
Simulated Annealing

Biostatistics 615/815
Lecture 19



Scheduling

Need to pick a date for mid-term

Default date is December 20, 2006

We could have it earlier…
• For example, on December 12, 2006?

What do you prefer?



So far …

“Greedy” optimization methods
• Can get trapped at local minima
• Outcome might depend on starting point

Examples:
• Golden Search
• Nelder-Mead Simplex Optimization
• E-M Algorithm



Today …

Simulated Annealing

Markov-Chain Monte-Carlo method

Designed to search for global minimum 
among many local minima



The Problem

Most minimization strategies find the 
nearest local minimum

Standard strategy
• Generate trial point based on current estimates
• Evaluate function at proposed location
• Accept new value if it improves solution



The Solution

We need a strategy to find other minima

This means, we must sometimes select 
new points that do not improve solution

How?



Annealing

One manner in which crystals are formed

Gradual cooling of liquid …
• At high temperatures, molecules move freely
• At low temperatures, molecules are "stuck"

If cooling is slow
• Low energy, organized crystal lattice formed



Simulated Annealing

Analogy with thermodynamics

Incorporate a temperature parameter into the 
minimization procedure

At high temperatures, explore parameter space

At lower temperatures, restrict exploration



Markov Chain

Start with some sample
• A set of mixture parameters

Propose a change
• Edit mixture parameters in some way

Decide whether to accept change
• Decision is based on relative probabilities of 

two outcomes



Simulated Annealing Strategy

Consider decreasing series of temperatures

For each temperature, iterate these steps:
• Propose an update and evaluate function
• Accept updates that improve solution
• Accept some updates that don't improve solution

• Acceptance probability depends on “temperature” parameter

If cooling is sufficiently slow, the global minimum 
will be reached



Example Application

The traveling salesman problem
• Salesman must visit every city in a set
• Given distances between pairs of cities
• Find the shortest route through the set

No practical deterministic algorithms for 
finding optimal solution are known…
• … simulated annealing and other stochastic 

methods can do quite well



Update Scheme

A good scheme should be able to:
• Connect any two possible paths
• Propose improvements to good solutions

Some possible update schemes:
• Swap a pair of cities in current path
• Invert a segment in current path

What do you think of these?



How 
simulated 
annealing 

proceeds …



A little more detail

Metropolis (1953), Hastings (1970)
• Define a set of conditions that, if met, ensure 

the random walk will sample from probability 
distribution at equilibrium
• In theory

• Recommendations apply to how changes are 
proposed and accepted



Accepting an Update

The Metropolis criterion

Change from E0 to E with probability

Given sufficient time, leads to equilibrium state

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧ −
−

T
EE )(exp,1min 0



Evaluating Proposals in
Simulated Annealing
int accept_proposal(double current, double proposal,

double temperature)
{
double prob;

if (proposal < current)
return 1;

if (temperature == 0.0)
return 0;

prob = exp(-(proposal - current) / temperature);

return rand_prob() < prob;
}



Key Requirement: Irreducibility

All states must communicate
• Starting point should not affect results

If Q is matrix of proposal probabilities
• Either Qij > 0 for all possible states i and j
• Some integer P exists where (QP)ij > 0 for all 

i,j



Equilibrium Distribution

Probability of state with energy k is

At low T, probability is concentrated in low 
energy states

⎟
⎠
⎞

⎜
⎝
⎛−∝=

T
kkEP exp)(



Simulated Annealing Recipe

1. Select starting temperature and initial 
parameter values

2. Randomly select a new point in the 
neighborhood of the original

3. Compare the two points using the 
Metropolis criterion



Simulated Annealing Recipe

4. Repeat steps 2 and 3 until system 
reaches equilibrium state…

In practice, repeat the process N times for 
large N

5. Decrease temperature and repeat the 
above steps, stop when system reaches 
frozen state



Practical Issues

The maximum temperature

Scheme for decreasing temperature

Strategy for proposing updates



Selecting a Nearby Point

Suggestion of Brooks and Morgan (1995) 
works well for our problem
• Select a component to update
• Sample from within plausible range

Many other alternatives
• The authors of Numerical Recipes use a variant 

of the Nelder-Mead method



C Code:
Simple Sampling Functions
// Assume that function Random() generates 
// random numbers between 0.0 and 1.0
// Examples from lecture 14 are suitable

// Random numbers within arbitrary range
double randu(double min, double max)

{
return Random() * (max - min) + min;
}



Updating Means and Variances

Select component to update at random

Sample a new mean (or variance) within 
plausible range for parameter

Decide whether to accept proposal



C Code:
Updating Means
double sa_means(int dim,

double * probs, double * means, double * sigmas,
double llk, double temperature, double min, double max)

{
int c = Random() * dim;
double proposal, old = means[c];

means[c] = randu(min, max);
proposal = -mixLLK(n, data, dim, probs, means, sigmas);

if (accept_proposal(llk, proposal, temperature))
return proposal;

means[c] = old;
return llk;
}



C Code:
Updating Standard Deviation
double sa_sigmas(int dim, 

double * probs, double * means, double * sigmas,
double llk, double temperature, double min, double max)

{
int c = Random() * dim;
double proposal, old = sigmas[c];

sigmas[c] = randu(min, max);
proposal = -mixLLK(n, data, dim, probs, means, sigmas);

if (accept_proposal(llk, proposal, temperature))
return proposal;

sigmas[c] = old;
return llk;
}



Updating Mixture Proportions

Mixture proportions must sum to 1.0

When updating one proportion, must take 
others into account

Select a component at random
• Increase or decrease probability by ~20%
• Rescale all proportions so they sum to 1.0



C Code:
Vector Utility Functions
double * duplicate_vector(double * v, int dim)

{
int i;
double * dup = alloc_vector(dim);

for (i = 0; i < dim; i++)
dup[i] = v[i];

return dup;
}

void copy_vector(double * dest, double * source, int dim)
{
for (i = 0; i < dim; i++)

dest[i] = source[i];
}



C Code:
Changing Mixture Proportions
double sa_probs(int dim, double * probs, double * means, 

double * sigmas, double llk, double temperature)
{
int i, c = Random() * dim;
double proposal, * save_probs = duplicate_vector(probs, dim);

probs[c] *= randu(0.8, 1.25);
adjust_probs(probs, dim);

proposal = -mixLLK(n, data, dim, probs, means, sigmas);
if (accept_proposal(llk, proposal, temperature))

llk = proposal;
else

copy_vector(probs, save_probs, dim);

free_vector(save_probs, dim);
return llk;
}



C Code:
Adjusting Probabilities

The following function ensures probabilities always sum to 1.0

void adjust_probs(double * probs, int dim)
{
int i;
double sum = 0.0;

for (i = 0; i < dim; i++)
sum += probs[i];

for (i = 0; i < dim; i++)
probs[i] /= sum;

}



Simulated Annealing Procedure

Cycle through temperatures

At each temperature, evaluate proposed 
changes to mean, variance and mixing 
proportions



C Code: Simulated Annealing
double sa(int k, double * probs, double * means, double * sigmas, double eps)

{
double llk = -mixLLK(n, data, k, probs, means, sigmas);
double temperature = MAX_TEMP; int choice, N;

double lo = min(data, n), hi = max(data, n);
double stdev = stdev(data, n), sdhi = 2.0 * stdev, sdlo = 0.1 * stdev;

while (temperature > eps) {
for (N = 0; N < 1000; N++)

switch (choice = Random() * 3)
{
case 0 :

llk = sa_probs(k, probs, means, sigmas, llk, temperature);
break;

case 1 : 
llk = sa_means(k, probs, means, sigmas, llk, temperature, lo, hi);
break;

case 2 :
llk = sa_sigmas(k, probs, means, sigmas, llk, temperature, sdlo, sdhi);

}
temperature *= 0.90; }

return llk;
}



Example Application
Old Faithful Eruptions (n = 272)

Old Faithful Eruptions

Duration (mins)

Fr
eq

ue
nc

y

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
5

10
15

20



E-M Algorithm:
A Mixture of Three Normals

Fit 8 parameters
• 2 proportions, 3 means, 3 variances

Required about ~150 evaluations
• Found log-likelihood of ~267.89 in 42/50 runs
• Found log-likelihood of ~263.91 in 7/50 runs

The best solutions …
• Components contributing .160, 0.195 and 0.644
• Component means are 1.856, 2.182 and 4.289
• Variances are 0.00766, 0.0709 and 0.172

• Maximum log-likelihood = -263.91



Three Components

Old Faithful Eruptions

Duration (mins)

Fr
eq

ue
nc

y

1 2 3 4 5 6

0
5

10
15

20

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fitted Distribution

Duration (mins)

D
en

si
ty



Three Components

Old Faithful Eruptions

Duration (mins)

Fr
eq

ue
nc

y

1 2 3 4 5 6

0
5

10
15

20

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Fitted Density

Duration (mins)

D
en

si
ty



Simulated Annealing:
Mixture of Three Normals

Fit 8 parameters
• 2 proportions, 3 means, 3 variances

Required about ~100,000 evaluations
• Found log-likelihood of ~267.89 in 30/50 runs
• Found log-likelihood of ~263.91 in 20/50 runs
• With slower cooling and 500,000 evaluations, minimum found in 

32/50 cases

100,000 evaluations seems like a lot…
• However, consider that even a 5 point grid search along 

8 dimensions would require ~400,000 evaluations!



Convergence for 
Simulated Annealing

-450

-250

0 50 100 150 200 250
Thousands

Li
ke
lih
oo
d

1

2

3

4

5

6

0 50 100 150 200 250
Thousands

Iterations

M
ea

ns



Convergence for 
Simulated Annealing

LogLikelihood

-500

-400

-300

-200

0 25 50 75 100
Thousands

Iteration

Lo
gL

ik
el

ih
oo

d



Convergence for 
Simulated Annealing

LogLikelihood

-270

-268

-266

-264

-262

-260

25 50
Thousands

Iteration

Lo
gL

ik
el

ih
oo

d



Importance of Annealing Step

Evaluated a greedy algorithm

Generated 100,000 updates using the same 
scheme as for simulated annealing

However, changes leading to decreases in 
likelihood were never accepted

Led to a minima in only 4/50 cases.



E-M Algorithm:
A Mixture of Four Normals

Fit 11 parameters
• 3 proportions, 4 means, 4 variances

Required about ~300 evaluations
• Found log-likelihood of ~267.89 in 1/50 runs
• Found log-likelihood of ~263.91 in 2/50 runs
• Found log-likelihood of ~257.46 in 47/50 runs

"Appears" more reliable than with 3 components



Simulated Annealing:
A Mixture of Four Normals

Fit 11 parameters
• 3 proportions, 4 means, 4 variances

Required about ~100,000 evaluations
• Found log-likelihood of ~257.46 in 50/50 runs

Again, a grid-search in 11 dimensions would 
only allow ~4-5 points per dimension and find 
a worse solution



Four Components

Old Faithful Eruptions

Duration (mins)

Fr
eq

ue
nc

y

1 2 3 4 5 6

0
5

10
15

20

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

D
en

si
ty



Today …

Simulated Annealing

Markov-Chain Monte-Carlo method

Searching for global minimum among 
local minima



Next Lecture

More detailed discussion of
• MCMC methods
• Simulated Annealing and Probability Distributions

Introduction to Gibbs sampling



References

Brooks and Morgan (1995)
Optimization using simulated annealing
The Statistician 44:241-257

Kirkpatrick et al (1983)
Optimization by simulated annealing
Science 220:671-680





I/O Notes for Problem Set 7

To read data, use "stdio.h" library

Functions for opening and closing files
•FILE * fopen(char * name, char * mode);
•void fclose(FILE * f);

Functions for reading and writing to files
• I recommend fprintf and fscanf
• Analogous to printf and scanf



fopen() function
Typical usage:

FILE * f = fopen("file.txt", "rt");
if (f == NULL)

{
printf("Error opening file\n");
exit(1);
}

/* Rest of code follows */

File mode combines to characters:
• "w" for writing and "r" for reading
• "t" for text and "b" for binary



fclose()
Makes a file available to other programs

fclose(f);

To return to the beginning of a file use:

rewind(f);

To check whether the end-of-file has been reached:

feof(f);



Writing to a File
Writing a an integer and a double

int i = 2;
double x = 2.11;

fprintf(f, "My secret numbers are "
"%d and %f\n", i, x);

As usual, use %d for integers, %f for doubles, 
%s for strings



Reading from a File
Reading a an integer and a double

int i;
double x;
fscanf(f, "%d %lf\n", &i, &x);

As usual, use %d for integers, %f for floats, %lf for doubles, 
%s for strings

Writing %*t [where t is one of the type characters above] 
reads a value and discards it without storing.

Returns the number of items transferred successfully



Counting Items in File
FILE * f = fopen(filename, "rt");
double item;
int items = 0;

// Count the number of items in file

// First skip header
fscanf(f, "%*s ");

// Read and count floating point values
// until file is exhausted
while (!feof(f) && fscanf(f, "%lf ", &item) == 1)

items++;



Reading Items from a file
// Return to the beginning of file
rewind(f);

// Skip header again
fscanf(f, "%*s ");

// Allocate enough memory
data = alloc_vector(n = items);

// Read each item into appropriate location
for (i = 0; i < items; i++)

fscanf(f, "%lf ", &data[i]);

// Done with this file!
fclose(f);


