Exploiting Versions for Handling Updates
in Broadcast Disks

Evaggelia Pitoura
Department of Computer Science
University of Ioannina
GR 45110 Ioannina, Greece
email: pitoura@cs.uoi.gr

Abstract

Recently, broadcasting has attracted consid-
erable attention as a means of disseminating
information to large client populations in both
wired and wireless settings. In this paper, we
exploit versions to increase the concurrency
of client transactions in the presence of up-
dates. We consider three alternative mediums
for storing versions: (a) the air: older versions
are broadcast along with current data, (b) the
client’s local cache: older versions are main-
tained in cache, and (c) a local database or
warehouse at the client: part of the server’s
database is maintained at the client in the
form of a multiversion materialized view. The
proposed techniques are scalable in that they
provide consistency without any direct com-
munication from clients to the server. Per-
formance results show that the overhead of
maintaining versions can be kept low, while
providing a considerable increase in concur-
rency.

1 Introduction

While traditionally data are delivered from servers to
clients on demand, a wide range of emerging database
applications benefit from a broadcast mode for data

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

*This work is supported in part by National Science Foun-
dation under grant IRI-9502091 and IIS-9812532.

114

Panos K. Chrysanthis*
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, U.S.A.
email: panos@cs.pitt.edu

dissemination. In such applications, the server repeti-
tively broadcasts data to a client population without a
specific request. Clients monitor the broadcast chan-
nel and retrieve the data items they need as they arrive
on the broadcast channel. Such applications typically
involve a small number of servers and a much larger
number of clients with similar interests. Examples in-
clude stock trading, electronic commerce applications,
such as auction and electronic tendering, and traffic
control information systems.

The concept of broadcast delivery is not new. Early
work has been conducted in the area of Teletext and
Videotext systems [3, 23]. Previous work also includes
the Datacycle project [10] at Bellcore and the Boston
Community Information System (BCIS) [13]. In Dat-
acycle, a database circulates on a high bandwidth net-
work (140 Mbps). Users query the database by filter-
ing relevant information via a special massively par-
allel transceiver. BCIS broadcasts news and informa-
tion over an FM channel to clients with personal com-
puters equipped with radio receivers. Recently, data
dissemination by broadcast has attracted considerable
attention ([12], [19]), due to the physical support for
broadcast provided by an increasingly important class
of networked environments such as by most wireless
computing infrastructures, including cellular architec-
tures and satellite networks. The explosion of data
intensive applications and the resulting need for scal-
able means for providing information to large client
populations are also motivated by the dramatic im-
provements in global connectivity and the popularity
of the Internet [9, 24].

As such systems continue to evolve, more and more
sophisticated client applications will require reading
current and consistent data despite updates at the
server. In most current research, updates have been
mainly treated in the context of caching (e.g., [6], [2],
[11], and [16]). In this case, updates are considered in
terms of local cache consistency; there are no trans-
actional semantics. Transactions and broadcast were

first discussed in the Datacycle project [10] where spe-
cial hardware was used to detect changes of values read
and thus ensure consistency. The Datacycle architec-
ture was extended in [4] for the case of a distributed
database where each database site broadcasts the con-
tents of the database fragments residing at that site.
More recent work involves the development of new cor-
rectness criteria for transactions in broadcast environ-
ments [22] as well as the deployment of the broadcast
medium for transmitting concurrency control related
information to clients so that part of transaction man-
agement can be undertaken by them [5].

In our previous work [18], we proposed and compar-
atively studied a suite of techniques for ensuring the
consistency of client read-only transactions in broad-
cast environments. In this paper, we propose main-
taining multiple versions of items to increase the con-
currency of client transactions. Versions are combined
with invalidation reports to inform clients of updates
and thus ensure the currency of their reads. We as-
sume that updates are performed at the server and
disseminated from there. The currency and consis-
tency of the values read by clients is preserved without
requiring clients contacting the servers.

We consider three alternative means for storing
older versions. One potential storage medium is the
air, in which case, older versions are broadcast along
with current values. We introduce protocols for in-
terleaving current and previous versions as well as
for determining the frequency of broadcasting old ver-
sions. A second proposal is maintaining older versions
in the client’s cache. In this case, garbage collection
of old versions is possible since there is local informa-
tion about active client transactions and their access
requirements. Lastly, we exploit the scenario of main-
taining part of the server’s database at the client in the
form of a multiversion materialized view. The novel
aspect is that the base relations are on air. Hybrid
approaches where older versions are on air, in cache,
and in client’s main memory or disk are also possible.

Performance results show that the overhead of
maintaining older versions can be kept low, while pro-
viding a considerable increase in concurrency. For in-
stance, when about 10% of the broadcast items are up-
dated per broadcast, maintaining 5 versions per item
increases the number of consistent read-only transac-
tions that successfully complete their operation from
10% (when no versions are maintained) to 80% — 90%.
The increase of the broadcast size is around 10% to
15% of the original size depending on the broadcast
organization used. For less update-intensive environ-
ments, the overhead is considerably smaller.

The remainder of this paper is organized as follows.
Section 2 introduces the problem, defines currency and
presents two basic approaches for maintaining correct-
ness. Section 3 describes the multiversioning scheme
and related issues. Section 4, 5 and 6 discuss keeping

115

\ @

Y =
Broadcast Data -
Server
\ /
-

/@

Clients

Figure 1: Broadcast architecture
old versions on air, in cache and in a warehouse respec-
tively. Section 7 discusses disconnections and updates,
while Section 8 presents our performance model and
experimental results. Section 9 concludes the paper.

2 Broadcast and Updates

In a broadcast dissemination environment, a data
server periodically broadcasts data items to a large
client population (Figure 1). Each period of the broad-
cast is called a broadcast cycle or beycle, while the con-
tent of the broadcast is called a bcast. Each client
listens to the broadcast and fetches data as they ar-
rive This way data can be accessed concurrently by
any number of clients without any performance degra-
dation. However, access to data is strictly sequential,
since clients need to wait for the data of interest to ap-
pear on the channel. We assume that all updates are
performed at the server and disseminated from there.

2.1 The Broadcast Model

Clients do not need to listen to the broadcast contin-
uously. Instead, they tune-in to read specific items.
Such selective tuning is important especially in the
case of portable mobile computers, since they most
often rely for their operation on the finite energy pro-
vided by batteries and listening to the broadcast con-
sumes energy. However, for selective tuning, clients
must have some prior knowledge of the structure of
the broadcast that they can utilize to determine when
the item of interest appears on the channel. Alterna-
tively, the broadcast can be self-descriptive, in that,
some form of directory information is broadcast along
with the data. In this case, the client first gets this in-
formation from the broadcast and uses it in subsequent
reads. Techniques for broadcasting index information
along with data are given for example in [15, 11].
The smallest logical unit of a broadcast is called
a bucket. Buckets are the analog to blocks for disks.
Each bucket has a header that includes useful informa-
tion. The exact content of the bucket header depends
on the specific broadcast organization. Information in
the header usually includes the position of the bucket
in the bcast as an offset from the beginning of the
bcast as well as the offset to the beginning of the next
becast. The offset to the beginning of the next bcast
can be used by the client to determine the beginning

abucket

/

-

‘ : ‘ : -
X0 X2 x3

Figure 2: Currency of updates
of the next bcast when the size of the broadcast is not
fixed. Data items correspond to database records (tu-
ples). We assume that users access data by specifying
the value of one attribute of the record, the search key.
Each bucket contains several items.

2.2 Updates and Consistency

During each bcycle, the server broadcasts items from
a database. A database consists of a finite set of data
items. A database state is typically defined as a map-
ping of every data item to a value of its domain. Thus,
a databases state, denoted DS, can be defined as a set
of ordered pairs of data items in D and their values.
In a database, data are related by a number of in-
tegrity constraints that express relationships of values
of data that a database state must satisfy. A database
state is consistent if it does not violate the integrity
constraints [8].

While data items are being broadcast, transactions
at the server may update their values. There are a
number of reasonable choices, regarding the currency
of data on the broadcast. For example, the values
on the broadcast may correspond to current values at
the server, that is to the values produced by all trans-
actions so far committed at the server. Alternatively,
updates at the server may not be reflected in the bcast
immediately but at pre-specified intervals, such as at
each bcast or at fractions of the bcast. We call such
intervals currency intervals. In particular, we assume
that, when an item is to appear on the broadcast, the
value that will be broadcast is that produced by all
transactions committed at the server by the beginning
of the current currency interval (which may not be its
current value at the server). For uniformity of presen-
tation, when updates are immediately reflected in the
bcast, we say that the currency interval is that of an
item.

Figure 2 depicts possible currency intervals. The
value of data item a depends on which definition of the
currency interval is adopted. For instance, the value of
a is the value produced by all transactions committed
by g, T2, x3, or just prior to the broadcast of a, if we
assume that the currency interval is the whole bcast,
three buckets, a bucket, or an item correspondingly.

A client transaction may read data items from dif-
ferent currency intervals. We define the span of a client
transaction T, span(T), to be the maximum num-
ber of different currency intervals from which 7' reads
data. We define the readset of a transaction T', denoted

116

Read_Set(T), to be the set of items it reads. In par-
ticular, Read_Set(T) is a set of ordered pairs of data
items and their values that T read. Our correctness
criterion for read-only transactions is that each trans-
action reads consistent data. Specifically, the readset
of each read-only transaction must form a subset of a
consistent database state [21].

We make no assumptions about transaction man-
agement at the server. Our only assumption is that the
values broadcast for each item are those produced by
committed transactions. Since the set of values broad-
cast during a single currency interval correspond to the
same database state, this set is a subset of a consis-
tent database state. Thus, if for some transaction T,
span(T) =1, T is correct. However, since, in general,
client transactions read data values from different cur-
rency intervals, there is no guarantee that the values
they read are consistent.

When information about the readset of a transac-
tion is available, query optimization can be employed
to reduce the transaction span. One approach is to
re-order reads based on the order by which items ap-
pear on the broadcast. Another query optimization
technique would be to introduce additional reads. Ad-
ditional reads may be used to execute reads in all con-
trol branches of a query; such an approach is cheap
in a broadcast environment, since the data are on air
anyway. Such query optimization techniques can ef-
fectively reduce the span of a transaction but can not
guarantee that all values in the readset would belong to
the same currency interval, especially when currency
intervals are short.

2.3 Invalidation Techniques

A way to ensure the correctness of read-only trans-
actions is to invalidate, e.g., abort, transactions that
read data values that correspond to different database
states. To achieve this, a timestamp or version num-
ber is broadcast along with the value of each data
item. This version number corresponds to the cur-
rency interval at the beginning of which the item had
the corresponding value. Let vy be the currency in-
terval at which a transaction performs its first read.
For each subsequent read, we test that the items read
have versions v < wp. If an item has a larger ver-
sion, the transaction is aborted. We call this method
the versioning method. Since the values read by each
transaction correspond to the database broadcasted at
Vg, the versioning method produces correct read-only
transactions.

Another way is to broadcast an invalidation report
at pre-specified points during the bcast. The invali-
dation report includes a list with the data items that
have been updated since the previous invalidation re-
port was broadcast. Let us assume that an invalida-
tion report is broadcast at the beginning of each cur-
rency interval. In addition, at each client, a set RS(R)

Versioning Method

Multiversioning Method ~ Multiversioning with

} | invalidation = gigiation Method
‘ ! e
’ 4 ’
® S D
b N \
begin first invalidation commit
.- ------ R'slifetime-------- -

Figure 3: Currency of reads

is maintained for each active transaction R, that in-
cludes all data items that R has read so far. The client
tunes in at the pre-specified points to read the invali-
dation reports. A transaction R is aborted if an item
z € RS(R) appears in the invalidation report, i.e., if
x is updated!. We call this method the invalidation
method.

Theorem 1 The invalidation method produces correct
read-only transactions.

Proof. Let c. be the currency interval during which a
committed transaction R performed its last read oper-
ation and DS° be the database state that corresponds
to the currency interval c., i.e., the database state at
the beginning of ¢.. We claim that the values read
by R correspond to the database state DS¢. For the
purposes of contradiction, assume that the value of a
data item z read by R is different then the value of z
at DS¢, then an invalidation report should have been
transmitted for x at the beginning of ¢, and thus R
should have been aborted. m|

With the versioning method, transaction R reads
values that correspond to the database state at the
beginning of the currency interval at which R performs
its first read operation. With the invalidation method,
R reads the most current values as of the beginning of
the currency interval at which it commits (Figure 3).

There is no need to transmit invalidation reports at
the beginning of each currency interval. Instead, in-
validation reports may be broadcast more or less fre-
quently. In the latter case, there is an additional re-
quirement, that before committing, each transaction
R must read the next invalidation report that will ap-
pear in the broadcast. The proof is similar to the
proof above. Reading an additional invalidation re-
port is necessary because in this case, items broadcast
between invalidation reports do not necessarily corre-
spond to a single database state. With this variation
of the invalidation method, a read-only transaction R
reads the most current values as of the time of its com-
mitment.

3 Multiversion Schemes

Invalidation methods are prone to starvation of queries
by update transactions. To increase the number

LA possible optimization is to just mark R as invalid if one
of its £ € RS(R) appears in an invalidation report and abort R
only if it tries to read another data item.

117

of read-only transactions that are successfully pro-
cessed, we propose maintaining multiple versions of
data items. Multiversion schemes, where older copies
of items are kept for concurrency control purposes,
have been successfully used to speed-up processing of
on-line read-only transactions in traditional pull-based
systems (e.g., [17]).

3.1 The Basic Multiversion Schemes

The basic idea underlying multiversioning is to tem-
porarily retain older versions of data items, so that the
number of aborted read-only transactions is reduced.
Versions correspond to different values at the begin-
ning of each currency interval and version numbers to
the corresponding currency interval. Thus, there is a
trade-off between the length of the currency interval
and the number of versions: the shorter the currency
interval, the greater the number of versions that are
created.

Let Syuaz be the maximum transaction span among
all read-only transactions. Let vy be the currency in-
terval at which R performs its first read operation.
During vg, R reads the most current versions, that is
the versions with the largest version number. In sub-
sequent intervals, for each data item, R reads the ver-
sion with the largest version number v, smaller than
or equal to vg. If such a version exists, R proceeds, else
R is aborted. In the extreme case, in which, all S;,4z
most current values for each data item are available,
all read-only transactions proceed successfully. We call
this scheme multiversioning.

Theorem 2 The multiversioning method produces
correct read-only transactions.

Proof. Let R be a read-only transaction, vg the cur-
rency interval at which R performs its first read op-
eration and DSY be the database state broadcast at
this interval. We will show that the values read by R
correspond to the database state DSY® which is con-
sistent and thus R is correct. For any data item z €
RS(R), R reads the version with the largest version
number v, of z, such that v, < vg. This value is the
most recent value of z produced by the beginning of
the currency interval vy, that is the value that the item
had at DS"°. 0.

In terms of currency, R reads the database state
that corresponds to the currency point at vy as in the
versioning scheme. If invalidation reports are avail-
able, we get the following variation of the multiversion
method that we call multiversioning with invalidation
method. Initially, R reads the most current version of
each item. Let v; be the currency interval at which R
is invalidated for the first time, i.e., a value that R has
read is updated. After v;, R reads the version with the
largest version number v, such that v, < v;. If such a
version exists, R proceeds, else R is aborted.

Theorem 3 The multiversioning with invalidation
method produces correct read-only transactions.

Proof. Let R be aread-only transaction, v; be the first
beycle during which an item read by R is updated for
the first time and DS the database state broadcast
at interval v;. We will show that the values read by
R correspond to the database state DSV~ which is
consistent and thus R is correct. The items that are
read before bcycle v; were not updated prior to v; thus
their values correspond to the database state DSVi-t.
In subsequent bcyles, R reads the version with the
largest version number v., such that v. < w;. This
value is the most recent value produced before cycle
v;, that is the value that the item had at DSvi-1. 0O.

In the multiversioning with invalidation method, R
reads the values as of the beginning of the currency
interval of its first invalidation v;, as opposed to the
multiversioning method, in which R reads the values
that correspond to vy (Figure 3). Clearly, multiver-
sioning with invalidation permits better currency than
simple multiversioning but at the cost of broadcasting
invalidation reports.

3.2 Updates and Caching

To reduce latency in answering queries, clients can
cache items of interest locally. Caching reduces the
latency of transactions, since transactions find data of
interest in their local cache and thus need to access
the broadcast channel for a smaller number of times.
We assume that each page, i.e., the unit of caching,
corresponds to a bucket, i.e., the unit of broadcast.
Next, we outline how multiversioning can be used in
conjunction with caching.

In the presence of updates, items in cache may be-
come stale. There are various approaches to commu-
nicating updates to the clients. Invalidation combined
with a form of autoprefetching was shown to perform
well in broadcast delivery [2]. The server broadcasts
an invalidation report, which is a list of the pages
that have been updated. This report is used to in-
validate those pages in cache that appear in the in-
validation report. These pages remain in cache to be
autoprefetched later. In particular, at the next appear-
ance of the invalidated page in the broadcast, the client
fetches its new value and replaces the old one. We as-
sume this kind of cache updates in this paper. Other
techniques, such as selectively propagating frequently
accessed pages [2] that may outperform autoprefetch-
ing, should be easily combined with our techniques as
well.

To support multiversioning, items in cache also have
version numbers. For reading items from the cache, we
have to perform the same tests regarding their version
numbers as when reading items from the broadcast.
To ensure that items in cache are current, the propa-
gation of cache invalidation reports must be at least as

118

frequent as the propagation of invalidation reports for
data items. This way, a cached page is either current
(i-e., corresponds to the value at the current currency
interval) or is marked for auto-prefetch.

3.3 Other Issues

The multiversioning methods can be easily enhanced
to handle deletion and insertion of items. When an
item is deleted, we create a new version with version
number the currency interval, say v, of its deletion and
a special field indicating that the item is deleted. A
transaction R beginning at v; with v; > v (or invali-
dated at v; if multiversioning with invalidation is used)
will read the version with version number v and find
out that the item has been deleted. Previous trans-
actions with v; < v will read versions with smaller
version numbers as desired. Similarly, when an item
is inserted, we add a version with version number the
interval of its insertion.

Another issue is that of the granularity of versions.
Instead of maintaining versions of items, it is possible
to maintain versions of buckets. Similarly, it is pos-
sible to set the invalidation report at the bucket level
as well. In this case, to implement the invalidation
method, instead of maintaining for each transaction
the set of items it has read, we maintain the corre-
sponding set of buckets.

Central to multiversioning is the number of versions
maintained per data item. We may always keep the k
most current values for each item resulting in a fixed
increase in size. Alternatively, we may keep only the
different versions of each item during the last & cur-
rency intervals and discard older values. In addition,
to allocate less space for version numbers, instead of
maintaining the absolute number of the currency inter-
val, we can maintain the difference between the current
interval and the interval during which the value was
updated, i.e., how old the value is. For example, if the
current currency interval is interval 30, and the version
corresponds to currency interval 27, the version num-
ber is set to 3 instead of 27. In this case, log(Smaz)
bits are sufficient for version numbers.

Finally, we consider two possibilities for the storage
of previous versions. In the clustering approach, all
versions of the same item are maintained in consequent
locations. In the overflow approach, older versions are
stored separately from the current versions in overflow
buckets that are appropriately linked to the current
versions.

4 Multiversion Broadcast

With multiversion broadcast, the server, instead of
broadcasting the last committed value for each data
item, maintains and broadcasts multiple versions for
each data item. The number k of older versions that
are retained can be seen as a property of the server. In

HOT CoLD

Database: |1 [2 [3] 4|5 |6 |7 [8]9 [10] pisks [1]2]3] 4]

56|78]s [0

Disk 1 Disk 2
chunks 1|2 [3] 4] 5] 7ls] o]
Chunk 1 Chunk 2a Chunk 2b Chunk 2c
— minor cycle——
Beast: |1]2[3]4ls|6|1]2]3]4[7]s|1]2]3] 4|9 |10
1 2a 1 2b 1 2c

Figure 4: Broadcast disks

this sense, a k-multiversion server, i.e., a server that
broadcasts the previous k values, is one that guaran-
tees the consistency of all transactions with span k or
smaller. Transactions with larger spans can proceed
at their own risk; there is a possibility that they will
be aborted. The amount k& of broadcast reserved for
old versions, can be adapted depending on various pa-
rameters, such as the allowable bandwidth, feedback
from clients, or update rate at the server.

There are two interrelated problems with multiver-
sion broadcast. The first is how to organize the broad-
cast, that is where to place the old versions. The other
is determining the optimal frequency of transmitting
versions. In other words, if we consider a broadcast
disk organization [1], where specific items are broad-
cast more frequently than others (i.e., are placed on
“faster disks”), at what frequency should old versions
be broadcast?

To describe the broadcast disk organization, we will
use an example; for a complete definition of the orga-
nization refer to [1]. In a broadcast disk organization,
the items of the broadcast are divided in ranges of
similar access probabilities. Each of these ranges is
placed on a separate disk. In the example of Figure
4, buckets of the first disk Disk; are broadcast three
times as often as those in the second disk Disks. To
achieve these relative frequencies, the disks are split
into smaller equal sized units called chunks; the num-
ber of chunks per disk is inversely proportional to the
relative frequencies of the disks. In the example, the
number of chunks is 1 (chunk 1) and 3 (chunks 2a, 2b
and 2c) for Disk; and Disks respectively. Each bcast
is generated by broadcasting one chunk from each disk
and cycling through all the chunks sequentially over all
disks. A minor cycle is a sub-bcycle that consists of
one chunk from each disk. In the example of Figure 4,
there are three minor cycles.

4.1 Clustering

Following the clustering approach, one way to struc-
ture the broadcast is to broadcast all versions of each
item successively. Thus, older versions of hot items
(chunk 1 in Figure 5) are placed along with the cur-
rent values of hot items on fast disks, while versions
of cold data (chunks 2a, 2b and 2c) are placed on slow
disks. Consequently, clustering works well when each
transaction may access any version of an item with

119

equal probability.

The size of each disk, and thus the size of its chunks,
is increased to accommodate old versions. The num-
ber of chunks per disk, however, remains fixed. The
overall increase in the size of the bcast depends on
how the hot data items are related to the items that
are frequently updated. The increase is the largest
when the hot items are the most frequently updated
ones since their versions are broadcast more frequently
during each bcycle.

Regarding indexing, items are still broadcast in the
same disk and disk chunk, however their relative po-
sition inside the chunk changes due to the increase of
the chunk size. One approach is to broadcast older
versions at a special location inside each chunk, e.g.,
at the end, and chain them to the current versions.

4.2 Overflow Bucket Pool

With the overflow approach, older versions of items
are broadcast at the end of each bcycle. In particular,
one or more additional minor cycles at the end of each
broadcast is allocated to old versions (Figure 5).

Regarding indexing, the offset of the position of the
current value of each item in the broadcast from the
beginning of the bcast remains fixed. Thus, the server
needs not recompute and broadcast an index at each
broadcast cycle. Instead, the client may use a locally
stored directory to locate the first appearance of a data
item in the broadcast. To locate old versions, since
their position in the broadcast is fixed, an index can
be broadcast before the minor cycle carrying the over-
flow bucket pool. A transaction that needs to locate
old versions first tunes in to read this index. Alter-
natively, we can maintain a pointer along with the
current version of each item pointing to its older ver-
sion in the overflow pool. After reading an item, if a
transaction needs an older version, it uses the pointer
to locate it in the overflow bucket.

In the overflow approach, long-running read-only
transactions that read old versions are penalized since
they have to wait for the end of the bcast to read
such versions. However, transactions that are satis-
fied with current versions do not suffer from a similar
increase in latency. On the contrary, in the cluster-
ing approach, the overhead in latency due to the in-
crease in the broadcast size is equally divided among
all transactions.

minor cycle minor cycle
| 1 |2al 1 [2p[1 [2] BN B 1 B8 1 B o8
~— current value broadcast ——* - clustering -
minor cycle additional minor cycle
|1 J2al 1 [2p[1 2 7) ~ - _With updates
- overflow bucket pool Chunks of

Disk 3 with updates

minor cyclL,/// ‘ | \

BEE R BFEE
I I

1 |oa

1 |2b% e

- New disk

Figure 5: Broadcast disks with multiple versions

A drawback of this approach is that the introduc-
tion of the additional minor cycle affects the relative
speed of each disk. Another problem is that the space
allocated to old versions is fixed; it is a multiple of the
size of a minor cycle. To avoid this restriction, older
versions can be placed on the slowest disk. In this case,
the size of the slowest disk and the size of its chunks
are increased to accommodate old versions. Old ver-
sions are placed on those chunks of the disk that are
broadcast last. Again, the relative speed is affected.

4.3 Old Versions on New Disk

With this approach, a new disk is created to hold any
old versions. The relative frequency of the disks with
the current versions is maintained, by simply multiply-
ing their frequency by a positive number m, so that the
slow disk that carries the old versions is m times slower
than the disks with the current versions. For instance,
say we have a broadcast organization for the current
versions consisting of three disks: Disk; with speed
4, Disks with speed 2, and Disks with speed 1. We
create a new disk Disks where we place the old ver-
sions. Assume that we want the current versions to be
broadcast three times (m = 3) more frequently than
old versions. Then, we adjust the relative frequencies
of the disks as follows: Disk; now has speed 12, Disks
has speed 6, Disks has speed 3, and Disk4 has speed
1. With this approach, the size of each bcast is also
multiplied by m.

Figure 5 shows yet another example. A new disk
Disks with 6 chunks is created for the old versions.
Current items are broadcast twice (m = 2) as fre-
quent as old versions. The relative frequency of the
two disks is maintained; items of Disk; are broadcast
three times as frequent as items of Disk,. The result-
ing bcast is twice the size of the original plus the extra
space for the old versions.

To locate older versions of items, pointers may be
kept along with their current versions. This approach
is adaptive. Old versions are placed on faster disks
when there are many long-running transactions and

120

on slower disks when most transactions need current
values.

5 Multiversion Caching

In multiversion caching, the client cache is used to pro-
vide an alternative storage medium for older versions
of data items. A version is associated with each cache
entry. When an item is updated at the server, its cache
entry is not updated; instead, a new entry is inserted
in cache for the new version. Thus, for a data item,
there may be multiple entries with different version
numbers. We assume that the cache replacement pol-
icy is such that, the following always hold:

Page Replacement Invariant: For each data item,
the versions cached are the most recent ones.

Then, we can either use the multiversioning method
or the multiversioning with invalidation method. It is
also possible to avoid broadcasting version numbers
along with items. In this case, the version number as-
sociated with each cached item is the currency interval
during which the item was inserted in the cache. This
value is larger than or equal to the currency inter-
val during which the item was actually updated. In
this case, we get the following variation of the mul-
tiversioning with invalidation method. Until its first
invalidation at currency interval say v;, a transaction
R reads items from the broadcast. After v;, R only
reads items from the cache. In particular, R continues
operation as long as there are versions in cache with
version numbers v < w;, that is versions inserted in
cache prior to the invalidation.

With multiversion caching, the effective cache size
is decreased, since part of the cache is used to main-
tain old versions of items. However, for long-running
transactions that read old versions, there may be some
speed-up, since older versions may be found in cache.
Whereas, k (the number of older versions broadcast) in
the multiversion broadcast, is a property of the server,
in multiversion caching, k¥ (the number of versions kept
in cache) is a characteristic of each client. Transac-

tions at different clients may have varying spans. In
this case, it is the client’s responsibility to adjust the
space in cache allocated to older versions, based on
the size of its cache, the requirements and types of its
read-only transactions, or other local parameters.

5.1 Garbage Collection

Instead of maintaining in cache all k oldest versions,
it is reasonable to maintain only the useful ones. A
version is useful if it may be read by some invalidated
transaction. In this case, the page replacement invari-
ant is revised accordingly.

Page Replacement Invariant(revised): for each
data item, the versions cached are the most recent use-
ful ones.

We assume that the multiversioning with invalida-
tion method is used, but the same also holds for the
simple multiversioning method, if we just consider be-
gin points of transactions in the place of invalidation
points. Let IL={R;, R;y1,...,Ritn} be the set of all
active invalidated transactions, that is all transactions
for which one of the items they have read was subse-
quently updated. Let vg; be the currency interval that
corresponds to the database state read by R; (that
is, R; was invalidated for the first time at vg,+1).
Transactions appear in the list in ascending order of
invalidation, that is, R; is the transaction that was
invalidated first.

When an item in cache is updated, the version in
cache is invalidated and the new value of the item is
autoprefetched. Instead of always maintaining the pre-
vious version, that is the version in cache with the
largest version number v’, we maintain this version
only if there is a possibility that it will be read, that
is, if there is an R; in IL that may read v'. This can
be tested as follows. Recall that vg,,, is the most
recent invalidation point. We discard ¢', if vg,,, <
v'. This is because in this case v’ is not useful: trans-
actions that will be invalidated in future bcycles will
read the newly inserted version, while transactions in
the current I L will read versions with version numbers
smaller than v'.

Furthermore, when a transaction R,, in IL finishes
(aborts or commits), for each item x in cache, we delete
all versions that were useful only to R,,,. In particular,

Condition for Discarding Versions

When a transaction R,,, completes its operation, a ver-
sion of x with version number v, is discarded, if all
three of the following conditions hold:

(1) there is a version of z with version number v such
that v > v, (i.e., v, is not the current version),

(2) if R,, is not the most recently invalidated trans-
action (i.e., m # i + n), then there is a version with
version number v; such that v, < v; <wg,,,, and

(3) if R,, is not the transaction that was invalidated

121

first (m # i), then v, > vg,,_,.

We will show that the above conditions are correct (no
useful versions are deleted) and optimal (all non-useful
versions are deleted).

Correctness: We will show that it is not possible that
any transaction will read v,. Case (a): For each R;
in IL, with vg, > vg,,, it holds vg;, > vg,,,,, thus
R; would not read v, but a version v > v; where v,
is the version of Condition (2) above. Case (b): For
each R; in IL, with vg; < vg,,, it holds vg; < vg,,_,,
thus R; would not read v,, but from Condition (3)
above, it will read an item with version number vg,, _,
or smaller. Case (c): Since from Condition (1), v, is
not the most recent version, any transaction that will
be invalidated in the future will not read v, but a more
current version.

Optimality: We will show that if any of the three con-
ditions does not hold useful versions may be deleted.
Case (a): Assume that we delete a version v, for which
there is no version in cache with version number v,
such that v > v,, then v, is the current value and may
be read by a transaction invalidated at some future
point. Case (b): Assume that we delete a version v,
for which there is no v, such that v, < v; < vg,,,,,
then v, is useful at least to Rpm4+1. Case (¢): Assume
that we delete a version v,, such that v, < vg then
R,,—1 may read v,.

m—17

5.2 Page Replacement

When older versions are maintained in cache, the page
replacement policies must be revised. An approach
that offers flexibility is to divide the cache space into
two parts: one that maintains current versions and one
that maintains older ones. In this case, different cache
replacement policies can be used for each part of the
cache. This approach provides for adaptability, since
the percentage of cache allocated to older versions can
be adjusted dynamically. The most suitable organi-
zation for this approach is overflow buckets with old
versions placed on the old version part of the cache.

Another approach is to apply a global policy, that
is to replace the page with the overall smallest prob-
ability of being accessed without considering version
numbers. Clustering works better with this approach.
Finally, to maintain the invariant, when a version of
item x with version number v is selected for replace-
ment, we must in addition discard from the cache all
z’s versions with version numbers v/ < v.

6 Multiversion Warehouse

In this scenario, the client stores the data of interest
locally. Data are defined and maintained using views
defined over base relations. When the base data are
updated the view becomes stale. Updating the view to
reflect changes of base data is called view maintenance.

View maintenance is a well known and studied problem
(e.g., see [14] for a survey) which is beyond the scope
of this paper. Here, we only focus on views in terms
of broadcast and versioning.

In the broadcast setting, for scalability reasons, we
assume that the server is stateless. In particular, the
server cannot maintain any views in lieu of its clients.
Furthermore, the server is not aware of the views main-
tained at its clients. In addition and in contrast to [25],
we assume that there is no direct communication from
clients to the server. Specifically, the client cannot ask
the server to compute the view.

One main advantage of the broadcast model is that
the base relations are available to clients without any
storage overhead. In fact, the base relations are on
air and thus using them to recompute the view is not
expensive in terms of communication messages. To
maintain the view, we create a client transaction that
we call the view maintenance transaction. The view
maintenance transaction has two parts: the first part,
called view-query, recomputes the view, while the sec-
ond part, called view-updater, installs the updates in
the local view.

The view-query part is executed as a normal client
read-only transaction concurrently with any query
processing at the client. The view-query recomputes
the view to take into account any updates. Depending
on the currency requirements, any of the versioning,
invalidation or multiversioning methods can be used
by the view-query. For instance, if the most-up-to-
date values as of the commitment of the view-query
are required, then the view-query must use the invali-
dation method. The view-query can either recompute
the view from scratch or use an incremental technique.
Furthermore, a locally stored index can be used to
speed-up the processing of the query and decrease its
span. The view-updater installs the updates at the
client. To allow reads at the client to proceed concur-
rently with the view updater, two versions of data may
be kept along the lines of [20].

With this simple view maintenance scheme, the
server is not aware of the fact that clients maintain
views and thus there is no associated overhead at the
server. Furthermore, there is no need to modify the
content of the broadcast. An important issue is that
of the currency of the locally maintained view that can
be decoupled from the currency of the broadcast data.
The maintenance transaction may run periodically or
when updates occur. In the second case, the invali-
dation reports can be used to trigger the execution of
view maintenance.

7 Related Issues

7.1 Disconnections

In many settings, it is desirable for clients not to mon-
itor the broadcast continuously as for example, in the

122

case of clients carrying portable devices and thus seek-
ing for reducing battery power consumption. Fur-
ther, access to the broadcast may be monetarily ex-
pensive, and thus minimizing access to the broadcast
is sought for. Finally, client disconnections are very
common when the data broadcast are delivered wire-
lessly. Wireless communications face many obstacles
because the surrounding environment interacts heavily
with the signal, thus in general wireless communica-
tions are less reliable and deliver less bandwidth than
wireline communications. In such cases, clients may
be forced to miss a number of broadcast cycles.

In general, versioning frees transactions from the re-
quirement of reading invalidation reports. When there
are no versions, a transaction can not tolerate missing
any invalidation reports. Furthermore, with multiver-
sioning, client transactions can refrain from listening
to the broadcast for a number of cycles and resume ex-
ecution later as long as the required versions are still
on air. In general, a transaction R with span(R) = sg
can tolerate missing up to k — sg currency intervals
in any k-multiversion broadcast. The tolerance of the
multiversion scheme to intermittent connectivity de-
pends also on the rate of updates, i.e., the creation of
new versions. For example, if the value of an item does
not change during m, m > k, currency intervals, this
value will be available to read-only transactions for
more intervals. Multiversion caching further improves
tolerance to disconnections. In this case, disconnected
operation is supported, since a read-only transaction
can proceed without reading data from the broadcast,
as long as appropriate versions can be found in cache.

7.2 TUpdate Transactions

While read-only transactions can proceed without con-
tacting the server, update transactions must communi-
cate their updates to the server for certification. Mul-
tiversion concurrency control for update transactions
is also possible. Actually, it is easy to provide snapshot
isolation introduced in [7] and supported by a number
of databases vendors. To this end, we outline an im-
plementation of the first-committer-wins method [7].
Regarding reads, update transactions at the client
proceed like read-only transactions; if their reads are
invalidated, they are aborted. Regarding updates, val-
ues of items updated at the client are maintained lo-
cally and transmitted to the server for certification.
They are incorporated and included in subsequent
broadcast intervals only if certified successfully.
Specifically, a client update transaction 7' records
the currency interval v;,;; during which T performed
its first read (or in the case of invalidation reports, the
currency interval v;,,q; — 1, where v;,,,4; is the currency
interval of T’s first invalidation). Further, it records
the currency interval veommi: in which it completes its
operation. When T completes its operation, the client
sends to the server the list of items W .S(T') written by

T and their values, the commit interval veommi, and
the initial interval v;;;.

At the server, T is certified and committed, if for
all transactions T with v, .. in [Vinit, Yeommit)
WS(T)YNWS(T') = 0. To perform this test, we simply
check the current version numbers of the items written
by T.

Snapshot isolation is not equivalent to serializabil-
ity. For example, it suffers from the write skew
anomaly, e.g., two transactions read two items x and
y and each modifies one of them resulting in a vio-
lated constraint between z and y. However if all up-
date transactions transform the system from one con-
sistent state to another, snapshot isolation will guar-
antee consistent reads. To ensure serializability (e.g.,
one-version serializability [8]), stronger tests are re-
quired for update transactions, such as also checking
their readsets.

8 Performance Evaluation

In this section, we evaluate the performance of multi-
version methods with respect to various parameters.

8.1 The Performance Model

Our performance model is similar to the one presented
in [1]. The server periodically broadcasts a set of data
items in the range of 1 to Noltems. We assume a
broadcast disk organization with 3 disks and relative
frequencies 5, 3 and 1. The client accesses items from
the range 1 to ReadRange, which is a subset of the
items broadcast (ReadRange < Noltems). Within
this range, the access probabilities follow a Zipf distri-
bution. The Zipf distribution with a parameter theta
is often used to model non-uniform access. It pro-
duces access patterns that become increasingly skewed
as theta increases. The client waits T'hinkTime units
and then makes the next read request.

Updates at the server are generated following a Zipf
distribution similar to the read access distribution at
the client. The write distribution is across the range
1 to UpdateRange. We use a parameter called Offset
to model disagreement between the client access pat-
tern and the server update pattern. When the offset
is zero, the overlap between the two distributions is
the greatest, that is the client’s hottest pages are also
the most frequently updated. An offset of k shifts the
update distribution k items making them of less inter-
est to the client. We assume that during each bcycle,
N transactions are committed at the server. All server
transactions have the same number of update and read
operations, where read operations are four times more
frequent than updates. Read operations at the server
are in the range 1 to Noltems, follow a Zipf distribu-
tion, and have zero offset with the update set at the
server.

The client maintains a local cache that can hold
up to CacheSize pages. The cache replacement pol-

123

icy is LRU: when the cache is full, the least recently
used page is replaced. When pages are updated, the
corresponding cache entries are invalidated and sub-
sequently autoprefetched. The currency interval is a
bcast. Table 1 summarizes the parameters that de-
scribe the operation at the server and the client. Val-
ues in parenthesis are the default.

8.2 Performance Results

Due to space limitations, we only present some rep-
resentative results to show the applicability of the
method. Figure 6 shows the increase of the size of the
broadcast using each one of the proposed multiversion
broadcast organization schemes. In all experiments,
we used the simple multiversion schemes (without in-
validation reports). For the clustering approach, the
increase depends on the offset. The increase is the
maximum when the hot items are the most updated
ones (Offset = 0), while it is minimum when the fre-
quently updated items are cold and thus their versions
are placed on slow disks. For the new disk approach,
the size of the broadcast is doubled from the case of no
versions. However, the current value of each item ap-
pears twice as often as in the no version case, thus, it is
as if we had an additional bcycle. The increase shown
for this case is only that for broadcasting versions on
the slowest disk.

Figure 7 shows the decrease of transactions aborted
due to updates. With the overflow pool approach,
transactions have to wait for the end of the broadcast
to locate old versions, thus their span increases as does
their probability of abort. For the new disk approach,
since the broadcast size is effectively double the size
of the other methods, for the same update rate the
updates are 200 and 100 correspondingly. However,
these updates appear in the broadcast very late (the
currency interval is that of a bcast, thus in this case, it
is also two times larger than in the other two). Thus,
we pay for the increase in concurrency, by reading less
current data.

Regarding caching, using part of the cache space
to keep old versions results in a very small increase
in concurrency of long running transactions. This is
because less space is allocated to current versions and
transactions have to read items from the broadcast,
thus their span increase and so does their abort rate.
Thus, our conclusion is that it is better to keep older
versions in secondary memory than in cache. In this
case, garbage collection results in a dramatic decrease
of the space required to maintain old versions (e.g., for
maintaining up to 3 old versions per item in cache, a
same size secondary storage is sufficient).

9 Conclusions

Data dissemination by broadcast is an important mode
for data delivery in data intensive applications. In this

Increase of the Broadcast Size (%)

Percentage of Transactions Aborted (%)

Server Parameters Client Parameters
No of Items Broadcast 1000 ReadRange (range of client reads) 500
UpdateRange 500 theta (zipf distribution parameter) 0.95
theta (zipf distribution parameter) 0.95 Think Time (time between client
Offset (update and reads in broadcast units) 2
i iati 0 - 250 (100
client-read access deviation) (100) Number of reads per quey 5-50(20)
Number of updates at the server 50 - 500 (50) S (transaction span) varies
Currency interval beast
Broadcast Disk Parameters Cache
No of disks 3 CacheSize 125
Relative frequency: Diskl, Disk2, Disk3 53,1 Cache replacement policy LRU
No of items per range (disk) Cache invalidation invalidation +
Rangel, Range2, Range3 75,175,750 autoprefetch

Table 1: Performance model parameters

100

920

80

70

60

50

20

10

Cluster max —-—
Cluster min -+-
Overflow Pool -8-- -
New Disk <

Increase of the Broadcast Size (%)

3
Number of Old Versions

100 T T T
Cluster max —<—
Cluster min -+-
90 - Overflow Pool -&--
New Disk <
80 q
70 q
60 q
50 B
40 E
30 - /
L L L

3
Number of Old Versions

Figure 6: Increase of the broadcast size. For the figure at the left updates are set to 100 per bcast, while for the
figure at the right to 50.

100

920

70

Cluster <—
Overflow Pool -+~
New Disk -&

Percentage of Transactions Aborted (%)

3
Number of Old Versions

100 T T

90

60
50

40

30

Cluster <—
Overflow Pool -+~
New Disk -&

Figure 7: Abort rate. For the figure at the left updates are set to 100 per bcast (in this case, when no versions
are maintained, the abort rate is 88.5%) while for the figure at the right the updates are set at 50 per bcast (in
this case, when no versions are maintained, the abort rate is 83%).

124

paper, we propose maintaining multiple versions to in-
crease the concurrency of read-only transactions in the
presence of updates. Invalidation reports are also used
to ensure the currency of reads. The approach is scal-
able in that it is independent of the number of clients.
Performance results show that the overhead of main-
taining versions can be kept low, while providing a
considerable increase in concurrency.

References

[1] S. Acharya, R. Alonso, M. J. Franklin, and
S. Zdonik. Broadcast Disks: Data Management
for Asymmetric Communications Environments.
In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pp. 199-210, 1995.

[2] S. Acharya, M. J. Franklin, and S. Zdonik. Dis-
seminating Updates on Broadcast Disks. In Proc.
of the 22nd Int’l Conf. on Very Large Data Bases,
pp. 354-365, 1996.

[3] A. H. Ammar and J. W. Wong. The Design of
Teletext Broadcast Cycles. Performance Evalua-
tion, 5(4), 1985.

[4] S. Banerjee and V. O. K. Li. Evaluating the
Distributed Datacycle Scheme for a High Perfor-
mance Distributed System. Journal of Computing
and Information, 1(1), 1994.

[6] D. Barbard. Certification Reports: Supporting
Transactions in Wireless Systems. In Proc. of the
IEEE Int’l Conf. on Distributed Computing Sys-
tems, 1997.

[6] D. Barbard and T. Imielinski. Sleepers and
Workaholics: Caching Strategies in Mobile En-
vironments. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, pp. 1-12, 1994.

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil., and P. O’Neil. A Critique of ANSI
SQL Isolation Levels. In Proc. of the ACM SIG-
MOD 1Intl. Conf. on Management of Data, pp.
1-10, 1995.

[8] P. A. Bernstein, V. Hadjilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[9] A.Bestavros and C. Cunha. Server-initiated Doc-
ument Dissemination for the WWW. IEEE Data
Engineering Bulletin, 19(3):3-11, 1996.

[10] T. Bowen, G. Gopal, G. Herman, T. Hickey,
K. Lee, W. Mansfield, J. Raitz, and A. Weinrib.
The Datacycle Architecture. Communications of
the ACM, 35(12):71-81, 1992.

[11] A. Datta, A. Celik, J. Kim, D. VanderMeer, and
V. Kumar. Adaptive Broadcast Protocols to Sup-
port Efficient and Energy Conserving Retrieval
from Databases in Mobile Computing Environ-
ments. In Proc. of the 13th IEEE Int’l Conf. on
Data Engineering, pp. 124-133, 1997.

125

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. J. Franklin and S. B. Zdonik. A Framework for
Scalable Dissemination-Based Systems. In Proc.
of the OOPSLA Conf. , pp. 94-105, 1997.

D. Gifford. Polychannel Systems for Mass Digital
Communication. Communications of the ACM,
33(2):141-150, 1990.

A. Gupta and I. S. Mumick. Maintenance of
Materialized Views: Problems, Techniques and
Applications. IEEE Data Engineering Bulletin,
18(3):3-18, June 1995.

T. Imielinski, S. Viswanathan, and B. R. Badri-
nanth. Data on Air: Organization and Access.
IEEE Transactions on Knowledge and Data En-
gineering, 9(3):353-372, 1997.

J. Jing, A. K. Elmargarmid, S. Helal, and
R. Alonso. Bit-Sequences: An Adaptive Cache
Invalidation Method in Mobile Client/Server En-
vironments. ACM/Baltzer Mobile Networks and
Applications, 2(2):115-127, 1997.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient
and Flexible Methods for Transient Versioning to
Avoid Locking by Read-Only Transactions. In
Proc. of the ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp. 124-133, 1992.

E. Pitoura and P. K. Chrysanthis. Scalable Pro-
cessing of Read-Only Transactions in Broadcast
Push. In Proc. of the 19th IEEE Int’l Conf. on
Distributed Computing Systems, 1999.

E. Pitoura and G. Samaras. Data Management
for Mobile Computing. Kluwer Academic Pub-
lishers, 1998.

D. Quass and J. Widom. On-Line Warehouse
View Maintenance. In Proc. of the 1997 SIGMOD
Intl. Conf. on Management of Data, pp. 393—404,
1997.

R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Ko-
rth, and A. Silberschatz. On Correctness of Non-
serializable Executions. In Proc. of ACM Sym-
posium on Principles of Database Systems, pp.
97-108, 1993.

J. Shanmugasundaram, A. Nithrakashyap, R.
Sivasankaran, and K. Ramamritham. Effi-
cient Concurrency Control for Broadcast Environ-
ments. In ACM SIGMOD Int’l Conf. on Manage-
ment of Data, 1999.

J. Wong. Broadcast Delivery. Proc. of the IEEE,
76(12), 1988.

T. Yan and H. Garcia-Molina. SIFT — A Tool for
Wide-area Information Dissemination. In Proc. of
the 1995 USENIX Technical Conf. , pp. 177-186,
1995.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View Maintenance in a Warehousing
Environment. In Proc. of the 1995 SIGMOD Intl.
Conf. on Management of Data, pp. 316-327, 1995.

