
Context-Based Prefetch for Implementing Objects  
on Relations 

Philip A. Bernstein Shankar Pal  David Shutt 

Microsoft Corporation 
One Microsoft Way, Redmond, WA 98052-6399 

{philbe, shankarp, dshutt}@microsoft.com 

 
 

Abstract 

When implementing persistent objects on a 
relational database, a major performance issue is 
prefetching data to minimize the number of round-
trips to the database. This is especially hard with 
navigational applications, since future accesses are 
unpredictable. We propose using the context in 
which an object is loaded as a predictor of future 
accesses, where context can be a stored collection 
of relationships, a query result, or a complex 
object. When an object O’s state is loaded, similar 
state for other objects in O’s context is prefetched. 
We present a design for maintaining context and 
using it to guide prefetch. We give performance 
measurements of its implementation in Microsoft 
Repository, showing up to a 70% reduction in run-
ning time. We describe variations that selectively 
apply the technique, exploit asynchronous access, 
and use application-supplied performance hints. 

1 Introduction 

One way to implement persistent objects is to map them 
to a relational database system (RDBMS). This approach 
has two main benefits: it provides persistent object views 
of existing relational databases; and it allows an RDBMS 
customer to build new object-oriented databases without 
introducing a new database engine, which avoids changes 
to database administration procedures and interoperability 
problems with existing applications. The approach is even 
more attractive with object-relational DBMSs, which 
support more of the desired object functionality in the 
database engine itself. The main disadvantage of mapping 
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objects to relations is performance, which for many 
common usage scenarios is well below that of object-
oriented database systems (OODBs) that use storage 
servers designed explicitly for object-oriented access.  

An important feature of persistent object implementations 
(on any kind of storage system) is the ability to load 
persistent objects as active main memory objects, using 
the object model of the application environment (e.g., 
C++, Java, Smalltalk, OMG CORBA, or COM). This 
minimizes the impedance mismatch between the language 
and DBMS [11], but creates performance challenges for 
the database implementation, especially when mapped to 
an RDBMS rather than a custom storage system. 

One major performance problem is that application object 
models are inherently navigational. That is, objects have 
references or relationships to other objects, which appli-
cations follow one at a time. Caching of recently-accessed 
objects is helpful to avoid accessing the RDBMS too 
often. But even with caching, if each access to a non-
cached object entails a round-trip to the RDBMS, 
performance will be unbearably slow. 

To get a feeling for the performance penalty of round-
trips to an RDBMS, consider the following simple 
experiment. Define a relational database consisting of one 
table, whose 100,000 rows are 100 bytes each. Each row 
has a 16-byte ObjectID column which has a clustered 
index, three 24-byte string-valued columns, and three 4-
byte integer-valued columns. Suppose the application 
knows which ObjectID values it wants, and it retrieves 
the rows for 100 randomly selected keys in batches of 1, 
20, or 100 rows. Using a warm server cache to factor out 
the cost of disk accesses, we ran the experiment on an 
RDBMS product and retrieved 580 rows/second, 2700 
rows/second, and 3200 rows/second for batch sizes 1, 20, 
and 100 respectively.1 This corresponds to a retrieval time 
of 170 ms (milliseconds), 37ms, and 31ms for 100 rows. 

                                                           
1 All experiments in this paper use commodity hardware. The hardware 
and software configurations are left unspecified, to avoid the usual legal 
and competitive problems with publishing performance numbers for 
commercial products. All performance measurements are averages over 
multiple trials, with more trials for higher variance measurements. 

327



    

 

 

 

In this case, it is up to 5.5 times faster to get rows (i.e., 
object states) in a batch of 100 rows rather than a-row-at-
a-time. 

To minimize the performance penalty of database round-
trips, applications often issue a query to identify the 
objects of interest, and then scan the resulting cursor, one 
object at a time. This tells the DBMS which objects to 
retrieve in batch, but often leaves open which pieces of 
the objects’ state are desired, and hence which tables to 
access. Moreover, for many simple popular navigational 
patterns, such as following a relationship, it’s a nuisance 
to issue a query. The application programmer would be 
happier to navigate from one object to the next, accessing 
the objects as it needs them, letting the DBMS automati-
cally determine what data to prefetch. Programming 
interfaces for most OODBs, such as the ODMG model 
[7], satisfy this desire by offering both navigational and 
query access. But how can the DBMS figure out what to 
prefetch in response to navigational access? This is the 
central question addressed by this paper. 

Some OODBs use page servers [15]. When accessing an 
object, the page-oriented OODB (POODB) retrieves the 
page containing the object, and therefore prefetches other 
data on the same page. Thus, by clustering data that will 
be accessed together on the same page, a POODB ensures 
effective prefetching. That is, the clustering approach 
amounts to a static prefetching algorithm. Clustering and 
prefetching are dual problems.2 

Suppose that whenever a navigational application gets an 
object O for the first time, it shortly thereafter accesses 
most of the objects on O’s page  the best case for a 
POODB, whose performance in this case is hard to beat. 
By comparison, when implementing objects on an 
RDBMS, there’s an additional query processing step to 
find the same records that the POODB clustered on O’s 
page. Even if the RDBMS clusters the records the same 
way, it still takes more time to find them and gather them 
up for transmission to the application than the POODB, 
which simply ships the page. 

Even if the POODB’s clustering strategy is optimal for 
the average workload, access patterns vary and the page-
oriented prefetching will make mistakes. Sometimes it 
will make useless prefetches, where the fetched data isn’t 
subsequently accessed. At other times it will miss prefetch 
opportunities, because a predictable access pattern hits 
objects that are mostly on different pages. These mistakes 
are inherent in the architecture: static clustering of records 
and page-oriented accesses. 

A system that maps objects to an RDBMS (we’ll call it an 
OMRDB) probably cannot match the POODB for access 

                                                           
2 Pointed out to us by Michael Franklin. 

patterns that follow the POODB’s physical data cluster-
ing. However, it may be able to earn back some of that 
lost performance, in two ways. First, since the OMRDB 
uses a row server, not a page server, it can prefetch an 
arbitrary combination of rows. That is, it can use knowl-
edge of recent application behavior to identify combina-
tions of rows worth prefetching, and then use its powerful 
query processor to find and retrieve those rows in one 
round-trip, whether or not the data is physically clustered. 
By contrast, a POODB generally retrieves pages from the 
server on demand. For a given data layout, both OMRDB 
and POODB will retrieve the same number of pages. But 
query-based prefetching allows an OMRDB to prefetch 
rows before they’re referenced, reducing latency. Second, 
if the density of desired rows on each page is low, then 
the OMRDB will make better use of client cache than a 
POODB (since it prefetches only desired rows) and will 
use less network bandwidth to transfer prefetched rows. 
Of course, OODBs that use object servers rather than 
page servers can use this OMRDB tactic, so they too can 
benefit from the techniques described in this paper. 

When prefetching objects, an OMRDB has two related 
decisions to make: which objects to prefetch and which 
portions of those objects’ state to prefetch. To illustrate 
our technique, we focus first on the latter question with a 
simple example (see Figure 1). Suppose an application 
accesses a relationship R on object O, which returns a set 
of objects, S. Suppose the state of each object in S is 
spread across multiple tables. The application may not 
access all of that state of each object. To avoid prefetch-
ing state that the application does not need, the OMRDB 
delays deciding which state to prefetch. Instead, it simply 
retrieves the object IDs of the objects in S (making a 
round-trip to the RDBMS) and waits to see what the 
application does next. Suppose the application selects an 
object O′ in S (which is now in application cache) and 
accesses attribute A in O′. This requires another round-
trip. But rather than just retrieving A for O′, the OMRDB 
retrieves (prefetches) A for all objects in S. This is useful 
if the application later accesses A for many of those other 
objects in S, a very common access pattern in workloads 
we have observed. 

. . .O1

A
B...

O′
A
B...

On

A
B...

. . .O
R

Set S

 

Figure 1 Simple Example of Context-Based Prefetch 

Notice that the prefetch decision is based on the 
application’s access pattern  it is not statically deter-
mined. O′ could be a member of many collections in the 
database. The decision to prefetch A for all objects in S is 
based on the fact that O′ was fetched as part of S, and not 
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some other collection. The OMRDB must remember this 
fact, to use S as the basis for prefetching A. This is the 
core idea of our prefetching technique: The OMRDB uses 
the context in which each object is accessed as a predictor 
of other objects that will be accessed later.  

To implement this approach, the OMRDB creates a 
structure context for each object, which describes the 
structure in which the object was fetched. Examples of 
“structures” are stored collections of relationships, query 
results, and complex objects. When accessing some state 
of an object O, the OMRDB prefetches the same pieces of 
the state for other objects in O’s structure context, as in 
the example of accessing O′’s attribute A for all objects in 
O′’s structure context S. We call this approach context-
controlled prefetch. As in the above example, the 
approach is beneficial whenever all objects in a context 
undergo similar manipulation. 

The rest of the paper is organized as follows. Section 2 
summarizes related work on the general problem of 
implementing OMRDBs efficiently. Section 3 presents 
the basic mechanisms for context-controlled prefetch. 
Since the technique is not cost effective in all situations, 
Section 4 proposes performance hints to selectively en-
able the optimizations. A summary of our implementation 
in Microsoft3 Repository version 2.0 (in Microsoft SQL 
Server 7.0) is discussed in Section 5. Performance 
measurements in Section 6 show up to a 3-fold speedup 
due to these optimizations. Section 7 describes extensions 
for asynchronous prefetch, lazy loading of objects, and 
prefetching across paths. Section 8 is the conclusion. 

2 Related Work 

Although much has been published on the implementation 
of persistent objects, very little of it uses an RDBMS as 
the underlying store. Keller et al. provide a good 
overview of the issues [14]. Most papers assume that the 
set of objects to be retrieved is defined by a query, such as 
[16, 17, 18, 23], where the issues are running the query 
efficiently and assembling the objects in the OMRDB, 
and caching the query result for reuse with later queries 
[13]. Navigational access is applied to the result of the 
query, so there’s nothing to prefetch. Descriptions of 
some commercial products that map objects to relations 
can be found in [19, 22, 24, 27]. 

Proponents of OODBs have published many white papers 
to show that their products outperform a similar imple-
mentation on RDBMSs, but little of this has made it into 
the scientific literature. A useful bibliography is [9].  

Prefetching architectures based on recent reference 
behavior are described in [12, 21]. Palmer and Zdonik use 

                                                           
3 Microsoft is a trademark of Microsoft Corporation. 

pre-analyzed reference traces to guide prefetch [21]. 
Curewitz, Krishnan and Vitter use compression 
algorithms to guide page prefetch based on recent 
reference behavior [12]. Both approaches work when the 
exact same objects or pages are retrieved again and again. 
By contrast, our approach works for any reference 
sequence that conforms to our generic navigational 
pattern, even the first (and possibly only) time the objects 
are accessed, and allows application programmers to 
influence prefetch decisions. The approaches appear to be 
complementary and could potentially be used in the same 
system, a possible subject for further investigation. 

3 Using Structure Context 

3.1 Object Model 

To describe details of the approach, we need to define an 
object model. We choose one that is similar to those in 
common use, such as the ODMG model [7], COM [26], 
and UML [3, 25]. The approach is largely insensitive to 
the details of the model used here. It should work well for 
any model that groups objects into structures. 

Each persistent object has a persistent state that consists 
of attributes. Each attribute value can be a scalar, an 
object, or a set.  

• Each scalar-valued attribute conforms to a scalar 
type, which gives the name of the attribute and its 
data type, such as string, integer, or Boolean.  

• Every object has a scalar-valued ObjectID attribute 
that uniquely identifies the object. 

• Each object-valued attribute is one side of a binary 
relationship. That is, each relationship consists of 
two objects that refer to each other.  

• Each set-valued attribute contains an object of type 
set, which in turn contains a set of either scalar 
values or object references. The concept of set is a 
representative example of a generic structure type. 
Other structure types would be handled analogously 
to sets, such as sequence, array, table, or record 
structure, but we do not consider them here. 

Each object conforms to an object type. Each object type 
has a name and a set of attribute types it can contain. Each 
binary relationship conforms to a relationship type, which 
gives the name of the relationship, the two object types 
that can be related, and for each of the two object types, 
the attribute name by which the reference is accessed.  

A class is a body of code that implements one or more 
object types. It includes a class factory that produces 
objects that are instances of the class. It also includes 
code that implements the usual read and write operations 
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on all of the attributes and structures of the object types 
that the class implements. 

3.2 Operations 

The set of navigational object-oriented operations that we 
consider are GetObject, GetAttribute, GetNext, and 
ExecuteQuery. These are meant to be a representative 
sample of the kinds of navigational operations found in 
programming interfaces for persistent object systems. 

• GetObject(ObjectID) returns a running copy of the 
persistent object whose unique identifier is ObjectID. 

• O.GetAttribute(AttrName) returns the value of the 
attribute AttrName from object O. (The notation O.M 
means execute method M on object O.) The result is a 
scalar, object, or set, depending on the attribute type. 
A set has an associated cursor, initially pointing to the 
set’s first element. 

• S.GetNext either returns the scalar or object identified 
by set S’s cursor and advances the cursor, or, if the 
cursor points beyond the end of S, returns Null. 

• ExecuteQuery(Q) returns the set of objects that satisfy 
query Q’s qualification (as in OQL [7, 10]). 

3.3 Database Schema 

An OMRDB maps objects to rows of tables. A class maps 
to a table whose columns represent its single-valued 
attributes. Our optimizations are applicable independent 
of the rules used to map attributes of a class to a particular 
table. However, for completeness, we give a few details 
of mappings that are commonly used. 

The simplest mapping is to map a class to exactly one 
table that contains all of the class’s attributes. But more 
complex mappings are also popular. For example, sup-
pose class B inherits from a class A. If both classes are 
concrete (i.e., have instances), then there are separate 
tables for B and A. A’s columns, which B inherits, may 
be stored in both A’s and B’s tables (Figure 2(ii)), or only 
in A’s table (Figure 2(iii), sometimes called “vertical 
partitioning” [14]). In the latter case, B’s state is recon-
structed by joining A’s and B’s tables. If A is abstract, 
then its columns might only be stored in tables of concrete 
classes that inherit from it, in which case it has no 
corresponding table (i.e., in Figure 2, only store Table TB, 
sometimes called “horizontal partitioning”). 

We assume each many-to-many relationship type is rep-
resented in a “junction” table. There could be a separate 
junction table for each relationship type, with columns 
SourceObjectID and TargetObjectID, or a generic junc-
tion table for all relationship types with columns Source-
ObjectID, RelationshipTypeID, and TargetObjectID. Each 
one-to-many relationship can be represented either in a  

Class A:
   attribute a1
   . . .
   attribute am

Class B:
   attribute b1
   . . .
   attribute bn

Table TA

a1 am
...

Table TB
a1 am

... b1 bn...

Table TA

a1 am
...

Table TB
key(A) b1 bn...

(i) (ii) (iii)  

Figure 2 Mapping Classes to Tables 

junction table or as a foreign key on the “many side.” 
E.g., if the one-to-many is parent-child, then the foreign 
key to the parent is stored in the child. 

An attribute consisting of a set of scalars can be stored in 
a table with columns ObjectID, AttributeID (short form of 
the attribute name), and Value. If the set’s maximum 
cardinality N is known, it could instead be stored as 
columns of the class’s table, such as AttrName1, …, 
AttrNameN. Since these two table structures are isomor-
phic to one-to-many relationships and single-valued 
attributes (respectively), the prefetch scenarios for a set of 
scalar attributes are isomorphic to those other two cases 
as well and therefore are not treated further in this paper. 

3.4 The Prefetch Pattern 

As discussed in Section 1, the main approach is to 
maintain a structure context (or, more simply, a context) 
for each object, which describes the structure in which the 
object was loaded, and to use that context to guide later 
prefetch decisions. In this section, we explain one usage 
of the approach in detail. We reapply this usage to other 
operations in the next section. 

Consider the following operation sequence: 

a. S = O.GetAttribute(R), which returns a set S of 
objects, which is the value of relationship attribute R. 

b. O′ = S.GetNext, which returns an object O′ in S. 

c. V = O′.GetAttribute(A), which returns the value V of 
scalar-valued attribute A of  O′.  

This is the scenario of Figure 1. Attribute A corresponds 
to a column of a table, T, containing (some of) the state of 
O′’s class, C. Unless T is very wide (e.g., has lots of long 
columns), it costs little more to retrieve all of T’s columns 
that are part of C’s state than to retrieve only A. This is 
because most of the cost is in the disk accesses, which 
retrieve all of the columns from disk whether or not they 
are fetched by the OMRDB. Thus, if there is a good 
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chance that some of those columns will be accessed, then 
it is worth prefetching all of those columns of T for O′. 
Moreover, since O′ was retrieved via S, if we expect other 
objects in S to be accessed similarly to O′, then we should 
prefetch all of those columns of T for all objects in S, not 
just for O′. This avoids later round-trips to the database 
for each object in S. 

The optimization is illustrated in Figure 3. Table T is 
shown in Figure 3(i), with relationships, such as R, imple-
mented by a junction table J. Steps (a) and (c) above are 
illustrated in Figure 3(ii) and (iii) respectively. Notice that 
step (c) uses the same selection clauses for J as step (a), 
and then joins with T to get the columns of T for all 
objects in O.GetAttribute(R), not just for O′. 

Select J.Target
From J
Where (J.Source = ‘O’)
And (J.RelType = ‘R’)

(i) (ii)

O
R

O1

On

O′

ObjID   A   B   ...
O1

On

O′

Table T

Select T.*
From J, T
Where (J.Target = T.ObjID)
And (J.Source = ‘O’)
And (J.RelType = ‘R’)

O
R

O1

On

O′

A
B...
A
B...
A
B...

(iii)

O

RelType TargetSource

R

O R

O R

O1

On

O′

Table J

...
...

S S

 

Figure 3 Prefetching Scenario 

The experiment in Section 1 suggests this prefetch is 
profitable if at least 4-5 items in the collection are later 
accessed (since batch retrieval is 4-5 times the cost of a 
single-row retrieval). However, the addition of object- 
level processing reduces the fractional contribution of DB 
round-trips to total cost. Thus, in our experiments, across 
a variety of workloads and database profiles, the prefetch 
is profitable if at least 3 items are subsequently accessed 
(for our combination of data server, network, etc.).  The 
more items that are accessed, the more round-trips that are 
saved by the prefetch, hence the greater the benefit. 

If objects in S have state in two tables, T and T′, is it 
worth getting attributes from both of them? Usually not. 
For example, we extended the experiment in Section 1 by 
duplicating the table, to model T and T′. Getting 100 rows 
from both tables in one round-trip added 50% to the 
execution time over retrieving only from T. So the cost of 
needlessly getting T′’s columns is high. Also, the benefit 
is modest, since retrieving those rows from both tables 
was only 19% slower in two round-trips vs. retrieving the 
join in one round-trip. Thus, one should only retrieve T′’s 
columns if they are almost certain to be needed. 

Since the technique heavily uses cache, the interactions of 
prefetching and cache management need careful attention. 
E.g., if the cache is nearly full or if the data to prefetch is 
very large, then the prefetch may not work well. We will 
see other examples of this later. 

To generate the SQL query shown in Figure 3(iii), the 
OMRDB needs the context of O′. The context should 
include the information that was used to create the set S 
initially, namely, the object ID of the relationship’s 
source, O, and the relationship name, R. These are the 
parameters that are needed to construct the SQL query, 
which retrieves the desired attributes of all objects in the 
context. 

We expect it is worth supporting variations of this pattern 
where only attribute A or a predefined subset of attributes 
is retrieved, and not all the attributes of its table. 
However, as this is only a slight variation of our main 
idea, we don’t consider it further in this paper. 

3.5 Case Analysis 

We generalize Section 3.4 to other navigational access 
patterns that suggest future navigational behavior. These 
suggestions lead naturally to prefetch recommendations, 
which retrieve the data needed to service the later 
accesses before those accesses occur. Of course, recent 
navigational accesses don’t guarantee that those later 
accesses will occur, so prefetch recommendations must be 
applied selectively, an issue we will discuss in Section 4. 
For now, we simply describe potentially useful prefetches 
and how to implement them, for each of the operation 
types in Section 3.2.  

In the following descriptions, we omit the initial test to 
determine if the requested data is already in cache and 
therefore does not need to be fetched.  

GetObject(ObjectID) – Prefetch some or all of the 
object’s state. Note that to load the object into main 
memory, the OMRDB only needs to know the object’s 
class (to know what class to instantiate) and that the 
object exists (to know whether to return an error). 
Prefetching other object state is optional at this stage. Set 
the object’s context to null, which means it was loaded 
directly, not as part of a larger structure. 

O.GetAttribute(AttrName) – where AttrName is the 
name of an attribute in O’s class. There are six cases to 
consider, Case (i) – Case (vi) below: 

Case (i) If AttrName is a single-valued object 
reference, and O’s context is null, then get the reference 
to the object from the database. If the object reference is 
stored as a foreign key in a table containing other 
attributes of O, then retrieve those other attributes too. 
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For example, suppose AttrName is a many-to-one 
relationship R from O’s class C to class D (see Figure 4). 
Suppose C’s table TC(ObjID, A1, …, An, FKey) contains 
scalar attributes A1, …, An of C and foreign key attribute 
FKey that contains the object ID of an object in D related 
via R. Since getting the reference to OD in D involves 
accessing the FKey column of O’s row in TC, prefetch the 
other attributes A1, …, An of that row too. 

(i) (ii)

ObjID B1 … Bm

OD

Table TD

ObjID A1 … An FKey
O

Table TC

OD

O R OD

C
R

D

C & D are classes.
C is stored in table TC

D is stored in table TD

= Instance-of

 

Figure 4 Prefetching Attributes with a Foreign Key 

If TC is indexed on the compound key [ObjID, FKey], 
rather than just ObjID, then the query processor can get 
OD without accessing O’s row, making it cheaper to 
retrieve FKey by itself. If the index on [ObjID, FKey] is 
non-clustered, this raises the incremental cost of getting 
A1, …, An, which should therefore be prefetched too only 
if there’s a high probability of subsequent access.  

Case (ii) If AttrName is a scalar and O’s context is 
null, then simply retrieve the attribute. As in Case (i), 
retrieve other attributes of O’s state that are in the table 
containing AttrName’s column. Here and in Case (i), 
prefetching those other attributes is cost-beneficial if 
some of them are subsequently referenced. 

Case (iii) If AttrName is an object reference, and 
O’s context is a set S′, then prefetch the reference for 
every object O′ in S′, not just for O. That is, run one SQL 
statement that returns the ObjectID value of AttrName for 
all objects in S′. As in Case (i), if the object references are 
stored as foreign keys in a table containing other attributes 
of O′, then retrieve those other attributes too. Prefetching 
the object reference for other objects in S′ is cost-
beneficial if at least several other objects in S′ are 
subsequently accessed. This case is essentially the same 
as Figure 4, except that multiple rows of TC are retrieved 
(one for each object in S′) instead of just one (for O). 

Case (iv) If AttrName is a scalar and O’s context is a 
set of objects, then O.GetAttribute(AttrName) corre-

sponds to step (c) in Section 3.4. Do the prefetch 
described there and in Figure 3(iii). 

Case (v) If AttrName is set-valued and O’s context 
is null, then retrieve the set’s content for O, which is a set 
S of either scalar values or objects. In the latter case, 
assign S to be the context of each object in S. 

If S is a set of objects and the object references are stored 
as foreign keys in the referenced objects, then retrieve 
other attributes of the referenced objects stored in the 
same table as the foreign key. Modifying the example of 
Figure 4 so that AttrName is a one-to-many (rather than 
many-to-one) relationship R from O’s class C to class D, 
we get Figure 5, where B1, … Bm can be retrieved along 
with objects in D referenced by O. As usual, prefetching 
those other attributes is cost-beneficial if some of them 
are referenced later for at least several other objects in S. 

(i) (ii)

ObjID A1 … An

O

Table TC

ObjID B1 … Bm FKey
OD1

Table TD

O

R is 1-to-many from
     class C to class D.
C is stored in table TC

D is stored in table TD

O R OD

C
R

D

= Instance-of

OD2 O

...

 

Figure 5 Prefetching Attributes of Referenced Objects 

Case (vi) If AttrName is a set (of scalars or objects) 
and O’s context is a set S′, then prefetch the AttrName set 
for every object in S′. For example, suppose AttrName is 
a relationship R to a set of objects. Then execute one SQL 
statement that returns a table of <ObjID1, ObjID2> pairs, 
where ObjID1 denotes an object in S′ and ObjID2 denotes 
an object referenced by ObjID1 via R, thereby prefetching 
Object-IDs of members of the R-set of every object in S′. 
This is analogous to Section 3.4, where the scalar 
attributes of all objects in S′ are prefetched. For the R-set 
Si referenced by each ObjID1,i  in S′, assign Si to be the 
context of each object in Si. The prefetch is cost-
beneficial if those R-sets are accessed for at least several 
other objects in S′. 

Continuing the example of Figure 5, if R is one-to-many 
from O’s class C to class D, and is represented as a 
foreign key in D’s table TD, then the attributes of objects 
in D can be prefetched too, modulo the additional cost, 
depending on whether FKey is part of the compound 
index on TD. 
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ExecuteQuery(Q) – We apply context-based prefetch to 
the set that results from the execution of a query, just as 
we do for a set of stored object references in cases (iii) 
and (iv). We could do this by executing the query, saving 
the resulting ObjectID’s in a set, and sending the 
ObjectID’s to the RDBMS on each prefetch. However, 
this is inefficient for large query results, and problematic 
since the query that does the prefetch could exceed the 
maximum size of a SQL statement or stored procedure 
call. We could re-execute the query on each prefetch, but 
this too would be inefficient unless the query is cheap. 
Therefore, we store the context on the server in a 
temporary table. 

So, assume each session has a temporary table 
TEMP(SetID, ObjectID) in the DBMS. Associate a 
unique SetID, s, with the query. Map the query into an 
Insert statement that appends rows <s, o> to TEMP for 
each ObjectID o in the result of the query. Execute the 
Insert and return the ObjectID’s of the query result into a 
set, S, also identified by s.  

Creating this context is cost-beneficial if attributes of the 
objects in S are subsequently accessed, making prefetches 
of those attributes cost-beneficial, and if the query is too 
expensive to re-execute to perform the prefetch. 

TEMP can be created any time after starting the database 
session, but no later than the first call to ExecuteQuery. 

Like any query result, a query context in TEMP can be 
used across transaction boundaries only if the application 
is using read-committed, not repeatable-read, isolation. 

S.GetNext – Return the designated element of S. Pre-
fetching was accomplished when S was loaded, i.e., in 
GetObject(ObjectID) or O.GetAttribute(AttrName). 

3.6 Managing Structure Context 

Structure context is part of the state of a loaded object. 
The context’s lifetime is governed by that of the object. 
Thus, when the object is released, the context is 
deallocated too. This includes context information that is 
maintained with the object by the OMRDB, typically in 
main memory. Also, when releasing a set that was the 
result of an ExecuteQuery, it includes deleting rows of the 
temporary table containing the cached result of the query. 
Like any deallocation, the latter can be done lazily and 
asynchronously with respect to other processing. 

Like persistent database tables, the performance charac-
teristics of temporary tables must be carefully analyzed 
when using them to cache query results. For example, 
depending on how space is managed, it may be important 
to preallocate temporary table space. It may or may not be 
valuable to have an index on SetID, depending on how 
queries are processed, the size of query results, and how 
many query results are concurrently active. 

Suppose an object is loaded multiple times via different 
navigational paths. For example, an application might 
load object O via O′.GetAttribute(AttrName), where 
AttrName is a set S containing O, and later reload O via 
GetObject(o), where o is O’s ObjectID. In some program-
ming interfaces, the later operation does not return the 
same loaded object, but rather returns another copy of the 
same persistent object. If so, then one would expect the 
two objects to share their cached persistent object state, 
since they refer to the same object. However, since the 
two objects were loaded via different paths, they should 
have different contexts. In the example, the first object’s 
context is S, while the second’s is null. 

4 Performance Hints 

Since the prefetch optimizations of Section 3.5 are not 
always cost-effective, it is important to be able to enable 
and disable them. Enabling an optimization is essentially 
a performance hint to the underlying OMRDB. This 
general approach of application-supplied hints has been 
adopted by other object-to-relational mapping systems, 
such as [20], and in other commercial products [8]. 

The main optimizations that are worth controlling in this 
way are the following: 

1A. Attributes for 1 object - When accessing an object O, 
prefetch all of O’s scalar attributes. 

1R. Relationships for 1 object - When accessing an object 
O, prefetch all of O’s references to other objects. 

MA. Attributes for Many objects - When accessing a 
scalar attribute A of an object O, prefetch all of the 
attributes in A’s table for all objects in O’s set context. 

MR. Relationships for Many objects - When accessing a 
relationship attribute A of an object O, prefetch the 
objects related via A for every object in O’s set context. 

Some contexts are very large  too large to prefetch the 
attributes or relationships for every object in the context. 
One could specify a threshold for context size, above 
which the MA or MR prefetch is disabled. Or, it may be 
better to stream in the prefetched data in batches. This 
requires finding a query that retrieves a subset of the data 
to be prefetched plus a remainder query that identifies the 
remaining data to be prefetched. This isn’t always doable. 
For example, in MA, to prefetch attribute values for a 
large unordered set, we would need a column value that 
partitions the set into non-overlapping subsets. 

It is often appropriate to enable a prefetch optimization 
for an application’s entire execution, but sometimes it is 
not. For example, if an application accesses all members 
of some sets but only one member of others, MA will 
speed up accesses to the former and slow down accesses 
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to the latter. Thus, it is beneficial to enable and disable the 
optimizations dynamically during its execution. 

Performance hints can be added as tags in an information 
model to specify the default prefetch behavior of a class. 
For example, a class C could be tagged to enable MR but 
disable MA. Such default behavior can be overridden by 
the application. 

Although prefetch is enabled and disabled dynamically, it 
is still beneficial to maintain context for each loaded 
object. This makes it possible to perform context-based 
prefetch on an object that was loaded when prefetching 
was disabled. Since maintaining context is cheap, there is 
little benefit to disabling it, with one possible exception: 
The result of a query is cached in a temporary table for 
use as the context of each object in that result. Since 
adding the result to the temporary table has non-negligible 
cost, it is probably worth disabling in cases where it is 
known to be ineffective. 

Although the manual control that performance hints offer 
is worthwhile, it would be even better if the system could 
automatically decide when to enable and disable prefetch-
ing. One approach is to run the application on sample data 
to generate traces, and then analyze the traces to deter-
mine whether each type of optimization is cost effective 
for a given run. Another approach is to statically analyze 
the application to predict certain access patterns. For 
example, a common pattern is to call GetAttribute(R), 
where R is a relationship that returns a set of object 
references, and then loop through the result, accessing 
attributes of each object. In this case, the program would 
be modified to enable MA before entering the loop. Even 
finer grained control is possible here, since the exact set 
of attributes that will be referenced could be made known 
in the hint, thereby reducing the cost of the prefetch.  

A cache control mechanism would also be beneficial, to 
reduce the amount of prefetching when the OMRDB’s 
cache is stressed. The cache manager could track the 
amount of free space, for this purpose. 

5 Implementation in Microsoft Repository 

The prefetch optimizations of Section 3 are implemented 
in the latest version of Microsoft Repository, whose stor-
age engine is a persistent object layer implemented on top 
of Microsoft SQL Server. The product’s object model, 
table layout, and API do not include all of the alternatives 
in Sections 3.1 - 3.3. The differences that are relevant to 
the prefetch optimizations being considered here are: 

• All relationships are currently stored in a single 
junction table, like Table J in Figure 3(i), not as 
foreign keys in class-oriented tables. 

• The object model is COM, where classes implement 
interfaces and interfaces have single-valued scalar pro-
perties and relationship-valued collections. Each inter-
face’s scalar properties are stored in (i.e., are columns 
of) one table, each of whose rows contain state for an 
object whose class implements the interface. Each 
table can store the properties of many interfaces, but a 
class’s interfaces need not all be stored in one table. 

• There is an additional method, ObjectInstances, that 
gets the set of all objects that are instances of either a 
given class or a class that supports a given interface. 
Objects that are retrieved by this method have the re-
trieved set as their context, which is represented by the 
identity of the class or interface. This is very similar to 
Case (v) in Section 3.5, O.GetAttribute(AttrName), 
where AttrName designates a set of object references. 

• Each time a persistent object P is loaded, a new COM 
object is created, which shares its cached state with 
other COM objects that represent P. The context is 
stored in the COM object, since each load operation 
for P may be via a different navigational path and 
therefore have a different context to guide prefetch. 

The object model, table layout, and API are described in 
detail in [1, 2].  

6 Performance Measurements 

The prefetch optimizations as implemented in Microsoft 
Repository have been useful for many customer applica-
tions we have tested, so they are frequently enabled  
especially MA, which we have found is almost always 
beneficial. However, it is hard to report on these in a way 
that bears scientific scrutiny, since each application yields 
a varying workload that is hard to characterize succinctly. 
We therefore ran some more controlled experiments to 
show how the optimizations work in practice. 

6.1 Experiment 1 – The 007 Benchmark 

A good test to show the benefits of MA is the 007 bench-
mark [4, 5, 6], since it is a highly regular workload that is 
representative of many persistent object applications (a 
brief summary is in the Appendix). We ran the 007 
queries and traversals using Microsoft Repository on the 
medium sized 007 database (225MB). We ran with a cold 
server cache, to ensure the optimizations are fully penal-
ized for useless prefetches. We did not run 007 structural 
modifications, since their behavior is not affected by our 
optimizations. 

Queries Q1-Q3 and Q7 are all of the form: retrieve a set 
of objects (in our case using ExecuteQuery) and access 
the objects’ state. Q8 also accesses state, to form a sub-
query for each object in an outer query (it retrieves a set 
of object pairs). So they all benefit from optimization 
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MA, which prefetches the objects’ state in one round-trip 
based on the cached query result. Figure 6(i) reports the 
percentage improvement in running time over an 
execution with no prefetch optimizations enabled (i.e., 
((old-new)/old)×100). The benefit varies based on the size 
of the result and the algorithm for joining the temp table 
(containing cached query results) with the attribute table 
at the server. Query Q4 is of the same form as Q1-Q3, but 
the query plan for the prefetch is sub-optimal, making 
MA ineffective. None of the queries benefit from 1R or 
MR, because they don’t access any relationships, nor 
from 1A, because only one attribute of each object is 
accessed. Query Q5 simply counts the number of objects 
in the result of a query, so there’s no benefit to 
prefetching properties or relationships. 
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Figure 6 Benefit of Prefetch in 007 

Traversals T1-T6 navigate relationships starting from a 
root. Like the queries, traversals T2b,c and T3b,c access 
attributes and therefore benefit from MA. T1 and T6 do 
not access attributes, so MA has no effect. T2a and T3a 
access only one object in each collection, so prefetching 
attributes for all objects is a cost that has no compensating 
benefit. Thus, MA decreases their performance. 

In principle, traversals T1-T3 should benefit from MR, 
but they actually do not. The traversals visit the entire bill 
of materials hierarchy of a base assembly, which includes 
655,000 atomic parts. This overflows the client cache, 
causing prefetched objects to be replaced before being 
accessed. Currently we do not handle this situation very 
gracefully in that we let the cache overflow. In a future 
version, we will have a more adaptive algorithm.  

6.2 Experiment 2 – XML Export 

Another application with a highly regular workload is the 
XML export utility that ships with the product. We wrote 
a program that uses the utility to export a set of objects 
reachable from a root, by doing a breadth-first traversal 
from the given root and writing them out as an XML 
stream. We exported a UML model consisting of 3100 
objects and 3900 relationships. The execution time was 
267 ms with no optimizations, 117ms with 1R enabled, 
220ms with MA, and 78ms with both 1R and MA. That 

is, the execution was 56%, 18%, and 71% faster with 
optimizations 1R, MA, and 1R+MA, respectively. 

1R helps because in UML each object has many relation-
ship types, all of which are accessed, either to export 
them or determine that they’re empty. MA helps because 
if a relationship is non-empty, then attributes of all related 
objects are exported. These benefits are nearly independ-
ent, in that the benefit of 1R+MA (71%) is nearly the sum 
of the benefits of 1R and MA (56%+18%=74%). 

6.3 Experiment 3 – Measuring MR 

To measure the benefits of MR in a controlled setting, we 
created an object hierarchy stored as relationships in a 
junction table like Table J of  Figure 3(i), with a clustered 
index on its key (Source, RelType, Target). The hierarchy 
has a top level fan-out of 100, and a second level fan-out 
of 20. We traversed the hierarchy by running SQL. The 
baseline ran a SQL query to get the 100 children of the 
root followed by a query for each child to get its 20 
children. To model MR, we replaced the 100 queries for 
grandchildren by one query to get all grandchildren. The 
latter retrieves the same amount of data as the former, but 
replaces the fixed overhead of 100 queries by that of just 
one query. The resulting execution time was 71% faster 
with MR enabled than disabled. 

MR is sensitive to the size of the context to which it’s 
applied, since that affects the number of queries it saves. 
For example, running the previous experiment on a hier-
archy with top level fan-out of 20 and second level fan-
out of 100, the benefit of MR is only 33%, less than half 
as much as the previous case. The same amount of data is 
retrieved as before, but only 20 queries for grandchildren 
are replaced by one query. This effect also explains, in 
part, the lack of benefit of MR in 007 traversals, since all 
the fan-outs are of size 3. In XML, MR actually hurts 
performance, probably because the contexts are small and 
the prefetch requires an extra expensive join. 

7 Extensions 

7.1 Asynchronous Prefetch 

To improve response time further, it is desirable to do the 
minimal work necessary to return from each data access 
call and prefetch any additional data asynchronously with 
respect to the call. To some extent, an application can do 
this manually by reordering its logic so that the OMRDB 
gets data before the application actually needs it. Beyond 
this rather crude recommendation, there are two 
approaches to making the prefetch asynchronous: pipeline 
the prefetch or prefetch after processing the request. 

In the pipelined approach, the OMRDB issues a query to 
retrieve the requested and prefetched data together. When 
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the first packet arrives from the DB server, the OMRDB 
starts populating its cache. As soon as the requested data 
arrives, the OMRDB returns to the application, but it 
continues processing packets asynchronously until all the 
prefetched data have arrived. 

If the DBMS supports multiple active statements on a 
database session, then a second application request can be 
executed while a previous prefetch is still active. Most 
DBMSs do not support this, since it requires parallel 
nested transactions so that concurrent SQL statements can 
be independently backed out. Without this feature, a 
second session is needed to avoid delaying an application 
call while a prefetch is tying up the session. In any case, if 
the application later asks for an item that is still being 
prefetched, it is blocked. 

In the non-pipelined approach, the OMRDB retrieves the 
requested data plus a subset of data to be prefetched. After 
receiving this data, it returns to the application and 
asynchronously issues a query for the remaining data to 
prefetch. However, as discussed in Section 4, finding a 
query that retrieves a subset of the data to be prefetched 
plus a remainder query that gets the remaining data to be 
prefetched is sometimes infeasible. 

In some cases, it is unavoidable to fetch the entire result 
before returning to the caller. For example, Microsoft 
Repository stores sequenced collections as rows linked by 
back pointers [1]. If an application requests an item of the 
collection other than the first, then all of the collection 
elements must be loaded into cache for the engine to 
determine the requested item. This defeats both the 
pipelined and non-pipelined approaches. 

Finally, statistics are needed to determine how much to 
prefetch. The goal is to fetch only a small amount to avoid 
delaying the application much by the prefetch, but fetch 
enough to keep the application busy while the second, 
asynchronous prefetch is running. 

7.2 Prefetching Across Paths 

We can extend context-based prefetch to apply to paths of 
relationships. For example, consider a persistent object 
base that contains a database schema definition object, 
which contains table definition objects, each of which 
contains column definition objects, each of which is 
related to a data type definition object. When accessing a 
column of the first table definition, MR will prefetch 
column definitions of all table definitions. We showed in 
Section 6.3 that this can yield significant improvements. It 
may also be beneficial to prefetch the scalar attributes of 
those column definitions (i.e., Section 3.5, Case (v)) and 
their relationships to data type definitions (adding another 
hop to the path). To estimate the benefit, recall in Section 
3.4 that getting 100 rows from two identical tables with 
100-byte rows in 2 round-trips is 19% slower than getting 

the join in one round-trip. One could extend the hints of 
Section 4 to specify when to prefetch across such a path. 

An issue with this approach is the representation of the 
inherently hierarchical result of the prefetch, when a 
relational query is used. As observed in [17], in a parent-
child relationship, when retrieving all the children of a 
parent, the parent information is repeated for every child 
due to the normalization inherent in relational queries. 
Possible solutions are to return the result in a nested table, 
a tree structure, or an XML stream (that represents the 
tree structure), all of which require some extension to the 
underlying RDBMS. 

7.3 Lazy Loading of Sets 

Suppose O.GetAttribute(AttrName) returns a set, S, of 
objects (i.e., Case (iv) and Case (vi) in Section 3.5). One 
could execute GetAttribute by storing only its definition 
(i.e., “O.GetAttribute(AttrName)”) and not its instances in 
main memory. If S is used only to insert new objects, then 
the existing state of S never needs to be loaded, a signifi-
cant optimization. If existing objects in S are retrieved, 
then its instances can be loaded on the first invocation of 
S.GetNext.  

Suppose it is known that all objects in S are instances of 
the same concrete class C (rather than different speciali-
zations of C). Now even GetNext can avoid loading 
instances of S, by creating a hollow instance O′ of C. This 
can be done using only cached type information, without 
accessing database instances. The state of O′ is populated 
only when one of its attributes is accessed. At this point, 
MA kicks in, which retrieves that attribute (and possibly 
others in the same table) for all objects in S. This prefetch 
gets the object IDs of all objects in S as a side effect, 
which allows S finally to be populated with instances. 
Thus, the initial round-trip to the RDBMS to get the 
object IDs of objects in S is entirely avoided, leaving only 
one round-trip to get the attributes of all objects in S, thus 
halving the number of round-trips in this scenario. 

While this benefit is appealing, unfortunately the line of 
logic to attain it is not quite sound: If S is empty, then 
S.GetNext should return Null. If this is known to be 
impossible (e.g., because the set has an enforced integrity 
constraint saying it has non-zero cardinality), then the 
technique works fine. Otherwise, if it can return Null, 
then it is not valid for it to return a hollow instance of C. 
Therefore, to benefit from this optimization, a change is 
needed in the programming interface. There are several 
options: a hint could be issued before the first call to 
GetNext, to tell the system what attribute(s) to prefetch; 
the GetNext call itself could optionally include a list of 
attributes of interest; or the semantics of GetNext could 
be modified so that the first GetNext on an empty set 
returns an object and an exception is raised only when 
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attempting to access one of that object’s attributes. The 
use of a hint strikes us as the best of the alternatives.  

8 Conclusion 

We described a technique for predicting useful prefetches 
when a navigational object-oriented interface is imple-
mented on a relational DBMS. We presented a design for 
the technique and measured its performance in a commer-
cial product, Microsoft Repository 2.0. We proposed a 
number of extensions, some of which would benefit from 
further work, such as automatically issuing hints to enable 
the prefetch optimization and prefetching across paths of 
relationships.  

Overall, there has been much published about efficient 
implementations of persistent objects. Having worked on 
an implementation of persistent objects on a relational 
database for the past several years, we feel that the 
problem of optimizing the performance of such a system 
is only partially understood and would benefit from much 
more research. Given the advent of object-relational 
DBMSs, and the need to offer persistent object interfaces 
on top, the importance of this problem is growing. 

Appendix – Summary of 007 

The 007 benchmark is based on a bill-of-materials 
database. In the medium database, each assembly has 3 
sub-assemblies, and so on through 7 levels. Each 
assembly has also has 3 composite parts, each of which 
has an associated document and has 200 interconnected 
atomic parts. The following queries and retrievals are 
taken from [6], paraphrased to save space: 

Q1 – Given 10 random atomic part id’s, get the atomic 
parts (that exist) and the number retrieved. 

Q2 – Given a range of dates containing the last 1% of 
dates in atomic parts, retrieve the atomic parts. 

Q3 – Given a range of dates containing the last 10% of 
dates in atomic parts, retrieve the atomic parts. 

Q4 – Given 100 random document titles, for each 
document, find all base (i.e., level 1) assemblies that use 
the composite part corresponding to the document. Also 
return the number of such base assemblies. 

Q5– Find all base assemblies that use a composite part 
whose build date is later than that of the base assembly. 
Also report the number of base assemblies found. 

Q7 – Scan all atomic parts. 

Q8 – Find all pairs of documents and atomic parts where 
the atomic part’s document id equals the document’s id. 
Return the number of pairs found. 

T1 – Traverse the assembly hierarchy. For each base 
assembly, visit its unshared composite parts. For each 
composite part, do a depth first search on its atomic parts. 
When done, return the number of atomic parts visited. 

T2 – Same as T1, but swap attributes x and y for some of  
the objects: 
a. Update one atomic part per composite part. 
b. Update every atomic part encountered. 
c. Update each atomic part in a composite part four times. 

T3 – Same as T2, but update the (indexed) date field. 

T6 – Same at T1, but for each composite part, visit only 
its root atomic part. 

Note that there is no Q6, T4, or T5 in 007. Traversals T7 
and T8 are omitted because they run very fast and there-
fore lead to inaccurate (high variance) measurements. 
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