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Abstract

Data in a warehouse typically has multiple di-
mensions of interest, such as location, time,
and product. It is well-recognized that these
dimensions have hierarchies defined on them,
such as “store-city-state-region” for location.
The standard way to model such data is with a
star/snowflake schema. However, current ap-
proaches do not give a first-class status to di-
mensions. Consequently, a substantial class of
interesting queries involving dimension hierar-
chies and their interaction with the fact tables
are quite verbose to write, hard to read, and
difficult to optimize.

We propose the SQL(#) model and a natu-
ral extension to the SQL query language, that
gives a first-class status to dimensions, and we
pin down its semantics. Our model permits
structural and schematic heterogeneity in di-
mension hierarchies, situations often arising in
practice that cannot be modeled satisfactorily
using the star/snowflake approach. We show
using examples that sophisticated queries in-
volving dimension hierarchies and their inter-
play with aggregation can be expressed con-
cisely in SQL(#). By comparison, expressing
such queries in SQL would involve a union of
numerous complex sequences of joins. Finally,
we develop an efficient implementation strat-
egy for computing SQL queries, based on an
algorithm for hierarchical joins, and the use of
dimension indexes.

* Supported in part by NSF under grant IDM9877060.
t Currently on leave from Concordia University, Canada.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

530

Laks V. S. Lakshmanan'
IIT, Bombay

laks@cse.iitb.ernet.in

Divesh Srivastava
AT&T Labs—Research

divesh@research.att.com

1 Introduction

Two key aspects of OLAP queries are aggregation
and dimension hierarchies.  Aggregations can in-
volve multiple GROUP BYs as in CUBE, ROLLUP, and
DRILLDOWN [8], or multiple levels of granularity [5, 20].
Several algorithms have been proposed for the efficient
implementation of these queries (see, e.g., [8, 5, 9, 1,
23, 19, 20]). In contrast, work on dimension hierar-
chies has been sparse (see Section 1.2 for details). Di-
mension hierarchies arise naturally and are central to
a large class of useful OLAP queries. In fact, ROLLUP
and DRILLDOWN queries make sense only if there are
dimension hierarchies with more than one level. This
paper is a study of hierarchy in a data warehouse.

1.1 Contributions

We make the following contributions in this paper.

e We identify some key weaknesses (pertaining to
modeling and query language) of the standard
star/snowflake schemas, for common OLAP ap-
plications (Section 2).

e We propose a model for data warehouses, called
the SQL(#) data model, which naturally extends
the relational data model of SQL, by giving a first-
class status to the notion of dimension hierarchies

(Section 3).

e We present a simple but powerful extension to
SQL, called the SQL(H) query language, which
allows a user to regard dimension hierarchies as
fundamental objects in themselves and express
many useful OLAP queries concisely (Section 4).

We show that a direct approach to expressing
many SQL(#H) queries in SQL will lead to an ex-
plosion in the size of the SQL query. This sit-
uation is analogous to the CUBE operator: even
though CUBE is expressible in SQL, it is far less
concise and harder to optimize.

e Finally, we develop algorithms that enable the di-
rect computation of SQL(#) queries, and show
that they lead to a significant speedup compared
with the evaluation of the equivalent SQL queries
(Section 5).
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Figure 1: Dimension Hierarchies

1.2 Related Work

There has been a substantial amount of work on the
general topic of data warehousing and OLAP (see,
e.g., [22, 6]). For the sake of relevance and brevity,
we discuss only those works that have addressed the
issue of modeling and querying dimension hierarchies
here.

Lehner [14] studies modeling issues in large scale
OLAP applications and makes a case for heterogeneity
arising within and across levels.

The well-known CUBE operator was extended by
Baralis et al. [2] to deal with multiple aggregations on
a data warehouse with hierarchical dimensions. The
main issue they addressed was handling the redun-
dancies among GROUP BYs arising from the presence
of functional dependencies in dimensions. For exam-
ple, if zip — state holds in dimension location, then
any aggregation grouped by zip, state should yield
the same result as one grouped by zip alone. This
forms the basis for an optimization for computing the
so-called hierarchical CUBE that they introduce.

Neither of the above two works addresses the tech-
nical issues in modeling or querying dimension hierar-
chies, two novel aspects of our contributions.

On the theoretical side, Cabibbo and Torlone [3]
propose a model for multi-dimensional databases.
Hurtado et al. [10] build on that model, and address
the issue of maintaining materialized views on a data
warehouse against updates to dimensions; this issue is
completely orthogonal to the objective of this paper.
Their models give a first-class status to dimensions,
but only insofar as the model is concerned. Their as-
sumption of explicit availability of rollup functions be-
tween successive levels of a dimension hierarchy sug-
gests that query evaluation in their model is more
likely to resemble that in the snowflake schema model.

2 Motivation

A typical data warehouse consists of dimensions, such
as location, time and product, and measures, such
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as dollarAmt and quantitySold, being gauged as
a function of the dimensions. The standard way to
model and store such data is by means of the star
schema [12, 6]. In the star schema model, there is
a separate dimension table for information related to
each dimension, and one or more fact tables that relate
dimension values to measure values.

Star schemas do not model dimension hierarchies
very well. They require the complete information as-
sociated with a dimension hierarchy to be represented
in a single table, even when different levels of the hier-
archy have different properties. To mitigate this, the
snowflake schema was proposed [12, 6], which is ob-
tained by normalizing the star schema, with respect to
the various attribute dependencies. Intuitively, each
level of a dimension hierarchy is typically represented
in a separate table.

While the snowflake schema removes some of the
shortcomings of the star schema, it continues to have
severe limitations in its support for modeling hierar-
chies, and for concisely expressing many useful classes
of OLAP queries. These limitations are discussed in
the next two subsections. In the sequel, by the “tradi-
tional approach to data warehousing”, we mean mod-
eling data warehouses using snowflake schemas, and
querying them using SQL or its extensions, including
those with the CUBE operator and its variants.

2.1 Limitations on Query Support

Hierarchies enrich the semantics of data in a warehouse
and correspondingly enhance the class of interesting
and meaningful queries one can pose against it. It is
important to be able to express such queries intuitively
and concisely, and optimize them effectively. Since hi-
erarchies are not given a first-class status in SQL, even
very simple OLAP queries have to be expressed us-
ing complex sequences of joins, perhaps together with
unions. This makes queries verbose and hard to read.
It also makes an implementation of these queries very
inefficient.

We now illustrate the above limitations on querying
with an example. For the purpose of this example, we
temporarily assume that a snowflake schema is ade-
quate for modeling real-life dimension hierarchies, and
focus on the limitations of conventional SQL for ex-
pressing natural OLAP queries against such a schema.
In the next subsection, we shall revisit the modeling
issue.

Example 2.1 [A Simple Data Warehouse]

Figure 2 shows a data warehouse consisting of a fact ta-
ble and several dimension tables. The fact table sales
represents the dollar-sale-amount measure correspond-
ing to the three dimensions: product, location,
time. (Note the use of the auxiliary Id attributes for
realizing the hierarchy using a snowflake schema.) We



dimension tables:

locn5(ctryld, country, manager).

fact table: sales(storeld, prodIld, timeId, dollarAmt).

location: locnl(storeld, manager, cityId), locn2(cityId, city, manager, stateld),
locn3(stateld, state, manager, regld), locn4(regld, region, manager, ctryld),

time: timel(timeld, day, mthId), time2(mthId, month, qtrld),
time3(qtrId, quarter, yrld), time4(yrld, year).
product: prodl(prodId, name, ptfgbId), prod2(ptfgbld, brand, ptfgld),
prod3(ptfgld, gender, ptfId), prod4(ptfId, family, ptId), prod5(ptId, type).

Figure 2: Data Warehouse with Snowflake Schema

(Q1): find location(s) managed by ‘john smith’.

(Q2): find the total sales of each location
(at any level of the hierarchy) in the NE
region of USA.

(Q3): find the total sales of each location
(at any level of the hierarchy) that grossed
a total sale over $100,000.

(Q4): for each location that grossed a total sale
over $100,000, give a breakdown of the
sales by its immediate sub-locations.

(Q5): find each location that grossed a total sale
over $100,000, and immediate sub-locations
that contributed < 10% to the gross value.

(Q6): find the products that performed poorly
(grossed less than $1000) in at least one
sub-location of every location that grossed
over $100,000 dollars (over all products).

Figure 3: OLAP Queries against Snowflake Schema

will refer to the example queries in Figure 3 through-
out the paper.!
Query Q1 can be expressed using the following SQL

query:

SELECT storeld

FROM  locnl

WHERE manager = john.smith
UNION
UNION

SELECT ctryId

FROM  locnb

WHERE manager = john.smith

Depending on the number of levels of the location
hierarchy, this can be somewhat tedious. Queries Q2
and Q3 are quite similar. We illustrate how to express
query Q3 in SQL:

SELECT 1locnl.storeld, SUM(dollarAmt)
FROM locnl, sales
WHERE locnl.storeld = sales.storeld

GROUP BY locnl.storeld

1'We assume all the Id attributes have compatible domains.
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HAVING SUM(dollarAmt) > 100000
UNION
UNION

SELECT locnb.ctryIld, SUM(dollarAmt)

FROM locnb5, locn4, locn3, locn2, locnl,
sales

WHERE locn5.ctryld = locn4.ctryIld AND

locn4.regld = locn3.regld AND
locn3.stateId = locn2.stateld AND
locn2.cityIld = locnl.cityId AND
locnl.storeld = sales.storeld
GROUP BY locnb.ctryld
HAVING SUM(dollarAmt) > 100000

Queries Q4 and Q5 are about as complex to express
in SQL, except that they both involve a nested sub-
query with each of the five single block sub-queries in
Q3 above. Query Q6 makes use of the SQL contains
predicate, and is very complex to express in SQL. Note
that, in all cases, the SQL queries need to be level sen-
sitive. |

2.2 Limitations on Modeling

We now return to the modeling issue. The snowflake
schema, while more flexible than the star schema, still
has two key modeling limitations.

e Each dimension hierarchy has to be balanced, i.e.,
the length of the path from the root to any leaf of
the hierarchy must be the same.

e All nodes at any one level of a dimension hierarchy
have to be homogeneous, i.e., they must possess
the same set of attributes.

There are many real-life examples where neither of
these assumptions is valid.

For example, in the location dimension, stores in
USA and in Monaco are forced to be classified in a sim-
ilar fashion, although it is natural to have a five level
hierarchy of store-city-state-region-country for
the USA stores, and only a two level hierarchy of
store-country for the Monaco stores. Indeed, de-
pending on the geographical distribution of a given
enterprise, even within a single country (say USA),



dissimilar hierarchies for different regions may be ap-
propriate, since there may be, e.g., many stores in the
north-east and fewer in the south.

Snowflake schemas allow for heterogeneity across
levels. This enables, e.g., city to have the attribute
population, while state may have both population
and capital. However, there can also be consider-
able heterogeneity within a level, and the snowflake
schema offers poor support for modeling such situa-
tions. For example, in the product dimension, if pants
and shirts are at the same level of the dimension hi-
erarchy, they are forced to have the same set of at-
tributes in a snowflake schema, which is quite unnatu-
ral: the attribute inseam for pants is not applicable to
shirts, and the attribute collarSize is not applicable
to pants.

We conclude this section by noting that the tradi-
tional approach does not give a first-class status to the
notions of dimension and dimension hierarchies and
instead requires explicit manipulation of the set of ta-
bles that represent dimension information. Besides, it
imposes unrealistic restrictions on the way dimensions
can be modeled via such tables.

3 The SQL(H) Data Model

Our approach for modeling dimension hierarchies is to
(potentially) have an arbitrary set of tables for each
level in the dimension hierarchy, with no table strad-
dling levels. This SQL(#) approach is more flexible
than the star or snowflake schemas, and does not re-
quire that the dimension hierarchies represented in this
fashion be balanced or be homogeneous: (i) Differ-
ent nodes at the same level of the dimension hierarchy
(e.g., ties, pants) could be in different tables, and (nat-
urally) have heterogeneous sets of attributes; (ii) Dif-
ferent “sibling” subtrees in a dimension hierarchy may
have different heights, allowing for structural hetero-
geneity.

Intuitively, we want to treat a hierarchy as a tree,
where each node corresponds to a tuple over some set
of attributes. We want to regard the hierarchy as be-
ing based on a special, hierarchical, attribute, in that
tables corresponding to all levels share this attribute.

We need a few definitions for formalizing the notion
of a dimension.

Definition 3.1 [Hierarchical Domain] A hierar-
chical domain is a non-empty set Vg such that it sat-
isfies the following conditions:

1. The only predicates defined on this domain are
= <, <=,<<, <<=,

2. The equality predicate = has the standard inter-
pretation of syntactic identity.

3. The predicate < is interpreted as a binary relation
over Vg such that the graph G« over the nodes
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V3, with an arc from u to v exactly when u < v
holds, is a tree.

4. The predicate << is interpreted as the transitive
closure of (the relation that interprets) <.

5. For two elements u,v € Vg, u <= v (resp.,
u <<= v) holds iff either u < v or u = v (resp.,
u << voru=uv).

Intuitively, Vg is an abstract data type correspond-
ing to hierarchies. The predicate < corresponds to
the child/parent relationship: u < v holds iff u is
a child of v according to the tree represented by <.
Similarly, v << v holds iff u is a (proper) descen-
dant of v. We stress that we do not assume any
specific implementation of hierarchical domains. For
the results and techniques developed in this paper to
be applicable, all we require is that the implemen-
tation of Vg support tests based on the predicates
=,<,<<, etc.? As an example, one way to imple-
ment the location hierarchy shown in Figure 4 is to
represent the location ids as lists of (attribute, value)
pairs, as in country=USA, country=USA/region=NE,
country=USA/region=NE/state=NJ, etc. As another
example, the time ids in the time hierarchy can be
represented as lists of values, as in 1999, 1999/2, etc.
Here, the representation indicates ancestors and de-
scendants.

Whenever the domain of an attribute A is a hierar-
chical domain, we say that A is a hierarchical attribute
or that A’s type is hierarchical. We refer to dom(A)
as hierarchical values and sometimes as nodes.

Definition 3.2 [Hierarchy Schema] A hierarchy
schema is a triple H = (G, A, o) such that: (i) Gisa
rooted DAG, with the root being a special node All;
(i1) A is an attribute set, containing a unique hierarchi-

cal attribute Ap; and (iii) o : G—2A is a function that
assigns each node u € G an attribute set o(u) C A,
such that Yu # All, Ay € o(u), and o(All) = §. All
nodes of G, except All, are required to share the unique
hierarchical attribute Ap. |

As an example, consider the location hierarchy
(see Figure 1). Let the attributes associated with
this hierarchy be {locId, manager, city, state,
region, country}, and suppose locId is the hier-
archical attribute. Then the attribute sets associ-
ated with the successive nodes from the bottom up
are {locld, manager}, {locId, city, manager},
{locld, state, manager}, {locId, region,
manager}, {locId, country, manager}, and {} for
the node All.  Notice that locId simultaneously
plays the role of storeld, cityId, stateld, regld
and ctryld, and allows for tests of appropriate
child/parent and descendant/ancestor relationships
among hierarchy nodes.

2Preferably efficiently!



Definition 3.3 [Hierarchy] A hierarchy (instance)
corresponding to a hierarchy schema H = (G, A, o) is
a collection of tables H, satisfying the following con-
ditions: (i) each table r € H corresponds to a unique
node u € G, u # All, and r is a table over o(u); (ii) for
any table r € H and any two hierarchical values z, y €
Ta,(r), neither z << y nor y << z holds;? (iii) when-
ever two tables r,s € H correspond to a pair of nodes
u,v € G such that v is a parent (resp., ancestor) of u,
then V tuples ¢, € r: I, € s 1 4,[Ap] < 15[An] (resp.,
Vi, €7 3ts € 511, [AR] << t5[AR]).

The first condition says that in a tabular represen-
tation of a hierarchy, all tuples in a given level that
are represented in one table are over the same attribute
set. The second condition essentially says that no table
can straddle hierarchy levels. The third condition says
that for every tuple in a child (descendant) table, there
must correspond a tuple in the parent (ancestor) table
such that the hierarchical values in these two tuples
are related by the child/parent (descendant/ancestor)
relationship. It can be seen that our notion of hier-
archy closely corresponds to the notion of hierarchy
schema and instance as defined in [3, 10]. The main
difference is that we do not assume that nodes (levels)
in a hierarchy schema are necessarily named (although
our examples show such names, for convenience).

We are now ready to formalize the notion of a di-
mension.

Definition 3.4 [Dimension] A dimension schema
D(H) is a name D (called the dimension name) to-
gether with a hierarchy schema H = (G, A4,0). We
refer to the attributes A as the attribute set associ-
ated with dimension D.

A dimension instance D(H) over a dimension
schema D(H) is a dimension name D together with
a hierarchy instance H of H. 1

Consider the hierarchy schema associated with di-
mension location, described above. An instance of
this schema might consist of the tables loc1, ..., loc5
(see Figure 4). Note the difference with the represen-
tation of this dimension using the five tables locni-
locn5 in Figure 2. It is important to realize that in
each table loci, 1 < 7 < 5, locId must be a key.
The definition of a dimension instance permits having
an arbitrary set of tables (subject to the conditions
mentioned). So, in addition to the top-level country
table, by introducing separate hierarchy nodes for vari-
ous countries in the location hierarchy of Figure 1, we
can have a set of four tables for locations inside USA,
perhaps just three tables for locations inside Canada,
and only one for those in Monaco. Alternatively, the
table Loc1 can contain the tuples for all store locations
in USA, Canada and Monaco.* Similarly, in the case

3Note that consequently, neither © < v nor v < u can hold.
4In this case, the hierarchy node corresponding to locl may
have multiple parents, i.e., the hierarchy schema graph is a DAG.
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of dimension product, one can have different tables
for pants and shirts, even if they are at the same level
of the product dimension hierarchy, thus permitting
modeling of heterogeneous and unbalanced hierarchies
with ease.

Definition 3.5 [Data Warehouse Schema] We
define a data warchouse schema (DW schema) in the
SQL(H) model as a set of dimension schemas D;(H;),
with associated hierarchical attributes Ai, 1 <1<k,
together with a set of fact table schemas® of the
form f(A3', ..., Aj", B, ..., By,), where Dj,, ..., Dj, are
a subset of the dimensions Dy, ..., Di, and B;,1 < j <
m, are additional attributes, including the measure at-
tributes. ||

Recall that each dimension schema itself is com-
posed of a collection of table schemas corresponding
to that dimension. As an example, a DW schema cor-
responding to the data warehouse of Example 2.1 is
shown in Figure 4. While the schemas for location
and time closely correspond to the hierarchies shown
in Figure 1, for illustrative reasons, we have chosen to
make the schema for product heterogeneous and un-
balanced. For instance, the top level All (not shown)
of product is divided into “formal” and “casual”,®
which are then subdivided using quite different cri-
teria. Notice the considerable heterogeneity in the
structure and contents of the product dimension hi-
erarchy shown in the figure, compared with that in
Example 2.1. An instance of this DW schema would
consist of tables over the various table schemas in the
figure, subject to the conditions in Definition 3.5.

4 The SQL(H) Query Language

The SQL(#) model for a data warehouse is consistent
with the relational model in that it is possible to query
it using standard SQL. In particular, SQL queries con-
tinue to have their standard semantics against our ex-
tended model for data warehouses.” However, to take
full advantage of the extended model, we propose sim-
ple but powerful extensions to SQL, which exploit the
fact that dimensions and their associated hierarchies
have a first-class status in the SQL(#) model. For
simplicity of exposition, we present these extensions
in a stage-wise manner.

4.1 Single Block SQL(H) Queries

For single block queries, our extensions are of two
types.

DIMENSIONS clause: We introduce a new DIMENSIONS
clause in SQL(#) queries, where dimension names

5Following standard practice (e.g., [6]), we let a DW schema
contain one or more fact tables.

6We assume all products are clothes.

7To perform star and snowflake joins, additional join at-
tributes need to present in the dimension and the fact tables.
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(a) location (b) time fact table

loc5(locld, country, :
OcHlocld, country, menager) timeA(tld, year) sales(locld, tid, pld, dollarAmt)

‘ loc4(locld, region, manager) ‘ ‘ time3(tld, quarter) ‘

i

\ loc3(locld, state, manager) \ \ time2(tld, month) \

'

'

loc1(locld, manager)

formal(pld, family, type)
/ \

‘ loc2(locld, city, manager) ‘ timel(tld, day)

(c) product

casual (pld, family, type)

ties(pld, name) ‘ ‘ suits3(pld, gender) ‘ ‘teeshirts(pld, size, price)‘ ‘ denims3(pld, gender) ‘
v
imported(pld, brand, price) \ suits2(pld, size) \ \ denims2(pld, brand) \
/
silk(pld, price) ‘ suits1(pld, brand, name, price) ‘ ‘ denimsl(pld, name, size, price) ‘

Figure 4: Data Warehouse Schema in the SQL(7) Model: Three Dimension Hierarchies and a Fact Table

of interest to the query can be listed, just like
tables of interest are listed in the FROM clause.

Just as a table R mentioned in the FROM clause
implicitly declares a tuple variable ranging over
R, each dimension name D mentioned in the
DIMENSIONS clause implicitly declares a dimension
variable ranging over that dimension.

Hierarchical predicates: In SQL, domain expres-
sions (DE) of the form T.A, T a tuple vari-
able and A an attribute, can be used in vari-
ous clauses including SELECT, WHERE, HAVING,
GROUP BY. DEs can be compared with other DEs
or with values of a compatible type, using the
standard comparison operators =, <=, <, >, >=
, <>.

In SQL(H), we extend the class of domain expres-
sions to include those of the form V.A, where V
is a dimension variable and A is an attribute as-
sociated with the relevant dimension. Such DEs
can participate in comparisons just as in SQL.

We also extend domain expressions to include hi-
erarchical domain expressions (HDEs), which are
of the form W.Ap, where W is a tuple variable
or a dimension variable and A 1s a hierarchical
attribute. A HDE can be compared with another
HDE or with a value of a compatible type using
the hierarchical predicates =, <, <=, <<, <<=.

A < B means that A is a child of B in the hi-
erarchy; A << B means that A is a (proper) de-
scendant of B in the hierarchy. The operators <=
and <<= correspond to non-proper children and
descendants, respectively.

To appreciate the power of these two simple con-
structs, we present a few examples below.

Example 4.1 [Dimensional Selection]

The following single block SQL(#) query, Q1’, cap-
tures the query “find location(s) managed by john
smith” (Q1 in Figure 3).8

SELECT L.locId
DIMENSIONS location L
WHERE L.manager = john.smith

Note the simplicity of Q1°’ compared with the cor-
responding SQL expression.

Here, L is a dimension variable that ranges over the
heterogeneous set of tuples in any of the tables asso-
ciated with dimension location. One can drop the
dimension variable L from this query. In this case, the
attribute manager in the WHERE clause would implic-
itly refer to dimension location. As in SQL, when
there is ambiguity, attributes must be preceded by ta-
ble names or dimension names (or their aliases). |

81In general, we shall use the primed versions of query names,
Q1’, Q2’, etc. in the text to indicate the SQL(H) expressions
corresponding to queries Q1, Q2, etc.
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Example 4.2 [Hierarchical Joins/Aggregation]
The following single block SQL(#) query, Q3’, cap-
tures the query “find the total sales of each location
that grossed a total sale over $100,000” (Q3 in Fig-
ure 3).°

SELECT L.locId, SUM(dollarAmt)
DIMENSIONS location L

FROM sales

WHERE sales.locld <<= L.locId
GROUP BY L.locId

HAVING SUM(dollarAmt) > 100000

Note that the SQL(#H) query does not involve
(unions of) long sequences of joins, unlike the corre-
sponding SQL expression. [

4.2 Nested SQL(#) Queries

Our two constructs introduced in the previous section
are also very useful in nested SQL(#) queries.

Example 4.3 [Subqueries in the WHERE Clause]
The following SQL(#) query, Q4’, captures the query
“for each location that grossed a total sale over
$100,000, give a breakdown by its immediate sub-
locations” (Q4 in Figure 3).

SELECT L1.locId, L2.locId, SUM(dollarAmt)
DIMENSIONS location L1 L2

FROM sales
WHERE sales.locld <<= L1.locId AND
L2.1ocId < L1.locId AND
Li.locId in (
SELECT L.locId
DIMENSIONS location L
FROM sales S
WHERE S.locld <<= L.locId
GROUP BY L.locId
HAVING SUM(S.dollarAmt) >
100000)
GROUP BY L1.locId, L2.1locld I

Example 4.4 [Subqueries in the FROM Clause]

The following SQL(#) query, Q5°, captures the query
“find each location that grossed a total sale over
$100,000, and its immediate sub-locations that con-
tributed to < 10% of the gross value” (Q5 in Figure 3).

SELECT T.locld, L2.1locld
DIMENSIONS location L2
FROM sales S2,

(SELECT L1.locId,

SUM(dollarAmt) AS total
DIMENSIONS location L1
FROM sales S1
WHERE S1.locld <<= L1l.locId

9The more natural query “find the lowest level locations,
and their sales, among locations that grossed a total sale over
$100,000” can also be easily expressed in SQL(#), though not
as a single block query.
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GROUP BY
HAVING

Li.locId
SUM(S1.sales) >
100000) T

S$2.1ocld <<= T.locId AND
L2.1ocld < T.locIld

T.locId, L2.1locId
SUM(S2.dollarAmt) < 0.1xT.total

WHERE

GROUP BY
HAVING

Query Q5 can also be expressed by defining the re-
sult of query Q3’ as a table view, and defining a regular
SQL query that makes use of this view. |[I

In keeping with the use of hierarchical predicates
for simple conditions in the WHERE clause, we also al-
low their use in nested queries. We mention two such
extensions below.

The condition DE 6 qual setQuery:

In SQL, one can use such a condition, where 6 is a
comparison operator, “qual” is one of all, any, and
“setQuery” is a unary SQL query of a type compatible
with DE.

We extend this by: (i) allowing the full class of
DEs possible in SQL(#) in the above condition, and
(i) by allowing conditions of the form “HDE 6} qual
hierSetQuery”, where 8}, is a hierarchical predicate and
“hierSetQuery” is an SQL(#) query returning a set of
hierarchical values from the same domain as HDE.

The contains predicate:

In SQL, one can express conditions involving universal
quantifiers using expressions of the form “sqlQueryl
contains sqlQuery2”, where “sqlQueryl” and “sql-
Query2” are SQL queries of the same type (and hence
over the same number of attributes). The semantics
of this condition is a test as to whether the result of
“sqlQuery1” is a superset of that of “sqlQuery2”.

In SQL(#), we additionally allow conditions of the
form “hierSqlhQueryl 8, contains hierSqlhQuery2”,
where both “hierSqlhQueryl” and “hierSqlhQuery2”
are SQL(H) queries returning a set of hierarchical val-
ues from the same domain, and 6, 1s as before. The
semantics of this condition is a test as to whether for
every hierarchical value u in the result of “hierSqlh-
Query2”, there is a hierarchical value v in the result
of “hierSqlhQuery1”, such that v 6, u holds.

Example 4.5 [Hierarchical contains]

The following SQL(#) query, Q6°, captures the query
“find the products that performed poorly (i.e., grossed
less than $1000) in at least one sub-location of every
location that grossed over $100,000 dollars (over all
products)” (@6 in Figure 3).

SELECT P.plId
DIMENSIONS product P
WHERE (SELECT L1.locld

DIMENSIONS location L1



FROM sales S1

WHERE S1.pId <<= P.pId AND
S1.locId <<= Lil.locId

GROUP BY L1.locId

HAVING SUM(S1.dollarAmt) <
1000)

<<= contains

(SELECT L2.1locId

DIMENSIONS location L2

FROM sales S2

WHERE $2.1locld <<= L2.locId

GROUP BY L2.locId

HAVING SUM(S2.dollarAmt) >
100000) |1

4.3 Semantics of SQL(#) Queries

In this section, we define the semantics of single block
SQL(H) queries.

Before we pin down the semantics, there is an is-
sue to settle. The SQL(H) model supports two kinds
of first-class objects: tables (corresponding to the fact
tables) and dimensions (with their hierarchies). Even
though for practical considerations, dimensions may
be realized using a set of tables, they do have a first-
class status in the query language, as illustrated in
the preceding sections. Thus the input to an SQL(H)
query consists of both tables and dimensions. If so,
what should be the type of the output? In princi-
ple, both queries that produce tables as output (like
conventional SQL) and those that produce dimensions
(i.e., a set of tables that realize them) as output are
meaningful. Indeed, we anticipate applications for
both types of queries.

The various SQL(#) queries presented earlier in
this paper all produce tables as output. The follow-
ing variant of query Q1’ is an example of an SQL(H)
query that produces a dimension as an output.

SELECT L.*
DIMENSIONS location L
WHERE L.manager = john.smith

The result in this case is a hierarchy instance, where
each table is a subset of the corresponding table in the
input, corresponding to the condition L.manager =
john.smith.

For lack of space, in this paper, we confine ourselves
to SQL(H) queries that produce tables as output. A
natural restriction on SQL(#) queries to ensure that
the result is a table is that the SELECT clause contain
only: (a) the hierarchical Id attributes (e.g., locId),
(b) dimension attributes that appear in every table of
the dimension (e.g., manager), and (c) aggregates of
measure attributes (e.g., SUM(dollarAmt)). We refer
to such queries as uniform SQL(#) queries.

Consider a generic uniform SQL(H) query:
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Q: SELECT domExpList, agglList
DIMENSIONS dimList
FROM fromList
WHERE whereConditions
GROUP BY groupbylist
HAVING haveConditions

An important question is the following. A tuple
variable (implicit or explicit) in SQL ranges over the
set of tuples in the associated table. If so, what exactly
does a dimension variable range over?

We propose that a dimension variable should
range over the set of nodes in the hierarchy
associated with the dimension instance.

Given that each hierarchy (instance) node corre-
sponds to a tuple, this means that a dimension variable
ranges over a heterogeneous set of tuples correspond-
ing to the various nodes in its associated hierarchy.
While this is quite unlike the case with tuple variables
(which always range over homogeneous sets of tuples
in a given table), we shall show that uniform SQL(H)
queries are always well-defined and “well-typed”.

Following the notation used in [13], we define the
semantics of a uniform SQL(H) query @ as a function

Q@ :D->R

from input databases D to tables R over the output
scheme of the query. For a database D € D, let Tp
denote the set of all tuples appearing in any table in
D, including fact and dimension tables. Let 7 be the
set of tuple variables in ) and 7 the set of dimension
variables in (). Define an instantiation as a function
1 : (T Un)—=Tp, that maps each tuple variable to a tu-
ple in the appropriate (fact) table,!® and each dimen-
sion variable to a tuple in some table associated with
that dimension. For each condition cond appearing in
the WHERE clause, a notion of satisfaction is defined as
follows. Let 2(X)[A], X being a tuple/dimension vari-
able, denote the restriction of the tuple 2(X) to the
attribute A.

e if cond is of the form T.A 6 opnd, where T is a
tuple variable, A is an attribute, and opnd is ei-
ther a DE or a value of the appropriate type, then
1 satisfies cond iff +(T)[A] stands in relationship 6
to 2(opnd).!? This is exactly the same as for SQL.

e if cond is of the form V.A 6§ opnd, where V is a
dimension variable, then 2 satisfies cond iff ¢(V) is
mapped to a tuple in a dimension table for which
attribute A is defined, and further «(V)[A] stands
in relationship 6 to z(opnd).

10Recall that there might be more than one fact table.
1'We assume 1(c) = ¢, for every constant value c.



e if cond is of the form W.A;, 8, opnd, where W is a
tuple or a dimension variable and Aj is a hierar-
chical attribute, then @ satisfies cond iff «(V)[Ap]
is a fp-relative of i(opnd), according to the hier-
archical domain of A .

Let Zg denote the set of all instantiations that sat-
isfy the conditions whereConditions. Then a tuple
assembly function can be defined as

tupleg (1) = 1(X)[A]

“X.A” €domExpList

Here, the predicate “X.A” € domExpList indicates the
condition that the attribute denotation X.A literally
appears in the list of domain expressions domExpList
in the SELECT statement. The symbol ) denotes
concatenation. For an instantiation 2, tupleg(z) thus
produces a tuple over the attributes listed in the
domExpList part of the SELECT statement. If @ is
a query without aggregation (i.e. aggList, GROUP BY
clause, and HAVING clause are empty), then the result
of the query is captured by the function

Q(D) = {tupleq(?) | 2 € Zg}

Handling aggregation is done in the obvious man-
ner, using an appropriately defined equivalence rela-
tion, just as is done for SQL. The following result is
straightforward.

Proposition 4.1 Let Q be any legal uniform SQL(H)
query over a DW schema S. Then Q) s well-typed, in
the sense that it maps every instance D of S to a table
over the output scheme of .

Proof: Follows from the semantics of SQL(H) queries
given above. [l

5 Direct Evaluation of SQL(H) Queries

We present algorithms for the efficient evaluation of
SQL(H) queries in this section. The two key chal-
lenges that we need to address, over standard SQL
evaluation, are: (a) dealing with dimension selection
conditions, such as “L.manager = john.smith” (in
query Q1?), and (b) dealing with hierarchical joins,
such as the one between location and sales using the
predicate “S.locId <<= L.locId” (in queries Q2’
and Q3’). We describe our solution for dealing with
dimension selections in Section 5.1, and present an ef-
ficient approach for hierarchical joins in Sections 5.2

and 5.3.

5.1 Selections and Dimension Indexes

Database indexes available in current database sys-
tems, such as B-tree indexes [7], hash indexes [15] and
bitmap indexes [16, 4], retrieve tuples of a single table
with specified values for one or more attributes.
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Since dimensions are represented by a set of hetero-
geneous tables, selection conditions in SQL(#) queries
implicitly range over tuples in multiple tables. For ex-
ample, “L.1locId <<= country=USA/region=NE” in
query Q2 will be satisfied by tuples corresponding
to states, cities, and individual stores, which are all
represented in different tables. Again, the condition
“L.manager = john.smith” on the location dimen-
sion in query Q1’ could be satisfied at any level of the
dimension hierarchy. Using conventional (single table)
indexes, determining all nodes in a dimension hierar-
chy that match a given condition would require access
to multiple (possibly large number of) indexes, and
can be quite inefficient.

Our solution to the problem of efficiently dealing
with dimension selections involves construction of in-
dexes, called dimension indezes, on (one or more) at-
tributes of a single dimension. Since multiple dimen-
sion tables may share an attribute (e.g., the locId and
the manager attributes are shared by all tables in the
location dimension), dimension indexes are inher-
ently multi-table indexes. Instead of associating the
set of tuples in a single table with a keyvalue, dimen-
sion indexes (conceptually) associate a set of (table,
tuple) pairs with a keyvalue. When multiple tuples
in a single table match a keyvalue, factoring out the
table can result in a potential for compression. Dimen-
sion indexes can be organized as B-trees, hash indexes,
bitmap indexes, or any standard index structure.

Dimension indexes are similar, in spirit, to join in-
dexes [21] which typically associate attribute values
and tuples of two tables, and their generalizations.
However, join indexes (as the name suggests) have
been used only to support join processing, not multi-
table selections.

5.2 Hierarchical Joins

Star joins have been used to denote the join of a fact
table with multiple dimension tables, represented us-
ing a star schema. The star join conditions typically
include selection conditions on the dimension tables as
well. The specialized nature of star schemas makes join
indexes especially attractive for OLAP queries [17, 6].

Different flavors of bitmap join indexes have been
proposed to efficiently deal with star joins [17, 18]. In
its simplest form [17], a bitmap join index is a bitmap
index on the fact table 7' based on a single attribute
A of a (star schema) dimension table V.

The bitmap join index is useful precisely
when the OLAP query specifies a selection
condition on attribute A of dimension table
V', and a join condition between the fact table
T and the dimension table V.

For example, one can maintain a bitmap join in-
dex on the sales fact table based on the attribute
state in the location dimension. Thus, the index



entry for NJ is a bitmap that identifies the tuples in
the sales table that correspond to stores whose state
is NJ. This index entry can be used, e.g., in a star
join OLAP query that specifies the selection condi-
tion “location.state = NJ” and the join condition
“location.storeld = sales.storeld”.

Modeling limitations of star schemas have led to
snowflake schemas for data warehouses. However,
there has not been much research reported in enhanc-
ing star join algorithms to efficiently perform snowflake
joins. The approach of [17], of using bitmap join in-
dexes, while applicable, is not as efficient for snowflake
joins as in the case of star joins. To see why, con-
sider the following query, which is one of the three
subqueries in the SQL expression of Query Q2, using
the snowflake schema of Figure 2.

SELECT 1locnl.storeld, SUM(dollarAmt)

FROM locnl, locn2, locn3, locn4, locnb,
sales

WHERE locn5.country = USA AND

locn4.state = NE AND

locn5.ctryld = locn4.ctryId AND

locn4.regld = locn3.regld AND

locn3.stateld = locn2.stateld AND

locn2.cityld = locnl.cityId AND

locnl.storeld = sales.storeld
GROUP BY locnl.storeld

Note that there is no join condition between the
fact table (sales) and any of the dimension tables on
which selection conditions have been specified (locn4
and locn5). Multiple bitmap join indexes (between
tables corresponding to successive levels of the dimen-
sion hierarchy) would have to be built to support the
above sequence of joins in an SQL query evaluation
engine. Clearly, this approach is considerably less effi-
cient for snowflake joins than in the case of star joins.
For snowflake joins to have comparable efficiency to
star joins, bitmap transitive join indexes could be built
for this task. However, using them effectively would
require the SQL query evaluation engine to have a de-
tailed knowledge of the representation of dimension
hierarchies as tables, and a substantial change to the
query processing strategies.

Modeling dimension hierarchies using the SQL(H)
model not only results in conceptual simplicity and
elegance, but also allows for computational efficiency
that is comparable to the use of bitmap join indexes for
star joins. Our solution involves the use of a star join
style algorithm for hierarchical joins, i.e.; joins that
use hierarchical predicates. The SQL(H) query Q2’
can be expressed as follows, using the DW schema of
Figure 4.

SELECT L.locId, SUM(dollarAmt)

DIMENSIONS location L

FROM sales

WHERE sales.locId <<= L.locId AND
L.locId <<= country=USA/region=NE
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GROUP BY L.locId

Note that the hierarchical join condition s between
the fact table (sales) and the dimension on which
a selection condition has been specified (location).
Given a bitmap join index on the sales table based on
the pair of attributes country and region of dimen-
sion location, the hierarchical join could be performed
as efficiently as the star join. We next examine how
bitmap join indexes that enable hierarchical joins can
be constructed efficiently.
5.3 Bitmap Join Indexes for Hierarchical
Joins

The bitmap join index used in computing the star join,
as described in [17], is based on the assumption that
the join between the fact table and the dimension table
is an equality join. In SQL(H) queries, many differ-
ent join predicates, such as =, <, <=,<<, <<=, can
be used. To efficiently support each of these predi-
cates between the Id attribute of the dimension and
the corresponding attribute of the fact table, differ-
ent bitmap join indexes may be needed. The choice of
which ones are created depends on the predicates used
in the anticipated query workload.

In this section, we present an efficient algorithm,
called ComputeBitmapHJoinIndex, for computing a
(<<=, =)-bitmap join index, which could be used for
hierarchical join computation when the hierarchical
predicate <<= is used in the join condition between
the fact table and the dimension (e.g., sales.locId
<<= L.locId),and the equality predicate (=) is used
in the selection condition on a dimension attribute
(e.g., L.manager = john.smith). This algorithm is
loosely based on the /O efficient algorithm for com-
puting hierarchical semijoins for querying network di-
rectories [11].

Let T denote the fact table, V' the dimension, and
A the dimension attribute on which the (<<=,=)-
bitmap join index needs to be constructed. The re-
sulting (uncompressed) bitmap join index would have
| A | bit-vectors, each with | T' | bits. A naive algo-
rithm would compute this index as follows, assuming
a total ordering on the V' Id attribute of the dimension
and a total ordering on the tuple identifiers (RID’s)
of the fact table.

e First, allocate a 2-d bit-array VT with | V' | rows
and | T | columns, with each bit initialized to 0.2

Examine each pair of (T tuple, V tuple). If
T.VId <<= V.VId, set bit VT[V.VId|[T.RID] =
1.

e Next, allocate a 2-d bit-array AT with | A | rows
and | T'| columns, with each bit initialized to 0.

12Zeroing out of an entire array of bits can be done very effi-
ciently in most systems, and is not counted in our cost analysis.



Algorithm ComputeBitmapHJoinIndex (7, V, A) {
T denotes the fact table, with | T | tuples.
V denotes the dimension, with | V' | tuples
in the various tables of dimension V.
A denotes V'’s attribute, with | A | values.
Let V Id denotes the join attribute of T' and V.
Let L denote the leaf nodes of dimension V', and
| L | denote the number of such nodes.

/* Phase 1: scan the fact table and build a
bitmap index on T.VId */
Let LT be a bit-array with | L | rows and
| T'| columns, initialized to O’s.
for each tuple in T with tuple identifier T.RI D
LTTVId[T.RID] =1

/* Phase 2: use the tree structure of V/d’s domain
to build a complete hierarchy bitmap */
Let Vi be a preorder traversal of the VId’'s in V.
Let VT be a bit-array with | V | rows and
| T'| columns, initialized to O’s.
/* stack S identifies (parent, child) pairs */
Initially stack S is empty.
node v; = firstElement(V5).
repeat {
if (stack S is empty)
push v; on top of stack S.
v; = nextElement (V).
else {
let v; be the node at the top of the stack S.
if (vi < ) /*is v a child of v,? */
push v; on top of stack S.
v; = nextElement (V).
else {
if (v is a leaf node)
VT[Ut] = LT[Ut]
pop stack.
if (stack S is not empty) {
let v, be the node at the top of S.
/* bit-wise OR with child’s bitmap */
VTvel = VT[vs] || VT[ve]

}

} until (all nodes in V; have been processed
and stack S is empty).

/* Phase 3: build bitmap join index on A values */
Let AT be a bit-array with | A | rows and
| T'| columns, initialized to O’s.
/* many V tuples may have the same A value */
for each tuple in V'
if (V.A = val)

AT[val] = AT[val] || VT[V.VId].

Figure 5: Computing a (<<=, =)-Bitmap Join Index
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Examine each V tuple. If V.A = wal, set
AT[val] = AT[val] Il VT[V.VId], where
AT[val] and VT[V.VId] represent bit-vectors of
| T'| bits, and “||” is the bit-wise OR.

The naive algorithm scans O(| V' | x | T |) tuples,
performs | V | | T' | bit-level operations, and | V|
bit-vector operations. The overall cost is dominated
by the cost of scanning tuples.

We describe Al-
gorithm ComputeBitmapHJoinIndex, and analyze its
computational complexity. In the first phase, the fact
table tuples are scanned once, and a bitmap index on
the V Id attribute of the fact table T is constructed. In
the second phase, the algorithm takes advantage of the
hierarchical structure of the V' /d domain, and (recur-
sively) computes bitmaps for parent nodes in the VId
domain based on the bitmaps of their children nodes.
(The leaf-level bitmaps are identical to the bitmaps
constructed in Phase 1.) In this phase, each node’s
bit-vector is touched precisely once, without access-
ing any tuple in any table. In the third phase, the
desired (<<=, =)-bitmap join index is constructed on
fact table T based on the A attribute of dimension V.
Algorithm ComputeBitmapHJoinIndex scans each fact
table tuple and dimension table tuple exactly once, at
the cost of a few more bit-vector operations than the
naive algorithm.

Theorem 5.1 Algorithm
ComputeBitmapHJoinIndex

correctly computes the (<<=,=)-bitmap join indez.
Further, it scans | V | + | T | tuples, performs | T |
bit-level operations, and 2x | V' | bit-vector operations.

Bitmap join indexes for other hierarchical predi-
cates can be constructed just as efficiently.

6 Conclusions

By recognizing dimensions and dimension hierarchies
as a first class construct in the context of a relational
data warehouse, and reflecting this through suitable
enhancements to SQL, we have demonstrated the con-
siderable benefits that can be derived, both in ease
of query expression and in computational efficiency of
query evaluation.

Giving dimension hierarchies a first class status
in the SQL(#) model permitted flexible modeling of
structural and schematic heterogeneity, situations of-
ten arising in practice that cannot be modeled satis-
factorily using the star/snowflake schemas. To take
full advantage of the SQL(?) model, we proposed two
key extensions to the SQL(#) query language: a novel
DIMENSIONS clause, and the use of hierarchical predi-
cates in conditions. The ease of expression of a large
variety of OLAP queries is testimony to the power of
these simple constructs. Finally, we complemented our



extensions to the query language and data model with
an algorithm for the efficient construction of a family
of bitmap join indexes. These indexes enable the ef-
ficient computation of hierarchical joins, in the same
way that bitmap indexes are instrumental in the effi-
cient computation of star joins.

Our work establishes the foundations for further re-
search in the important area of hierarchies in data
warehouses.
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