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In vivo Impedance Imaging with Total Variation
Regularization

A. Borsic, B. M. Graham, A. Adler , W. R. B. Lionheart

Abstract—We show that electrical impedance tomography
(EIT) image reconstruction algorithms with regularization based
on the Total Variation (TV) functional are suitable for in vi vo
imaging of physiological data. This reconstruction approach helps
to preserve discontinuities in reconstructed profiles, such as step
changes in electrical properties at inter-organ boundaries, which
are typically smoothed by traditional reconstruction algorithms.
The use of the TV functional for regularization leads to the min-
imization of a non-differentiable objective function in the inverse
formulation. This cannot be efficiently solved with traditional
optimization techniques such as the Newton Method. We explore
two implementations methods for regularization with the TV
functional: the Lagged Diffusivity method and the Primal Dual –
Interior Point Method (PD–IPM). First we clarify the implem en-
tation details of these algorithms for EIT reconstruction.Next, we
analyze the performance of these algorithms on noisy simulated
data. Finally, we show reconstructed EIT images ofin–vivo data
for ventilation and gastric emptying studies. In comparison to
traditional quadratic regularization, TV regularization shows
improved ability to reconstruct sharp contrasts.

Keywords: Electrical Impedance Tomography, EIT, Regular-
ization, Total Variation, TV, Lagged Diffusivity, Primal Dual
Interior Point Method

I. I NTRODUCTION

Electrical Impedance Tomography (EIT) uses surface elec-
trodes to make measurements from which an image of the
electrical conductivity distribution within some medium is
computed. The inverse conductivity problem is ill-posed [1];
consequently regularization techniques have been adoptedin
order to stabilize the inversion. Most common regularization
methods impose (explicitly or implicitly) a penalty on non-
smooth regions in a reconstructed image. Such methods confer
stability to the reconstruction process, but limit the capability
of describing sharp variations in the sought parameter.

One technique to permit image regularization without im-
posing smoothing is the Total Variation (TV) formulation
of regularization. The Total Variation functional is assuming
an important role in the regularization of inverse problems
belonging to many disciplines, thanks to its ability to preserve
discontinuities in the reconstructed profiles. Edge preservation,
if it works successfully, has clear clinical benefits. The cases
explored in this work include images of the lungs and stomach,
which have well defined organ boundaries that present sharp
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transitions in conductivity. The ability thus of reconstructing
sharp changes should lead to a better estimation of the
boundaries and also to a better accuracy in the estimated
values. For example, in the case of lung imaging, sharp
boundaries can occur within a diseased lung, at the interface
between ventilated and collapsed regions. Sharp images allow
therefore to better identify the boundary between the two
regions. Other applications of EIT that might benefit from
sharp reconstructions are those related to cancer detection. In
these applications, where EIT has the potential to be used as
a screening tool, it is important to detect small localized con-
ductivity contrasts. Quadratic algorithms blur such contrasts
and make more difficult to estimate the size and the contrast
value, due to the partial volume effect that occurs. Sharper
reconstructions would allow better detection.

To date, almost allin-vivo studies use quadratic regulariza-
tion or backprojection algorithms, which are known to blur
image contrasts.

Edge preserving algorithms like the ones that use TV
regularization have not been used as they are more complex
to implement and thought not to be robust enough. In this
paper we develop a normalized time–difference EIT image
reconstruction using TV regularization, and show that it works
well for imaging of in–vivoexperimental data of lung ventila-
tion (normal and diseased) and gastric emptying. In this work
we use time difference EIT for reconstructing the change in
conductivity between data frames. This method is widely used
to alleviate systematic errors from instrument and electrode
positioning inaccuracies in medical applications [2].

In Section II we introduce the general problem of EIT
reconstruction, we introduce quadratic regularization and the
properties of the TV functional. In Section III we discuss the
practical problems that TV regularization poses in terms of
non–differentiability and we introduce the Lagged Diffusivity
and the Primal–Dual Interior Point Method algorithms, which
we apply to impedance tomography. In Section IV we evaluate
the proposed methods on syntectic and onin-vivo data, show-
ing the characteristics of TV regularized images and that TV
regularization can be applied successfully to clinical data. In
Section V we draw conclusions regarding the work and results
presented in this manuscript.

II. I MAGE RECONSTRUCTION

In EIT a set of electrodes are attached to the patient, currents
are passed through the electrodes and the resulting potentials
are measured. By using a numerical model of the experiment
the conductivity is reconstructed as a least squares fitting
problem.
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A. Forward Model

The forward problem is modeled with a low-frequency ap-
proximation, where the electric field is considered conservative
and the conduction currents dominant with respect to the
displacement currents, which leads to the following partial
differential equation:

∇ · σ∇u = 0 on Ω (1)

where σ is the conductivity or admittivity of the body to
be imaged,u is the electric potential, andΩ the body to
be imaged. Electrodes are modeled with boundary conditions
that in the EIT field are referred to as Complete Electrode
Model [3]. The electrode model accounts for the contact
impedance by stating that for each portion of the boundary
∂Ωℓ underneath electrodeℓ:

u + zc σ
∂u

∂~n
= Vℓ on ∂Ωℓ ℓ = 1 . . .L (2)

wherezc is the contact impedance,ℓ is the electrode number,
Vℓ is the potential resulting at electrodeℓ, andL is the number
of electrodes. For each electrode the flux of the current density
through the contact surface must equal the injected current:

∫

∂Ωℓ

σ
∂u

∂~n
= Iℓ on ∂Ωℓ ℓ = 1 . . .L (3)

whereIℓ is the injected current at electrodeℓ.
Underneath the inter–electrode gaps no current should flow,

and the following condition is applied:

∂u

∂~n
= 0 on ∂Ω \ {∂Ω1 ∪ . . . ∪ ∂ΩL} (4)

B. Parameter Estimation

We consider difference imaging, where the goal of the
reconstruction is to recover the conductivity difference,due
to physiological changes, that have occurred in the region
of interest during a certain time interval. This approach is
common in medical applications of EIT, as it reduces different
types of image artifacts, for example breathing artifacts and
movement artifacts [2].

In difference imaging, a first data set of voltagesV (σ1) is
acquired at timet1 corresponding to a reference conductivity
distributionσ1, a second set of voltage dataV (σ2) is acquired
at timet2, corresponding to a conductivity distributionσ2. The
vector of data difference is formed as:

d = V (σ2) − V (σ1) (5)

The goal is to reconstruct the conductivity changeΘ =
σ2 − σ1 with respect to the reference conductivityσ1, by
predicting with the forward model the simulated dataW (Θ)
corresponding to a change in conductivity:

W (Θ) = V (σ1 + Θ) − V (σ1) (6)

and fitting the model to the data in the least–squares sense:

Θrec = argmin
Θ

1

2
‖W (Θ) − d‖2

+ α G(Θ) (7)

The estimation is regularized with a Tikhonov style regular-
ization, whereα is the Tikhonov factor, andG(Θ) is the

regularization functional that stabilizes the inversion.As we
consider difference measurements, the conductivity change
Θ with respect to the referenceσ1 can take both positive
and negative values, so (6) is an unconstrained minimization
problem.

C. Quadratic Regularization Functionals

In practice the forward model is implemented with a Finite
Element Method or, less commonly, with a Finite Difference
Method, and the conductivity is thus discretized. In this context
the functionalG(Θ) is often assumed to be of the form:

G (Θ) = ‖LΘ‖2 (8)

where we indicate with the bold characterΘ the vector of
discrete conductivity values and whereL is a regularization
matrix. In the literature there are several choices for the
matrix L, for example the identity matrix [4], a positive
diagonal matrix [5], approximations of first and second order
differential operators [6], and the inverse of a Gaussian matrix
[7]. Algorithms of this class fall into general framework:

Θrec = argmin
Θ

1

2
‖W (Θ) − d‖2

+ α ‖LΘ‖
2 (9)

The framework expressed by eq (9) can be called quadratic
regularization since the 2-norm is used. A norm guarantees
that the regularization functional is always non-negative, as a
penalty term should be, and more important, in the case of
the 2-norm, the resulting functional is differentiable, leading
to well embellished and easy to implement solutions of the
minimization problem. Quadratic regularization, becauseof
its differentiability, has been the common framework for
solving several inverse problems, and particularly for EIT
[4],[5],[6],[8],[9].

In practical implementations the optimization problem (9)is
solved iteratively by using the Gauss Newton method, leading
to a conductivity update:

δΘk = −(JT
k Jk + α LT L )−1[JT

k (W (Θk) − d) − αLT LΘk]
(10)

where k is the iteration number,δΘk is the conductivity
update at iterationk, andJk is the Jacobian of the forward
operatorW (Θ) computed forΘ = Θk. The drawback in
using quadratic regularization schemes is that, regardless of
the choice ofL, the technique cannot reconstruct step changes,
as smooth solutions are favored.

D. Total Variation Regularization Functional

There are situations in almost every field of application of
EIT where the imaged conductivity has discontinuities. In the
medical field an example is that of the inter organ boundaries
where each organ has its own electrical properties. Several
approaches have been investigated in order to overcome these
limitations. Often they can be considered a way to introduce
prior information. An example is anisotropic regularization
[10][11] where the structure of the expected sudden changesis
assumed to be roughly known. The smoothness constraints are
relaxed therefore in the direction normal to the discontinuities.
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In this way the algorithm better describes rapid variationsin
the object, however prior structural information needs to be
known in order to adopt such methods. Recently combination
of level set methods and TV regularization have been proposed
as well for elliptic inverse problems [12] and specifically for
EIT [13]. These methods can be used where the imaged body
is known a priori to have regions of constant conductivity.

In many least squares formulations (9), regularization ma-
trices L are discrete representations of differential operators
and are used in conjunction with the 2–norm. A different
approach is represented by the choice of the total variation
functional, which is still a differential operator but leads to
a L1 regularization scheme. The total variation (TV) of a
conductivity imageΘ is defined as:

TV (Θ) =

∫

Ω

|∇Θ| dΩ (11)

whereΩ is the region to be imaged.

Fig. 1. Two points A and B connected by three different monotonically
increasing functions (f1, f2, f3), all of them have the same Total Variation.

The TV functional was first employed by Rudin [14] for
regularizing the restoration of noisy images. The effective-
ness of the method in recovering discontinuous images can
be understood by examining the following one dimensional
situation.
Suppose that the two points A and B of Figure 1 are connected
by a path. Three possible functionsf(x) connecting them are
shown. As the functions are monotonically increasing, the TV
of each is:

TV (f) =

B
∫

A

f ′ (x) dx = f (B) − f (A) (12)

which is the same value for each function. TV treatsf1, f2

and f3 in the same way and when used as a penalty term
in a Tikhonov regularized inverse problem, will not bias the
result towards a smooth solution. On the other hand, theL2

norm yields different values forf1,f2 andf3. When used as
a penalty term theL2 norm will bias the solution towards
smoother functions, for which theL2 norm assumes smaller
values. Another way to understand the differences with other
techniques is to consider the discretized version of equation
(11). In our implementation we describe the conductivity as
piecewise constant, using a 2D finite element mesh. Being the
conductivity constant over each FEM element,∇Θ is non-null
only on the edges between elements, where the conductivity
presents a step change from one element to the other. For the

i-th edge, shared by the FEM elementsm(i) and n(i), the
jump in conductivity is:

∣

∣Θm(i) − Θn(i)

∣

∣. The variation over
the whole image can be found by integrating this jump over
all the edges of the mesh:

TV (Θ) =
∑

i

li
∣

∣Θm(i) − Θn(i)

∣

∣ (13)

whereli is the length of thei-th edge in the mesh,m(i) and
n(i) are the indices of the two elements sharing thei-th edge,
and the indexi ranges over all the edges. Equation (13) can
be expressed in terms of matrices as:

TV (Θ) =
∑

i

|L iΘ| (14)

whereL is a sparse matrix, with one row per each edge in
the mesh. Every rowLi has two non zero elements in the
columnsm(i) andn (i) : Li = [0, ..., 0, li, 0, ..., 0,−li, 0...0].
TV regularization is therefore of theL1 kind: it is a sum
of absolute values. The absolute value guarantees the pos-
itivity of the penalty function but unfortunately results in
non–differentiability in the points whereΘm(i) = Θn(i).
The numerical problem thus needs to be addressed properly.
However, the important gain is that theL1 regularization does
not penalize image discontinuities.

III. SOLVING THE TV REGULARIZED EIT PROBLEM

Two different approaches have been proposed in the past
for application of TV regularization to EIT, the first by Rudin
[14] and Dobson [15] and the second by Somersalo [16] and
by Kolehmainen [17]. Rudin and Dobson use a deterministic
framework and replace the absolute value function in the
neighborhood of zero by a polynomial to obtain a contin-
uously differentiable function. Somersalo and Kolehmainen
apply Markov Chain Monte Carlo (MCMC) methods to solve
the TV regularized inverse problem. Probabilistic methods,
such as MCMC, offer central estimates by sampling the
posterior probability density of the sought parameters and
therefore differentiability is not required (smoothing ofthe TV
functional). Though this method is successful, the sampling
process involves a substantial computational effort and the
image reconstruction can be lengthy. Deterministic methods
on the other hand require differentiability and a number of
different approaches has been developed.

Deterministic numerical methods have been used for the
regularization of image de-noising and restoration problems
with the TV functional. The numerical efficiency and stability
are the main issues to be addressed. Most of the deterministic
methods draw from ongoing operations research advances, as
TV minimization belongs to the important classes of problems
known as “minimization of sum of norms” [18] and “linear
L1 problems” [19] .

Recent developments in operations research [18] have pro-
vided new classes of methods to deal efficiently with the
problems of minimizing the sum of absolute values. Chan
[20] has drawn from these advances and investigated the
problem of restoring images with Primal Dual-Interior Point
Methods (PD-IPM). In this paper we introduce and compare
the performance of two methods: the “Lagged Diffusivity”
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method, which is straightforward to implement but requires
smoothing of the TV functional to avoid numerical instability,
and an algorithm based on the PD–IPM theory, which is more
efficient and has no stability problems.

A. Methods Based on Approximations of TV

Early algorithms for TV regularization in image denois-
ing applications approximate the TV functional in different
manners in order to remove the non–differentiability. Thisis
achieved by substituting the absolute value with a function
that has a smooth corner near the origin of the axes and that
approximates the absolute value function elsewhere [21] [22]
[23] [24] [25] [26], [17]. In the following we defineTVβ(Θ)
as

TVβ(Θ) =

∫

Ω

√

|∇Θ|2 + β (15)

for β > 0 the functional is differentiable andTVβ(Θ) →
TV (Θ) for β → 0. We formulate the TVβ regularized inverse
problem as

Θrec = argmin
Θ

1

2
‖W (Θ) − d‖2

+ α TVβ(Θ) (16)

and when the conductivity is discretized this becomes

Θrec = arg min
Θ

1

2
‖W (Θ) − d‖2 + α

∑

i

√

|L iΘ|2 + β

(17)
where L is as in equation 14. In order to minimize the
objective function in (16), the Newton’s Method has been
considered in several works [22], [24], [25]. In this case the
iterative update equation becomes:

δΘk = −(JT
k Jk + α LT E−1

k FkL)−1 · (18)

·
[

JT
k (W (Θk) − d) − α LT E−1

k LΘk

]

with

ηi =
√

|L i Θk|2 + β (19)

Ek = diag(ηi) (20)

Fk = diag

(

1 −
|L iΘk|

2

η2
i

)

(21)

The convergence properties of the Newton’s Method have
been studied by Vogel [27] and by Chan [24] in the context
of image denoising problems. Both authors report that the
method results convergent only for values ofβ which are
sufficiently large; in other words the method has a small
convergence region, with respect toβ. Vogel reports that for
small values ofβ the size of the convergence region can be
shown to be proportional toβ3/2, therefore decreasing with
beta decreasing. The same difficulties have been found in [28]
in the context of EIT. It is obviously desirable to solve (17)for
small values ofβ for approximating a true TV regularization,
but this is difficult in practice.

Noting that the approximated Hessian matrix in (18) is

JT
k Jk + α LT E−1

k FkL (22)

and that, by expandingFk, this can be written as

JT
k Jk + α LT E−1

k L − α LT E−1
k diag

(

|L iΘk|
2

η2
i

)

L (23)

it has been proposed [22] to drop the negative semidefinite
matrix

−LT E−1
k diag

(

|L iΘk|
2

η2
i

)

L (24)

leading to the update equation

δΘk = −(JT
k Jk + α LT E−1

k L )−1 · (25)

·
[

JT
k (W (Θk) − d) − α LT E−1

k LΘk

]

This method, sometimes referred to as “Lagged Diffusivity”
was used by Vogel [22] and Dobson [23] as an alternative
to Newton’s Method. The method is believed to have better
convergence properties with respect to Newton Method thanks
to dropping the negative semidefinite matrix from the Hessian.
The method is globally convergent, though local convergence
is only linear [23]. As discussed in the remainder of the present
work, we have implemented this method for comparison pur-
poses with respect to the primal dual - interior point algorithm
introduced next. Though the Lagged Diffusivity method shows
better convergence properties than the Newton’s Method, still
it converges slowly or becomes unstable for small values
of β [28]. Continuation strategies are required for starting
the algorithm with larger values ofβ and progressively and
carefully reducingβ as the algorithm progresses.

B. Primal Dual - Interior Point Methods

An efficient method for dealing with the non–
differentiability of the TV regularization functional hasbeen
proposed by Chan [20] in the context of image denoising
applications. The method is based on the primal–dual theory
developed by Andersen [18].

We will label as primal (P) the TV regularized inverse
problem formulation

(P ) arg min
Θ

1

2
‖W (Θ) − d‖2 + α

∑

i

|LiΘ| (26)

noting that for eachi

|LiΘ| = max
χ

i
:|χ

i
|≤1

χiLiΘ (27)

whereχ is a vector of scalar auxiliary variables. By applying
(27) to (P ), a second, equivalent problem, which is a maxi-
mization problem, is obtained

(D) max
χ:|χi|≤1

min
Θ

1

2
‖W (Θ) − d‖2

+ α
∑

i

χiLiΘ (28)

this problem is called dual (D) and the auxiliary variablesχ

are labeled dual variables. For feasible points [18] of the dual
problem (i.e.|χi| ≤ 1) the objective function of (P) can be
shown to take greater values than the objective function of the
dual problem (D). The two objective functions take the same
value at a single point, which is the optimal point both for
(P) and for (D). Such optimal point can therefore be sought
by nulling the difference between the two objective functions,
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called theprimal–dual gap:

1

2
‖W (Θ) − d‖2 + α

∑

i

|LiΘ|−

+
1

2
‖W (Θ) − d‖2

− α
∑

i

χiLiΘ

= α
∑

i

(|LiΘ| − χiLiΘ)

(29)

The primal–dual (PD) gap is null if for eachi eitherLiΘ = 0
or χi = |LiΘ|/(LiΘ). The condition that nulls the PD gap
is therefore

(|LiΘ| − χiLiΘ) = 0 i = 1, . . . , n (30)

and it is calledcomplementarity condition. The complemen-
tarity condition captures the optimality of both (P) and (D).
An important class of algorithms, called Primal–Dual Interior
Point Methods (PD–IPM) is based on a framework that
enforces the complementarity condition, the primal feasibility
(if any) and the dual feasibility (if any) [18] [29].

The PD–IPM framework for the TV regularized EIT inverse
problem can be written noticing that 28 can be simplified by
enforcing the condition

J(Θ)T [W (Θ) − d] + αLΘ = 0 (31)

which is the first order condition for the inner minimization
problem onΘ, and thus (D) can be rewritten as:

(D) max
χ:|χi|≤1

1

2
‖W (Θ) − d‖2

+ α
∑

i

χiLiΘ (32)

with Θ : J(Θ)T [W (Θ) − d] + αLΘ = 0

The PD-IPM framework is written thus enforcing the com-
plementarity condition for (P) and (D) and by maintaining the
feasibility conditions, obtaining:

|χi| ≤ 1 i = 1, . . . , n (33)

J(Θ)T [W (Θ) − d] + αLΘ = 0 (34)

(|LiΘ| − χiLiΘ) = 0 i = 1, . . . , n (35)

The systems of equations (33), (34), (35) constitutes the
framework and needs to be solved jointly on(Θ, χ). Here as
well the absolute value in (35) needs to be smoothed similarly
to (15) in order to obtain differentiability, though the meaning
of this smoothing is different in the context of the PD–IPM
framework than in (15). This is done by replacing|LiΘ| by
√

|LiΘ|2 + β in (35). The smoothed feasibility condition is
called thecentering condition[18] and it leads to a smooth pair
of optimization problems(Pβ) and (Dβ). The effect of such
condition is that solutions are approached, asβ is decreased,
from points away from the the boundaryχ : |χi| = 1 of the
feasible region, from which the name of centering condition
and of the notion of interior point methods.

The Gauss Newton method can now be applied to solve
smoothed primal–dual problem, obtaining the following sys-
tem for the updatesδΘ and δχ of the primal and dual
variables:

[

JT

k Jk αLT

KkL −Ek

] [

δΘk

δχ
k

]

= −

[

JT

k (W (Θk) − d) + αLT χ
k

LΘk − Ekχ
k

]

(36)
with

Kk = diag

(

1 −
χ

(k)
i LiΘk

ηi

)

(37)

Equation (36) leads to the following update for the primal
variables:

δΘk = −
[

JT
k Jk + αLT E−1

k KkL
]−1

· (38)

·
[

JT
k (W (Θk) − d) + αLT E−1

k LΘk

]

and the following for the dual variables:

δχk = −χk + E−1
k LΘk + EkKkL δΘk (39)

Equations (38) and (39) can therefore be applied iteratively to
solve the non-linear inversion (26). In our work we start the
iterative procedure by initializing the primal variables with
a single step of the quadratic reconstruction, and the dual
variables toχ0 = 0, which is a feasible point for the dual
variables.
Some care must be taken on the dual variable update, to
maintain dual feasibility. A traditional line search procedure
[30] with feasibility checks is not suitable as the dual update
direction is not guaranteed to be an ascent direction for the
modified dual objective function(Dβ).

The simplest way to compute the update is called thescaling
rule [18] which is defined to work as follows

χ(k+1) = ϕ∗
(

χ(k) + δχ
)

(40)

whereϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ : ϕ
∣

∣

∣
χ

(k)
i + δχi

∣

∣

∣
≤ 1, i = 1, . . . , n

}

(41)

An alternative way is to calculate the exact step length to the
boundary, applying what is called thestep length rule[18]

χ(k+1) = χ(k) + min (1, ϕ∗) δχ (42)

whereϕ∗ is a scalar value such that

ϕ∗ = sup
{

ϕ :
∣

∣

∣
χ

(k)
i + ϕ δχi

∣

∣

∣
≤ 1, i = 1, . . . , n

}

(43)

In the context of EIT, and in tomography in general, the
computation involved in calculating the exact step length to the
boundary of the dual feasibility region is negligible compared
to the whole algorithm iteration. It is convenient therefore
to adopt the step length rule, which in our experiments
resulted in a better convergence. The scaling rule has the
further disadvantage of always placingχ on the boundary
of the feasible region, which prevents the algorithm from
following the central path (sequence of points in the interior
of the feasibility region that converges to the optimal point).
Concerning the updates on the primal variable, the update
direction δΘ is a descent direction for(Pβ) therefore a
line search procedure could be appropriate. In our numerical
experiments we have found that for relatively small contrasts
(e.g. 3:1) the primal line search procedure is not needed, as
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the steps are unitary. For larger contrasts a line search on the
primal variable guarantees the stability of the algorithm.

As a side note it interesting to observe that at the first
iteration, with the initializationχ0 = 0, the matrixK results
equal to the identity and therefore the update for the primal
variable (38) is equal to the update of the Lagged Diffusivity
method (18). As the algorithm progresses, the matrixK tends
to the matrixF of the Newton’s method, therefore the Primal–
Dual Interior point method can be seen as an interpolation
between the Lagged Diffusivity, away from the optimal point,
and the Newton method, which has quadratic convergence, but
only in a neighborhood of the optimal point.

IV. EVALUATION PROCEDURE

In order to evaluate the properties of TV regularized al-
gorithms we have implemented the Lagged Diffusivity (we
will label this algorithm as “LD”) and the Primal Dual –
Interior Point Method (we will label this algorithm as “PD”)
and tested them against a traditional quadratic reconstruction
algorithm as in (9) (we will label this algorithm as “QR”).
Tests were conducted onin vivo data and on simulated data.
The in vivo data is time–difference data, collected with 16
electrode EIT systems implementing the adjacent protocol [7].
Though we introduced a fully non–linear framework in the
previous sections, we use for reconstruction of medical data
a linearized version of the algorithms. The choice of using
a linearized reconstruction is common in EIT medical time–
difference applications: the not perfectly known geometryof
the patient, the not perfectly known position of the electrodes
and the time–changing contour of the imaging region con-
tribute significant errors to measured data. These errors are
typically much greater than those resulting from linearizing the
forward operator. We linearize therefore the forward operator
as V (σ1 + Θ) ≈ V (σ1) + JΘ, where J is the Jacobian
computed forσ = σ1. From this follows thatW (Θ) ≈ JΘ and
the general formulation of the inverse problem (7) becomes:

Θrec = arg min
Θ

1

2
‖JΘ − d‖2

+ α G(Θ) (44)

Equations (9) (16) and (26) change accordingly. The quadratic
problem can be solved with a single step of (10) using
Jk = J(σ1), while the LD and PD algorithms remain iterative
as (18) and (38) (39) depend on the conductivity distribution
through the matricesE and K . The TV regularized prob-
lem is solved iterating respectively (18) and (38) (39) and
maintainingJk = J(σ1). As the reference conductivityσ1 is
not known, we linearized all the reconstructions around the
uniform conductivityσ1 = 1 Sm−1. Naturally this procedure
reconstructs conductivities in an arbitrary scale and not in
absolute values, but this is a common, accepted, effective
method for reconstructing time–difference data. The non-linear
framework we provide remains valid for the reconstruction of
absolute images, usingW (Θ) = V (Θ).

In order to evaluate the algorithms, simulated data was
generated as well, as discussed in the following subsections.

A. Simulated Data

We consider a 16 electrode EIT system using adjacent
stimulation and measurement (this matches the experimental
measurements we consider in the next subsection). A sim-
ulated phantom was generated using a 2–dimensional mesh
with 1024 first order triangular elements (see Figure 2), where
electrodes are described with the Complete Electrode Model.
The distribution of the simulated conductivity that has been
used for the tests provides sharp inclusions and also provides
a challenge for the reconstruction as there is a narrow gap
between the two inclusion regions. The simulated phantom has
a background conductivity of1 Sm−1, in the bottom part of the
phantom there is a larger inclusion with a value of 1.5 Sm−1,
in the top part of the phantom there is a smaller inclusion
with a conductivity value of 0.5 Sm−1. Time–difference data
were simulated by computing simulated data on a reference
distribution (homogenous phantom with a conductivity of1
Sm−1) and by taking the difference of such data with the data
computed on the phantom with the conductivity distribution
just described and shown in Figure 2. Images are reconstructed
on a two dimensional mesh with 576 elements not matching
the mesh used for forward computations, in order to avoid
what is referred as aninverse crime[31]. In addition to
this, in order to simulate systematic and random errors in
the data acquisition process, a synthetic noise vector was
generated, this to be added to the data in different noise levels.
Such vectorν, with the same length as the data difference
vectord, was generated extracting each sample from a Normal
distribution with zero mean and standard deviation of 1, and
then normalized as:

ν = ν
std(d)

std(ν)
(45)

wherestd(·) is the standard deviation of a vector. We specify
noise levels in percentages, for example we indicate the noisy
data produced asd + 0.01ν to have a 1% level of noise.

B. Convergence Behavior

We use a first series of numerical experiments for high-
lighting the typical convergence behavior of the LD and PD
algorithms. As we have linearized the forward operator, the
quadratic solution QR can be achieved with a single step
of (10), while LD and PD remain iterative. The respective
iterative update equations for LD and PD, (18) and (38),
depend on the productsLT E−1

k L and LT E−1KL , where the
diagonal matrixE−1 and the diagonal matrixE−1K depends
on ηi, and therefore on the reconstructed conductivity itself.
For this reason the reconstruction remains iterative. The value
of the diagonal elements of these matrices is decreasing for
increasing values ofηi (See eq. (20) and (37)). This weights
less larger jumps of conductivity between neighboring pixels.
This is a feedback effect, from the reconstructed conductivity
distribution to the regularization, and, similarly to dynamic
systems we refer to it as “dynamic regularization”. Due to
this, the LD and PD algorithms need a number of iterations
for both the conductivity distribution and the matricesE and
K to settle, as these are interlinked. In our simulations we
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adopt a stopping criterion based on the relative decrease of
the objective functional:

H(Θ) =
1

2
‖JΘ − d‖2

+ αTV (Θ) (46)

The iterative algorithms are stopped when the relative decrease
in the functional is less than 1%, that is:

[

H(Θk+1)

H(Θk)
− 1

]

≤ 0.01 (47)

wherek is the iteration number. With this stopping criterion
the LD algorithm converges in 8 iterations and the PD algo-
rithm in 10. In the top row of Figure 3 are shown the2nd,
the 5th and the10th reconstruction steps for the synthetic
difference data for the PD algorithm. The bottom row shows
the same reconstruction steps for the LD algorithm. All the
sub–figures are represented on the same color scale. While
the 2nd and 5th step for both the algorithms shows similar
reconstructed images, the images at the 10th step are different.
The LD algorithm does not sharpen significantly the image
as iterations progress, while the 10th iteration of the PD
algorithm shows a much stronger sharpening effect. This is
as well represented by a higher value of‖LΘ‖2, reported
in the captions of Figure 3, which reaches 4.99×10−1 for
the LD algorithm and 8.56×10−1 for PD. The term‖LΘ‖2,
as discussed before, assumes larger values for fast spatial
variations, and it is thus indicative of sharp images. The
Total Variation of the images, on the other hand, measures
the variations present in the image, but now how sharp they
are, and for this reason it can lead to sharper images if used
as a regularization term. The PD algorithm results in a TV
of 3.08, compared to 3.28 for the LD algorithm. The better
performance of PD can be attributed to the use of a much
smaller value ofβ than what possible with the LD algorithm,
as discussed in the following sections.

In terms of computational effort, the LD and PD algorithms
require a similar effort per iteration compared to quadratic
algorithms. In the case of the LD algorithm the update
equation (18) differs from the quadratic update (10) only for
the presence of the matricesE−1 and F, which are trivial to
compute being diagonal. For both algorithms the computation
of δΘk by solving the dense linear system in (18) is dominant
with respect to any other computation, and so the cost per
iteration for the two algorithms is the same. In the case of the
PD algorithm, there is both an update equation for the primal
variables and one for the dual variables. Similarly to LD, the
primal update (38) involves the diagonal matricesE−1 and
K , which are readily computed, and the main computational
cost is represented by the solution of the dense linear system
that givesδΘk. The dual update computation is quick, as it
is formulated as a product of sparse matrices (39). From this
analysis and in our numerical experience, the computational
cost at each iteration of QR, LD and PD is dominated by the
solution of the dense linear systems in (10), (18), and (38) that
give δΘk, and this is identical for the three algorithms. The
algorithms differ in the numbers of iterations that are required
for reaching convergence. Typically LD requires a smaller
number of iterations compared to PD. The first algorithm

often converges in 7 to 10 iterations, while the second requires
typically 10 to 14 iterations, in the cases we present. The PD
algorithm takes more iterations to converge as it manages to
significantly reduce the objective function for a larger number
of steps, achieving thus shaper contrasts in the reconstructed
images than the LD algorithm, as illustrated by the iterations
in Figure 3.

C. Noise Effects

In order to study the noise performance of the algorithms,
noise was added to the simulated data with noise levels of
0%, 1%, 2% and 3%. Reconstructions are shown in Figure
4. All the sub–figures are represented on the same color
scale. Columns are relative to the QR, LD and PD algorithms
while rows are relative to different levels of noise. For the
QR algorithm 1 iteration was used, as we are addressing
the linearized problem. The termination criterion (47) was
used for the LD and PD algorithms, and the number of
iterations actually performed is reported in the caption ofeach
subfigure. In terms of choice of Tikhonov factor, as the QR and
LD/PD algorithms present different regularization functionals,
two different values were used for the QR algorithm and for
the TV regularized algorithms. The two values were chosen
automatically using theFixed Noise Figuremethod [32], with
a noise figure of 1. This method finds the regularization
parameter that results in a given amplification of noise in
the reconstructed images. The Tikhonov parameter selectedin
this way results in the same noise amplification for different
methods, which may then be fairly compared to each other.

Across all noise levels the differences between algorithms
are noticeable and consistent. The PD algorithm produces the
sharpest images, the QR algorithm the smoothest and the LD
algorithm produces shaper images than the QR algorithm but
not as sharp as PD. In the caption of each figure we report
the value of‖LΘ‖2 and ofTV (Θ). The quadratic functional
‖LΘ‖2 is sensitive to the sharpness of the images, and presents
larger values for the PD algorithm than for LD or QR. This
difference between LD and PD is due to the fact that the PD
algorithm can be run with much smaller values ofβ without
incurring in stability problems [28]. In the simulations weused
β = 10−3 for LD and β = 10−12 for PD. The smallerβ
values the PD algorithm can be run with result in a better
approximation of the TV functional and hence in the sharper
images. We weren’t able in our experiments to reduce theβ
value for the LD to levels similar to the ones used for PD or
anyway belowβ = 10−3, as this results in a slow convergence
and eventually in instability. The PD-IPM framework is in fact
known to be better than other schemes at dealing with non–
differentiability of the objective function, and this is a practical
verification of this aspect. In each figure we report also the
value ofTV (Θ). As outlined in Figure 1, the Total Variation
is not necessarily an indicator of the sharpness of the images:
the PD reconstructions show smaller values for TV but the
largest for‖LΘ‖2. This is a practical verification that the use
of the TV functional allows reconstruction of sharp profiles, as
TV (Θ) can take smaller values than‖LΘ‖2 in the presence
of sharp variations.
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For a noise level of 1% both the LD and PD algorithms
show sharper reconstructions compared to QR, and PD is
significantly shaper than LD. The TV regularized algorithms,
and particularly PD, are capable of showing a better separation
between the top and bottom inclusions, while the QR shows a
smoother transition from the higher to the lower conductivity,
offering a less clear separation between the inclusions. For a
noise level of 2% the QR algorithm identifies the single top
insulating inclusion as a double spot, while the TV regularized
algorithms, and particularly PD, show a uniform spot. For a
noise level of 3% for all the algorithms show artifacts, though
the PD algorithms presents a more faithful reconstruction of
the original image. In these images is more evident how the
QR algorithm fails to identify the top insulating inclusionas
a single spot. The TV algorithms describe better this source
of contrast, this being a blocky distribution, matching well the
TV prior. The PD algorithm offers a sharper reconstruction,
compared the LD and QR.

D. In Vivo Data

Three different sets of experimental data are considered. All
EIT data were acquired with 16 electrodes arranged in a plane
using an adjacent measurement scheme. The sets are relative
to human gastric emptying (HGE), human breathing (HBR)
and pig lung injury (PLI) studies. The HGE and HBR data
were acquired using the system described in [33]. The PLI
data were acquired using the system described in [34].

E. Human Gastric Emptying

Human gastric emptying data were collected for the study
described in [35]. Briefly, electrodes were placed around the
abdomen of a seated young male subject. Measured data
were acquired before,V (σ1), and after drinking,V (σ2),
Coca–Cola. The data have been reconstructed with the three
algorithms QR, LD and PD, as illustrated in Figure 5. A
mesh roughly resembling the anatomy of the subject was used,
and all the three reconstruction algorithms identify clearly the
change in conductivity that has occurred in the subject. The
images show a localized negative impedance change, which is
attributed to a local decrease in conductivity as the gas bubbles
present in the drink fill the stomach of the subject. The three
images are represented on the same color scale, for allowing
comparison. The TV regularized PD and LD reconstructions
show a greater sharpness for the localized conductivity change
and are able to reconstruct a larger contrasts.

F. Human Breathing

Human breathing data were acquired from a healthy young
male subject during normal breathing while seated. Electrodes
were placed around the chest at the6th intercostal space. Mea-
sured dataV (σ1) andV (σ2) corresponds to end–expiratory,
and end–inspiratory cycles respectively. Images were recon-
structed on a mesh roughly conforming to the anatomy of
the subject, and results from the three different algorithms
is shown in Figure 6. All the three algorithms identify the
increased resistivity of the lungs due to the inspired air

volume. Images are represented on the same color scale. Again
reconstructions show the different characteristics of quadratic
regularization with respect to total variation regularization, the
second presenting sharper reconstructions and larger contrasts
for conductivity distributions that present step changes.

G. Pig Lung Injury

Pig lung injury data were taken from the study of Frerichs
[36]. Briefly, lung injury was induced by lavage of lungs of an
anesthetized ventilated pig. Positive end–expiratory pressure
(PEEP) was then progressively increased while EIT data were
acquired. Two images are reconstructed. DataV (σ1) and
V (σ2) are acquired at the end–expiratory and end–inspiratory
cycles with a PEEP level of0 cm H2O for the first image
and of 20 cm H2O for the second image. Clinically it is
known that supine subjects with injured lungs will receive less
ventilation at the top of the lungs at low levels of PEEP and
dependent lung regions will be recruited as PEEP increases.
This physiology realistic effect shows with all the algorithms.
The differences between the images are due to the shape of
the reconstructed lung region. For the QR algorithm, a blurred
region with a broad central peak is shown, while for the TV
regularized algorithms, the lung regions appear as a more
uniform image region with a flatter central plateau.

V. D ISCUSSION ANDCONCLUSION

In this work we present the use of Primal Dual - Interior
Point Methods for efficiently using TV as a regularization
functional in Electrical Impedance Tomography. Through nu-
merical experiments and reconstruction of medical data we
show that TV regularized algorithms produce sharper images
compared to quadratic regularization algorithms and that these
algorithms can be successfully applied to real data from
medical experiments. For comparison purposes we implement
two algorithms for TV regularized reconstruction: the Lagged
Diffusivity algorithm and an algorithm based on the Primal
Dual - Interior Point framework. The first algorithm, LD,
requires minor modifications with respect to the common
Gauss Newton quadratic scheme and the theoretical foundation
of this method is readily understood as it stems from the
application of the Gauss Newton method to the modified
functional TVβ . The Lagged Diffusivity method though, for
small values ofβ, requires careful techniques for reducing
and controlling the value of such parameter, as otherwise
the method can become unstable or very slow to converge.
This of course is an undesirable effect, and adds one layer
of complexity to the actual implementation and use of the
algorithm. We show that the second algorithm, PD, can be
run with values ofβ as small as10−12 without requiring
any control onβ. This algorithm, based on the primal dual
interior point framework, results thus in a better approximation
of the TV functional, presenting sharper images, and has
the important advantage of not requiring the control of an
additional parameter:β can simply be set to a small constant
value that produces sharp images.

We have shown that TV regularization can be success-
fully applied to medical applications of EIT. The sharper
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reconstructed images and the fact that the technique presents
larger contrasts for blocky conductivity distributions might
result in enhancements in clinical applications. In particular we
expect TV regularized algorithms to be useful, for example,
in EIT cancer detection applications, where EIT is used for
detecting localized high impedance tissues. An other area we
TV regularized algorithms might provide enhancements over
current techniques are lung imaging applications. The sharp
impedance contrast between the lung and the surrounding
tissue, or within an injured lung, where liquids might be
present and provide a strong and sharp contrast, might be
reconstructed better qualitatively and quantitatively bya TV
regularized algorithm.

While the present work focuses on numerical methods and
presents somein vivo results, we are interested in conducting
future work in investigating the use of TV regularization ona
wider scale and in different medical applications in order to
gain a better understanding of the practical benefits that can be
gained. An implementation of both the LD and PD algorithms
has been released for public access with the EIDORS project
(http://www.eidors.org/).
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(a) LD iter=2,
‖LΘ‖2=3.31×10−1

TV (Θ)=3.61×100

(b) LD iter=5,
‖LΘ‖2=4.48×10−1

TV (Θ)=3.33×100

(c) LD iter=10,
‖LΘ‖2=4.99×10−1

TV (Θ)=3.28×100

(d) PD iter=2,
‖LΘ‖2=3.55×10−1

TV (Θ)=3.99×100

(e) PD iter=5,
‖LΘ‖2=4.51×10−1

TV (Θ)=3.55×100

(f) PD iter=10,
‖LΘ‖2=8.56×10−1

TV (Θ)=3.08×100

Fig. 3. Convergence of the TV regularized algorithms. Different subfigures represent different steps of the reconstruction ofthe numerical phantom data. The
top row illustrates the 2st, 5th and 10th steps for the Lagged Diffusivity algorithm, the bottom row the same iterative steps for the Primal Dual - Interior
Point Method algorithm.

Fig. 2. Image of the numerical phantom used for generating the simulated
data. The background conductivity value is1 S m−1, the top inclusion
presents a value of0.5 S m−1 and the bottom inclusion a value of1.5
S m−1.
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(a) QR, 0% noise, iter=1,
‖LΘ‖2=9.14×10−4

TV (Θ)=7.12×10−1

(b) LD, 0% noise, iter=10,
‖LΘ‖2=1.04×10−3

TV (Θ)=6.09×10−1

(c) PD, 0% noise, iter=14,
‖LΘ‖2=2.39×10−3

TV (Θ)=4.87×10−1

(d) QR, 1% noise, iter=1,
‖LΘ‖2=9.48×10−4

TV (Θ)=7.28×10−1

(e) LD, 1% noise, iter=9,
‖LΘ‖2=1.02×10−3

TV (Θ)=6.11×10−1

(f) PD, 1% noise, iter=13,
‖LΘ‖2=2.24×10−3

TV (Θ)=4.86×10−1

(g) QR, 2% noise, iter=1,
‖LΘ‖2=1.10×10−3

TV (Θ)=7.87×10−1

(h) LD, 2% noise, iter=8,
‖LΘ‖2=1.08×10−3

TV (Θ)=6.34×10−1

(i) PD, 2% noise, iter=14,
‖LΘ‖2=2.59×10−3

TV (Θ)=5.07×10−1

(j) QR, 3% noise, iter=1,
‖LΘ‖2=1.38×10−3

TV (Θ)=8.73×10−1

(k) LD, 3% noise, iter=8,
‖LΘ‖2=1.25×10−3

TV (Θ)=6.77×10−1

(l) PD, 3% noise, iter=13,
‖LΘ‖2=2.94×10−3

TV (Θ)=5.47×10−1

Fig. 4. Illustration of the noise performance of quadratic and TV regularized algorithms. Different subfigures represent reconstructions of the numerical
phantom data for increasing noise levels and for different algorithms. The three columns show respectively the quadratic regularized algorithm, the Lagged
Diffusivity Algorithm and the Primal Dual - Interior Point Method algorithm. Each row is relative to a different level ofnoise, from0 to 3 %. All the figures
are represented on the same color scale with a minimum value of 0.88 S m−1 and a maximum value of1.18 S m−1.



12

(a) QR, iter=1,
‖LΘ‖2=9.57

TV (Θ)=64.02

(b) LD, iter=15,
‖LΘ‖2=204.6

TV (Θ)=128.1

(c) PD, iter=11,
‖LΘ‖2=305.3

TV (Θ)=133.5

Fig. 5. Time difference EIT image of human stomach emptying. Comparison of the quadratic and of the two TV regularized algorithms. All the figures are
represented on the same color scale and in arbitrary conductivity units.

(a) QR, iter=1,
‖LΘ‖2=699.8

TV (Θ)=628

(b) LD, iter=18,
‖LΘ‖2=1667

TV (Θ)=447.5

(c) PD, iter=12,
‖LΘ‖2=2722

TV (Θ)=475.7

Fig. 6. Time difference EIT image of a human thorax during breathing, comparison of the quadratic and of the two TV regularized algorithms. All the figures
are represented on the same color scale and in arbitrary conductivity units.

(a) QR, iter=1,
‖LΘ‖2=2.60×10−5

TV (Θ)=1.01×10−1

(b) LD, iter=4,
‖LΘ‖2=4.17×10−5

TV (Θ)=1.28×10−1

(c) PD, iter=14,
‖LΘ‖2=7.79×10−5

TV (Θ)=7.50×10−2

Fig. 7. Time difference EIT image of injured swine lungs, PEEP0 cm H2O. Comparison of the quadratic and the two TV regularized algorithms. All the
figures are represented on the same color scale and in arbitrary conductivity units.

(a) QR, iter=1,
‖LΘ‖2=1.16×10−5

TV (Θ)=7.03×10−2

(b) LD, iter=3,
‖LΘ‖2=1.89×10−5

TV (Θ)=9.37×10−2

(c) PD, iter=15,
‖LΘ‖2=2.77×10−5

TV (Θ)=5.31×10−2

Fig. 8. Time difference EIT image of injured swine lungs, PEEP20 cm H2O. Comparison of the quadratic and of the two TV regularized algorithms. All
the figures are represented on the same color scale and in arbitrary conductivity units.


