ! and the diagonal matri€ 'K depends
lem is solved iterating respectively (18) and (38) (39) angh »,, and therefore on the reconstructed conductivity itself.
maintainingJ, = J(o1). As the reference conductivity, is  For this reason the reconstruction remains iterative. Eteev
not knOWn, we linearized all the reconstructions around ﬂaﬂ the diagona| elements of these matrices is decreasing for
uniform conductivityo; = 1 Sm~!. Naturally this procedure increasing values of; (See eq. (20) and (37)). This weights
reconstructs conductivities in an arbitrary scale and mot fess larger jumps of conductivity between neighboring Isixe

absolute values, but this is a common, accepted, effectiygis is a feedback effect, from the reconstructed conditgtiv
method for reconstructing time—difference data. The no@ar distribution to the regularization, and, similarly to dynia

framework we provide remains valid for the reconstruction &ystems we refer to it as “dynamic regularization”. Due to

absolute images, using/(©) = V/(©). this, the LD and PD algorithms need a number of iterations
In order to evaluate the algorithms, simulated data wésr both the conductivity distribution and the matridésand

generated as well, as discussed in the following subsectiorK to settle, as these are interlinked. In our simulations we



adopt a stopping criterion based on the relative decreaseoften convergesin 7 to 10 iterations, while the second regui

the objective functional: typically 10 to 14 iterations, in the cases we present. The PD
1 ) algorithm takes more iterations to converge as it manages to
H(®) = 7|96 —d||" + aTV(©) (46) significantly reduce the objective function for a larger rem

of steps, achieving thus shaper contrasts in the recomstiuc
images than the LD algorithm, as illustrated by the iteratio
in Figure 3.

The iterative algorithms are stopped when the relativeehss
in the functional is less than 1%, that is:

[H(®k+1)

H(®4) C. Noise Effects
wherek is the iteration number. With this stopping criterion

the LD algorithm converges in 8 iterations and the PD algo- In order to study the noise performance of the algorithms,
rithm in 10. In the top row of Figure 3 are shown th&d noise was added to the simulated data with noise levels of

the 5" and the 10" reconstruction steps for the syntheti®/: 1% 2% and 3%. Reconstructions are shown in Figure

difference data for the PD algorithm. The bottom row shows 'IA‘" éh? sub—flgurels are rer;]reselgteijDon dthPeDsalme_ (r:]olor
the same reconstruction steps for the LD algorithm. All the-d/e. Lolumns are re ative t_Ot e QR, ana -1 algorithms
sub—figures are represented on the same color scale. W le rows are relative to different levels of noise. For the

the 27¢ and 5" step for both the algorithms shows simila R algorithm 1 iteration was used, as we are addressing

reconstructed images, the images at thé seep are different. the linearized problem. The termination criterion (47) was

The LD algorithm does not sharpen significantly the imagléSeOI for the LD and PD algorithms, and the number of

as iterations progress, while the “0iteration of the PD iterations actually performed is reported in the captioeath

algorithm shows a much stronger sharpening effect. Thisﬁgbﬁgure' In_terms of choicelof Tikhonovfaf:tor_, as the QR and
as well represented by a higher value |E®)|2, reported LD/PD algorithms present different regularization functls,
in the captions of Figure 3, which reaches 4;99_1 for two different values were used for the QR algorithm and for

the LD algorithm and 8.5610~ for PD. The term||L©|2 the TV regularized algorithms. The two values were chosen

as discussed before, assumes larger values for fast sp&iﬁPmat'C?‘"y using thE'X?d Noise F|ggrernethod 321, W'th.

variations, and it is thus indicative of sharp images. THd NOIS€ figure of 1. Thls mgthod fmd;_thg regulan;atpn
Total Variation of the images, on the other hand, measu grameter that re_sults N a given amplification of NoISE N
the variations present in the image, but now how sharp they reconstructeq images. The 'Ijkhonov .p.ara_meter sellercted
are, and for this reason it can lead to sharper images if udBlp way resqlts in the same noise amplification for différen
as a regularization term. The PD algorithm results in a TWethOdS' which may then be fairly compared to each other.

of 3.08, compared to 3.28 for the LD algorithm. The better Across all noise levels the differences between algorithms

performance of PD can be attributed to the use of a mute noticeable and consistent. The PD algorithm produees th

smaller value of3 than what possible with the LD algorithm, Sharpest images, the QR algorithm the smoothest and the LD
as discussed in the following sections algorithm produces shaper images than the QR algorithm but

not as sharp as PD. In the caption of each figure we report

In terms of computational effort, the LD and PD algorithmghe value of|| L®||? and of TV(©). The quadratic functional
require a similar effort per iteration compared to quadratj| L®||? is sensitive to the sharpness of the images, and presents
algorithms. In the case of the LD algorithm the updatrger values for the PD algorithm than for LD or QR. This
equation (18) differs from the quadratic update (10) only falifference between LD and PD is due to the fact that the PD
the presence of the matric& ' andF, which are trivial to algorithm can be run with much smaller values/fvithout
compute being diagonal. For both algorithms the computatiacncurring in stability problems [28]. In the simulations weed
of §@,, by solving the dense linear system in (18) is dominart = 10~3 for LD and 8 = 10~'2 for PD. The smallerg
with respect to any other computation, and so the cost peues the PD algorithm can be run with result in a better
iteration for the two algorithms is the same. In the case ef tlapproximation of the TV functional and hence in the sharper
PD algorithm, there is both an update equation for the primiahages. We weren’t able in our experiments to reduceihe
variables and one for the dual variables. Similarly to LDg thvalue for the LD to levels similar to the ones used for PD or
primal update (38) involves the diagonal matrides' and anyway below3 = 103, as this results in a slow convergence
K, which are readily computed, and the main computationahd eventually in instability. The PD-IPM framework is ircfa
cost is represented by the solution of the dense linearmystknown to be better than other schemes at dealing with non—
that givesd®;. The dual update computation is quick, as itlifferentiability of the objective function, and this is eggtical
is formulated as a product of sparse matrices (39). From thwsrification of this aspect. In each figure we report also the
analysis and in our numerical experience, the computdtionvalue of TV (®). As outlined in Figure 1, the Total Variation
cost at each iteration of QR, LD and PD is dominated by the not necessarily an indicator of the sharpness of the isiage
solution of the dense linear systems in (10), (18), and (3&) t the PD reconstructions show smaller values for TV but the
give §©y, and this is identical for the three algorithms. Théargest for|| L®||. This is a practical verification that the use
algorithms differ in the numbers of iterations that are iszpl  of the TV functional allows reconstruction of sharp profjlas
for reaching convergence. Typically LD requires a smalléfV (®) can take smaller values thad.®||? in the presence
number of iterations compared to PD. The first algorithrof sharp variations.

- 1} <0.01 (47)



For a noise level of % both the LD and PD algorithms volume. Images are represented on the same color scalen Agai
show sharper reconstructions compared to QR, and PDrégonstructions show the different characteristics ofdgatic
significantly shaper than LD. The TV regularized algorithmsegularization with respect to total variation regulafia@a, the
and particularly PD, are capable of showing a better sejparatsecond presenting sharper reconstructions and largerastst
between the top and bottom inclusions, while the QR showda conductivity distributions that present step changes.
smoother transition from the higher to the lower conduttjvi
offering a less clear separation between the inclusionsaFog Pig Lung Injury

noise level of 2 the QR algorithm identifies the single top Pig | iniury d ken f h dv of Ererich
insulating inclusion as a double spot, while the TV reguledi g lung injury data were taken from the study of Frerichs

algorithms, and particularly PD, show a uniform spot. For 6]. Briefly, lung injury was induced by lavage of lungs of an

noise level of % for all the algorithms show artifacts, though"]lneSthetlzed ventilated PIg. Po§|t|ve end—ex_pwator)ssmm

the PD algorithms presents a more faithful reconstructibn QDEE.P) was thep progressively increased while EIT data were
the original image. In these images is more evident how tﬁ\gquwed. Two 'mages are recons_tructed. DM@Q aqd

QR algorithm fails to identify the top insulating inclusi@s Vie2) are acquired at the end-expiratory and e.nd—|.nsp|ratory
a single spot. The TV algorithms describe better this sour@éCles with a PEEP level of cm H2Q for the _f|r_st Image

of contrast, this being a blocky distribution, matching htké and of 20 cm H,0 for the second image. Clinically it is

TV prior. The PD algorithm offers a sharper reconstructio#nOWn that supine subjects with injured lungs will receigsd
compared the LD and QR ventilation at the top of the lungs at low levels of PEEP and

dependent lung regions will be recruited as PEEP increases.
This physiology realistic effect shows with all the algbrits.
D. In Vivo Data The differences between the images are due to the shape of
Three different sets of experimental data are considerkd. fhe reconstructed lung region. For the QR algorithm, a bblirr
EIT data were acquired with 16 electrodes arranged in a plaiggion with a broad central peak is shown, while for the TV
using an adjacent measurement scheme. The sets are relag@gelarized algorithms, the lung regions appear as a more
to human gastric emptying (HGE), human breathing (HBRJ)niform image region with a flatter central plateau.
and pig lung injury (PLI) studies. The HGE and HBR data
were acquired using the system described in [33]. The PLI V. DISCUSSION ANDCONCLUSION

data were acquired using the system described in [34]. In this work we present the use of Primal Dual - Interior

Point Methods for efficiently using TV as a regularization
E. Human Gastric Emptying functional in Electrical Impedance Tomography. Through nu

Human gastric emptying data were collected for the Stu(ggz1eric:al experiments .and recor_lstruction of medical dgta we
described in [35]. Briefly, electrodes were placed aroured tF"OW that TV regularized algorithms produce sharper images
abdomen of a seated young male subject. Measured d3pgPared to quadratic regularization algorithms and these
were acquired before} (o), and after drinking,V (o2), algopthms can be successfully _applled to real d_ata from
Coca—Cola. The data have been reconstructed with the thfagdical experiments. For comparison purposes we implement
algorithms QR, LD and PD, as illustrated in Figure 5. Avyo aI_gprithms for TV regularized reconstruction:the Lagg
mesh roughly resembling the anatomy of the subject was usBiffusivity algorithm and an algorithm based on the Primal
and all the three reconstruction algorithms identify diggmne U@l - Interior Point framework. The first algorithm, LD,
change in conductivity that has occurred in the subject. THgduires minor modifications with respect to the common
images show a localized negative impedance change, whictPRUSS Newton quadratic scheme and the theoretical fowmdati
attributed to a local decrease in conductivity as the gaslesb ©f this method is readily understood as it stems from the
present in the drink fill the stomach of the subject. The thr@@plication of the Gauss Newton method to the modified
images are represented on the same color scale, for allowiHgctional TVs. The Lagged Diffusivity method though, for
comparison. The TV regularized PD and LD reconstructiorfénall values off3, requires careful techniques for reducing

show a greater sharpness for the localized conductivitpgha 21d controlling the value of such parameter, as otherwise
and are able to reconstruct a larger contrasts. the method can become unstable or very slow to converge.

This of course is an undesirable effect, and adds one layer
) of complexity to the actual implementation and use of the
F. Human Breathing algorithm. We show that the second algorithm, PD, can be
Human breathing data were acquired from a healthy youngn with values of3 as small as10~'2 without requiring
male subject during normal breathing while seated. Eldetso any control ong. This algorithm, based on the primal dual
were placed around the chest at @& intercostal space. Mea- interior point framework, results thus in a better apprcadion
sured datédV (o1) and V' (o2) corresponds to end—expiratoryof the TV functional, presenting sharper images, and has
and end-inspiratory cycles respectively. Images werenrecahe important advantage of not requiring the control of an
structed on a mesh roughly conforming to the anatomy afiditional parameter3 can simply be set to a small constant
the subject, and results from the three different algorghnvalue that produces sharp images.
is shown in Figure 6. All the three algorithms identify the We have shown that TV regularization can be success-
increased resistivity of the lungs due to the inspired diully applied to medical applications of EIT. The sharper



reconstructed images and the fact that the technique pgsesery)
larger contrasts for blocky conductivity distributions gt
resultin enhancements in clinical applications. In paficwe 18]
expect TV regularized algorithms to be useful, for example,
in EIT cancer detection applications, where EIT is used for
detecting localized high impedance tissues. An other aa Wo
TV regularized algorithms might provide enhancements over
current techniques are lung imaging applications. Thepshar
impedance contrast between the lung and the surround%%]
tissue, or within an injured lung, where liquids might bgz1]
present and provide a strong and sharp contrast, might be
reconstructed better qualitatively and quantitativelyabyrv [22]
regularized algorithm.

While the present work focuses on numerical methods afdl
presents somi vivo results, we are interested in conducting
future work in investigating the use of TV regularization ®n [24]
wider scale and in different medical applications in order t[25]
gain a better understanding of the practical benefits thabea
gained. An implementation of both the LD and PD algorithmgs]
has been released for public access with the EIDORS project
(http://www.eidors.org/). [27]
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(a) LD iter=2,
|IL®|?=3.31 x10"*
TV (©)=3.61x10°

(b) LD iter=5,
|L®]||>=4.48 x10~*
TV (©)=3.33x10°

(c) LD iter=10,
|ILO®|*=4.99 x10~*
TV (©)=3.28 x10°

(d) PD iter=2,
|L®|?=3.55x10"*
TV (©)=3.99 x10°

(e) PD iter=5,
|L®]||?=4.51x10"*
TV (©)=3.55 x10°

(f) PD iter=10,
|L®|*=8.56 x10~*
TV (©)=3.08 x10°

Fig. 3. Convergence of the TV regularized algorithms. Differerifigures represent different steps of the reconstructioth@fumerical phantom data. The
top row illustrates the 2t, 5'h and 10 steps for the Lagged Diffusivity algorithm, the bottom rdwe same iterative steps for the Primal Dual - Interior
Point Method algorithm.

Fig. 2.
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(a) QR, 0% noise, iter=1, (b) LD, 0% noise, iter=10, (c) PD, 0% noise, iter=14,
IL®|?=9.14 x10~* |IL®|?=1.04 x10~3 IL®|?=2.39 x10~3
TV (©)=7.12x10~* TV (©)=6.09x10~* TV (©)=4.87x10"1
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(d) QR, 1% noise, iter=1, (e) LD, 1% noise, iter=9, (f) PD, 1% noise, iter=13,
|IL®|?=9.48 x10~* |IL®|?=1.02x10~3 |IL®|?=2.24 x10~3
TV (©)=7.28 x10~ ! TV (©)=6.11x10"* TV (©)=4.86x10""1

(h) LD, 2% noise, iter=8, (i) PD, 2% noise, iter=14,
|IL®|*=1.08 x10~3 |lL®|?=2.59 x10~3
TV (©)=5.07x10"*

(9) QR, 2% noise, iter=1,
IL®|*=1.10 x10~3
TV (©)=7.87 x10~* TV (©)=6.34 x10~*

1:“
KRR
R
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S

() QR, 3% noise, iter=1, (k) LD, 3% noise, iter=8, () PD, 3% noise, iter=13,
|IL®|*=1.38 x10~* |IL®|?=1.25x10"3 |L®|?=2.94 x10~3
TV (©)=8.73x10~ ! TV (©)=6.77 x10~* TV (©)=5.47 x10"*

Fig. 4. lllustration of the noise performance of quadratic and T\gularized algorithms. Different subfigures represent restouctions of the numerical
phantom data for increasing noise levels and for differelgoathms. The three columns show respectively the quadraegularized algorithm, the Lagged
Diffusivity Algorithm and the Primal Dual - Interior Point &thod algorithm. Each row is relative to a different levelmmiise, from0 to 3 %. All the figures
are represented on the same color scale with a minimum vefl@ess8 S m~! and a maximum value df.18 S m~1.
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(a) QR, iter=1, (b) LD, iter=15, (c) PD, iter=11,
|IL®|*=9.57 | L®||?=204.6 ||IL®|*=305.3
TV (©)=64.02 TV (©)=128.1 TV (©)=1335

Fig. 5. Time difference EIT image of human stomach emptying. Cdsguanf the quadratic and of the two TV regularized algorighrAll the figures are
represented on the same color scale and in arbitrary condiictunits.

AVAVANAVAVAY o AVAVANA 7 4 g

TRIR R LRI
RS DR
LOSEAALRAIIRTTA DRARARAK SIS
RS s

KRG Lavav, v,

s ST,
ORISR
& (g’ev‘VAVAVAVAV WAV Q)

B Isvavavay %
0 XA RO

W
K]
7
%
/X
0,
K
SOKP

“X%VAVAVAVA

7

vv
D

QP
VAVAVA‘

NN

VAVAVAVAVA!

2

PO
s
Vaveva¥

Ay
VAV,

VAN

D
o<
VAVAVAVAY

SN
VAVAVA

%VAVAVAV‘ P,
VAWA
VAVAVAVA
K %,u%'#"‘
’#VAVAVA‘
VAVAVAVAVAY

AVAVA A7
K

PP < < <4
(V” AVAVISAVAVA 75 >
SRS XA TA LS
>

Q/
NVAVA
XK

AVAVAVAVAS.
QTSN

Ve

Q. SHS.
SRRESIREDA
AV

VA
QL
KX

R

3

IR THAK T AV Vavi Ve a bV VB
RIS R RSRIERRIITST A ey
LA R ARA AT LA RUAAAT LA LUAAT
(a) QR, iter=1, (b) LD, iter=18, (c) PD, iter=12,
|IL®]||>=699.8 |IL®|*=1667 |lL®|?=2722
TV (©)=628 TV (©)=447.5 TV (©)=475.7

Fig. 6. Time difference EIT image of a human thorax during breathamnparison of the quadratic and of the two TV regularizegbethms. All the figures
are represented on the same color scale and in arbitrary ootidity units.
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(a) QR, iter=1, (b) LD, iter=4, (c) PD, iter=14,
|L®|*=2.60 x10~° |L®]||?=4.17 x10~° |IL®|?=7.79 x10~°
TV (©)=1.01x10"* TV (©)=1.28 x10~* TV (©)=7.50x10"2

Fig. 7. Time difference EIT image of injured swine lungs, PHEPm H2O. Comparison of the quadratic and the two TV regularized atpans. All the
figures are represented on the same color scale and in arfgittanductivity units.

—(‘VAVAVAVQ—
SIS
‘ § 50
Q KD
A PRPK
K1 KKK
Sl S
b e
KK :ﬁ‘ g %% VXﬁ A<D
S LSSy
ool RS ES P
" % "
v
(a) QR, iter=1, (b) LD, iter=3, (c) PD, iter=15,
|IL®|*=1.16 x10~° |L®]|?=1.89 x10~° IL®|?=2.77 x10~°
TV (©)=7.03x10"2 TV (©)=9.37 x10~2 TV (©)=5.31x10"2

Fig. 8. Time difference EIT image of injured swine lungs, PEEPcm H2O. Comparison of the quadratic and of the two TV regularizecbatgms. All
the figures are represented on the same color scale and irtranpiconductivity units.



