Multi-Dimensional Substring Selectivity Estimation

H. V. Jagadish*
U of Michigan, Ann Arbor

jag@eecs.umich.edu

Raymond T. Ng
U of British Columbia

rng@cs.ubc.ca

Abstract

With the explosion of the Internet, LDAP di-
rectories and XML, there is an ever greater
need to evaluate queries involving (sub)string
matching. In many cases, matches need to be
on multiple attributes/dimensions, with cor-
relations between the dimensions. Effective
query optimization in this context requires
good selectivity estimates.

In this paper, we use multi-dimensional count-
suffix trees as the basic framework for sub-
string selectivity estimation. Given the enor-
mous size of these trees for large databases, we
develop a space and time efficient probabilis-
tic algorithm to construct multi-dimensional
pruned count-suffix trees directly. We then
present two techniques to obtain good es-
timates for a given multi-dimensional sub-
string matching query, using a pruned count-
suffix tree. The first one, called GNO (for
Greedy Non-Overlap), generalizes the greedy
parsing suggested by Krishnan et al. [9] for
one-dimensional substring selectivity estima-
tion. The second one, called MO (for Maximal
Overlap), uses all maximal multi-dimensional
substrings of the query for estimation; these
multi-dimensional substrings help to capture
the correlation that may exist between strings

* Supported in part by NSF under grant IDM9877060.

Permaission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

387

Olga Kapitskaia
AT&T Labs—Research

olga@research.att.com

Divesh Srivastava
AT&T Labs—Research

divesh@research.att.com

in the multiple dimensions. We demonstrate
experimentally, using real data sets, that MO
is substantially superior to GNO in the quality
of the estimate.

1 Introduction

One often wishes to obtain a quick estimate of the
number of times a particular substring occurs in a
database. A traditional application is for optimizing
SQL queries with the like predicate (e.g., name like
jones). With the growing importance of the Inter-
net, LDAP directory servers, XML, and other text-
based information stores, substring queries are becom-
ing increasingly common. Furthermore, in many sit-
uations for these applications, a query may specify
substrings to be matched on multiple alphanumeric
attributes/dimensions. The SQL query ((name like
mark) AND (tel like 973360) AND (mail like jones))
is one example. As another example, the LDAP
query ([4]) that asks for directory entries in the
subtree rooted at the directory entry whose distin-
guished name (dn) is dc=research,dc=att,dc=com,
and that match the filter (tel = *36087%) can
be modeled as a multi-dimensional string matching
query (& (dn = *dc=research,dc=att,dc=com) (tel
= *973360%)). The first string component dn =
*dc=research,dc=att,dc=com matches all the en-
tries in AT&T Research, and the second component
tel = *973360% specifies a substring match. Often
times, the attributes mentioned in these kinds of multi-
dimensional queries may be correlated. For the above
LDAP example, because of the geographical location
of the research labs, people in AT&T Research may
have an unexpectedly high probability to satisfy tel =
*973360%. For such situations, assuming attribute in-
dependence and estimating the selectivity of the query
as a product of the selectivity of each individual dimen-
sion can be grossly inaccurate.

In this paper, we study the problem of multi-
dimensional substring selectivity estimation, and make

the following contributions:

e We propose a novel generalization of 1-D count-
suffix trees [9], referred to as a k-D count-suffiz
tree, as the basic data structure for solving the
problem (Section 2). Our trees can handle not
only substring matches, but also prefix, suffix and
exact matches.

e Given the enormous size of these trees for large
databases and for multiple dimensions, it 1s desir-
able, and often essential, to try to obtain a com-
pressed representation that satisfies given mem-
ory restrictions. To this end, we develop a space
and time efficient probabilistic algorithm to con-
struct a k-D pruned count-suffix tree without first
having to construct the full count-suffix tree (Sec-
tion 3).

e What we gain in space by pruning a count-suffix
tree, we lose in accuracy for estimating the selec-
tivities of those strings that are not completely
retained in the pruned tree. Our main challenge,
then, is: given a pruned tree, to try to estimate
as accurately as possible the selectivity of such
strings.

We develop and analyze two algorithms for this
purpose (Section 4). The first algorithm, called
GNO (for Greedy Non-Overlap), generalizes the
greedy parsing suggested by Krishnan et al. for
1-D substring selectivity estimation [9]. The sec-
ond algorithm, called MO (for Maximal Overlap),
uses all maximal k-D substrings of the query for
estimation, to take advantage of correlations that
may exist between strings in the multiple dimen-
sions.

e We present an experimental study, using a real
2-D data set, that compares the accuracy of our
two algorithms, GNO and MO, and additionally
compares them with the default assumption of
attribute independence (Section 5). Our results
show the practicality and the superior accuracy
of MO, demonstrating that it is possible to ob-
tain freedom from the independence assumption
for correlated string dimensions.

1.1 Related Work

1-D suffix tree [18, 11] is a commonly used structure
for indexing substrings in a database [9]. One natural
generalization of strings is a multi-dimensional matrix
of characters. The pattern matching community has
developed data structures, also referred to as suffix
trees, for indexing sub-matrices in a database of such
matrices (see, e.g., [1, 2]). The problem of indexing
sub-matrices is clearly a different problem than index-
ing substrings in multiple correlated dimensions, and
the suffix tree developed for the sub-matrix matching

388

problem does not seem applicable to our problem. Our
problem, despite its importance, appears to have re-
ceived much less attention in the literature.

1-D pruned count-suffix trees were studied in [9],
and algorithms for the direct construction of the
pruned count-suffix tree (i.e., without first construct-
ing the complete count-suffix tree) were proposed.
However, those techniques were ad hoc in the sense
that no quality guarantees were provided. Our ap-
proach of direct construction of a k-D pruned count-
suffix tree builds upon the concise sampling technique
proposed in [3], provides probabilistic guarantees on
the number of false positives and false negatives, and
gives accurate counts for the substrings in the pruned
count-suffix tree.

Histograms have long been used for selectivity esti-
mation in databases [15, 12, 10, 5, 6, 13, 7]. They have
been designed to work well for numeric attribute value
domains, and one can obtain good solutions to the his-
togram construction problem using known techniques
(see, e.g., [13, 7]). For string domains, and the sub-
string selectivity estimation problem, one could con-
tinue to use histograms by sorting substrings based on
the lexicographic order, and associating the appropri-
ate counts. However, in this case, a histogram bucket
that includes a range of consecutive lexicographic val-
ues 1s not likely to produce a good approximation,
since the number of times a string occurs as a sub-
string is likely to be very different for lexicographically
successive substrings.

End-biased histograms are more closely related to
pruned count-suffix trees [6]. The high-frequency val-
ues in the end-biased histogram correspond to nodes
retained in the pruned count-suffix tree. The low-
frequency values correspond to nodes pruned away.
With this approach of estimating the selectivity of sub-
string queries, if @y has been pruned, the same (de-
fault) value is returned for ay and ajasg, irrespective
of the length of as.

In spite of the vast literature on histograms, there is
very little discussion of histograms in multiple dimen-
sions. A notable exception is the study in [14]. But
for the reasons given in the preceding paragraph, this
study is not directly applicable to the problem of sub-
string selectivity estimation in multiple dimensions.

A study of 1-D substring selectivity estimation is
presented in [9]. Experimental evaluation of vari-
ous versions of independence-based, child-based and
depth-based strategies is given. Among those, a spe-
cific version of the independence-based strategies, re-
ferred to here as the KVI algorithm, is shown to be one
of the most accurate. The GNO algorithm presented
here generalizes the KVI algorithm from 1-D to &-D.

In [8], we conducted a formal analysis on 1-D sub-
string selectivity estimation. We compared a suite of
algorithms, including KVI and a 1-D version of MO,
in terms of the accuracy of their estimates (expressed

as log ratios) and their computational complexities.
The MO estimation algorithm presented here for k£-D
strings generalizes the 1-D version analyzed there. As
will be shown later, the generalization is not straight-
forward.

A study of k-D substring selectivity estimation is
given in [17]. There are several key differences be-
tween that study and the work presented here. First,
at a data structure level, k-D substring selectivity es-
timation in [17] is based on k separate 1-D pruned
count-suffix trees and a multi-dimensional array. In
our case, the estimation is based on a k-D count-suffix
DAG. Second, for constructing pruned data structures,
only ad hoc heuristics are considered in [17]. In our
case, we develop a space and time efficient probabilistic
algorithm. Third, for selectivity estimation, a gener-
alization of the KVI algorithm, as well as child-based
and depth-based strategies are developed in [17]. That
generalization does greedy parsing independently in
each of the k& dimensions, using the 1-D pruned count-
suffix trees, and computes an estimate for the k-D
substring selectivity based on the information in the
multi-dimensional array. This technique can be con-
sidered as a simple version of the GNO algorithm pro-
posed here. As will be shown later, the MO algorithm
proposed here is superior to the GNO algorithm.

2 k-D Structures for Estimation

In this section, we present k-D generalizations of tries
and suffix trees for our multi-dimensional estimation
problem. To the best of our knowledge, these data
structures have not been studied in the literature.

Throughout this paper, we use A, possibly with
subscripts, to denote an alphabet for an attribute; and
Greek lower case symbols a, 3, to denote strings of fi-
nite length > 0 in A4*. For simplicity, we do not distin-
guish between a character in A, and a string of length
1. We use ¢ to denote the null string.

By a k-D string, we mean a k-tuple (aq, ..., ay),
where a; € A7 forall 1 < i< k. A k-D substring of a
given k-D string (aq,...,a5) is (y1,...,7%), such that
7¥; is a (possibly empty) substring of o, 1 < i < k.

2.1 k-D Count-Tries

In 1-D, a count-trie is a trie that does not store point-
ers to occurrences of the substrings a in the database.
Instead, it keeps a count C, at the node « in the trie.
The count C\,, can have (at least) two different mean-
ings. First, it can denote the number of strings in the
database D containing a as a substring; we call this
presence-counting. Second, it can denote the number
of occurrences of a as a substring in the database D;
we call this occurrence-counting. Suppose D contains
only the string banana. With the first interpretation,
Cana would be 1, but with the second interpretation,
Cana would be 2. Both interpretations are obviously

389

(5\,5)\
(e,1)

A

/

(ab, 6) (e,0)

—

(abe, ¢) (abd, €) (ab, 0)(ab, 1)
(abe, 0) (abd, 1)

Figure 1: Example 2-D Trie

useful in different applications. In this paper, our ex-
position focuses only on presence-counting; all the con-
cepts and techniques presented here carry over easily
to occurrence-counting.

In k-D, a count-trie 1s a rooted DAG that satisfies
the following properties:

e Each node is a k-D string. The root is the k-D
string (e, ...,¢).

e There is a (directed) edge between two nodes

(a1,...,a5) and (B, ..., B) iff:

— there exists 1 < ¢ < k such that a; is an
immediate prefix of 3;; and

—forall j£¢ 1<j<k, a5 =0.

By “immediate prefix,” we mean that there does not
exist another node (...,7;,...) in the trie, such that
a; 18 a proper prefix of 4;, and 4; is in turn a proper
prefix of 3;.

Figure 1 shows the 2-D count-trie for a database
with the two 2-D strings (abe,0) and (abd,1). The
root node (¢,¢) and the node (ab, &) have count = 2,
while the remaining ones all have count = 1.

As i1s done for standard 1-D tries, a simple opti-
mization can be applied to compress k-D count-tries.
For any two nodes connected by an edge, there is no
need to store the common prefix twice. In Figure 1,
for instance, the node (abd,) can simply be stored as
(d, €); we show the prefix in the figure only for clarity.

2.2 k-D Count-Suffix DAGs

In 1-D, a suffix tree [18, 11] is a trie that satisfies the
following property: whenever a string « is stored in
the trie, all suffixes of a are stored in the trie as well.
The same property is preserved for k-D count-suffix
DAGSs, which are k-D count-tries. Specifically:

Property P1: for any k-D string (a1,...,ax) in the
count-suffix DAG, the k-D strings (v1,...,vx) are
also in the DAG for all (improper) suffixes v; of
g, 1 S) S k.

For example, to make the trie shown in Figure 1 a 2-

D count-suffix DAG for (abe, 0) and (abd, 1), we need

to add the strings/nodes (be,0), (be,e), (¢,0), (e, &),
(bd, 1), (bd,e), (d, 1), and (d,), and the corresponding
edges.

Just like standard 1-D count-suffix trees, k-D count-
suffix DAGs support substring matches. To continue
with the simple example above, the query ((attrl =
*bx) & (attr2 = *0x)) is matched by the node (bc, 0). !
Similarly, the query ((attrl = xabx) & (attr2 = %))
can be matched by the node (ab,). However, it is im-
portant to note that count-suffix DAGs cannot handle
queries of the forms:

e attril beginning with ab (i.e., prefix match),
e attril ending with ab (i.e., suffix match), and
e attrl matching the string abe (i.e., exact match).

Even though in the above example, the node (ab,e)
appears to have handled the prefix query “attril be-
ginning with ab”, it really does not. The reason is
that if there is a string (cab, a3), say, in the database,
then according to Property P1 above, (ab,vs) for all
suffixes 72 of as must have been inserted in the DAG.
In other words, the count associated with the node
(ab,€) includes not only strings with ab as the prefix,
but indeed all strings with ab as a substring.

It turns out that a simple trick is sufficient to make
the count-suffix DAG capable of handling all the vari-
ations mentioned above. For each string, we add two
special characters: # attached to the beginning, $ ap-
pended at the end of the string. As far as insertion
into the count-suffix DAG is concerned, these two spe-
cial characters behave like any other “normal” charac-
ter in the alphabet. For example, for the 2-D string
(abc,0), we first convert it to (#abc$, #08$), and then
insert all relevant strings based on Property P1 above.
As far as querying is concerned, a prefix match to the
string “ab” can be specified as a substring match on
the (extended) string “#ab” to the count-suffix DAG.
Similarly, a suffix match (resp., an exact match) to
string “ab” can be specified as a substring match on

the string “ab$” (resp., “#ab$”).

2.3 Compressed Representation: k-D Count-
Suffix Trees

Even though with the simple trick discussed above, we
have augmented the query answering capabilities sup-
ported by a count-suffix DAG, each query search still
begins from the root of the DAG. From this stand-
point, a k-D count-suffix DAG is an overkill in the
sense that the edges in the DAG allow a search to be-
gin from any node in the DAG (e.g., from (£,0) to
(abe,0) in Figure 1). Thus, to reduce space, we seek
to compress a k-D count-suffix DAG into a k-D count-
suffiz tree, while preserving the desired query answer-
ing capabilities.

!Tn a trie, the node (bc,0) is a compressed representation of
two nodes (b,0) and ((b)c,0).

390

To do so, we first pick a canonical enumeration of
the attributes. 2 Without loss of generality, let us
assume that the enumeration order is attributes 1 to
k. Then for any node (a1, ...,a) in the count-suffix
DAG, we define the following path from the root to
the node as the canonical path:

(a1,1,e,...,8),(a1,2,¢,...,€), ..., (@1 my, 8- -, E),
a11a2,1161 B '76)1) (a1,0[27m2,67 . ~76)1
(C!l’ .. '1ak—l7ak,1)1 . 'a(ala .. '7ak—11ak,mk)

where for all 1 <i<k,1<j<my, o;; is an immedi-
ate prefix of a; j41, and for all 1 <@ <k, a; m, = ;.

Intuitively, the canonical path of (a, ..., a) corre-
sponds to the path that “completes” first «, then as
and so on. For example, for the node (abe,0) in Fig-
ure 1, the canonical path from the root passes through
the nodes (ab, €) and (abe,). This path is guaranteed
to exist already in the DAG.

Finally, to prune a count-suffix DAG to the corre-
sponding count-suffix tree, any edge in the DAG that
is not on any canonical path is discarded. In Figure 1,
the four edges marked with || are not on any canonical
path and are removed to give the count-suffix tree.

As compared with the original count-suffix DAG,
the count-suffix tree has the same number of nodes,
but fewer edges. Because of the canonical path condi-
tion, each node, except for the root, has exactly one
parent, 3 reducing the DAG into a tree.

It 1s important to note that even though we in-
troduce k-D count-suffix trees as pruning the appro-
priate edges from the corresponding k-D count-suffix
DAGs, in practice, a k-D count-suffix tree can be con-
structed directly for a given database, without explic-
itly constructing the DAG. Effectively, to insert any
k-D string, we pick the canonical path as the path for
inserting the string into the count-suffix tree.

In the sequel, we use count-suffix trees and suffix
trees interchangeably, for simplicity.

3 Construction of Pruned Count-Suffix
Trees

3.1 The Necessity of Pruning Nodes

A k-D count-suffix tree compresses the corresponding
k-D count-suffix DAG by removing edges not on any
canonical path. However, the number of nodes in both
structures remain the same. It is obvious that the
number of nodes is huge for large databases and for
k> 2.

To be more precise, first consider a 1-D trie. In-
dexing N strings, each of maximum length L, requires

2The choice of the enumeration order turns out to be imma-
terial from the point of view of selectivity estimation. The only
effect it has is on the actual size of the resultant count-suffix
tree. Since this is a second order effect, we do not address this
issue further in this paper.

3In the original DAG, each node may have up to k parents.

at most N * L nodes, assuming no sharing. For a 1-D
count-suffix tree, because of all the suffixes, the same
database requires O(N * L) strings, each of maximum
length L. Thus, the total number of nodes is O(N*L?).

Now consider a k-D count-trie. Indexing N k-D
strings, each of maximum length L, requires O(LF)
possible prefixes for each k-D string, giving a total of
O(N x L*) nodes in the trie. Finally for a k-D count-
suffix tree, there are O(L¥) possible suffixes for each
k-D string. This gives a grand total of O(N x L%*)
nodes in the k-D count-suffix tree.

In summary, going from 1 to k£ dimensions increases
the database size by only a factor of k£, but it increases
the size of the count-suffix tree by a factor of L2*~2.
Even in the 1-D case, it has been argued [9, 8] that
one cannot afford to store the whole count-suffix tree
for many applications and that pruning is required. In
the k-D case, the need for pruning becomes even more
urgent. *

3.2 Rules for Pruning

A tree can be pruned through the use of any well-
formulated pruning rule that ensures that when a node
is pruned, all its child nodes are pruned as well. In this
paper, we consistently use a pruning rule that prunes
a node if its count 1s less than a pruned count thresh-
old p* N. (We will shortly be speaking of probabilities
of occurrence, and will find it convenient to think of p
as the pruned probability threshold. If N is the count
at the root then, with a frequency interpretation of
probability, we get p * N as the corresponding count
threshold). The threshold may be fixed a priori, or,
for the approximate, probabilistic construction algo-
rithms presented later, the threshold may adjust itself
in order to meet given memory restrictions. Since the
count associated with any node is guaranteed to be no
greater than the count associated with its parent in the
tree, our pruning threshold rule is well-formulated.

While the above discusses which nodes to prune,
we also have a specific rule that stipulates which nodes
cannot be pruned, regardless of their counts. These are
nodes of the form (ay, ..., ax) such that forall 1 < i <
k, the length of «; is less than or equal to 1. Hereafter,
we refer to this as the unit-cube pruning exemption
rule. Note that the counts of these nodes are very
likely to meet the p x N threshold by themselves. But
if they do not, the rule ensures that these nodes are
exempted from pruning. The exemption rule is set
up to facilitate the selectivity estimation algorithms
presented in Section 4.

4Because of the dramaticincrease in the size of the suffix tree,
in practice given k alphanumeric attributes, it is ill advised to
blindly build a k-D count-suffix tree. It is expected that some
kind of analysis will be carried out, such as correlation testing,
to select sub-groups of attributes to be indexed. We do not
concern ourselves in this paper on how such a selection can be
made.

391

3.3 Imnadequate Ways of Creating Pruned

Trees

Given the above rules for pruning, the next question is
how exactly to create the pruned count-suffix tree for
the given database D. A naive way is to build the full
k-D count-suffix tree, and then to apply the pruning
rule. For most circumstances, this method is infeasible
because the amount of intermediate storage required
is tremendous.

Given memory restrictions for creating the pruned
tree, we wish to be able to alternate between build-
ing and pruning on the fly. An exact strategy to do
so is to first form the completed database, comp(D),
of the given database D of k-D strings. That is, for
each original string (a1, ..., ag) in D, we form its com-
pleted set according to Property P1, which is the set
{(71,.--,)| for all (improper) suffixes v; of a; for all
1 < i< k}. We then sort (out-of-memory) the com-
pleted database comp(D) lexicographically according
to the canonical enumeration of the dimensions. Fi-
nally, we can simply build the pruned tree by read-
ing in sorted order, and pruning whenever the given
memory is exceeded. This strategy, while exact, is in
general too prohibitive in cost, because of the sorting
involved on a set many times larger than the original
database D. Furthermore, as updates are made to the
database, there is no obvious incremental maintenance
technique.

For most applications, it may be sufficient to con-
struct an approzimate pruned count-suffix tree. Re-
cently, there has been considerable research activity
around the creation of synopsis data structures in a
fixed amount of space [3]. In particular, based on the
notion of a concise sample, which is “a uniform ran-
dom sample of the data set such that values appearing
more than once in the sample are represented as a
value and a count” [3], Gibbons and Matias developed
an incremental maintenance algorithm to maintain a
concise sample. In the sequel, we refer to this as the
GM algorithm.

For a given amount of working memory space, the
GM algorithm gives guarantees on the probabilities of
false positives and negatives. To be more precise, we
wish to find all frequent values, i.e., values occurring
at least a certain number of times in the data set. Let
us use F to denote the set of all truly frequent values,
and F to denote the set of all frequent values reported
based on the concise sample. The GM algorithm pro-
vides guarantees on the probability of a ¢ F given
that o € F (i.e., false negative), and the probability
of @ € F given that a g F (i.e., false positive) [3,
Theorem 7]. Thus, one way to create an approximate
pruned suffix tree for a given amount of working mem-
ory space is to apply the GM algorithm on comp(D).

3.4 A Two-Pass Algorithm

There are, however, two problems with a direct appli-
cation of the GM algorithm to our task.

Inversions: Recall that for (k-D) count-tries and
count-suffix trees, the count associated with a
node must not exceed the count associated with
a parent. When applied to comp(D), the GM al-
gorithm does not make that guarantee, and it is
possible that based on the concise sample, the rel-
ative ordering of the count values are reversed. In
fact, it is even possible that while a certain node
is reported to have a frequency exceeding a given
threshold, some of its ancestors are not reported
as such, i.e., node a € F but some of its ancestors
géeF.

Inaccurate counts: While the GM algorithm gives
probabilistic guarantees on false positives and
negatives, it does not provide guarantees on the
relative errors of the reported counts (i.e., the er-
ror on Cy). As will be clear in our discussion
in Section 4 on selectivity estimation, inaccurate
counts in the pruned suffix tree may be com-
pounded to give grossly inaccurate estimates for
k-D strings not kept in the tree.

To deal with the above two problems, we augment
the GM algorithm into the following two-pass algo-
rithm:

1. Pass 1: Construct comp(D) on the fly and apply
the GM algorithm.

2. Pass 2: Conduct an extra pass over the origi-
nal database D to obtain exact counts for all the
strings in comp(F).

The second pass of the above algorithm serves
two purposes. First, because counts are obtained
for com]o(]})7 no inversion is possible. Note that
in general because of the GM algorithm, the size of
(comp(]:") —]:") should not be large compared with the
size of F. Second, the extra pass over the original
database eliminates any possibility of incorrect counts
due to the sampling done by the GM algorithm. If the
strings in comp(]:") can all fit in main memory (e.g., <
1 million strings), which is achievable for many com-
puter systems these days, the second pass amounts to
a single scan of the database.

Thus, in summary, the above two-pass algorithm
represents a space- and time-efficient algorithm for
constructing a pruned count-suffix tree directly. It
gives probabilistic guarantees on false positives and
negatives (via the GM algorithm), and at the same
time avoids inversions and inaccurate counts. Further-
more, to implement the unit-cube pruning exemption
rule mentioned in Section 3.2, the algorithm can sim-
ply skip over the strings to be exempted in the first
pass, but count them in the second pass.

392

3 111
9 11
1
1
a b C

Figure 2: Example 2-D Query with GNO Estimation

When updates AD are made to the database D, the
first pass can be performed in an incremental fashion.
Only when there is a change to F, is there a need for
a pass over DUAD. If there is no change to F, then it
is sufficient to perform a pass over AD to update the
counts of the existing nodes in the pruned count-suffix
tree.

4 k-D Selectivity Estimation Proce-
dures

We now come to the heart of the multi-dimensional
substring selectivity estimation problem. Given a k-D
query string ¢ = (o1,...,0%), where for all 1 <i <k
o; € A7 (and can be the null string), we use the pruned
count-suffix tree to give the selectivity. If q is actually
kept in the pruned tree, the exact count C, can be
returned. The challenge is when ¢ is not found, and
C, has to be estimated based on the content of the
pruned tree. Below we consider two procedures to do
so.

4.1 The GNO Algorithm

Given query ¢, the GNO (for Greedy Non-Overlap)
algorithm applies greedy parsing to ¢ to obtain non-
overlapping k-D substrings of ¢q. Before we go into the
formal details of the algorithm, we give an example to
illustrate the idea.

Consider the 2-D query (abe,123) shown in Fig-
ure 2. The call GNO(abc,123) first finds the longest
prefix of abe from the pruned tree, and then from there
the longest prefix of 123. In our example, this turns
out to be the substring (ab, 12) (rectangle I). Then
recursive calls are made to find other substrings to
complete the whole query. In our example, the recur-
sive calls are GNO(¢,123) and GNO(ab, 3). 5 And as
it turns out, the substrings (¢,123) (rectangle IT) and
(ab, 3) (rectangle TIT) are found in the pruned tree.
Then the estimated selectivity is the product of the
three selectivities.

5 Alternatively, the recursive calls can be GNO(c, 12) and
GNO(abe, 3). Regardless, in each case, the identified substrings
from the pruned tree do not overlap. Experimental results for
both alternatives will be presented in Section 5.

Procedure GNO(oy,...,0%)

1. Find from the pruned tree (y1,...,vx) where ¥,
is the longest prefix of o1, and given v, v is
the longest prefix of o3, and so on.

2. gno = Cy,,.. 4/ N.

I (v, -y k) equal (o1, ..

4. For (i=1;i< k;i++) {
4.1 Compute d; such that o; equal ~;4;.
4.2 Tf (¢; not equal null)

gno = gnox GNO(~y,...
.y O'k).

w

., 0%)), return(gno).

Yi-1, 6i,
Titis- -

}

5. Return(gno).

Figure 3: Pseudo Code of Procedure GNO

Probabilistically, GNO(abc,123) is given by:

Pr{(abc,123)} = Pr{(ab,12)}«
Pr{(c,123) | (ab,12)} «

(
(
Pr{(ab,3)| (ab, 12)&(c, 123)}
(
(

X

Pr{(ab,12)} * Pr{(c,123)} *
Pr{(ab,3)}
= (Clab,12)/N) * (Clc,123)/N)
(Clab,3)/N)

where N is the count of the root node (i.e., the total
number of strings in the database). Tt is essential to
observe that GNO assumes conditional independence
among the substrings. Note that this 1s not as sim-
plistic as assuming conditional independence among
the attributes/dimensions. For if that were the case,
GNO would not have used counts like C45,12) from the
pruned tree, and would have simply used counts like
Clab,e) and Cc 12).

A skeleton of the GNO algorithm is given in Fig-
ure 3. Step (1) can be implemented by a search of the
pruned tree that finds the longest prefix in the order
of the dimensions. As usual, the N in Step (2) is the
count of the root node.

It should be obvious that in the worst case, GNO
searches the pruned tree O(|oq|*...*|ok|) times. This
brings us back to the unit-cube pruning exemption rule
mentioned in Section 3.2. The product |o1|* ... % |o]
gives the total number of unit-(hyper)cubes for the
query. The exemption rule guarantees that the pruned
tree has a count for each of the unit-cubes. Depending
on the outcome of Step (1), GNO may not need any
of the unit-cubes. Strictly speaking, we can do away
with the exemption rule, and if a unit-cube is needed
but 1s not found in the pruned tree, we can simply
use the prune probability p. We prefer to adopt the
exemption rule because in this way, the selectivity of
the unit-cube is the most accurate. This accuracy 1s
particularly significant when the actual selectivity is
much lower than p, such as for the so-called “negative”

queries considered in Section 5.

In terms of formal properties of GNO, the follow-
ing theorem shows that GNO generalizes the KVI al-
gorithm proposed in [9] and analyzed in [8] for 1-D
substring selectivity estimation. In a nutshell, given
a 1-D query string o, KVI(o) finds the longest prefix
~ from the pruned tree, and then makes the recursive
call KVI(d) where o = ~4.

Given a k-D pruned count-suffix tree 7, we use the
notation proj(7,i), for some 1 < i < k, to denote the
subtree of 7 such that:

o the set of nodes is given by: {a; | the node
(€,...,6,ai, &,...,€) is in T}, where «a; can be
the null string €; and

e the set of edges is given by the set of edges in
T connecting only nodes of the form (g,... &, a;,
€y.iyE).

For example, the tree shown in Figure 1, when pro-
jected on the first dimension, consists of the root node
and (ab,e), (abe,e) and (abd,e), and the edges con-

necting these nodes.

Theorem 4.1 For any k-D pruned tree T, and k-D
query q = (g,...,,04, €,...,€), the estimate given by
GNO for q using T 1s identical to the estimate given
by the KVI algorithm for o; using proj(T,1). [|

4.2 The MO Algorithm: Example

Recall that GNO assumes conditional independence
among the substrings. However, it has been observed
that complex sequences typically exhibit the following
statistical property, called the short memory property:
if we consider the (empirical) probability distribution
on the next symbol a given the preceding subsequence
a of some given length, then there exists a length L
(the memory length) such that the conditional prob-
ability does not change substantially if we condition
it on preceding subsequences of length greater than
L. Such an observation led Shannon, in his semi-
nal paper [16], to suggest modeling such sequences by
Markov chains.

Having said that, we do not intend to determine
this magic length L. We believe that determining L
is not practical, especially in the presence of updates.
However, this points to the fact that there is room for
improved estimation accuracy if the overlaps among
substrings are taken into consideration. And it is in
this aspect that MO tries to excel.

To first illustrate the idea of the MO estimation
algorithm, consider again the 2-D query (abec,123)
shown in Figure 2. While GNO finds three 2-D
non-overlapping substrings, MO finds overlapping sub-
strings. In Figure 4, to highlight the comparison be-
tween MO and GNO, we assume that MO also finds
three substrings, corresponding to the ones shown in

393

3| [TII

2

il 1 IT
a b c

Figure 4: Example 2-D Query with MO Estimation

Figure 2. (In general, MO may find a lot more k-D
maximal substrings, i.e., k-D substrings «, § such that
« is not a substring of 8 and vice versa.) While the
substring (ab, 12) (rectangle T) remains the same, MO
now finds (be, 123) (rectangle IT) and (ab, 23) (rectan-
gle TIT).

The question now is how to “combine” all these sub-
strings together. Let us begin by considering (ab, 12)
and (ab, 23). Probabilistically, we have:

Pr{(ab,123)} = Pr{
Pr{
Pr{
Pr{
= Pr{

Pr{

ab, 12)} *

ab,3)| (ab, 12)}

ab, 12)} *

ab,3)| (ab,2)}

ab, 12)} *
ab,23)}/Pr{(ab,2)}

X

o~ o~ o~ —

Thus, unlike GNO, MO does not assume complete con-
ditional independence among the substrings. When-
ever possible, it allows conditioning up to the overlap-
ping substring (e.g., (ab,2)) of the initial substrings
under consideration (e.g., (ab, 12) and (ab, 23) here).

Operationally, we can view the above probabilistic
argument as a counting exercise. When we take the
product of Pr{(ab,12)} and Pr{(ab,23)}, we are ba-
sically counting rectangles I and III in Figure 4. The
problem is that we have “double” counted the rectan-
gle corresponding to substring (ab,2). To compensate,
we divide the product with Pr{(ab,2)}.

To continue now by taking into consideration
rectangle II, we take the product of the probabili-
ties Pr{(ab,12)}, Pr{(bc,123)} and Pr{(ab,23)}, ba-
sically counting all three rectangles. To compensate
for double counting, we divide the product by the three
2-way intersections: (i) Pr{(b,12)} between T and TI;
(i1) Pr{(ab,2)} between I and IIT; and (ii1) Pr{(b,23)}
between II and TII.

However, by dividing by the 2-way intersections, we
have “over compensated”. Specifically, the substring
(b,2) is initially counted three times in the product,
but is then dis-counted three times in the division of
the three 2-way intersections. To make up, we need to
multiply what we have so far with Pr{(b,2)}, which

394

Procedure MO(o4, ..., 0%)

1. Find from the pruned tree all the maximal
k-D substrings of (o1,...,0%). Let these be
A1, ..., Ay for some u.

2. Initialize multiset S to {{(A1,1,1),...,
(Au,u,1)}}, and ¢ to 1.

3. Repeat {

3.1 Initialize multiset S, .., to 0.
3.2 For all (o, v, w) € S such that w equal i
Forallv<j<u/{
If (N A; non-empty)
add (@ N Aj, 7, i+ 1) to Spew.

335 =S5SUS,ew,and i+ +
} until (Spew equal 0)
4. Initialize mo to 1.
For all (a,v,w) € S {
5.1 Get count C\, from the pruned tree.
5.2 If (w is an odd integer), mo = mo x (Cy/N)
Else mo = mo/(Cy/N)
}

6. Return(mo).

Ut

Figure 5: Pseudo Code of Procedure MO

is the 3-way intersection between the three initial sub-
strings.

4.3 The MO Algorithm: Pseudo Code

The counting exercise illustrated in the above exam-
ple is generalized in Figure 5, which gives a skeleton of
the MO algorithm. Step (1) first finds all the maximal
k-D substrings of the query ¢ from the pruned tree.
Let these be Ap,..., A, for some u. Then Steps (2)
to (3) find all the non-empty 2-way intersections (i.e.,
Ai N Aj), 3-way intersections (i.e., A; N A; N X;), and
so on, up to w-way intersections for w < u. A triple
(a,v,w) € S means that a is a w-way intersection,
and A, is the highest indexed)\; participating in this
intersection. When computing the w+ 1-way intersec-
tions using (a, v, w), the condition “for all v < j < u”
in Step (3.2) ensures that the same A; does not par-
ticipate more than once in the intersection. Note that
S and Spe have to be multisets, not sets, since dupli-
cate occurrences of the k-D substrings among the A;
and the various intersections need to be preserved for
correctness.

After all the possible intersections among Aq, ..., Ay
are found, Step (5) of MO computes the final estimate.
It obtains the appropriate counts from the pruned
count-suffix tree. Note that the suffix tree guaran-
tees that if there are nodes corresponding to o and A;,
then their non-empty intersection o N A; must have a
corresponding node in the tree. Thus, for any (o, v, w)
in S, the count C, can always be obtained from the
tree in Step (5.1). Finally, Step (5.2) puts the prob-
ability (Cy/N) in the numerator or the denominator

depending on whether w is odd or even. That is, if
a 1s a w-way intersection among Aq, ..., A,, and w is
odd, then the probability appears in the numerator,
else in the denominator.

4.4 The MO Algorithm: Properties

A natural question to ask at this point is whether
Step (5.2) is “correct”. As motivated in the example
shown in Figure 4, by “correct”, we mean that each
substring of query ¢ is counted ezactly once, i.e., nei-
ther over-counting nor over-discounting. We offer the
following lemma.

Lemma 4.1 For any («,_,w) in S, representing a w-
way intersection, Step (5.2) of MO is correct in that
each k-D substring a is counted exactly once.

Proof sketch. For any w-way intersection «, let us
assume, without loss of generality, that « is the in-
tersection of Ay,...,A,. Then: a must have been
counted (¥) times initially, then dis-counted (¥) times
due to 2-way intersections, then counted (¥) times
due to 3-way intersections, and so on. So the to-
tal number of times « has been counted and dis-

counted is: (V) — (§) + (§) — ... =(=1)*(i). This
can be rewritten as: (— Z;Uzl (=1)7(¥)). Now con-

sider the well-known binomial expansion (1 — z)* =
(1 + Z;»Uzl (=1)/(¥)=?). By substituting z = 1, we
get 0 = (1 —-1)% = 1+ Z;}:1 (—1)j(;5’)). Hence,
(=2 (D)) =1 u

In [8], for 1-D substring selectivity estimation, we
presented a 1-D version of MO. Our analysis indicates
that the 1-D version enjoys certain desirable properties
and forms the basis for obtaining even more accurate
selectivity estimations for 1-D substrings. Thus, to
allow all those to carry over, it is important that the k-
D MO presented here generalizes the 1-D MO analyzed
there. Partly to avoid excessive details, and partly to
illustrate the complication in generalizing from 1-D to
k-D, we resort to the following example.

Suppose for the query abede, 1-D MO finds three
maximal substrings: abe, bed, and ede. Then 1-D MO,
as presented in [8], gives the following estimate:

Cabc % Cbcd % Ccde
N Cbc Ccd

Pr{abede} =

On the other hand, the k-D MO procedure shown in
Figure 5 gives the following estimate for Pr{abede}:
(Cave/N) * (Coea/N) * (Ceae/N) * (Ce/N)
(Coe/N) # (Cea/N) * (Ce/N)

While it is easy to see that both estimates are identical,
we must point out two more subtle details:

395

e In the k-D MO calculation above, there are terms
that cancel off each other, notably (C./N). While
the (C./N) term in the numerator corresponds to
the 3-way intersection between the three maximal
substrings, the (C./N) term in the denominator
corresponds to the 2-way intersection between abc
and cde. The point here is that the 3-way inter-
section of abe, bed, and cde is exactly the 2-way
intersection of the first and the last ones.

e The use of the words “first” and “last” precisely
underscore the fact that in 1-D, all the maximal
substrings can be linearly ordered with respect to
the query ¢. Then it is unnecessary to consider
any w-way intersections for w > 3, and even un-
necessary to consider the 2-way intersection be-
tween A; and A; for j > 44 1. In other words, it
1s sufficient to just consider 2-way intersections of
two successive maximal substrings (e.g., the inter-
section be between abe and bed). The complication
in k-D is that there is no linear order to fall back
on; A; may “precede” X; in some dimensions, but
vice versa for the other dimensions.

The following results establish that &-D MO is a
proper generalization of 1-D MO.

Theorem 4.2 For any k-D pruned tree T, and k-D
query q = (&,...,€,04, £,...,€), the estimate given
by the MO algorithm shown in Figure 5 for q using
T s wdentical to the estimate given by the 1-D MO
algorithm presented in [8] for o; using proj(T,i). W

When the underlying dimensions are independent
of each other, the above theorem can be generalized
to the following result.

Theorem 4.3 Suppose the k dimensions are indepen-
dent

of each other, i.e., for all nodes (ay,...,ax) in the
suffiz tree T, C(al,...,ak)/N = H?:1(C(a,...,al,...,s)/N)~
Then for any k-D pruned tree T' of T, and k-D query
q=(01,...,0%), the estimate given by k-D MO for q
using T' is equal to the product of the estimates given
by 1-D MO for o; using proj(T',i),1 <i<k. [|

Last but not least, let us analyze the complex-
ity of the MO algorithm. There are O(|o;|?) possi-
ble substrings of the 1-D string ;. Thus, there are
O(|o1|? % ... * |o|?) k-D substrings of the k-D string
(01, ...0k). We check each for presence and maximal-
ity in the given pruned count-suffix tree. Hence, in
the worst case, Step (1) requires O(|o1|? * ... * |ok|?)
searches of the pruned tree. Step (5) may need an-
other O(2"%) searches of the tree, since in the worst
case set S computed in Step (3) may be of size O(2%).
Thus, in terms of worst case complexity, MO is far in-
ferior to GNO. The practical questions, however, are:
how much more absolute time is required by MO, and

whether the extra runtime gives better accuracy in re-
turn. We rely on experimentation to shed light on
these questions.

5 Experimental Evaluation
5.1 Experimental Setup

We implemented the algorithms presented in this pa-
per. They were written in C. We paid special attention
to ensure that MO is not affected by roundoff errors.
Below we report some of the experimental results we
collected. The reported results were obtained using
a real AT&T data set containing office information
about most of the employees. In particular, the re-
ported results are based on two attributes: the last
name and the office phone number of each employee.
For these two attributes, the un-pruned 2-D count-
suffix tree has 5 million nodes. The results reported
here are based on a pruned tree that keeps the top
1% of the nodes (i.e., 50,000 nodes) with the highest
counts.

Following the methodology used in [9, 8], we con-
sidered both “positive” and “negative” queries, and
used relative error as one of the metrics for measuring
accuracies. Positive queries are 2-D strings that were
present in the un-pruned tree or in the database, but
that were pruned. We further divided positive queries
into different categories depending on how close their
actual counts were to the pruned count. Below we use
Pos-Hi, Pos-Med, and Pos-Lo to refer to the sets of
positive queries whose actual counts were 36, 20 and
4 respectively, where the pruned count was 40. Each
of the three sets above consists of 10 randomly picked
positive queries. Those were picked to cover different
parts of the pruned tree.

To measure the estimation accuracy of positive
queries, we give the average relative error over the
10 queries in the set, i.e., (estimated count — ac-
tual count)/actual count. Thus, relative error ranges
from —100% to infinity theoretically. Because rel-
ative error tends to favor under-estimation to over-
estimation, we adjust an over-estimated count by the
prune count, whenever the former is greater than the
latter, i.e., (min(estimated count,prune count) — ac-
tual count)/actual count.

While relative error measures accuracy in relative
terms, mean squared error, i.e., (estimated count —
actual count)?, measures accuracy in absolute terms.
For some of the cases below, we give the square root
of the average mean squared error for positive queries.
We refer to this as the average mean standard error.

Negative queries are 2-D strings that were not in the
database or in the un-pruned tree. That is, if the un-
pruned tree were available, the correct count to return
for such a query would be 0. To avoid division by 0,
estimation accuracy for negative queries is measured
using mean standard error as the metric.

396

| || Pos-Hi | Pos-Med | Pos-Lo |
MO (+4%,3.89) | (+16%,10.35) | (-11%,3.38)
GNO || (-98%,35.3) | (-95%,19.13) | (-90%,3.99)

Figure 6: Estimation Accuracy for Positive Queries

5.2 MO versus GNO: Positive Queries

The table in Figure 6 compares the estimation accu-
racy between MO and GNO. Each entry in the ta-
ble is a pair, where the first number gives the aver-
age relative error, and the second number gives the
average mean standard error. For example, the first
pair (-98%, 35.3) for GNO indicates that GNO under-
estimates by a wide margin, and for a “typical” pos-
itive query of actual count being 36, GNO estimates
the count to be 36 - 35.3 = 0.7. In contrast, MO gives
a very impressive average relative error of 4%, and for
a “typical” positive query of actual count being 36,
MO estimates the count to be 36 + 3.89 = 39.89.

As the actual counts of the positive queries drop,
GNO gradually gives better results. This i1s simply
because GNO always under-estimates, but the under-
estimation becomes less serious as the actual counts
themselves become smaller. On the other hand, no
such trend can be said about MO. Sometimes it under-
estimates, and other times it over-estimates. But there
cannot be any doubt that MO is the winner.

In Section 4.1, we point out that there are many
different combinations to make the recursive calls in
Step (4.2) of GNO. For 2-D, there are two ways. Be-
sides the version of GNO as shown in Figure 3, we also
implemented and experimented with the other version.
In general, there are some slight differences in the es-
timations. But in terms of accuracy, the other version
remains as poor.

5.3 MO versus GNO: Negative Queries and
Runtime

The mean standard error for negative queries (average
over 10 randomly picked ones) is 0.002 for GNO and
0.01 for MO. While GNO is more accurate for negative
queries than MO, the accuracy offered by MO is more
than acceptable.

By now it is clear that MO offers significantly more
accurate estimates than does GNO. The only remain-
ing question is whether MO takes significantly longer
to compute than does GNO. For our three sets of pos-
itive queries;, MO often finds 12-16 maximal 2-D sub-
strings, whereas GNO uses only 3-5 substrings. Con-
sequently, while GNO takes O(107°) seconds to com-
pute, MO usually takes O(10~%) seconds (on a 225
MHz machine). Nonetheless, we believe that the extra
effort is worthwhile.

| || Pos-Hi | Pos-Med | Pos-Lo || Negative |
Indep || -23% -17% 27% 0.25
MO +4% +16% -11% 0.01

Figure 7: Estimation Accuracy: the Independence As-
sumption

5.4 MO versus Two 1-D Exact Selectivities

The next question we explore experimentally is as fol-
lows. Since we know that a 2-D count-suffix tree is
much larger than two 1-D count-suffix trees (i.e., like
comparing the product with the sum), there is always
the question of: given the same amount of memory,
and in the presence of pruning, would direct 2-D selec-
tivity estimation give more accurate results than using
the product of the two 1-D selectivities? Because it is
difficult to get two equal-sized pruned setting, we did
the following:

e On the one hand, we used MO on the 2-D pruned
tree we have been using so far. This has 50,000
nodes for a total size of 650 Kbytes.

e On the other hand, we used two un-pruned 1-D
count-suffix trees. In sum, the two trees have
more than 160,000 nodes for a total size of 2.3
Mbytes.

Thus, for the latter setting, we used exact 1-D selec-
tivities, without any estimation involved. Essentially,
this is an exercise of comparing MO with applying
the independence assumption to k-D selectivity esti-
mation. We gave the independence assumption an un-
fair advantage over MO by allowing the former three
times as much space.

Yet, Figure 7 shows that MO compares favorably
for both positive and negative queries. For positive
queries, the figure only gives the average relative er-
ror; and for negative queries, the figure gives the aver-
age mean standard error. For easier comparison, the
results of MO are repeated in the figure from earlier
discussion.

Despite the fact that exact 1-D selectivities are
used, and that more space is given to the indepen-
dence assumption approach, the approach gives less
accurate results than 2-D MO. In particular, for neg-
ative queries, 2-D MO appears to be far superior. We
can attribute this to the unit-cube pruning exemption
rule.

The outcome of this comparison is actually some-
what surprising. Initially we expected that the last
name attribute of AT&T employees would be quite
independent of their office phone numbers. (For in-
stance, office phone numbers and office fax numbers
would be far more correlated.) Yet, using MO still
gives better results than relying on the independence
assumption.

397

| || MO | Indep | GNO |
| relative error || 33% | -57% | -99% |

Figure 8: Estimation Accuracy for Large Area Positive
Queries

5.5 Accuracy for Large Area Positive Queries

So far, all the positive queries used are “small area”,
by which we mean that the “area” (i.e., |o1|*]|o2|) cov-
ered by ¢ = (01, 03) is between 5 and 12. 2-D strings
corresponding to a smaller area tend to be always kept
in the pruned tree. Figure 8 shows results for positive
queries with “large areas”, which is defined to be > 18.

Compared with the small area positive queries, MO
becomes less accurate for large area positive queries.
One possible explanation is as follows. The larger the
area covered by a query, the greater the number of
maximal substrings found. Thus, in finding all w-way
intersections, w tends to become a larger number than
before. Apparently, inaccuracies incurred in the earlier
counts are compounded to give a less accurate final
estimate. Nonetheless, as compared with the other
alternatives, MO is still the best. Finding a way to
improve accuracy on large area positive queries is an
interesting open problem.

6 Conclusions and Future Work

Queries involving wildcard string matches in multi-
ple dimensions are becoming more important with
the growing importance of LDAP directories, XML
and other text-based information sources. Effective
query optimization in this context requires good multi-
dimensional substring selectivity estimates.

We demonstrated, using a real data set, that assum-
ing independence between dimensions can lead to very
poor substring selectivity estimates. This argues for
the need to develop compact k-D data structures that
can capture the correlations between strings in mul-
tiple dimensions, and accurate estimation algorithms
that can take advantage of such data structures. In
this paper, we presented a k-D extension of the pruned
count-suffix tree, and described a space- and time-
efficient algorithm for the direct construction of the
pruned tree, that provides quality guarantees. We
formulated an estimation algorithm, MO, that uses
all maximal multi-dimensional substrings of the query
for estimation; these multi-dimensional substrings help
to capture the correlation that may exist between
strings in the multiple dimensions. We showed analyt-
ically that MO has certain desirable properties, and
established empirically the utility of MO for multi-
dimensional substring selectivity estimation.

One very interesting open problem is as follows.
Given k alphanumeric attributes in the database, the

optimization problem is to determine the set of pruned
count-suffix trees (possibly with different dimensional-
ities, possibly with overlapping dimensions) that to-
gether satisfy a space constraint, and minimizes some
error metric. As far as selectivity estimation is con-
cerned, an interesting open problem is the develop-
ment of more accurate algorithms for the so-called
“large area” queries. Omne possibility is to use con-
straints that relate the count of one node to the counts
of other nodes in a count-suffix tree. Some of those
constraints have been applied to the 1-D substring se-
lectivity estimation problem, and have shown to be
able to give more accurate estimates [8]. Tt would be
interesting to see what roles constraints can play in
multi-dimensional substring selectivity estimation.

Acknowledgements

We would like to thank Nick Koudas and the anony-
mous reviewers of the paper, for their suggestions that
helped improve the content of the paper.

References

[1] R. Giancarlo. A generalization of the suffix tree to
square matrices, with applications. SIAM Journal

on Computing, 24(3):520-562, 1995.

[2] R. Giancarlo and R. Grossi. On the construction
of classes of suffix trees for square matrices: Algo-
rithms and applications. Information and Com-

putation, 130(2):151-182, 1996.

[3] P. B. Gibbons and Y. Matias. New sampling-
based summary statistics for improving approxi-
mate query answers. In Proceedings of the ACM
SIGMOD Conference on Management of Data,
pages 331-342, 1998.

[4] T. Howes and M. Smith. LDAP: Programming
directory-enabled applications with lightweight di-
rectory access protocol. Macmillan Technical Pub-
lishing, Indianapolis, Indiana, 1997.

[5] Y. Toannidis. Universality of serial histograms.
In Proceedings of the International Conference on
Very Large Databases, pages 256-267, 1993.

[6] Y. Toannidis and V. Poosala. Balancing histogram
optimality and practicality for query result size
estimation. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 233—
244, 1995.

[7] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. Sevcik, and T. Suel. Optimal his-
tograms with quality guarantees. In Proceedings
of the International Conference on Very Large

Databases, pages 275-286, 1998.

398

[8] H. V. Jagadish, R. T. Ng, and D. Srivastava. Sub-
string selectivity estimation. In Proceedings of the
ACM Symposium on Principles of Database Sys-
tems, Philadelphia, PA, June 1999.

[9] P. Krishnan, J. S. Vitter, and B. Tyer. Estimating
alphanumeric selectivity in the presence of wild-
cards. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data, pages 282-293,
1996.

[10] R. J. Lipton and J. F. Naughton. Query size es-
timation by adaptive sampling. In Proceedings
of the ACM SIGACT-SIGMOD-SIGART Sympo-
stum on Principles of Database Systems, March

1990.

[11] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23:262-272,
1976.

[12] M. Muralikrishna and D. Dewitt. Equi-depth
histograms for estimating selectivity factors for
multi-dimensional queries. In Proceedings of the
ACM SIGMOD Conference on Management of
Data, pages 28-36, 1988.

[13] V. Poosala, Y. Toannidis, P. Haas, and E. Shekita.
Improved histograms for selectivity estimation of
range queries. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages
294-305, 1996.

[14] V. Poosala and Y. E. Toannidis. Selectivity esti-
mation without the attribute value independence
assumption. In Proceedings of the International
Conference on Very Large Databases, pages 486—
495, 1997.

[15] P. G. Selinger, M. Astrahan, D. Chamberlin,
R. Lorie, and T. Price. Access path selection
in a relational database management system. In
Proceedings of the ACM SIGMOD Conference on
Management of Data, June 1979.

[16] C. E. Shannon. Prediction and entropy of printed
english. Bell systems technical journal, 30(1):50-
64, 1951.

[17] M. Wang, J. S. Vitter, and B. Tyer. Selectivity
estimation in the presence of alphanumeric corre-
lations. In Proceedings of the IEEE International
Conference on Data Engineering, pages 169-180,
1997.

[18] P. Weiner. Linear pattern matching algorithms.
In Proceedings of the IEEE 14th Annual Sympo-
stum on Switching and Automata Theory, pages

1-11, 1973.

