
Context-Based Prefetch for Implementing Objects
on Relations

Philip A. Bernstein Shankar Pal David Shutt

Microsoft Corporation
One Microsoft Way, Redmond, WA 98052-6399

{philbe, shankarp, dshutt}@microsoft.com

Abstract

When implementing persistent objects on a
relational database, a major performance issue is
prefetching data to minimize the number of round-
trips to the database. This is especially hard with
navigational applications, since future accesses are
unpredictable. We propose using the context in
which an object is loaded as a predictor of future
accesses, where context can be a stored collection
of relationships, a query result, or a complex
object. When an object O’s state is loaded, similar
state for other objects in O’s context is prefetched.
We present a design for maintaining context and
using it to guide prefetch. We give performance
measurements of its implementation in Microsoft
Repository, showing up to a 70% reduction in run-
ning time. We describe variations that selectively
apply the technique, exploit asynchronous access,
and use application-supplied performance hints.

1 Introduction

One way to implement persistent objects is to map them
to a relational database system (RDBMS). This approach
has two main benefits: it provides persistent object views
of existing relational databases; and it allows an RDBMS
customer to build new object-oriented databases without
introducing a new database engine, which avoids changes
to database administration procedures and interoperability
problems with existing applications. The approach is even
more attractive with object-relational DBMSs, which
support more of the desired object functionality in the
database engine itself. The main disadvantage of mapping

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 25th VLDB Conference
Edinburgh, Scotland, 1999

objects to relations is performance, which for many
common usage scenarios is well below that of object-
oriented database systems (OODBs) that use storage
servers designed explicitly for object-oriented access.

An important feature of persistent object implementations
(on any kind of storage system) is the ability to load
persistent objects as active main memory objects, using
the object model of the application environment (e.g.,
C++, Java, Smalltalk, OMG CORBA, or COM). This
minimizes the impedance mismatch between the language
and DBMS [11], but creates performance challenges for
the database implementation, especially when mapped to
an RDBMS rather than a custom storage system.

One major performance problem is that application object
models are inherently navigational. That is, objects have
references or relationships to other objects, which appli-
cations follow one at a time. Caching of recently-accessed
objects is helpful to avoid accessing the RDBMS too
often. But even with caching, if each access to a non-
cached object entails a round-trip to the RDBMS,
performance will be unbearably slow.

To get a feeling for the performance penalty of round-
trips to an RDBMS, consider the following simple
experiment. Define a relational database consisting of one
table, whose 100,000 rows are 100 bytes each. Each row
has a 16-byte ObjectID column which has a clustered
index, three 24-byte string-valued columns, and three 4-
byte integer-valued columns. Suppose the application
knows which ObjectID values it wants, and it retrieves
the rows for 100 randomly selected keys in batches of 1,
20, or 100 rows. Using a warm server cache to factor out
the cost of disk accesses, we ran the experiment on an
RDBMS product and retrieved 580 rows/second, 2700
rows/second, and 3200 rows/second for batch sizes 1, 20,
and 100 respectively.1 This corresponds to a retrieval time
of 170 ms (milliseconds), 37ms, and 31ms for 100 rows.

1 All experiments in this paper use commodity hardware. The hardware
and software configurations are left unspecified, to avoid the usual legal
and competitive problems with publishing performance numbers for
commercial products. All performance measurements are averages over
multiple trials, with more trials for higher variance measurements.

327

In this case, it is up to 5.5 times faster to get rows (i.e.,
object states) in a batch of 100 rows rather than a-row-at-
a-time.

To minimize the performance penalty of database round-
trips, applications often issue a query to identify the
objects of interest, and then scan the resulting cursor, one
object at a time. This tells the DBMS which objects to
retrieve in batch, but often leaves open which pieces of
the objects’ state are desired, and hence which tables to
access. Moreover, for many simple popular navigational
patterns, such as following a relationship, it’s a nuisance
to issue a query. The application programmer would be
happier to navigate from one object to the next, accessing
the objects as it needs them, letting the DBMS automati-
cally determine what data to prefetch. Programming
interfaces for most OODBs, such as the ODMG model
[7], satisfy this desire by offering both navigational and
query access. But how can the DBMS figure out what to
prefetch in response to navigational access? This is the
central question addressed by this paper.

Some OODBs use page servers [15]. When accessing an
object, the page-oriented OODB (POODB) retrieves the
page containing the object, and therefore prefetches other
data on the same page. Thus, by clustering data that will
be accessed together on the same page, a POODB ensures
effective prefetching. That is, the clustering approach
amounts to a static prefetching algorithm. Clustering and
prefetching are dual problems.2

Suppose that whenever a navigational application gets an
object O for the first time, it shortly thereafter accesses
most of the objects on O’s page  the best case for a
POODB, whose performance in this case is hard to beat.
By comparison, when implementing objects on an
RDBMS, there’s an additional query processing step to
find the same records that the POODB clustered on O’s
page. Even if the RDBMS clusters the records the same
way, it still takes more time to find them and gather them
up for transmission to the application than the POODB,
which simply ships the page.

Even if the POODB’s clustering strategy is optimal for
the average workload, access patterns vary and the page-
oriented prefetching will make mistakes. Sometimes it
will make useless prefetches, where the fetched data isn’t
subsequently accessed. At other times it will miss prefetch
opportunities, because a predictable access pattern hits
objects that are mostly on different pages. These mistakes
are inherent in the architecture: static clustering of records
and page-oriented accesses.

A system that maps objects to an RDBMS (we’ll call it an
OMRDB) probably cannot match the POODB for access

2 Pointed out to us by Michael Franklin.

patterns that follow the POODB’s physical data cluster-
ing. However, it may be able to earn back some of that
lost performance, in two ways. First, since the OMRDB
uses a row server, not a page server, it can prefetch an
arbitrary combination of rows. That is, it can use knowl-
edge of recent application behavior to identify combina-
tions of rows worth prefetching, and then use its powerful
query processor to find and retrieve those rows in one
round-trip, whether or not the data is physically clustered.
By contrast, a POODB generally retrieves pages from the
server on demand. For a given data layout, both OMRDB
and POODB will retrieve the same number of pages. But
query-based prefetching allows an OMRDB to prefetch
rows before they’re referenced, reducing latency. Second,
if the density of desired rows on each page is low, then
the OMRDB will make better use of client cache than a
POODB (since it prefetches only desired rows) and will
use less network bandwidth to transfer prefetched rows.
Of course, OODBs that use object servers rather than
page servers can use this OMRDB tactic, so they too can
benefit from the techniques described in this paper.

When prefetching objects, an OMRDB has two related
decisions to make: which objects to prefetch and which
portions of those objects’ state to prefetch. To illustrate
our technique, we focus first on the latter question with a
simple example (see Figure 1). Suppose an application
accesses a relationship R on object O, which returns a set
of objects, S. Suppose the state of each object in S is
spread across multiple tables. The application may not
access all of that state of each object. To avoid prefetch-
ing state that the application does not need, the OMRDB
delays deciding which state to prefetch. Instead, it simply
retrieves the object IDs of the objects in S (making a
round-trip to the RDBMS) and waits to see what the
application does next. Suppose the application selects an
object O′ in S (which is now in application cache) and
accesses attribute A in O′. This requires another round-
trip. But rather than just retrieving A for O′, the OMRDB
retrieves (prefetches) A for all objects in S. This is useful
if the application later accesses A for many of those other
objects in S, a very common access pattern in workloads
we have observed.

. . .O1

A
B...

O′
A
B...

On

A
B...

. . .O
R

Set S

Figure 1 Simple Example of Context-Based Prefetch

Notice that the prefetch decision is based on the
application’s access pattern  it is not statically deter-
mined. O′ could be a member of many collections in the
database. The decision to prefetch A for all objects in S is
based on the fact that O′ was fetched as part of S, and not

328

some other collection. The OMRDB must remember this
fact, to use S as the basis for prefetching A. This is the
core idea of our prefetching technique: The OMRDB uses
the context in which each object is accessed as a predictor
of other objects that will be accessed later.

To implement this approach, the OMRDB creates a
structure context for each object, which describes the
structure in which the object was fetched. Examples of
“structures” are stored collections of relationships, query
results, and complex objects. When accessing some state
of an object O, the OMRDB prefetches the same pieces of
the state for other objects in O’s structure context, as in
the example of accessing O′’s attribute A for all objects in
O′’s structure context S. We call this approach context-
controlled prefetch. As in the above example, the
approach is beneficial whenever all objects in a context
undergo similar manipulation.

The rest of the paper is organized as follows. Section 2
summarizes related work on the general problem of
implementing OMRDBs efficiently. Section 3 presents
the basic mechanisms for context-controlled prefetch.
Since the technique is not cost effective in all situations,
Section 4 proposes performance hints to selectively en-
able the optimizations. A summary of our implementation
in Microsoft3 Repository version 2.0 (in Microsoft SQL
Server 7.0) is discussed in Section 5. Performance
measurements in Section 6 show up to a 3-fold speedup
due to these optimizations. Section 7 describes extensions
for asynchronous prefetch, lazy loading of objects, and
prefetching across paths. Section 8 is the conclusion.

2 Related Work

Although much has been published on the implementation
of persistent objects, very little of it uses an RDBMS as
the underlying store. Keller et al. provide a good
overview of the issues [14]. Most papers assume that the
set of objects to be retrieved is defined by a query, such as
[16, 17, 18, 23], where the issues are running the query
efficiently and assembling the objects in the OMRDB,
and caching the query result for reuse with later queries
[13]. Navigational access is applied to the result of the
query, so there’s nothing to prefetch. Descriptions of
some commercial products that map objects to relations
can be found in [19, 22, 24, 27].

Proponents of OODBs have published many white papers
to show that their products outperform a similar imple-
mentation on RDBMSs, but little of this has made it into
the scientific literature. A useful bibliography is [9].

Prefetching architectures based on recent reference
behavior are described in [12, 21]. Palmer and Zdonik use

3 Microsoft is a trademark of Microsoft Corporation.

pre-analyzed reference traces to guide prefetch [21].
Curewitz, Krishnan and Vitter use compression
algorithms to guide page prefetch based on recent
reference behavior [12]. Both approaches work when the
exact same objects or pages are retrieved again and again.
By contrast, our approach works for any reference
sequence that conforms to our generic navigational
pattern, even the first (and possibly only) time the objects
are accessed, and allows application programmers to
influence prefetch decisions. The approaches appear to be
complementary and could potentially be used in the same
system, a possible subject for further investigation.

3 Using Structure Context

3.1 Object Model

To describe details of the approach, we need to define an
object model. We choose one that is similar to those in
common use, such as the ODMG model [7], COM [26],
and UML [3, 25]. The approach is largely insensitive to
the details of the model used here. It should work well for
any model that groups objects into structures.

Each persistent object has a persistent state that consists
of attributes. Each attribute value can be a scalar, an
object, or a set.

• Each scalar-valued attribute conforms to a scalar
type, which gives the name of the attribute and its
data type, such as string, integer, or Boolean.

• Every object has a scalar-valued ObjectID attribute
that uniquely identifies the object.

• Each object-valued attribute is one side of a binary
relationship. That is, each relationship consists of
two objects that refer to each other.

• Each set-valued attribute contains an object of type
set, which in turn contains a set of either scalar
values or object references. The concept of set is a
representative example of a generic structure type.
Other structure types would be handled analogously
to sets, such as sequence, array, table, or record
structure, but we do not consider them here.

Each object conforms to an object type. Each object type
has a name and a set of attribute types it can contain. Each
binary relationship conforms to a relationship type, which
gives the name of the relationship, the two object types
that can be related, and for each of the two object types,
the attribute name by which the reference is accessed.

A class is a body of code that implements one or more
object types. It includes a class factory that produces
objects that are instances of the class. It also includes
code that implements the usual read and write operations

329

on all of the attributes and structures of the object types
that the class implements.

3.2 Operations

The set of navigational object-oriented operations that we
consider are GetObject, GetAttribute, GetNext, and
ExecuteQuery. These are meant to be a representative
sample of the kinds of navigational operations found in
programming interfaces for persistent object systems.

• GetObject(ObjectID) returns a running copy of the
persistent object whose unique identifier is ObjectID.

• O.GetAttribute(AttrName) returns the value of the
attribute AttrName from object O. (The notation O.M
means execute method M on object O.) The result is a
scalar, object, or set, depending on the attribute type.
A set has an associated cursor, initially pointing to the
set’s first element.

• S.GetNext either returns the scalar or object identified
by set S’s cursor and advances the cursor, or, if the
cursor points beyond the end of S, returns Null.

• ExecuteQuery(Q) returns the set of objects that satisfy
query Q’s qualification (as in OQL [7, 10]).

3.3 Database Schema

An OMRDB maps objects to rows of tables. A class maps
to a table whose columns represent its single-valued
attributes. Our optimizations are applicable independent
of the rules used to map attributes of a class to a particular
table. However, for completeness, we give a few details
of mappings that are commonly used.

The simplest mapping is to map a class to exactly one
table that contains all of the class’s attributes. But more
complex mappings are also popular. For example, sup-
pose class B inherits from a class A. If both classes are
concrete (i.e., have instances), then there are separate
tables for B and A. A’s columns, which B inherits, may
be stored in both A’s and B’s tables (Figure 2(ii)), or only
in A’s table (Figure 2(iii), sometimes called “vertical
partitioning” [14]). In the latter case, B’s state is recon-
structed by joining A’s and B’s tables. If A is abstract,
then its columns might only be stored in tables of concrete
classes that inherit from it, in which case it has no
corresponding table (i.e., in Figure 2, only store Table TB,
sometimes called “horizontal partitioning”).

We assume each many-to-many relationship type is rep-
resented in a “junction” table. There could be a separate
junction table for each relationship type, with columns
SourceObjectID and TargetObjectID, or a generic junc-
tion table for all relationship types with columns Source-
ObjectID, RelationshipTypeID, and TargetObjectID. Each
one-to-many relationship can be represented either in a

Class A:
 attribute a1
 . . .
 attribute am

Class B:
 attribute b1
 . . .
 attribute bn

Table TA

a1 am
...

Table TB
a1 am

... b1 bn...

Table TA

a1 am
...

Table TB
key(A) b1 bn...

(i) (ii) (iii)

Figure 2 Mapping Classes to Tables

junction table or as a foreign key on the “many side.”
E.g., if the one-to-many is parent-child, then the foreign
key to the parent is stored in the child.

An attribute consisting of a set of scalars can be stored in
a table with columns ObjectID, AttributeID (short form of
the attribute name), and Value. If the set’s maximum
cardinality N is known, it could instead be stored as
columns of the class’s table, such as AttrName1, …,
AttrNameN. Since these two table structures are isomor-
phic to one-to-many relationships and single-valued
attributes (respectively), the prefetch scenarios for a set of
scalar attributes are isomorphic to those other two cases
as well and therefore are not treated further in this paper.

3.4 The Prefetch Pattern

As discussed in Section 1, the main approach is to
maintain a structure context (or, more simply, a context)
for each object, which describes the structure in which the
object was loaded, and to use that context to guide later
prefetch decisions. In this section, we explain one usage
of the approach in detail. We reapply this usage to other
operations in the next section.

Consider the following operation sequence:

a. S = O.GetAttribute(R), which returns a set S of
objects, which is the value of relationship attribute R.

b. O′ = S.GetNext, which returns an object O′ in S.

c. V = O′.GetAttribute(A), which returns the value V of
scalar-valued attribute A of O′.

This is the scenario of Figure 1. Attribute A corresponds
to a column of a table, T, containing (some of) the state of
O′’s class, C. Unless T is very wide (e.g., has lots of long
columns), it costs little more to retrieve all of T’s columns
that are part of C’s state than to retrieve only A. This is
because most of the cost is in the disk accesses, which
retrieve all of the columns from disk whether or not they
are fetched by the OMRDB. Thus, if there is a good

330

chance that some of those columns will be accessed, then
it is worth prefetching all of those columns of T for O′.
Moreover, since O′ was retrieved via S, if we expect other
objects in S to be accessed similarly to O′, then we should
prefetch all of those columns of T for all objects in S, not
just for O′. This avoids later round-trips to the database
for each object in S.

The optimization is illustrated in Figure 3. Table T is
shown in Figure 3(i), with relationships, such as R, imple-
mented by a junction table J. Steps (a) and (c) above are
illustrated in Figure 3(ii) and (iii) respectively. Notice that
step (c) uses the same selection clauses for J as step (a),
and then joins with T to get the columns of T for all
objects in O.GetAttribute(R), not just for O′.

Select J.Target
From J
Where (J.Source = ‘O’)
And (J.RelType = ‘R’)

(i) (ii)

O
R

O1

On

O′

ObjID A B ...
O1

On

O′

Table T

Select T.*
From J, T
Where (J.Target = T.ObjID)
And (J.Source = ‘O’)
And (J.RelType = ‘R’)

O
R

O1

On

O′

A
B...
A
B...
A
B...

(iii)

O

RelType TargetSource

R

O R

O R

O1

On

O′

Table J

...
...

S S

Figure 3 Prefetching Scenario

The experiment in Section 1 suggests this prefetch is
profitable if at least 4-5 items in the collection are later
accessed (since batch retrieval is 4-5 times the cost of a
single-row retrieval). However, the addition of object-
level processing reduces the fractional contribution of DB
round-trips to total cost. Thus, in our experiments, across
a variety of workloads and database profiles, the prefetch
is profitable if at least 3 items are subsequently accessed
(for our combination of data server, network, etc.). The
more items that are accessed, the more round-trips that are
saved by the prefetch, hence the greater the benefit.

If objects in S have state in two tables, T and T′, is it
worth getting attributes from both of them? Usually not.
For example, we extended the experiment in Section 1 by
duplicating the table, to model T and T′. Getting 100 rows
from both tables in one round-trip added 50% to the
execution time over retrieving only from T. So the cost of
needlessly getting T′’s columns is high. Also, the benefit
is modest, since retrieving those rows from both tables
was only 19% slower in two round-trips vs. retrieving the
join in one round-trip. Thus, one should only retrieve T′’s
columns if they are almost certain to be needed.

Since the technique heavily uses cache, the interactions of
prefetching and cache management need careful attention.
E.g., if the cache is nearly full or if the data to prefetch is
very large, then the prefetch may not work well. We will
see other examples of this later.

To generate the SQL query shown in Figure 3(iii), the
OMRDB needs the context of O′. The context should
include the information that was used to create the set S
initially, namely, the object ID of the relationship’s
source, O, and the relationship name, R. These are the
parameters that are needed to construct the SQL query,
which retrieves the desired attributes of all objects in the
context.

We expect it is worth supporting variations of this pattern
where only attribute A or a predefined subset of attributes
is retrieved, and not all the attributes of its table.
However, as this is only a slight variation of our main
idea, we don’t consider it further in this paper.

3.5 Case Analysis

We generalize Section 3.4 to other navigational access
patterns that suggest future navigational behavior. These
suggestions lead naturally to prefetch recommendations,
which retrieve the data needed to service the later
accesses before those accesses occur. Of course, recent
navigational accesses don’t guarantee that those later
accesses will occur, so prefetch recommendations must be
applied selectively, an issue we will discuss in Section 4.
For now, we simply describe potentially useful prefetches
and how to implement them, for each of the operation
types in Section 3.2.

In the following descriptions, we omit the initial test to
determine if the requested data is already in cache and
therefore does not need to be fetched.

GetObject(ObjectID) – Prefetch some or all of the
object’s state. Note that to load the object into main
memory, the OMRDB only needs to know the object’s
class (to know what class to instantiate) and that the
object exists (to know whether to return an error).
Prefetching other object state is optional at this stage. Set
the object’s context to null, which means it was loaded
directly, not as part of a larger structure.

O.GetAttribute(AttrName) – where AttrName is the
name of an attribute in O’s class. There are six cases to
consider, Case (i) – Case (vi) below:

Case (i) If AttrName is a single-valued object
reference, and O’s context is null, then get the reference
to the object from the database. If the object reference is
stored as a foreign key in a table containing other
attributes of O, then retrieve those other attributes too.

331

For example, suppose AttrName is a many-to-one
relationship R from O’s class C to class D (see Figure 4).
Suppose C’s table TC(ObjID, A1, …, An, FKey) contains
scalar attributes A1, …, An of C and foreign key attribute
FKey that contains the object ID of an object in D related
via R. Since getting the reference to OD in D involves
accessing the FKey column of O’s row in TC, prefetch the
other attributes A1, …, An of that row too.

(i) (ii)

ObjID B1 … Bm

OD

Table TD

ObjID A1 … An FKey
O

Table TC

OD

O R OD

C
R

D

C & D are classes.
C is stored in table TC

D is stored in table TD

= Instance-of

Figure 4 Prefetching Attributes with a Foreign Key

If TC is indexed on the compound key [ObjID, FKey],
rather than just ObjID, then the query processor can get
OD without accessing O’s row, making it cheaper to
retrieve FKey by itself. If the index on [ObjID, FKey] is
non-clustered, this raises the incremental cost of getting
A1, …, An, which should therefore be prefetched too only
if there’s a high probability of subsequent access.

Case (ii) If AttrName is a scalar and O’s context is
null, then simply retrieve the attribute. As in Case (i),
retrieve other attributes of O’s state that are in the table
containing AttrName’s column. Here and in Case (i),
prefetching those other attributes is cost-beneficial if
some of them are subsequently referenced.

Case (iii) If AttrName is an object reference, and
O’s context is a set S′, then prefetch the reference for
every object O′ in S′, not just for O. That is, run one SQL
statement that returns the ObjectID value of AttrName for
all objects in S′. As in Case (i), if the object references are
stored as foreign keys in a table containing other attributes
of O′, then retrieve those other attributes too. Prefetching
the object reference for other objects in S′ is cost-
beneficial if at least several other objects in S′ are
subsequently accessed. This case is essentially the same
as Figure 4, except that multiple rows of TC are retrieved
(one for each object in S′) instead of just one (for O).

Case (iv) If AttrName is a scalar and O’s context is a
set of objects, then O.GetAttribute(AttrName) corre-

sponds to step (c) in Section 3.4. Do the prefetch
described there and in Figure 3(iii).

Case (v) If AttrName is set-valued and O’s context
is null, then retrieve the set’s content for O, which is a set
S of either scalar values or objects. In the latter case,
assign S to be the context of each object in S.

If S is a set of objects and the object references are stored
as foreign keys in the referenced objects, then retrieve
other attributes of the referenced objects stored in the
same table as the foreign key. Modifying the example of
Figure 4 so that AttrName is a one-to-many (rather than
many-to-one) relationship R from O’s class C to class D,
we get Figure 5, where B1, … Bm can be retrieved along
with objects in D referenced by O. As usual, prefetching
those other attributes is cost-beneficial if some of them
are referenced later for at least several other objects in S.

(i) (ii)

ObjID A1 … An

O

Table TC

ObjID B1 … Bm FKey
OD1

Table TD

O

R is 1-to-many from
 class C to class D.
C is stored in table TC

D is stored in table TD

O R OD

C
R

D

= Instance-of

OD2 O

...

Figure 5 Prefetching Attributes of Referenced Objects

Case (vi) If AttrName is a set (of scalars or objects)
and O’s context is a set S′, then prefetch the AttrName set
for every object in S′. For example, suppose AttrName is
a relationship R to a set of objects. Then execute one SQL
statement that returns a table of <ObjID1, ObjID2> pairs,
where ObjID1 denotes an object in S′ and ObjID2 denotes
an object referenced by ObjID1 via R, thereby prefetching
Object-IDs of members of the R-set of every object in S′.
This is analogous to Section 3.4, where the scalar
attributes of all objects in S′ are prefetched. For the R-set
Si referenced by each ObjID1,i in S′, assign Si to be the
context of each object in Si. The prefetch is cost-
beneficial if those R-sets are accessed for at least several
other objects in S′.

Continuing the example of Figure 5, if R is one-to-many
from O’s class C to class D, and is represented as a
foreign key in D’s table TD, then the attributes of objects
in D can be prefetched too, modulo the additional cost,
depending on whether FKey is part of the compound
index on TD.

332

ExecuteQuery(Q) – We apply context-based prefetch to
the set that results from the execution of a query, just as
we do for a set of stored object references in cases (iii)
and (iv). We could do this by executing the query, saving
the resulting ObjectID’s in a set, and sending the
ObjectID’s to the RDBMS on each prefetch. However,
this is inefficient for large query results, and problematic
since the query that does the prefetch could exceed the
maximum size of a SQL statement or stored procedure
call. We could re-execute the query on each prefetch, but
this too would be inefficient unless the query is cheap.
Therefore, we store the context on the server in a
temporary table.

So, assume each session has a temporary table
TEMP(SetID, ObjectID) in the DBMS. Associate a
unique SetID, s, with the query. Map the query into an
Insert statement that appends rows <s, o> to TEMP for
each ObjectID o in the result of the query. Execute the
Insert and return the ObjectID’s of the query result into a
set, S, also identified by s.

Creating this context is cost-beneficial if attributes of the
objects in S are subsequently accessed, making prefetches
of those attributes cost-beneficial, and if the query is too
expensive to re-execute to perform the prefetch.

TEMP can be created any time after starting the database
session, but no later than the first call to ExecuteQuery.

Like any query result, a query context in TEMP can be
used across transaction boundaries only if the application
is using read-committed, not repeatable-read, isolation.

S.GetNext – Return the designated element of S. Pre-
fetching was accomplished when S was loaded, i.e., in
GetObject(ObjectID) or O.GetAttribute(AttrName).

3.6 Managing Structure Context

Structure context is part of the state of a loaded object.
The context’s lifetime is governed by that of the object.
Thus, when the object is released, the context is
deallocated too. This includes context information that is
maintained with the object by the OMRDB, typically in
main memory. Also, when releasing a set that was the
result of an ExecuteQuery, it includes deleting rows of the
temporary table containing the cached result of the query.
Like any deallocation, the latter can be done lazily and
asynchronously with respect to other processing.

Like persistent database tables, the performance charac-
teristics of temporary tables must be carefully analyzed
when using them to cache query results. For example,
depending on how space is managed, it may be important
to preallocate temporary table space. It may or may not be
valuable to have an index on SetID, depending on how
queries are processed, the size of query results, and how
many query results are concurrently active.

Suppose an object is loaded multiple times via different
navigational paths. For example, an application might
load object O via O′.GetAttribute(AttrName), where
AttrName is a set S containing O, and later reload O via
GetObject(o), where o is O’s ObjectID. In some program-
ming interfaces, the later operation does not return the
same loaded object, but rather returns another copy of the
same persistent object. If so, then one would expect the
two objects to share their cached persistent object state,
since they refer to the same object. However, since the
two objects were loaded via different paths, they should
have different contexts. In the example, the first object’s
context is S, while the second’s is null.

4 Performance Hints

Since the prefetch optimizations of Section 3.5 are not
always cost-effective, it is important to be able to enable
and disable them. Enabling an optimization is essentially
a performance hint to the underlying OMRDB. This
general approach of application-supplied hints has been
adopted by other object-to-relational mapping systems,
such as [20], and in other commercial products [8].

The main optimizations that are worth controlling in this
way are the following:

1A. Attributes for 1 object - When accessing an object O,
prefetch all of O’s scalar attributes.

1R. Relationships for 1 object - When accessing an object
O, prefetch all of O’s references to other objects.

MA. Attributes for Many objects - When accessing a
scalar attribute A of an object O, prefetch all of the
attributes in A’s table for all objects in O’s set context.

MR. Relationships for Many objects - When accessing a
relationship attribute A of an object O, prefetch the
objects related via A for every object in O’s set context.

Some contexts are very large  too large to prefetch the
attributes or relationships for every object in the context.
One could specify a threshold for context size, above
which the MA or MR prefetch is disabled. Or, it may be
better to stream in the prefetched data in batches. This
requires finding a query that retrieves a subset of the data
to be prefetched plus a remainder query that identifies the
remaining data to be prefetched. This isn’t always doable.
For example, in MA, to prefetch attribute values for a
large unordered set, we would need a column value that
partitions the set into non-overlapping subsets.

It is often appropriate to enable a prefetch optimization
for an application’s entire execution, but sometimes it is
not. For example, if an application accesses all members
of some sets but only one member of others, MA will
speed up accesses to the former and slow down accesses

333

to the latter. Thus, it is beneficial to enable and disable the
optimizations dynamically during its execution.

Performance hints can be added as tags in an information
model to specify the default prefetch behavior of a class.
For example, a class C could be tagged to enable MR but
disable MA. Such default behavior can be overridden by
the application.

Although prefetch is enabled and disabled dynamically, it
is still beneficial to maintain context for each loaded
object. This makes it possible to perform context-based
prefetch on an object that was loaded when prefetching
was disabled. Since maintaining context is cheap, there is
little benefit to disabling it, with one possible exception:
The result of a query is cached in a temporary table for
use as the context of each object in that result. Since
adding the result to the temporary table has non-negligible
cost, it is probably worth disabling in cases where it is
known to be ineffective.

Although the manual control that performance hints offer
is worthwhile, it would be even better if the system could
automatically decide when to enable and disable prefetch-
ing. One approach is to run the application on sample data
to generate traces, and then analyze the traces to deter-
mine whether each type of optimization is cost effective
for a given run. Another approach is to statically analyze
the application to predict certain access patterns. For
example, a common pattern is to call GetAttribute(R),
where R is a relationship that returns a set of object
references, and then loop through the result, accessing
attributes of each object. In this case, the program would
be modified to enable MA before entering the loop. Even
finer grained control is possible here, since the exact set
of attributes that will be referenced could be made known
in the hint, thereby reducing the cost of the prefetch.

A cache control mechanism would also be beneficial, to
reduce the amount of prefetching when the OMRDB’s
cache is stressed. The cache manager could track the
amount of free space, for this purpose.

5 Implementation in Microsoft Repository

The prefetch optimizations of Section 3 are implemented
in the latest version of Microsoft Repository, whose stor-
age engine is a persistent object layer implemented on top
of Microsoft SQL Server. The product’s object model,
table layout, and API do not include all of the alternatives
in Sections 3.1 - 3.3. The differences that are relevant to
the prefetch optimizations being considered here are:

• All relationships are currently stored in a single
junction table, like Table J in Figure 3(i), not as
foreign keys in class-oriented tables.

• The object model is COM, where classes implement
interfaces and interfaces have single-valued scalar pro-
perties and relationship-valued collections. Each inter-
face’s scalar properties are stored in (i.e., are columns
of) one table, each of whose rows contain state for an
object whose class implements the interface. Each
table can store the properties of many interfaces, but a
class’s interfaces need not all be stored in one table.

• There is an additional method, ObjectInstances, that
gets the set of all objects that are instances of either a
given class or a class that supports a given interface.
Objects that are retrieved by this method have the re-
trieved set as their context, which is represented by the
identity of the class or interface. This is very similar to
Case (v) in Section 3.5, O.GetAttribute(AttrName),
where AttrName designates a set of object references.

• Each time a persistent object P is loaded, a new COM
object is created, which shares its cached state with
other COM objects that represent P. The context is
stored in the COM object, since each load operation
for P may be via a different navigational path and
therefore have a different context to guide prefetch.

The object model, table layout, and API are described in
detail in [1, 2].

6 Performance Measurements

The prefetch optimizations as implemented in Microsoft
Repository have been useful for many customer applica-
tions we have tested, so they are frequently enabled 
especially MA, which we have found is almost always
beneficial. However, it is hard to report on these in a way
that bears scientific scrutiny, since each application yields
a varying workload that is hard to characterize succinctly.
We therefore ran some more controlled experiments to
show how the optimizations work in practice.

6.1 Experiment 1 – The 007 Benchmark

A good test to show the benefits of MA is the 007 bench-
mark [4, 5, 6], since it is a highly regular workload that is
representative of many persistent object applications (a
brief summary is in the Appendix). We ran the 007
queries and traversals using Microsoft Repository on the
medium sized 007 database (225MB). We ran with a cold
server cache, to ensure the optimizations are fully penal-
ized for useless prefetches. We did not run 007 structural
modifications, since their behavior is not affected by our
optimizations.

Queries Q1-Q3 and Q7 are all of the form: retrieve a set
of objects (in our case using ExecuteQuery) and access
the objects’ state. Q8 also accesses state, to form a sub-
query for each object in an outer query (it retrieves a set
of object pairs). So they all benefit from optimization

334

MA, which prefetches the objects’ state in one round-trip
based on the cached query result. Figure 6(i) reports the
percentage improvement in running time over an
execution with no prefetch optimizations enabled (i.e.,
((old-new)/old)×100). The benefit varies based on the size
of the result and the algorithm for joining the temp table
(containing cached query results) with the attribute table
at the server. Query Q4 is of the same form as Q1-Q3, but
the query plan for the prefetch is sub-optimal, making
MA ineffective. None of the queries benefit from 1R or
MR, because they don’t access any relationships, nor
from 1A, because only one attribute of each object is
accessed. Query Q5 simply counts the number of objects
in the result of a query, so there’s no benefit to
prefetching properties or relationships.

0 07
T est
Q 1 8 7 %
Q 2 1 7 %
Q 3 5 4 %
Q 4 -3 9 %
Q 5 0 %
Q 7 7 3 %
Q 8 4 2 %

B en efit
o f M A

00 7
T est
T 1 1 %
T 2 a -11 %
T 2 b 3 4 %
T 2 c 31 %
T 3 a -12 %
T 3 b 3 4 %
T 3 c 3 9 %
T 6 0 %

B en efit
o f M A

(i) (ii)

0 07
T est
Q 1 8 7 %
Q 2 1 7 %
Q 3 5 4 %
Q 4 -3 9 %
Q 5 0 %
Q 7 7 3 %
Q 8 4 2 %

B en efit
o f M A

0 07
T est
Q 1 8 7 %
Q 2 1 7 %
Q 3 5 4 %
Q 4 -3 9 %
Q 5 0 %
Q 7 7 3 %
Q 8 4 2 %

B en efit
o f M A

00 7
T est
T 1 1 %
T 2 a -11 %
T 2 b 3 4 %
T 2 c 31 %
T 3 a -12 %
T 3 b 3 4 %
T 3 c 3 9 %
T 6 0 %

B en efit
o f M A
B en efit
o f M A

(i) (ii)
Figure 6 Benefit of Prefetch in 007

Traversals T1-T6 navigate relationships starting from a
root. Like the queries, traversals T2b,c and T3b,c access
attributes and therefore benefit from MA. T1 and T6 do
not access attributes, so MA has no effect. T2a and T3a
access only one object in each collection, so prefetching
attributes for all objects is a cost that has no compensating
benefit. Thus, MA decreases their performance.

In principle, traversals T1-T3 should benefit from MR,
but they actually do not. The traversals visit the entire bill
of materials hierarchy of a base assembly, which includes
655,000 atomic parts. This overflows the client cache,
causing prefetched objects to be replaced before being
accessed. Currently we do not handle this situation very
gracefully in that we let the cache overflow. In a future
version, we will have a more adaptive algorithm.

6.2 Experiment 2 – XML Export

Another application with a highly regular workload is the
XML export utility that ships with the product. We wrote
a program that uses the utility to export a set of objects
reachable from a root, by doing a breadth-first traversal
from the given root and writing them out as an XML
stream. We exported a UML model consisting of 3100
objects and 3900 relationships. The execution time was
267 ms with no optimizations, 117ms with 1R enabled,
220ms with MA, and 78ms with both 1R and MA. That

is, the execution was 56%, 18%, and 71% faster with
optimizations 1R, MA, and 1R+MA, respectively.

1R helps because in UML each object has many relation-
ship types, all of which are accessed, either to export
them or determine that they’re empty. MA helps because
if a relationship is non-empty, then attributes of all related
objects are exported. These benefits are nearly independ-
ent, in that the benefit of 1R+MA (71%) is nearly the sum
of the benefits of 1R and MA (56%+18%=74%).

6.3 Experiment 3 – Measuring MR

To measure the benefits of MR in a controlled setting, we
created an object hierarchy stored as relationships in a
junction table like Table J of Figure 3(i), with a clustered
index on its key (Source, RelType, Target). The hierarchy
has a top level fan-out of 100, and a second level fan-out
of 20. We traversed the hierarchy by running SQL. The
baseline ran a SQL query to get the 100 children of the
root followed by a query for each child to get its 20
children. To model MR, we replaced the 100 queries for
grandchildren by one query to get all grandchildren. The
latter retrieves the same amount of data as the former, but
replaces the fixed overhead of 100 queries by that of just
one query. The resulting execution time was 71% faster
with MR enabled than disabled.

MR is sensitive to the size of the context to which it’s
applied, since that affects the number of queries it saves.
For example, running the previous experiment on a hier-
archy with top level fan-out of 20 and second level fan-
out of 100, the benefit of MR is only 33%, less than half
as much as the previous case. The same amount of data is
retrieved as before, but only 20 queries for grandchildren
are replaced by one query. This effect also explains, in
part, the lack of benefit of MR in 007 traversals, since all
the fan-outs are of size 3. In XML, MR actually hurts
performance, probably because the contexts are small and
the prefetch requires an extra expensive join.

7 Extensions

7.1 Asynchronous Prefetch

To improve response time further, it is desirable to do the
minimal work necessary to return from each data access
call and prefetch any additional data asynchronously with
respect to the call. To some extent, an application can do
this manually by reordering its logic so that the OMRDB
gets data before the application actually needs it. Beyond
this rather crude recommendation, there are two
approaches to making the prefetch asynchronous: pipeline
the prefetch or prefetch after processing the request.

In the pipelined approach, the OMRDB issues a query to
retrieve the requested and prefetched data together. When

335

the first packet arrives from the DB server, the OMRDB
starts populating its cache. As soon as the requested data
arrives, the OMRDB returns to the application, but it
continues processing packets asynchronously until all the
prefetched data have arrived.

If the DBMS supports multiple active statements on a
database session, then a second application request can be
executed while a previous prefetch is still active. Most
DBMSs do not support this, since it requires parallel
nested transactions so that concurrent SQL statements can
be independently backed out. Without this feature, a
second session is needed to avoid delaying an application
call while a prefetch is tying up the session. In any case, if
the application later asks for an item that is still being
prefetched, it is blocked.

In the non-pipelined approach, the OMRDB retrieves the
requested data plus a subset of data to be prefetched. After
receiving this data, it returns to the application and
asynchronously issues a query for the remaining data to
prefetch. However, as discussed in Section 4, finding a
query that retrieves a subset of the data to be prefetched
plus a remainder query that gets the remaining data to be
prefetched is sometimes infeasible.

In some cases, it is unavoidable to fetch the entire result
before returning to the caller. For example, Microsoft
Repository stores sequenced collections as rows linked by
back pointers [1]. If an application requests an item of the
collection other than the first, then all of the collection
elements must be loaded into cache for the engine to
determine the requested item. This defeats both the
pipelined and non-pipelined approaches.

Finally, statistics are needed to determine how much to
prefetch. The goal is to fetch only a small amount to avoid
delaying the application much by the prefetch, but fetch
enough to keep the application busy while the second,
asynchronous prefetch is running.

7.2 Prefetching Across Paths

We can extend context-based prefetch to apply to paths of
relationships. For example, consider a persistent object
base that contains a database schema definition object,
which contains table definition objects, each of which
contains column definition objects, each of which is
related to a data type definition object. When accessing a
column of the first table definition, MR will prefetch
column definitions of all table definitions. We showed in
Section 6.3 that this can yield significant improvements. It
may also be beneficial to prefetch the scalar attributes of
those column definitions (i.e., Section 3.5, Case (v)) and
their relationships to data type definitions (adding another
hop to the path). To estimate the benefit, recall in Section
3.4 that getting 100 rows from two identical tables with
100-byte rows in 2 round-trips is 19% slower than getting

the join in one round-trip. One could extend the hints of
Section 4 to specify when to prefetch across such a path.

An issue with this approach is the representation of the
inherently hierarchical result of the prefetch, when a
relational query is used. As observed in [17], in a parent-
child relationship, when retrieving all the children of a
parent, the parent information is repeated for every child
due to the normalization inherent in relational queries.
Possible solutions are to return the result in a nested table,
a tree structure, or an XML stream (that represents the
tree structure), all of which require some extension to the
underlying RDBMS.

7.3 Lazy Loading of Sets

Suppose O.GetAttribute(AttrName) returns a set, S, of
objects (i.e., Case (iv) and Case (vi) in Section 3.5). One
could execute GetAttribute by storing only its definition
(i.e., “O.GetAttribute(AttrName)”) and not its instances in
main memory. If S is used only to insert new objects, then
the existing state of S never needs to be loaded, a signifi-
cant optimization. If existing objects in S are retrieved,
then its instances can be loaded on the first invocation of
S.GetNext.

Suppose it is known that all objects in S are instances of
the same concrete class C (rather than different speciali-
zations of C). Now even GetNext can avoid loading
instances of S, by creating a hollow instance O′ of C. This
can be done using only cached type information, without
accessing database instances. The state of O′ is populated
only when one of its attributes is accessed. At this point,
MA kicks in, which retrieves that attribute (and possibly
others in the same table) for all objects in S. This prefetch
gets the object IDs of all objects in S as a side effect,
which allows S finally to be populated with instances.
Thus, the initial round-trip to the RDBMS to get the
object IDs of objects in S is entirely avoided, leaving only
one round-trip to get the attributes of all objects in S, thus
halving the number of round-trips in this scenario.

While this benefit is appealing, unfortunately the line of
logic to attain it is not quite sound: If S is empty, then
S.GetNext should return Null. If this is known to be
impossible (e.g., because the set has an enforced integrity
constraint saying it has non-zero cardinality), then the
technique works fine. Otherwise, if it can return Null,
then it is not valid for it to return a hollow instance of C.
Therefore, to benefit from this optimization, a change is
needed in the programming interface. There are several
options: a hint could be issued before the first call to
GetNext, to tell the system what attribute(s) to prefetch;
the GetNext call itself could optionally include a list of
attributes of interest; or the semantics of GetNext could
be modified so that the first GetNext on an empty set
returns an object and an exception is raised only when

336

attempting to access one of that object’s attributes. The
use of a hint strikes us as the best of the alternatives.

8 Conclusion

We described a technique for predicting useful prefetches
when a navigational object-oriented interface is imple-
mented on a relational DBMS. We presented a design for
the technique and measured its performance in a commer-
cial product, Microsoft Repository 2.0. We proposed a
number of extensions, some of which would benefit from
further work, such as automatically issuing hints to enable
the prefetch optimization and prefetching across paths of
relationships.

Overall, there has been much published about efficient
implementations of persistent objects. Having worked on
an implementation of persistent objects on a relational
database for the past several years, we feel that the
problem of optimizing the performance of such a system
is only partially understood and would benefit from much
more research. Given the advent of object-relational
DBMSs, and the need to offer persistent object interfaces
on top, the importance of this problem is growing.

Appendix – Summary of 007

The 007 benchmark is based on a bill-of-materials
database. In the medium database, each assembly has 3
sub-assemblies, and so on through 7 levels. Each
assembly has also has 3 composite parts, each of which
has an associated document and has 200 interconnected
atomic parts. The following queries and retrievals are
taken from [6], paraphrased to save space:

Q1 – Given 10 random atomic part id’s, get the atomic
parts (that exist) and the number retrieved.

Q2 – Given a range of dates containing the last 1% of
dates in atomic parts, retrieve the atomic parts.

Q3 – Given a range of dates containing the last 10% of
dates in atomic parts, retrieve the atomic parts.

Q4 – Given 100 random document titles, for each
document, find all base (i.e., level 1) assemblies that use
the composite part corresponding to the document. Also
return the number of such base assemblies.

Q5– Find all base assemblies that use a composite part
whose build date is later than that of the base assembly.
Also report the number of base assemblies found.

Q7 – Scan all atomic parts.

Q8 – Find all pairs of documents and atomic parts where
the atomic part’s document id equals the document’s id.
Return the number of pairs found.

T1 – Traverse the assembly hierarchy. For each base
assembly, visit its unshared composite parts. For each
composite part, do a depth first search on its atomic parts.
When done, return the number of atomic parts visited.

T2 – Same as T1, but swap attributes x and y for some of
the objects:
a. Update one atomic part per composite part.
b. Update every atomic part encountered.
c. Update each atomic part in a composite part four times.

T3 – Same as T2, but update the (indexed) date field.

T6 – Same at T1, but for each composite part, visit only
its root atomic part.

Note that there is no Q6, T4, or T5 in 007. Traversals T7
and T8 are omitted because they run very fast and there-
fore lead to inaccurate (high variance) measurements.

Acknowledgments

We thank Thomas Bergstraesser and Jason Carlson for
many stimulating discussions about the performance of
Microsoft Repository. We are also very grateful to
Jayaram Mulupuru and Daniel Reib for implementing the
approaches described in this paper and to Jim Hance and
Gary Miao for measuring them, all of which helped
uncover many of the detailed problems we addressed.

References

1. Bernstein, P.A., B. Harry, P.J. Sanders, D. Shutt, J.
Zander, “The Microsoft Repository,” Proc. 23rd
VLDB Conf., 1997, pp. 3-12.

2. Bernstein, P.A., T. Bergstraesser, J. Carlson, S. Pal,
P.J. Sanders, D. Shutt, “Microsoft Repository
Version 2 and the Open Information Model,”
Information Systems 24(2), 1999, to appear.

3. Booch, G., J. Rumbaugh, I. Jacobson, The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, MA, 1998.

4. Carey, Michael J., David J. DeWitt, Jeffrey F.
Naughton, “The 007 Benchmark,” Proc. 1993 ACM
SIGMOD Conf., pp. 12-21.

5. Carey, Michael J., David J. DeWitt, Chander Kant,
Jeffrey F. Naughton, “A Status Report on the 007
Benchmark,” Proc. OOPSLA 1994, pp. 414-426.

6. Carey, Michael J., David J. DeWitt, Jeffrey F.
Naughton, “The OO7 Benchmark,” technical report,
ftp.cs.wisc.edu., Univ. of Wisconson, Jan. 1994.

7. Cattell, R.G.G., D. Barry, D. Bartels, M. Berler, J.
Eastman, S. Gamerman, D. Jordan, A. Springer, H.

337

Strickland, D. Wade. The Object Database Standard:
ODMG 2.0, Morgan Kaufmann Publishers, 1997.

8. Chang, E. E., Randy H. Katz, “Exploiting Inheritance
and Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS,” Proc. 1989
ACM SIGMOD Conf., pp. 348-357.

9. Chaudhri, Akmal B., “ODBMS Resources,” http:
//www.soi.city.ac.uk/~akmal/html.dir/resources.html

10. Cluet, S., “Designing OQL: Allowing Objects to be
Queried,” Information Sys. 23(5), 1998, pp. 279-306.

11. Copeland, G. and D. Maier, “Making SmallTalk a
Database System,” Proc. 1984 ACM SIGMOD Conf.,
pp. 316-325.

12. Curewitz, K.M., P. Krishnan, J. S. Vitter, “Practical
Prefetching via Data Compression,” Proc. 1993 ACM
SIGMOD Conf., pp. 257-266.

13. Keller, A., J. Basu, “A Predicate-based Caching
Scheme for Client-Server Database Architectures,”
VLDB Journal 5(1), Jan. 1996, pp. 35-47.

14. Keller, A., R. Jensen, and S. Agrawal, “Persistence
Software: Bridging Object-Oriented Programming
and Relational Database,” Proc. 1993 ACM SIGMOD
Conf., pp. 523-528.

15. Lamb, Charles, Gordon Landis, Jack A. Orenstein,
Daniel Weinreb, “The ObjectStore System,” CACM
34(10), 1991, pp. 50-63.

16. Lee, Byung Suk and Gio Wiederhold, “Outer Joins
and Filters for Instantiating Objects from Relational
Databases Through Views,” IEEE Trans. On
Knowledge and Data Eng. 6(1), 1994, pp. 108-119.

17. Lee, Byung Suk and Gio Wiederhold, “Efficiently
Instantiating View-Objects From Remote Relational
Databases” VLDB Journal 3(3), 1994, pp. 289-323.

18. Mitschang, Bernhard, Hamid Pirahesh, Peter Pistor,
Bruce G. Lindsay, and Norbert Sdkamp, “SQL/XNF -
Processing Composite Objects as Abstractions over
Relational Data,” Proc. 1993 Int’l Conf. On Data
Eng., pp. 272-282.

19. Ontos, http://www.ontos.com

20. Orenstein, Jack A. and D. N. Kamber, “Accessing a
Relational Database through an Object-Oriented
Database Interface,” Proc. 21st VLDB Conf., 1995,
pp. 702-705.

21. Palmer, M. and S. Zdonik, “Fido: A Cache that
Learns to Fetch,” Proc. 17th VLDB Conf., 1991, pp.
255-264.

22. Persistence Software, http://www.persistence.com

23. Pirahesh, Hamid, Bernhard Mitschang, Norbert
Sdkamp, and Bruce G. Lindsay, “Composite-object
views in relational DBMS: an implementation
perspective,” Information Sys 19(1), 1994, pp. 69-88.

24. POET Software, POET SQL Object Factory,
http://poet.com/factory.htm

25. Rational Software Corp. Unified Modeling Language
Resource Center. At http://www.rational.com/uml

26. Rogerson, D. Inside COM. Microsoft Press, 1997.

27. RogueWave Software, DBTools.h++,
http://www.roguewave.com/products/dbtools/

338

