CONTENTS

INTRODUCTION 1

1=

PARTITION FUNCTIONS 3

1.1

1.2

A Programming Technique for Non-Rectangular Data 3

Using Partition Functions 11
1.2.1 An Example i1
2.2 Conventions 12
2.3 Errors 13
2.4

1.
d 5y
1 Table of Corresponding Names 13

Shift and Compare Functions N4 and Pa 15
1.3.1 Identities 16
1.3.2 Examples 16

REFERENCE TABLES 17

R |

Composition Tables for the Relational and Logical
Functions 17

Equivalences of Non-Boolean Functions on Boolean
Data 17

Simplifications for Boolean Functions Using Tilde 18

Monadic Equivalents of Dyadic Boolean Functions
with One Argument Constant 18

Equivalences for A4®@4®B in the Form of 4@B 19
Distributive Identities for Boolean Functions 20

Inverse Distributive Identities for Boolean
Functions 21

Interpretations of Reductions on a Boolean Vector
Where the Result Is Zero or One 22

Similarities between Reduction and Scan of Boolean
Vectors 23

Fast Algorithms for Implementing Relational and
Logical Scans Other Than #\ and =\ 24




2.11 Eight Different Definitions of Scan, with Examples 24

2.12 Identities Involving Scan 24

2.13 Results of Operations Using Boolean Vectors 5

2.14 Altering the Order of Arguments Using Conditional
Arrays 25

SELECTED FUNCTIONS THAT ILLUSTRATE BOOLEAN TECHNIQUES 27




INTRODUCTION

One of APL's unique contributions to computing languages is
its ability to generate and manipulate Boolean arrays. Although a
binary (or bit) datatype is available in many other languages, it
is often clumsy to use, requiring conversion and indirect
manipulation. APL, on the other hand, handles Boolean data
directly and efficiently; the data is stored compactly (one value
per bit) and processed rapidly.

Boolean values are most often generated by one of the six
relational functions (< < = 2 > #) or by membership (¢). Five
other functions perform logical calculations: and (a), or (Vv),
nand (~), nor (¥), not (~). Together, these provide all the
nontrivial functions of logical calculus. For instance,
exclusive-or is # and logical implication is <.

APL's real strength with Boolean values lies in its ability
to use them with every primitive function that allows numeric
arguments. Some functions, such as compression (/) and expansion
(\), are designed specifically for Boolean arguments; these allow
us to select from, and insert wvalues into, arrays. Other
functions for which Boolean arguments are most useful are rotate
(¢), grade up (4), grade down (¥), base wvalue (L), and several
scalar dyadic functions (+ - x # | ! x). The reduction and scan
operators also gain new significance with Boolean arguments.

One of the most powerful applications of Boolean values in
APL is their use in partition functions. Partition functions are
user-defined functions that apply APL primitive functions
independently to different parts of an array. They allow the user
to manipulate a collection of arrays as independent objects,
similar to the way this is done in the APL*PLUS Nested Arrays

System (see APL*PLUS Nested Arrays System Reference Manual, STSC,
1981).
n Function nd Techni ., Second Edition, serves two

purposes. First, it is an introduction to the utility workspace
6 PARTFNS on STSC's APL+xPLUS' System. Second, it provides the
experienced programmer with useful reference tables and formal
definitions using Boolean data.

——

TAPL*PLUS is a service mark and trademark of STSC, Inc.,
registered in the United States Patent and Trademark Office.

Copyright 1982 STSC, Inc. -1- Boolean Functions, 2nd Ed.




Chapter 1 includes transcriptions of the online documentation
for workspace 6 PARTFNS as well as a paper discussing the theory
and use of partition functions. This chapter should be read in
one sitting, but parts of it may also be used for reference.

Chapter 2 is intended primarily as a reference for the
experienced APL programmer. The charts in this chapter contain
practical information that can be applied by the programmer as
needed.

Chapter 3 presents sample functions using Boolean technigues.
These are intended to give the reader some idea of the practical
uses of Boolean technigues and spur him on to develop his own
applications.

The second edition of Boo n_Functi nd Technigues
supersedes Working Memorandum No. 106, Boolean Functions and
Technigues -- Special Topics Seminar. The editor acknowledges the

text contributions and review comments of Bob Smith, who wrote the
earlier version of this publication. The editor is indebted to
Roy A. Sykes, Jr. for his technical assistance, text
contributions, and review suggestions. In producing this
publication, the editor gratefully acknowledges the assistance of
Andrea G. Kenner, Deborah Richardson, and Suzanne Yanchulis.

Notational Conventions

The following syntax conventions are used throughout this
publication:

¢ Function and operator symbols are shown exactly as they
appear in actual usage.

= The symbol @ is defined as any logical or relational
function.

© The double-headed arrow (+=) indicates that two
expressions have the same meaning or return identical
results.

© The symbol = is defined as any primitive function.

« Definitions and examples are given in origin 1 unless
otherwise noted.

Copyright 1982 STSC, Inc. -2~ Boolean Functions, 2nd Ed.

./.




-

CHAPTER 1

PARTITION FUNCTIONS

This chapter includes a paper by Bob Smith on the theory and
use of partition functions and the documentation for partition
functions and NaPAGRP from workspace 6 PARTFNS.

Bob Smith's paper was published in the APL79 Conference
Proceedings, Part 1 (Association for Computing Machinery, 1979).
It is reprinted here by kind permission of the Association for
Computing Machinery. The paper provides a concise discussion of
the need for partition functions and also illustrates their use.

The two items of online documentation transcribed in this
chapter are normally accessed through the function DETAIL in
workspace 6 PARTFNS. Together, they provide an overview of the
capabilities available on STSC's APL=*PLUS system using the utility
functions in that workspace. Section 1.2 includes a table that
relates each partition function to its corresponding APL
expression, and Section 1.3 includes a chart that illustrates the
use of Na and Pa with Boolean functions.

1.1 A_Programming Technigue for Non-Rectanqular Data

_The text appearing on pages 4 through 10 was reprinted by
permission of the Association for Computing Machinery.

Copyright 1982 STSC, Inc. =3- Boolean Functions, 2nd Ed.



Copyright 1979, Association for Computing
Machinery, Inc., reprinted by permission.

A PROGRAMMING TECHMIQUE
FOR NON-RECTANGULAR DATA

Bob Smith
AFPL Application Analyst
Scientific Time Sharing Corporation
21243 Ventura Blvd., Suite 240
Woodland Hills, CA 91364
{213) 347-1633

Abstract

A programming technigue is developed to
deal with certain common operations on non-
rectangular (ragged) data. A representation
of such data in current APL is defined; a
notation for applying primitive functions to
this data is developed; and user-defined
functions that simulate these operations for
certain primitive monadic functions are
illustrated.

Motivation

The coordinates of matrices and higher-
dimensional arrays serve to delimit the
values of the rectangular data into distinct
"lines™ (e.g., the rows of a matrix).
Primitive functions (e.g., reduction and
scan) then may be applied independently to
each distinct line to produce various
results.

Occasionally, however, it becomes
necessary to apply a primitive function
independently to successive parts of a
vector (called the argument wvector).
parts are analogous to the lines of a
higher-dimensional array. For example, the
problem may be to plus-reduce certain parts
of a numeric wvector. If the argument vector
were 110 and if it were broken into several
parts as follows:

These

1223 L 5678 3 10

then the desired result would be 6 4 26 19-

Copyright ® 1879 by the Association for Computing Machinery,
Inc. Copying without fee is permitted provided that the copies are
not made or distributed for direct commercial advantage and credit
o the source is given. Abstracting with credit is permitted. For
other copying of articles that carry a code at the bottom of the first
page, copying is permitted provided that the per-copy fee
indicated in the code is paid through the Copyright Clearance
Center, P. 0. Box 765, Schenectady, N. Y. 12301. For permission to
republish write to: Director of Publications, Association for
Computing Machinery. To copy otherwise, or republish, requires a
fee andf/or specific permission.

® 1979—ACM 0-89791-005—2/79/0500—0362 $00.75

Copyright 1982 STSC, Inc. — i

In this case, the non-rectangular data is
represented as an argument vector along with
a vector of the lengths which partition the
argument vector (here, the implicit lengths
are 3 1 4 2). One might think of the
argument vector as a vector of vectors.

Previously, this kind of problem has been
zolved by first expanding and reshaping the
argument wvector into a matrix. This trans-—
formation allows the programmer to take
advantage of the delimiting property of the
coordinates of the matrix and apply the
primitive function to the entire matrix to
obtain the result. If the argument wvector
were stored in B and the lengths of the suc-
cessive parts stored in 4, a solution is

+/{(pd) [ /A)p( A= 21 /AINE .

As a general method, the argument wvector-
to-matrix approach has several drawbacks.

First, the expancion result may not £it in
the workspace. Because the length of the
expansion result is the number of parts
times the length of the longest part, it
only takes one long part and many small
parts to create a nuisance. W5 FULL is most
programmers' least favorite error message.

Second, the expansion process may pad each
part {(on the way to creating a row of the
matrix) with an inappropriate value. The
0's that expansion uses as fillers for
numeric structures won't bother +/, but =/
and A/ won't like them. This problem can be
circumvented; however, it's one more thing
with which the programmer must be bothered.

Third, this approach can be expensive be-
cause of all the extra work involved in
inserting £ill elements via expansion.

The following sections discuss an
alternate approach to solving this class of
problems. Essentially, these problems
involve representing non-rectangular data as
a vector of vectors along with a partition,
and applying a primitive function to each
independent part. First, we must character-—
ize the concept of "parts®, and then combine
that with the primitive function and the
argument wector to produce the result.

Boolean Functions, 2nd Ed.




'

Partition Vectors Definition: partition operator <t

A simple and unigue characterization of {which Jim Ryan calls the
any partitioning of an argument vector is as "dagger" symbol)
a Boolean vector of the same length (called
a partition vector). Each 1 in the parti- Let o be any primitive monadic function,
tion vecter corresponds to the beginning of and P and B3 any vectors of egual length
a part and the following 0's correspond to where P is a Boolean vector whose first
the remaining elements in that part. element is 1.

The partition of 110 used above would be £+ Ptu B

characterized as
iz the result of applying = to each part of

123 & G567 8° 30 B, where F defines the partition. Specifi-

1°0°0 1 - 1YpoEnSeE cally,
It is easy to see that this characterization R+ 0
is unigue and that every Boolean vector of T=0
the same length as the argument vector and Lls+{(+/P)eI+T#+1)/0
whose first element is 1 represents a parti- R+F, a (I=+\F)}/B
tion of the argument vector. There are ~L1 P
2+¥-1 such partitions of length ¥. Hote
that the number of parts represented by the The shape of §F depends upon a. If o i5 a
partition vector P is +/P. reduction function, the shape is +/F (one

value per part since reduction reduces
The characterization as a Boolean wvector vectors to scalars): if a is a shape-

is chosen over that of a vector of succes- preserving function, the shape i3 pP (e.9.,
give lengths of the parts for several scan preserves shape). If o is defined for
reasons. The Boolean wector often is easily higher-dimensional arrays, then so is Pta,
computed from and stored with the argument and in the same way. MNotationally, this
vector (as in blanks in a character wector); would be written as P4{alk]) 5. For
has a simpler conformability test example, P4+(+\[2]) B-
{ P[11a({pFP)=p8 ws, ((+/Fl=pB)ar/Pz0 }); often
uses less storage than an integer vector; If o is a dyadic function, the syntax of
and combines more naturally with the the partition operator is

user-defined functions illustrated later.

: R+ A (Pta) B
Although a representation as a vector of

lengthes would allow zero lengths, there is and the result iz calculated as
no real added capability. The zero lengths

have no effect in conjunction with shape- R+ 0

preserving functions like scan and grade. I+0

For reduction, presumably one £ills in the Els+{{+/B)<I+=T+1}/0

result with the appropriate identity FvR, ((I=s+\P)/A4) a (I=+\FP)}/E
element. I prefer to leave that job to the +L1

expansion function.
See Iverson [1] for a discussion of

operators which take data as arguments.
The Partition Operator

The above example of a partitioned plus

We now need to combine the partition reduction of 110 would be written as
vector, the primitive function, and the
argument vector. One method of doing this 1001100010 4(+/) 110
is to combine the partition vector and the 6 4 28 19
primitive function inte a derived function
via an operator. This operator (called the or ac a function of 4 and B with B=i110 and
partition operator) iz then dyadic, with a A+3 1 4 2 (the partition lengths) as
partition wector on the left and a primitive
function on the right. The result is a (Cv+ A e1++2\ 140, 4)4(+/) B
derived function (a partition function) 6 & 26 18

which has the same valence as the original

primitive function. That is, the resulting

function is dyadic if the original primitive Applications
function is dyadic; monadic otherwise.

2 B : J B3 In accounting applications, one
For simplicity, a new symbol is used for encounters the problem of accumulating
this operator. It is not the goal of this amounts of money into bins. For example,
paper to suggest that thls_opgrato: oar AMT might be a wvector of amounts, and ACCT
symbol be implemented; it is introduced only might be a wector of corresponding account
as notation to simplify the presentation. codes. Potentially, there are amounts in
Copyright 1982 STSC, Inc. ~5= Boolean Functions, 2nd Ed.




AMT to be charged to the same account code;
thus AccT contains duplicate values. For
each distinct account code, how much is to
be charged to it?

A solution is first to reorder ACCT (and
in the same way reorder ANT) such that egual
account codes are adjacent.

ORD+AACCT
ANT+ANMT[ORD]
ACCT+ACCTIORD]

Wext, create a partition wvector of equal
account codes,

PY+ACCT= 14ACCT
P¥[1]+1 -

For example,

ANT +— 3,11 TH.20 9,12 "&.50 6.1 7.93
ACCT =+ 83 B3 23 101 101 201
- 1 ] i 1 0 1

At this point, PV selects the distinct
account codes.

P¥/aACCT
83 101 201

Finally, apply a partitioned plus
reduction to ANT using PV to obtain the
amounts to charge to each distinct account
code.

Pr+(+/) ANT
G.03 1.91 V.93

II. A tape contains several records, each
of which begins with a record mark.
Individual records may contain errors that
invalidate the remaining information in that
record, but not other records. Which rec-
ords contain errors?

If the Boolean vector EM marks the
beginning of each record, and the Boolean
vector ERR selects the errors, then a
selection vector on the indices of the rec=
ords that contain errors is

A+EM+(v/) ERR

For example,

RN +~— 1001101000
ERR — 0011000010
A = 1 10 1

To return a Boolean wector that selects
leading error=free information in each rec-
ord, use

B+AN+(a\) ~ERR

RN ++ 1001101000
ERE ++ 0011000010
B + 1100111100

Copyright 1982 STSC, Inc.

Problem Isolation

One advantage of partition functions is
their ability to be used to extend isclated
solutions to more general solutions. That
iz, when working with non-rectangular data
represented as a vector of vectors, often
one can solve the problem at hand on an
isolated part, and then substitute in the
appropriate partition functions to obtain a
gsolution on the entire partitioned vector.

For example, say oune has a character
vector {TXT) partitioned by new-line charae-
ters (carrier returns); thus, the first
character is a new-line character. Each
part is the character image of a line of
some user-defined function. The problem is
to select text in comments and in character
constants. Assume new-line characters are
not allowed in character constants, but that
comments are allowed at the end of a line
with an executable statement.

Let's solve this problem for a single part
of the character wvector, say., PART.

Because a character constant is delimited
by guotes, text within a character constant
has to its left an odd number of guotes.
Characters preceded by an odd number of
guotes can be selected by =% as in

A==\ PART="""" .

Comment delimiters are then simply lamp
symbols outside of character constants, that
is

A<PART="R" .
The text in comments is then the charac-

ters to the right of a comment delimiter,
cthat is

V\A<PART="n"' .

Finally, text in comments and character
constants is selected by

A+Z\PART=" """
CgQ+eAv v A<PART="n" .

To generalize this solution on a single
part to a solution on the entire vector
without looping is a matter of substituting
in the appropriate partition functions as in

B+TXT=CR

A+PE(=)) TXT1I1
CQeAvPE(vY) 4=TXT="'a"

Relationship with General Arrays

Broadly speaking, general arrays are a
proposed extension to 4PL to handle non-
rectangular data (see, for example, Gull and
Jenkins [2]). As one would expect, general
arrays handle more naturally the problems
which partition functions address.
Specifically, a vector of vectors is

Boolean Functions, 2nd Ed.



represented as a single
general arrays rather th
argument and partition
words, the partitien is

structure, ]

The correspondence be
functions and general ar
a handful of functions defi
arrays.

l. a function to crez
vectors from a pair
partition wvectors;

2. a functien to apply
function independes
of the vector of

3. a function to rejoin &
parts of a vector of
simple vector.

&

The first function iz discu
reference [2] as the dyadic
which takes a partition wvector
and an argument vector on the ic
result is a vector of vectors.
approach is to define a dyadic
function seal (see reference [
partitioned seal. I prefer the 1
approach because it combines in ¢
two closely related functions.

The second function is discus
Iverson [1] as a dyadic dual

The third function is akin
{(an inverse seal) of a phﬂl

For example, the proble
last section iz solved u
as follows, where the =)
Ped partitioned
¥ dual ope

= unseal.

P+FXIT=CR
A+=\Fz2pePEp=r1111
cg+a, fAv¥ATsA<pP=TIT= 8" .

Hevertheless, although general arrays
provide a more general solution to the
problems addressed by partition functions,
until they are available on your APL system,
use simulations of partition functions.

Tools and Technigues

This section describes user-defined
functions which simulate monadic partition
functions. The limitation to monadic
partition functicns is made only to simplify
the function's syntax: only two data
arguments are reguired (the partition and
argument wvectors).

The set of monadic primitives of interest

as partition functions are the thirteen
primitive scalar monadic functions, re-

Copyright 1982 STSC, Inc.

ion, scan, grade up, grade down, and
zal. For the thirteen primitive scalar
functions, Pta =+ a; that is, if
itive function has no interaction
elements, the partitioning has no

ions of eight of the twenty-one
scalar dyadic functions in both
reduction form are listed in

A. Partition functions which
grade up, grade down, and reversal
luded. Each function listed in
is non=looping and works on

ents only: All work in either

d P+i and P+¥ return results

= to the origin.

- in simulating these functions
on Fa (compare with the func=
alpern [3]). The function is

¥ = V¥a 1+(a/10),.¥

 must be a character scalar
we scalar dyadic fumc-
identity element.

e function =, ¥4

£ shifted one to the
wely; hence the "F" in
of ¥ drops off the
the identity

ng. For example,

shifts to the left
the hole (this
yegctor with

Bt :

. SEns are operators that
take a primiti dyadie function with
a right-hand ity el and return a
monadic function which performs a
"differencing® (hence the "4" in their
names). Halpern also notes that PAIR ig the
inverse of certain scans; as is §A., For
example, "*" ¥4 and *\ are left and right
inverses of each other as are "='" ¥& and =\;
'=* ¥4 and *\; and *+' N4 and =\. Gee
Apgendix'a for specific examples. Iverson
[1) has proposed z more general functicn in
dyadic scan. In particular,

In a sense, .

‘' Fa ¥V o+ T2 a\ ¥

gt PA ¥ ++ $ 2 al\ &
e - 2 a\Tb ¥

The technigues used in simulating the par-—
tition functions are interesting enough to
warrant stepping through some examples.

Wote that for a partition wector F, the 1's
in P are the starting points of each parti-
tion, while the 1's in 14F are the corre-
sponding endpoints.

-7- Boolean Functions, 2nd Ed.




I. PH{+\) B =+ +\B-P\'-' §a P/+\"1+0,8

Let
P s B e 1 1 o= g
B -t 4 SR ST
L. *NTEUOTRSS ke oy [ 10 15 21 28
2. B 0 & 10
3. WoweEy 0 6 4
8, P L L ¥ 0 0 0
5., B- ¥ 9n 4y 2 T
6. +%\ e e 5 5 11 18 26

Steps 1 and 2 compute, for each partition of
By the cumulative sum of all the previous
partitions. &Step 3 isclates, for each par-
titien, the contributions of the immediately
preceding pactition. Step 4 puts the result
of Step 3 iInto the positions of the
beginning of each partition, and Step 5
subtracts this from p. The result at this
point is similar to B, but with the initial
value in each partition short by the sum re-
duction of the immediately preceding parti-
tion. After Step 6 is executed, each parti-
tion has the bias from any previous parti=-
tion accounted for correctly.

Pleasantly, P+{=z\) § falls out of P+(+\) F
because for a Boolean wvector B, =\§ -+
2| +\B. Thus,

2IPH(+\) B -
2I+\B-PA"-" N4 P/+\ 1+0,8
E\2|E-P\T- FA Pf+\T1+40,8
#\Fa22 |P\"=" N4 Pf+\ 1+0,8
\EzP\2| =" N4 Pf*\:1+u.3
E\FzP\"z" N4 2IP#+R_1#D.B
E\FxpP\"=2T NA Pf?i:\ 1+0,8
2\ B=p\t2t §FA P/=\T1+40.8

PH{=\) B

11181 kR

The simulation for P4(=\) B is deriwved
using the identity s\B =+ =z\~F .
II. PH(+/) B =+ "= NA(14P)/+\B

This code finds the cumulative sum at the
endpoints of each partition and differences
adjacent pairs of values to obtain the re-
sult. Appendix A contains another function
(PPLREDE) to simulate P+{+/) B that requires
less workspace storage than the above method
when F also is a Boolean vector.

The simulation for P#(=/) B is derived in
the zame way as P+{(z\) F was derived.

III. PH(w\N) B =+ =\(PvE)\"®=" NA(PVE)/B

Let

F 100 1 1000 10

B 010 0 1001 00
1. PvE 110 1 1001 10
2. (Bv¥E)/B 01 ] 1 1 ]
3. "=' §a 01 1 1 0 1
4, (PvE)\ 010 1 1000 10
5. =\ 011 Q 191 t551 00

Step 1 points out that the important

information in P and 5 is where esither of
them is 1. Where both of them are 0, the
value in the corresponding position in the

Copyright 1982 STSC, Inc.

-8-

result eguals the value in the immediately I
preceding position in the result. The

leading 1's in each set of consecutive 1's I
in Step 2 indicate a 1 in 8 where the pre-—
ceding elements in that same partition of B =l
were all 0. This pogition in §F represents a

point at which we wish to begin smearing 1's

to at least the end of that partition. The

actual point at which we should stop

smearing 1's is where the initial element in

some partition of B is 0. These stopping

points are exactly the points in B corre-

sponding to the 0's in Step 2.

Step 3 results in a 1 at both the start
and stop points of esach smear of 1's. Step
4 puts these values back into place relative
to B, and Step 5 performs the smear.

The relationships between the wvarious
steps in this solution are interesting.
Steps 2 and & are a compression and ex-
pansion using the same left argument.

3 and 5 are inverses of each other.

Steps

The simulation for P+(a\) F is derived
uging the identity A\F += ~v\~38

Similarly, the simulation for P4(</) B is
derived using PH(</) B += Pt+(a/) BeidP .

In Reverse

Cccasionally, one needs to perform a par-
titioned scan or reduction on each reversed
part, and, if scanning, to reverse the scan
result again. The problem might be, given a
character vector partitioned by new-line
characters, to delete trailing blanks in
each partition. One would like to or-scan
each partition of FXT=" ', except from the
right rather than the left. This can be ac-
complished by reversing, or-scanning, and
again reversing each partition. That is,

PV=TXT=CR (assuming TXT begins with
a new=-line character)

FXT+(P¥+e PV+(v\) P¥+o TXT=' ') /TXT

There is a simpler way, still using parti-
tion functions, that does not reguire two
partitioned reversals. HNotice that since
each partition is treated independently from
every other partition, one could reverse the
entire vector rather than each partition,
then scan or reduce (using a different parc-
tition wvector), and, finally, reverse the
entire result rather than each partition.
This translates into

Sld10FV ) 4a SV

where o is either a scan or reduction
function. Further, in terms of the
functions in Appendix A, one can move this
code inline and, in most cases, eliminate
all occurrences of reversal by applying the
appropriate identities. For example,
compar ing

Boolean Functions, 2nd Ed.




o

Ri+ P vy} B with
Rz+b($1dP)+{vL]) $F

F1 ++ =\(PVvE)\'®" NA(F¥E)/B

E2 = ¢=x\(($1¢PIvB)Y "' NA((G1HP)IVEE) /B
b\ (pBv1IdPIY 'x! NA (GEvIOF) /OB
b=\ (HBvIGP)Y "2 Nad(BvigP) /B
$=\ (GBVIOP)\ G2 Pa (Bv1QFP) /B
$ei\d{BvIdF)Y "=" Pa (BvigF) /B

Finally, $=\¢F += ("1+Z)}="140,2 with
Z=Z\V,

Similar substitutions can be made for the
other functions.

Copyright 1982 STSC, Inc.

-9- Boolean Functions,

References

(1] Iverson, K. E., Operators and
Functions, IBM Yorktown Heights Research
Division, Research Report RC 7091, (April
78).

[2] Gull, H- E., and Jenkins, M. A.,

Recursiug Structures in 4pPL, Comm. ACM
{?ub TB] T9-96,

(3] Halpern, M. M., Studies in 4P[:
Algebra, Scan, Arithmetic, Permutations, IBM
Philadelphia Scientific Center, Technical
Report Wo. 320-3023, (June 1973).

2nd EA4.




APPEMDIX A

The user—-defined functions listed in this
appendix simulate the partition operator in
combination with various primitive
functicns. In particular, where p and g are
Boaolean wvectors and ¥ is a numeric wvector,
the correspondence is as follows:

P4{at) B ++ P PANDRED R PE([/) ¥ =+ P PWNAXRED ¥
PH{AN) B =+ P PANDSCAR B PH(I\) ¥ =+ P PMAXSCAN V
P¥{¥v/) B = F PORKED B P+(LlS) ¥ ==+ P ENINRED ¥
PH{v\} B -+~ P PORSCAN B PH{LAY ¥ =+ P PNINSCAN ¥
P+(=f) B ++~ P PEQRED B Fid ¥ +~+ P PGRADEUF V
P+{=\) B ++ P FEQSCAN B P4¥ ¥ ++ P PGRADEDOWN V
P+(x/) B =++ P PNERED B PE{+f) ¥ =+ P PPLRED V¥
P4{=\) B ++ P PNESCAN B PH{+\) ¥ =+ P PPLSCAN ¥
P+{+/) B =++ P PPLREDB B
P+{</) B +~+ P PLTRED B
F¥(<\) B ++ P PLTSCAN B Bip ¥ +~+ P PREVERSE V
v Z+F PANDRED V Vv I+=P PANDSCAN ¥
(1] Z+{¥F=P) /P O E+(Z/19Z)AP/F (1] Ea—2\ [(FSP)\ "2 Na~(VsP)/V
v v
¥ Z+=F PORRED V ¥ I+=P PORSCAN ¥
1] E+(VvP) /P O Z+(ES10Z)sP/V [1] E+2\TH¥R)\ "2 NA(KFVE)/V
v v
¥ Z+P PEQRED ¥ ¥ Z+P PEQSCAN V¥ =
[1] E+'=" FA(1GP)/=\F [1] Z+=\Vep\'2"' No~=P/=\ 141,V
v v
¥ Z+F PWERED V ¥ ZI+P PNESCAN ¥
(1] Z+"=" Fa(19P)/=\F [1] Eeai\FmpyPEY NA PSEVTL40,F
v v
¥ Z+P PLTRED V¥ ¥ Z+P PLTSCAN V
{1] Z+({P2V=19P) /P [11] Z+{ WAL vIFvEIN">" NA(KFYR)/V
£2] 2+(Z/14Z)AFP/V=1%P v
v
¥ I+P EMAXRED ¥ ¥ Z+P PMAXSCAN V
1] I+=VLOVILE A+ \PILTF]II] (1] Z+~h(AFICA(+\PILAV]]
v [21 Z+VLEATVE]
v
v E+F FMINRED V v Z+P EMINSCAN V
[1] E~FL{AVILP/h{+\PI[AV¥]]] [1] E+h(FVILAC+\PI[TF]]
v (2] Z+FLE1TAE]
v
¥ E+P PGRADEUP ¥ ¥V I=P PGRADEDOWN V¥
[1] E+OI0+ (AP I LA+ \PILAVII-T\Px1pP [1] F+OI0«(FVICAC+\PI[AV]I]-T\F=1pF
v v
v Z+P EPLRED V ¥ ZI+F FPLSCAN V 3
(1] Z+"=" NA(LPPY/+\F [1] Z++ W =Py 1=" N3 Prf+\ 140,F
L] v
v Z+P FPLREDB V
[1] Z+{{F¥P)/P) ,1 v Z+P FREVERSE V
[2] Z+(1+'-%* K& Z/192)=-~B/V [1]  Z+¥[&¥+\F]
"3 v

Copyright 1982 STSC, Inc. 10~ Boolean Functions, 2nd Ed.




A e o 3 bl N i i

i i~ s N Y B D il

@

1.2 Using Partition Functions

Partition functicns are user-defined functions that apply
certain APL primitive functions independently to each partition of
an array. They are used to manipulate a collection of arrays as
independent objects, though the collection is stored in a single
array.

A vector (a row of an array) can be viewed as a collection of
smaller vectors called partitions. For example, 110 can be
partitioned into smaller vectors as follows:

1-:2:8 4 56 7 8 9 10

This partitioning can be represented by a Boolean vector of
the same length with a 1 marking the beginning of each partition:

- 0 (partition vector)

100 1 1
Tie w28 4 5 9 10

The partition function for plus reduction (PPLRED) performs +/ on
each part of the wvector.

10011006 10P2PLRED 1 2 3 4 5 B 7-80 48
6 4 26 19

By definition, the first element of a partition vector is 1.

1.2.1 An Example
A paragraph of text can be represented as a character wvector
(V) with new-line characters ([JTCNL) separating the lines of the

paragraph. A partitioning of this vector into its separate
paragraph lines is

P+«7141,V=[TCNL
We would like to count the number of blanks in each line of
the paragraph by applying the function +/ to each partition of
v=' '. This can be accomplished by using PPLRED, the partition
function corresponding to +/, as in
P PPLRED V="' '

To count the number of leading blanks in each line of the
paragraph, apply +/a\ to each partition of ¥=' ';

P PPLRED P PANDSCAN ¥V=' !

Copyright 1982 STSC, Inc. -11= Boolean Functions, 2nd Ed.




1.2,

2 Conventions

The name of each partition function begins with the letter P.

Each partition function is dyadic with the partition vector on
the left and the argument array on the right.

The result of each partition function is the result of applying
the primitive function (as specified in the name of the
partition function) independently to each partition of the
right argument.

Each partition function extends scalar or one-element vector
right arguments to the length of the left argument (for
example, to compute the lengths of the partitions in P, use
P PPFLRED 1).

Each partition function reguires the left argument to be a
Boolean scalar or one-element vector, or a Boolean vector with
“1+pB elements (where B is the right argument). A scalar or
one-element vector left argument is extended to a vector with
T1tpB elements. The first element of the left argument must be
1 £

Each partition function partitions the last coordinate of an
arbitrary rank right argument. To apply the partition to
another coordinate, transpose the right argument and result as
appropriate. In particular, to apply any partition function
PFN to the Kth coordinate of 4, use

(hK=1ppA)QP PFN (LbK=1ppd)®4

Each partition function checks both arguments for errors; if an
error is found, it is signalled to the calling environment.

In all partition functions, [JELX is localized to signal errors
to the calling environment as in

OELX«'0ERROR( A\[IDM2[JTCNL ) /[IDM"'

The results of the following functions are sensitive to the
setting of [CT:

PDRANKUP PHRANKUP PLRANKUP
PDRANKDOWN PHRANKDOWN PLRANKDOWN

In all other functions, [T is localized and set to 0.
In the following functions, [JI0 is localized and set to 0:

PROTATE1 PSORTUP PLJUST PPLREDB PREVERSE
PROTATEN1 PSORTDOWN PRJIUST

All other functions are either origin free or origin sensitive.

Copyright 1982 STSC, Inc. =12~ Boolean Functions, 2nd Ed.

8

3




» The results of all partition functions with index, grade, or
rank in their names are sensitive to the setting of [I0.

‘ o The following functions work on both numeric and character
arrays:
PSHIFT1 PROTATE1 ELJUST PREVERSE
PSHIFTN1 PROTATEN1 PRJUST

All other functions work on numeric arrays only.

1.2.3 Errors
RANK ERROR The left argument is not a scalar or vector.

LENGTH ERROR The length of the left argument is not egual
to the length of the last coordinate of the
right argument.

DOMAIN ERROR The left argument is not Boolean-valued, the
first element of the left argument is not 1,
or the value of the right argument is not
suitable for the corresponding primitive
function (e.g., PPLRED on a character array or
PANDRED on a non-Boolean array).

J 1.2.4 Table of Corresponding Names

Table 1.1 lists the partition functions in workspace
& PARTFNS and the corresponding APL expressions that are
independently applied to each partition of the argument array 4.

In particular, given P as the partition vector and 4 as the
array right argument, let IP be the Ith partition of 4:

IP«(I=+\P)/A (in origin 1)

The result of each partition function is the catenation of
the expression to the right of each partition function for each
partition of 4. If IP is a matrix or higher-dimensional array,

consider the expressions below to illustrate what happens to each
row of IP,

9

Copyright 1982 STSC, Inc. -13- Boolean Functions, 2nd Ed.




Table 1.1 -- Partition Functions and Corresponding APL Expressions

Function APL Expression Function APL Expression

PLTRED </IP PLTSCAN <\[P

PLERED </IP PLESCAN =\IP

PEQRED = /TP PEQSCAN “\IF

PGERED =/IP PGESCAN >\IP

PGTRED >/IP PGT SC AN >\IP

PNERED #/IP PRESCAN E\IP

PORRED viIF PORSCAN viIP

PANDRED AfIP PANDSC AN AP

PNORRED w/IP PNORSC AN W IP

PHANDRED ~/IP PRANDSC AN ~\IP

PPLRED +/IP PPLSCAN #\IP

PPLREDE +/IP (See 1}

PMINUSRED -{IP PMINUSSCAN i f o

PPRRED x/IP PPRSCAN x\IP

PMINRED L/IP PHINSCAN LhIP

PMAKRED r/1p PMAKSCAN rip

PLJUST (+/a\IP=" ")QIP PRJUST {-+/a\QIP=* *)QIP

b or (+/A\IP=0)QIP or (-+/A\@IP=0)QIF

PSHIFTH1 T140,IP or 14' ', IP PSHIFT1 14IP,0 or 1+4IP," 7
PROTATEN1 T1QIP PROT ATE1 1pIP

PREVERSE QIP

PINDEXUP {See 2 and 3) PINDEXDOWN (See 2 and 3)

PSORTUP IP[AIP] PSORTDOWN IP[YIP]

PGRADEUP AIP {See 3} PGRADEDOWN VP (See 3)

FPRANKUP AAIFP (See 3 and 4) PRANKDOWR ATIP (See 3 and 4)
PDRARKUP 1 NDRANKR IP (5ee 3 and %)  PDRANKDOWN T1 NDRANKR IP (See 3 and 4)
PLRANEUP 1 NLRANKR IP (See 3 and 4)  PLRANKDOWN "1 NLRANKR IP (See 3 and &)
PHRANKUP 1 NHRANAR IP (See 3 and 4)  PHRANKDOWN 1 NHRANKR IP (See 3 and )
PARANKUP 1 NARANKR IP (See 3 and %)  PARANKDOWN "1 NARANKR IP (See 3 and 4)
Copyright 1982 STSC, Inc. -14- Boolean Functions, 2nd Ed.

3



Notes for Table 1.1:

(1) For Boolean values only; uses less work area than PPLRED.

(2) PINDEXUP and PINDEXDOWN independently grade each partition of
a numeric array, and return a permutation array that would
sort each partition in the composite array. For partition
vector P and numeric array 4,

(,A)[P PINDEXUP 4] <+ P PSORTUP A
(,A)[P PINDEXDOWN A] <> P PSORTDOWN A4

(3) Results of these functions are sensitive to the setting of
ro.

(4) The rank functions listed above correspond to the functions of
similar name from workspace & SORT.

j = hif nd mpare Functions Nia _and Pa

The group NAPAGRP consists of the two shift and compare
functions N4 (negative shift) and Pa (positive shift):

tat NA ¥V =+ V¥V = 1+ (=/10) , ¥
te? PAF e V = 1+ ¥V . /10

The left argument is a character scalar or vector
representing any primitive scalar dyadic function with a right-
hand identity element (i.e., one of A v > 2 = 2 + - x + = [ L)},
The right argument is a numeric vector.

The following are executable copies of N& and Pa.

V Z«d No B _
[1] Zes "B A" 1 AL FIA0) BT

=]

Z+A PA B
SR Bl VAR A,V TADY

=]

[1]

Na shifts vector V one position to the right; it drops the
last element of ¥ and catenates the identity element of = to the
beginning to preserve the length. This shifted vector is then
compared to ¥V using the function denoted as =«.

Pa shifts vector V one position to the left:; it drops the
first element of ¥V and catenates the identity element of = to the
end to preserve the length. This shifted vector is then compared
to ¥V using the function denoted as =.

Copyright 1982 STSC, Inc. -15- Boolean Functions, 2nd Ed.



1.3.1 Identities

For B a Boolean vector

(1) B TSNy s
B == n=k"=" Ni B
Fio sagsex it Ny
{2} ! Mo V — ¢.t¢.,-1
TecellS NP A S S ac
POt E R - ~Tp!
ol DA R v Tt
where = and w
= | @
= | z
o e
= | =
= | =2
v | a
]
1.3.2 Examples

Listed below are examples of

functions.

SET T0 1| THE FIRST 1
EACK SERIES OF 1'5; A

SET 0 0 THh
EACR SERIES O

™

S
5
E-]

—
-

PA
Na

Na
Pa

Copyright 1982 STSC, Inc.

2\ B
:‘l.E
+\V

Na
Na
Na

¥ a numeric vector,

may be selected from the following table:

N4 and Ps using Boolean

|
0 AFTER.| SET TO | TRE FIRST 0 BEFORE, ARD THE LAST 1 IN,
| EACKF SERIES OF 1'5; ALL ELSE 0.
|
5 O | F=00t11100111 000101
1203 I *#' PAF=01000101001001111
1 AFTER,| SET TO O TKRE FIRST 0 BEFORE, AND THE LAST 0 IN,
| EACH SERIES OF 0'5; ALL ELSF 1.
I
11 0 o P F=00D111100111000101
000 | *'="PAF=1D0D111010110110001
! __________________________________________________
1'5: | SET TO 1 THWE LAST 1| IN EACH SERIES OF 1'5:
| ALL ELSE 0.
|
1-0°1 F=00111100111000101
101 | "> PAF=0000010000100010]1
I __________________________________________________
0'5; | SET TO O THE LAST 0 IN EACK SERIES OF 0'5;
| ALL ELSE 1.
|
1200 =0011110011100010.1
o1 " rt=rpAR=10111110111110101%
{ ..................................................
OF 153 | SET T0 1 THE FIRST 0 BEFORE EACK SERIES OF 1'5;
| ALL ELSE AS BEFORE
l
01 | g=00111100111000101
P ] Sty pAF=011T1110111100°1 111
I ..................................................
OF 0°8S: | SET TO O THE FIRST | FEFORE EACH SERIES OF 0'S;
I ALL ELSE AS BEFORE
1500 ] B=00111100111000101
000 | *A*PAR=00111000110000001
r ..................................................
-16- Boolean Functions, 2nd Ed.




$

CHAPTER 2

REFERENCE TABLES

This chapter contains practical tools that the programmer
should find useful in his daily work.
equivalence tables, identities, and algorithms involving Boolean

Included are truth tables,

values.,
2.1 Composition Tables for the Relational an
o e | = | 0 =] A z | =g >
0o lo 1 R 0l 1 0 0 s entn 0
110 D 110 1 10 1 1. et 1 1
F:@g 1 ¥ | 0 o S il B ~
0 == e ) [ ol s (S 0
I [ cre=p s O %10 1 B s 1
2.2 Eguivalences of Non-Boolean Functions on Boolean Data
AxB +«-+ AAR
ALB +=+ AAB
A[B <+ AvE
AxB +«= A=z=E
A|B <+ A<B
A!B +~=+ AsPE
Copyright 1982 STSC, Inc. -17~- Boolean Functions,

ical Functions

S
K0 D
e B G
18 .3
] 1 4
-
2nd Ed.



"

Tild

r B

f

1if3i

Si

2.3

(~4)=B (=A)=-B ~A=B ~A=~B ~{~A)=E ~{~A)=—8

A=~F

A=B

oy iy By Ry ey By o o B By
ViV B AAND < >€
N W NG

e T e -
£ FH £ >HAAMY YV
W W, D W WL WD WD W

En £ En B Eny 6o En oy 6 6
> < H B EHYVIAA
Cmm T T T T

£y oy £y By O Oy 05 B B B
MANXNYVIR PE ><
TEEEEE T

oy B Eny By B B 6o 6y B, 6
AANWVIY HRE FC >
EEE M T T,

) Eny iy oy B By By e o A
< >R L EUVIV A A
= W W W W

iy Eny by oy B 6o M i o o
AR >0 A AV
WM W W WL, | W W

oy B iy A i iy
YWILLAAN S b
EEME T T Y R T

ne

with

an_ Function

Monadic Equivalent

2.4

l1 < 4 +« 0
l = 4 +«+ 4

0 <= A == |

—
i
=
Wi
L=

- -
L= ] | - O ]
b O G R
+ 4+ 4+ + 4+ 4 44
WO W, W W R
HANANR> <P L
o v o ] o
- = -
tltlo=xs=mo | ~
+H+ G R (i b |
+ + 4+ + 4 4 ¥
MR RN |
HAMaANR> <3 £
cOoDoOoOO0DO

2nd Ed.

Boolean Functions,

=18-

Copyright 1882 STSC, Inc.




>

2.5 Eguivalences for 4@4®B_in the Form of A@B

A<A<B
A=<A=E
A<A=B
A<AzB
A<A=B
A<AzEB
A<AVEB
A<dAaB
A<A%B
A<AnB
A=A<E
A=A=B
As4=B
A=4A=E
AsA=B
A<A#B
A=4AvE
A=4AB
AsA%B
A=A~EB
A=A<B
A=A=R
A=4A=B
A=AzE
d=4=>B
A=AzE
A=4vE
A=AAB
A=A%E
A=AwE
AzA<B
AzAsE
AzA=EB
Az4A=zE
AzA>EB
AzA=8
AzAVE
AzAAEB
AzA¥B
AzA~E
A=4=<B
A>A=E
A=A=8
A=A=R
A>A>H
A=A%E
A=AvE
A=ArB
A=A%R
A>A~B

Copyright 1982 STSC, Inc.

A<B
~4
A¥E
A%E
0
A<B
A<B
1]
A%E
~4
~4
A=E
A=B
il
A»E
AwnB
1
A=E
~4
AnE
A%B
AAE
B
AvVE
AwnB
~B
AzEB
A<E
A<B
A=EB
A=B
4
AvVE
AVE
1
4zB
AzB
1
AVE
4
4
A4=EB
A=E
0
AaB
ArE
0
A=EB
|
AAB

_19._

AzA<B
A24<B
AzA=B
Az4=8
Az4>B
FEF.ES:]
AzAVE
Az4AAB
AzA%E
Az4d~E
AvA<B
AvA<E
AvAd=EB
AvdzE
AvA=E
AvAzE
AVAVE
AvArB
AVA¥E
AvA~E
And<B

ArnA=F .

ArnA=B
AndzB
ArA>B
Arnd=E
ArAVE
AndnB
ArA%E
ArdwE
A% A<E
A% A <R
A% A=F
A% A =B
A¥4A>8
A¥AzE
A% AVE
A¥AAB
A% d%E
A¥A~E
Avd<B
A~4d <B
AnA=E
Axd 2B
And>E
A~AzB
A~AVE
AvAnB
A~A¥E
An~A~E

Boolean Functions, 2nd Ed.

AVE
AnB
;.H~
A%E
AaB

A<B
A=E
AzB
A=E
AvE

4zB
AzB

AVEB
AvE

AzB

ArB
AnB

A=B
A=EB

AnEB

A>B
A%E

A<B
A<B

A%E
A%B

A<B

A~B
A»B
~4

A=<E
AsB
~4

ArB

A=E



(4<B)<d<C
{4<B }S4<C
(d<B}=A<C
(A<B}zA=<C
(A<Bl=4<C
{A<B)zA<C
(A<B)vA<C
{A<B)ad=<C
(A<B)%4=<C
(A<B)lwmA=<C
(AB)<A=C
{AsB)sAsC
(AsB)=4<C
(A=B)=A=<C
(AdsB)=A=C
(A=B)zA=C
(A=B)IvA=C
(AsB)nA=C
(AsB)IwAsC
(AZBInd=<C
(A=B)<A=C
(A=B)<A=C
(A=B)=A=C
(A=B)=z4=C
(A=B)=A=C
(A=B)=z4=C
(A=B)vA=C
(d=B)ad=C
(A=B )% A=C
(A=B}»d=C
(4zB)<A=2C
(AzB)=<d=C
(4zB}=42C
(A=B)=z4=2C
(4zB)=4=2C
(AzB)zd=zC
(AzB}vdzC
(AzB)ndzC
(AzB)¥A=zC
(AzB )~d=zC
(d>B}<d>C
(A>B}s4>C
(Ad>E}=4A>C
{(A=B)zd=C
(A>B)=4A>C
(A>B)zA>C
(A>B)vA=C
(A>B)ad>C
(A>B)wA>C
(A>B)wd=>C

Copyright 1982 STSC, Inc.

ive Identities for Boolean Function

d<B<C == AMB:z(C
AdzB>=C == AVEB:=(C
Ad2B2C == AVEBE=C
dzB<C <=+ AvVEB:z(C
d<B=>C +=+ A¥Bs(C
A<BzC <+« AB=(C
A<BVYL == ANBW(
A<BAal == A¥EBEwn{
AzBVE <+ AVEB¥(
A2BAL <= AVEwL
d>BzC += AaB<(C
A2Bs0 <= AwnB>(C
ASB=C += AnBz{
A=Bz(C += AwmB<({
A=B=s0 <= AnB=(
A»B=C +=+ AaBz{
ASBY(C +—= AwB¥(
AZBAL +=+ AnBnl
A=BvYC +—+ AABW(C
A>BalC +=+ AnBw{

Mo Identity
No Identity
B=C

No Identity
No Identity
B#C

No Identity
No Identity
No Identity
No Identity

Ad<B>L == A¥B=(C
AzB<(C «—= AVYBz(C
dzB2C == AVE=C
AzB>C +—» AVE=(C
d<B<C == A¥B:z(C
A=BzC += AB=C
AzBAL == AVEw(L
AZzBEVD += AVEw[
A<BAL += AMBwn{
A<BYED = AwBw(l
A>B=C +«= AaB>C
AsBzC <= AnB<(C
A=B=0 +=+ 4A~Bz(
ASBsC ++ AwnB>(
A=Bz0 +=+ AnaB=<(C
A=B=C +=+ AaBz{
A=Bal +=+ ArBwn{
A=BVY(C «=> AABw(C
AZBAC +=+ AnBnl
ASEVE +-+ AwBw(C

(Az2B)<AzC
{AzB)<4=C
(AzE)=A=C
(AzB)zd=C
(A2B)>A2C
(AzB)z4z0
(A=zB)vd=zC
(AzBIrd 20
(A=B )%4=C
(AzBInd 20
{AVE ) <Av¥C
(AVEB)<AV(
(AVE }=AVC
(AVB)zAVC
{AVE }>AVC
(AVB)zAVC
(AVB)VAVC
(AVB )advC
{AVE }¥4AvC
{AVEB )mdV(
(AABY<dnl
{AAB)sAAC
(AAB)=AnAC
(AAB)zAAC
(AAB)=AnC
(AnB)zAAC
(AnB)IVAAC
(AABIAAAC
(AABI¥AAC
(AAB)InANC
{A%E ) <A™(C
(AMEB ) sAMC
(A%E ) =A%
(A%E ) zAMC
(A¥B ) >4%(C
(ANB )z A%l
{AMEB ) vaASC
(AMB ) nanNC
(A¥B ¥ A%
(A¥B ) wANC
(AnB ) <dwnl
(AnB ) sAnC
(A™nEB Y =dwnC
(AnB ) zA~C
(AwB )= AnC
(AnE )2 A~C
(A#B)VA»C
(A%E ) ad»C
{AnB ) ¥ A~l
{AnB Jmdnl

No Identity
No Identity
B=C

No Identity
No Identity
Bz({

No Identity
No Identity
No Identity
No Identity

A<B=<(C
AzB>C
AzBz(C
AzB=<C
A<B=>(
A=<B=zC
AzB%(C
AzBw
A<Bw(
A<B»{
A=B=C
AsBsC
A=E=C
A=B=zC
A=B=C
A»B=C
A=B%(
A=Bwl
AsSB™C
A=ZBw~{
A<B>C
AzB=<C
A=zBz(C
AzB=C
A<B<C
A<Bz(C
A<B»al
A<Bw(
AzB~(
AzBw%(C
A=B=C
AsB=C
A=B=C
A=sB=C
A=Bz(
A=B=C
AsBwl
A=B%(
A>B»C
A=Bw(

= AMB=C
=+ AVB=s(C
=+ AVEBE=C
++ AVBzC
=+ AMB=T
=+ AMB=(C
«+ AVBY(C
3 AVBAL
=+ AMBV(
=+ AWBAL
++ ArB<(
= AwmB>C
=+ AnB2L
+~+ AnB=<(
+=+ AaB>=>(
++ AaBz(C
++ AABY(D
==+ AABAD
~+ AnBV(C
=+ AxBAL
+~+ AMB=sC
~+ AvB:zC
=+ AVEBE=(C
++ AVB=(C
=+ AMBz[C
= AMB=(
=+ AwEBALD
«— AWBY(C
= AVEAD
=+ AVBY(C
= AAB>C
=+ AwB<(
= AwmBEC
=+ AwB>(C
=+ AAB<(
++ AAB2L
«+ AnBAl
= AwBV(
=+ AABAL
++ AABYC

Boolean Functions, 2nd Ed4d.




>

2

Inverse Distributive

Identities for Boolean Functions

A<B=C
AzB=<(C
AaB=C
AwB=(C
A=B=C
A>B=(C
AVB=C
AB=sC
AsB=C
A=B=C
AvB=C
AE=(
AsB=C
A=B=C
AvBzC
AvBzC
A<B=>C
AzB>(C
AnB=0C
AnB=>C
A<BzC
AzBzC
AnBz2C
AnB2
A<BvV(C
A=Bv(C
AzBvC
A=Bvi
A¥YBY(C
AABVE
A¥BV(
AnBVD
A<BaC
ASBAC
AzBAC
A=BAal
AVEBaAL
ArBal
A¥B Al
AnB Al
A<B%(C
A=B%(C
AzBNC
A=B%(C
AVB%(
AAB%(
AwBw
AnBW(
A<Bwl
A<Bw(
AzBw(C
A=Beal
AVEBwn{
ArBaC
A¥B*C
AnBwl

OO 1 SR R R

TRE S S
A AR

o

(A4<B)<d=<C
(dzB)s4=2C
(A<B)<d=C
(A>B)s4>C
(4=B)=4sC
(A>B)<A>C
(A<B)sd=<C
(AdzB)<d=zC
(4sB)=AsC
(AsB)=z4=C
(A<B)=4<C
(A<B)=zd<C
(A>B)=s4>C
(A=B)<dsC
(A4zB) =4=C
{(A<B)<d<C
(AzB)<d=2C
(A<B)=d=<C
(4=B)<A>C
(A=B)=4=sC
(A<B)=z4=<C
(A<B)=A<C
(A=B)=4=C
(A<B)=AsC
(A4<B)v¥4=<C
(AsB)vA=C
(AzB)ad=zC
{A=B)nd>C
(AVB}VAvVE
(AAB)VAAC
(AMB ) ad™C
(AnB)adnl
(A<B)ad=C
(AsB)ad=sC
{AzB)vAzC
(A>B)vA>C
(AVEB)AAVD
(AABYAAAC
(A%B ) vawD
(AwB )V AnC
(A¥EB ) a4l
(AwB ) adnl
(AVB)IVAVYD
(AABIYAAC
(AzB)adzC
(Ad=B)ad=C
(A<B)vd=<C
(AsB)vAsC
(A%E)vARD
(AwB IVANC
(AVBInAvYD
(ArB)rdal
(dzB)vdzC
(A=B)va>C
(A<B)ad<C
(A=BYad=C

IR BB & 8 B 4 it i S R R R

t 44
¥4+ 4

t
+

b

Copyright 1982 STSC, Inc.

(AVE )<4vl
[A%E ) =40
(AaB)<dal
[A=B ) <dnl
(AAB)YSAALC
(AnB ) <Al
(AVB)sAvC
(A¥B ) <4™C
(A>B)=A>C
(A>B)zdA>C
(AzB)=4=2C
(AdzB)=4=2C
(AnB ) =Awl
(AAaBl<dal
{A¥B ) =A%C
(AVB)<AvC
(A%E ) <Awl
(AYB)sAvVC
(AnB ) <Ad~C
(AAB)=AAC
(AzB)=z4=2C
(AdzB)=AzC
(A>B)zA>C
(A>B)=A>C
(AzB }mA=C
(A>B)#xA>C
(A<B)¥4=C
(A<B)%A=C
(A¥E )ndwl
(AwE Imdnl
{AVE ) %AV
(AAB 1%¥A4AC
(AzB }¥4zC
(A=B)%d=C
(A<B}wd=<C
(ASB)Ywd sl
(A¥B )% AT
[A=B )¥Anl
[AYB)wAvC
(AaB)IwAAC
(AVE }wAVC
(AaB)wdAal
[A¥E )wdAwl
{AmwB )mAnl
(A<B)wi4=C
(A=B )wA=C
(AzB )wdzC
(A>BIwd>C
({AVB }nAv(
(AAB ) md Al
(AMB )vAN_
(AnB )% 4wl
(A<B)Ywd=<C
(A=B)Iwd =l
(Az2B %Azl
(A>B)%4=>C

e

PO e R O o R O R R

{AzB)=42C
(A<Blzd=<C
(A=B)=4>C
(AsBlzds=C
(A=>B)z4>C
(AsB)=A=C
{AzBlzdzC
(4=<B)>A=<C
(AAB)=4aC
(AAB)zAAC
(A¥YEB)=AvC
(AVB)#AVC
(AsBlzAs=sC
(A>B)=4>C
(A=<B)zd=<C
(AzB)=4=2C
{A<B)>4=<C
(AzBrzd=zC
{AsB)=4=<C
(A=B)zA>C
(AYB)=4VC
(AYE)=AvYC
{(AAB)zAAC
{(AAB)=AAC

Boolean Functions,

o

—
——

31 8L

-
-
A=

i

Wil

——

Lt

LY

(A%B ) =40
(AVB)zAVC
(AwEB )= Anl
(ArB )24l
(AnEB ) zAdwC
(AAB)=AnC
(A%B ) zA%C
(AVB)}=AvVC
(AwEB ) =Anl
(AnB )z AnC
(A%B ) =4%C
(A¥B )z A%C
(ArB )24l
(AwB )= 4~C
(AVE ) zAVC
(A%B )= A%C
(AVB)>AVC
(AMB )z A%C
(AAB)=AAC
(A=B ) zdn~l
(A¥EB )2 A%
{ A%E ) =4A%C
{A»B ) zdnl
(AnB }=4A~C

2nd Ed4.



2.8 t i igns _on Boolean Vector Where the
Result Is Zero Or One

Let B be any Boolean vector.

Reduction 1 ion

A/B 0 if 0eB; 1 otherwise.

v/B 1 if 1¢B; 0 otherwise.

~/B >/B if B is of the form N#1N or Npl;

otherwise ~2|+/a\1=B (the reverse parity of
the number of leading 1's in B).

¥/B 2/B if B is of the form N=1N or NpO;
otherwise 2|+/a\0=B (the parity of the number
of leading 0's in B).

</B 1 if B is of the form N=1N; 0 otherwise.

</B 0 if B is of the form Nz1N; 1 otherwise.

=/B ~2|+/0=B (the reverse parity of the number of
0's in B).

2/B ~2|+/A\0=B (the reverse parity of the number
of leading 0's in B). . I

>/B 2|+/a\1=8 (the parity of the number of
leading 1's in B).

#/B 2|+/1=B (the parity of the number of 1's in
B}I

x/B 0 if 0eB; 1 otherwise.

[/B 1 if 1¢B; 0 otherwise.

L/B 0 if 0<B; 1 otherwise.

x/B ~2|+/a\0=B (the reverse parity of the number
of leading 0's in B).

| /B 1 if B is of the form N=1N; 0 otherwise.

'/B 0 if B is of the form Nz1N; 1 otherwise.

Copyright 1982 STSC, Inc. 22— Boolean Functions, 2nd Ed.



2.9 Similarities between Reduction and Scan _of Boolean Vectors

, The table below illustrates notational similarities between

} APL expressions for reduction and scan of Boolean vectors. The
functions included are all the primitive scalar dyadic relational
and logical functions. Origin dependent expressions should be
evaluated in origin 1.

Simpler statements exist for some of the expressions. For
instance,

z2/B ++ ~2|+/a\~B «» 2|B11
>/B «+ 2|+/a\B <+= ~2|B10

The form using A\ was not chosen to point out the similarities
with the expressions illustrating other reductions and scan.

Also, ~\ is one of the objects being illustrated and should not be
used to define other expressions. The other equivalent form was
not chosen since it has no simple extension to an expression for a
scan using that function.

Reduction Scan
AfB <+> (B10)>pB A\B +=> (B10)>1pB
¥/B ++ (Bi1l1)=pR Y\BE +«+ (Bil)spB
’ ~/B <= ((B10)<pB)=~2]| #\B <> ((B10)<1pB)=~2]|
+/(B10)>1pB +\(B10)>1pB
/B +=+ ((Bi1)<pB)=2]| ¥\B == ((Birl)=1pB)=2|
+/(B11)>1pB +Y(B11)>1pB
</B +=» (Bi1l)=pB <\BE <=+ (Bi11)=1pB
</B +=+ (B10D)=zpB Z\B <= (B10)=1pB
=/B +> ~2|+/~B =\B ++ ~2|+\~B
2/B <= ~2|+/(B11)>1pB 2\B <> ~2|+\(B11)>1pB
*/B +» 2|+/(B10)>1pB >\B +=+ 2|+ (B10)>1pB
2/B ++ L 2|+/B #\B «=+ 2|+\B

-

Copyright 1982 STSC, Inc. -23~ Boolean Functions, 2nd Ed.




2.10 Fast Algorithms for Implementing Relational and Logical
Scans Other Than #\ and =\

Note: 4 =+ {pB)=4 © [IT0 + 1

R+V\B A+ 1+B11 © R«(Ap0 0),4p1
R<a\B A< 1+B10 ¢ R<(4pl 1),4p0
R+z\B A< 1+B11 © R<(4p0 1),4p~21|4
R+<>\B A+« 1+B10 © R«<(Apl 0),4p 24
R<<\B A+ 14811 © R+(ApD 0),4p0 o IF A#pB THEN R[A+1]«1
R<<\B A< 1+4B10 © R«(4pl 1),4p1 © IF A#pB THEN R[A+1]«0
R<¥\BE A< 1+B11 ¢ R«(Ap0 1),4p 2|4 © IF AzpB THEN R[A4+1]<~2]|4
R<#\B A« 1+B10 © R+«(4pl 0),4p~214 © IF A#pB THEN R[A+1]« 2|4
2.11 Eight Different Definitions of Scan., with Examples

R <« =\V +\1 5 ris ol S|
eIl =/ P 15 wg s e 10 38 e A0 L esherdiaa
hETE = =/ (r-13+¥ | 15-_18 12 g R B 2 olis 1oAGaR
HEE e (SItY | ST 8 a2 b A5 C Peal ol Gbes Jewd
RELS »~ =/ (1-T)4Vio | id52".10 6 3 : Y R < 273 1 -4
RII] <« =/ I *+v | 1 3 e o S ] L | AR 20
LI = =/O(I~1)¢F" |- 15- 1812 g Serols @ 2 4 1«5
BEL T~ =/% (-IT)*¥ | 5 g < 3y o8- |5 Mg g
R[I] « =/¢(1-I)+¥V | 15 10 6 3 L. i*-% 2: 52 1 —4

2.12 Identities Involving Scan

<\B <+ ~s\~B

=\B +-+ ~<\~PB

2\ ++ ~>\~B +«=+ =\V¥\B

*»\B +=+ ~z\~F <= 2\aA\B

=\B ++ ~#\~B

Z2\B +=+ ~z=\~F

Y\B =+ ~a\~PB

A\B <> ~Vv\-~B

¥\B ++ ~a\~B <=+ (z\B)=(v\B)s<\B
#\B ++ ~%\~B +=+ (>\B)}z{a\B)<s\B

Copyright 1982 STSC, Inc. -24- Boolean Functions, 2nd Ed.




2.13 Results of Operations Using Boolean Vectors

The following example illustrates the use of exponentiation
by a logical vector to change 0's to 1's in an array.
4+ 6 7 DG 850 0 7
B« 3 4 § 23 @G85 8 D
BExB=z0
141 2 3 1 4 SuHE

A+B © A+BxBz0
2 1,75 1 2058 3 TG
2 1.75 0 2.5 S ST L
Here exponentiation by a logical vector is used to change 0's to
1's because 0:1 produces the desired 0. 4+B+B=0 could also have
been used in this case.

The table below shows the most useful manipulations and what
they produce when BOOLEAN is assigned 0 or 1.

Result When Result When
Operation BOOLEAN<0 BOOLEAN<1

AxBOOLEAN
AxBOOLEAN
BOOLEAN'A
BOOLEAN| 4
Ax~BOOLEAN
Ax~BOOLEAN

(only for integer 4)

- A = |
= =T -

2.14 Altering the Order of Arguments Using Conditional Arrays

Often when dealing with arrays, we wish to process part of
the array while leaving the rest untouched. For instance, add 3
percent to only those bills over 30 days old:

BILLS+BILLSx1.03*DAYSOLD>30

Other times, we may wish to alter the order of the arguments
of the computation itself based on a conditional array (e.g., 4-B
or B-4). For functions with an inverse, we may wish to
conditionally alter the function used in a computation (e.g., 4+B
or A-B). If a function has an inverse, we can use 1 and one of
x = | ! on the conditional array to give us the proper answer,
Or, as shown above, we can use the conditional array to control
whether the operation is performed.

Copyright 1982 STSC, Inc. -25- Boolean Functions, 2nd Ed.




In the table below, € is the conditional array. C controls
the function used in the first two lines, the order of the
function's arguments in the next two lines, and whether or not the
function is performed in the last three lines.

If C=0 If C=1
Return Return By Using This Expression
A+B 4-B 4+B x_1xC
AxB A+B AxB * 1%xC
A-B B-4 (A-B)x_1=%C
A+B B4 (44B)=x 1=C
4 A+B A+Bx(C
4 AxB AxBx(C
4 AxB AxBx(C
_i
v
Copyright 1982 STSC, Inc. -26- Boolean Functions, 2nd Ed.




[1]
£2]
[3]
(4]
[5]
[6]
[7]
(8]

CHAPTEE 3

SELECTED FUNCTIONS THAT ILLUSTRATE BOOLEAN TECHNIQUES

This chapter comprises a number of functions that illustrate
the practical use of the techniques described thus far in the
publication.

v

D D D D D

v

v
A
A
A
A

v

v

D H D D D D D

v

Z+«A BINARYADDER B:C:D:E
CALCULATES THE ARITHMETIC SUM (WITHE CARRY PROPAGATION) OF
TWOQ BINARY VECTORS.
GLOBALS: F - NA, Pa,
ORIGIN FREE.
WRITTEN BY ROBERT A. SMITH, STSC, 20 JULY 74,
C+-1+(pA)[pB © A«Ct4 © B+«C*B ;
D+daB © E+«A=B © (C+'2'" NA~E
Z+({E\1+(E/D),0)22\C\"A' PA~C/D

Z+CMB X

COMPRESS MULTIPLE BLANES

ORIGIN FREE

GLOBALS: (NONE)

WRITTEN BY ROBERT A. SMITH, 17 JUL 78.
I+ . I," Y o Ex14 1+ ~F HSS =Y YE

Z+DLEB X3A:B

DELETE LEADING BLANKS

WORKS ON VECTORS, DELETING LEADING BLANKS BETWEEN [JTCNL'S,
OR ON MATRICES (RETURNING A VECTOR) DELETING LEADING
BLANKS IN EACH ROW.

ORIGIN FREE.

GLOBALS: F - Na.

WRITTEN EY ROEERT A, SMITE, STSC, 28 JAN 74.
X< ,[OTCNL ,X © A«X=[JTCNL ¢ Z«X=' ' © B+A2Z

Z+«1+(Av2\B\'#' NA~B/AVZ)/X

Copyright 1982 STSC, Inc. -27- Boolean Functions, 2nd Ed.




Vv Z«DTB X:4

[1] ~» DELETE TRAILING BLANKS

[2] & WORKS ON VECTORS DELETING TRAILING BLANKS BETWEEN [JTCNL'S,
[3] & OR ON MATRICES (RETURNING A VECTOR) DELETING TRAILING

[4] & BLANKS IN EACH ROW.

[5] =~ ORIGIN FREE.

[6] n GLOBALS: F - Ni, Pa.

[7]1 =~ WRITTEN BY ROBERT A. SMITH, STS5C, 28 JAN T7h.

[8] Yoty Y. [IFCNL © d«<"2' N& X=' !

[91] Z«(~z2\A\'2" Pa A/X=[JTCNL)/X

v

¥ Z+AFMTNZ M:;A:BL3PT3EM

[1] n SUPPRESSES TRAILING 0'S IN <M> UP TO AND INCLUDING
[2]1 =~ THRE DECIMAL POINT.

[3] =a GLOBALS: F - Na, Pa.

[4]1 =~ ORIGIN FREE.

[5] & WRITTEN BY ROBERT A. SMITE, STSC, 29 MAR 7h4.
[6] RM< 0 1 +pM © M« ,M,"

7l EL+M=" ' ¢ PT«M=","

[8] A<PTV'>' NA BL

[9] A«'2' Na(Me'0.')az\A\'2" Na A/PT

[10] A<~z2\A\'2' Pa A/BL

[11] Z+« 0 ~ 1 +RMpA\A/M

T

¢

¥ Z+A STREPL B:C:R:[IC
r REPLACES IN <B> ALL OCCURRENCES OF <1+t4> BY <144>,.
A GLOBALS: F - N4,
R ORIGIN 0 DEPENDENT.
n WRITTEN BY ROBERT A. SMITH, STSC, 10 NOV 7u.
[JI0+<0 © A<, A © C+«B=1pA © Z+«C/1pB ¢ R«((pB)+(pZ)x 2+pd)pl
RI(Z+( 2+pA)x1pZlo,+1 2+pAl«0 ¢ Z+R\B
R<('A*' NA R)SR\C © Z[R/1pRl«(+/R)pl+4

e B B e B W e B e |
-1 N W = Wkl
e bt e b o L

v

V R«A SUMSCANBOOLCOMP B;C;[I0
[1] a COMPUTES A/+\B FOR A LONG BOOLEAN VECTOR <B>.
[2] a AVOIDS WS FULL PROBLEMS BY NOT CREATING +\B
[3] & GLOBALS: (NONE)

[4] =a ORIGIN 1 DEPENDENT.
[51 n WRITTEN BY ROBERT A. SMITH, STSC, 9 FEB 74,
[6] a SPEEDUP BY GERRY BAMBERGER, STSC, 8 JAN 78.
[71 (10«1 © C<(BVA)/A
[8] R<(C/1pC)-+\~A/B

v

Copyright 1982 STSC, Inc. -28- Boolean Functions, 2nd Ed.




-

[4]
ER
[61]
Ezd
[8]
[9]
i
[ 113
[12]
[.13d
| B T
[15]
[16]
[ 173
[18]

V R+~B SUMSCANBOOLSUB A;C:;D

A
A
R
A
A
A
A
A

> ®» D D D B D

COMPUTES (+\B)[A] FOR A LONG BOOLEAN VECTOR <B>.
AVOIDS WS FULL PROBLEMS BY NOT CREATING +\B .
ASSUMPTIONS: <A> CONTAINS NO DUPLICATES, AND

IS IN ASCENDING ORDER.
GLOBALS: (NONE)
ORIGIN SENSITIVE.
WRITTEN BY ROBERT A. SMITH, STSC, 9 FEB 74,
SPEEDUP BY GERRY BAMBERGER, STSC, 8 JAN 78.

C«(pBlip0 © CLA)+1
D« (BvC)/B=C ¢ D+«(D/1pD)-~[]I0
ReD-+\~C'/B

(FROM ROY SYKES, STSC, 7 JULY 75)

IF <A> CONTAINS NO DUPLICATES, BUT IS NOT IN ASCENDING ORDER:
[12] R<R[Ak4] v

IF <A> CONTAINS DUPLICATES, BUT IS IN ASCENDING ORDER:

[12] ReR[+\A# 14(1t(~0I0)*4),4] V

IF <A> CONTAINS DUPLICATES, AND IS NOT IN ASCENDING ORDER:
Fi31 R+RLIC/1pCixd] ¥

Copyright 1982 STSC, Inc. o Boolean Functions, 2nd Ed.



