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Abstract

Identifying outliers is an important data analy-
sis function. Statisticians have long studied tech-
niques to identify outliers in a data set in the con-
text of fitting the data to some model. In the case
of time series data, the situation is more murky.
For instance, the “typical” value could “drift” up
or down over time, so the extrema may not nec-
essarily be interesting. We wish to identify data
points that are somehow anomalous or “surpris-

ing”.

We formally define the notion of a deviant in a
time series, based on a representation sparsity
metric. We develop an efficient algorithm to iden-
tify deviants in a time series. We demonstrate how
this technique can be used to locate interesting ar-
tifacts in time series data, and present experimen-

tal evidence of the value of our technique.

As a side benefit, our algorithm are able to

produce histogram representations of data, that
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have substantially lower error than “optimal his-
tograms” for the same total storage, including
both histogram buckets and the deviants stored
separately. This is of independent interest for se-

lectivity estimation.

1 Introduction

Outlier detection has a long history [Cha84] in statis-
tics, and more recently, in data mining. However, the
bulk of this work has been concerned with finding out-
liers in a large set of data, most often with respect to
some parametric model in mind. When one deals with
time series data, it is not appropriate to ignore the time
axis and think of the observed values as an unordered
set. As such, standard outlier detection techniques do
not carry over easily [KN98].

Consider the data series shown in Figure 1. Point
11 “sticks out” as having a much larger value than
neighboring points, and hence may be a deviant worthy
of further analysis. Point 4 has a larger value than
point 11, but is part of a group (points 4-6) of large-
valued points and so is not an interesting outlier (or
deviant) in itself’.

The question then becomes how do we identify
points with values that differ greatly from that of sur-
rounding points. Do we consider immediate neighbors

only? Do we consider points further away with some

1Tt is reasonable to consider the whole subsequence of points
4-6 for further analysis, since they all have value much higher

than typical, and indeed our formulation below will permit this.
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Figure 1: Example Sequence

sort of decreasing weight for distance? How do we deal
with cases where a point differs greatly from its left
neighbor, but less so from its right neighbor? One can
come up with a variety of ad hoc local definitions, each
of which gives a different answer, and none of which is

conceptually satisfying.

Our proposal is to use the well recognized informa-
tion theoretic principle of representation length. If the
removal of a point P from the time sequence results in a
sequence that can be represented more succinctly than
the original one (by more than the increment required
for explicitly keeping track of P separately), then the
point P is a deviant. For succinct, (lossy), representa-
tion of series data, we adopt the histogram method, so

popular in database literature and practice.

Thus, our problem is to find points in a given time
series whose removal from the series results in a his-
togram representation with lower error than the origi-
nal, even after the number of buckets has been reduced
to account for the separate storage of these deviant

points.

The solution to this problem is interesting in itself,
and is the focus of the first half of this paper. We
show in Section 5, that such identification of deviants
can lead to substantial increases in the accuracy of his-
togramming techniques for the same storage, and only
a small additional computational cost. Efficient algo-
rithms for this purpose are developed in Section 4. The

proposed algorithms are fast and optimal.

We discuss how to analyze deviants found using
these techniques in Section 6. In particular, we de-
velop a simple algorithm to find clusters of deviants.
In Section 7, we present a series of experiments per-
formed on real life time series databases, and highlight
the utility of the deviant mining algorithms.

We begin with some background and our assump-
tions in Section 2, followed by the formal definition

of a deviant as well as our deviant-finding problem in

Section 3.

2 Background

Histogramming techniques are of profound importance
in query optimization in relational databases. Ac-
curate estimates of result size of queries are cru-
cial for the choice of execution plan in a relational
query optimizer. Histogramming is also invaluable for
approximate query answering. There exists a size-
able volume of research on histogramming techniques
[TP95, Toa93, PTHS96, P197, JKM+98]. We follow these
works to define the problem in mathematical terms,
and develop a framework within which a solution with
general applicability can be described.

We are given a sequence of data points, X =
v1vg - --vy where each v;, 1 < ¢ < N, is an integer
drawn from some bounded range. Let S be the set of
indices of points in X, thus S = {1,2,..., N}. There
is great flexibility to the semantics of X. X could rep-
resent the sequence of values obtained from the obser-
vation of some random variable, i.e., v; 1s the value of
the random variable at time 7. Thus X could repre-
sent a stock price over time, the usage (in some time
granularity) of an AT&T service, etc. In a different
context such as that of query result size estimation, X
could represent a frequency vector of an attribute in
some relational instance. In this case, 7 corresponds

to an attribute value? and w; to the total number of

2We assume that attribute values can be mapped to an integer
domain. More general assumptions are possible, but these issues
are not important for the main arguments in our paper, so we

will assume that the ; take values from a dense integer set.
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occurrences of 7 in the attribute instance®. Let D C S
be a set containing indices of points in X. We denote
as X — D the sequence that results if we remove from
X all points with indices in D.

Irrespective of the semantics of vector X, the objec-
tive 1s the same: given some space constraint B, create
and store a compact representation of sequence X us-
ing at most B storage, denoted Hp, such that Hp is
optimal under some notion of error Ex(Hpg) defined
between X and Hp.

In the process of creating a compact representation
for X, several issues arise. We first need to decide on
a representation for Hp. Let s; and e; be indices of
points in X such that s; < e;. The common choice
is to collapse the values in the sequence of consecutive
points (s;, €;) into a single value h; (typically their av-
erage, h; = Zj’l:s, vj). The value h; along with (s;, ;)
(recording the start and the end of the sequence thus
collapsed) forms the bucket b;, that is, b; = (s;, €, hs).
Since h; is only an approximation for the values in
bucket b;, whenever a bucket is formed an error is in-
duced due to the approximation. We need to choose a
way to quantify this error. As is common, we quantify
this error using the Sum Squared Error (SSE) metric,
defined as:

€

> (v — hi)?

j=si

F(bi) = (1)
Assuming that the space constraint is expressed in
buckets, the resulting approximation Hp will consist
of B buckets and the total error in the approximation
is Ex(Hp) = i1, F(bi)*
The optimal histogram construction problem is then

defined as follows:

3Note in particular that the only property of X material to
us is that it is an ordered set of values. In this paper, we have
focused on time sequences, but all our results are directly appli-
cable also to other ordered sets such as the frequency counts for

an attribute value.
4Other error functions are possible such as max; F(b;) etc. All

our results will hold for any point-wise additive error function
Ex(Hp), but we will focus on the specific error function above

which is the most common one in the literature.
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Figure 2: Histogram construction: (a) Original se-
quence (b) Optimal histogram with 4 buckets (c¢) Op-
timal histogram with 3 buckets and point vy; = 373
removed (d) Optimal histogram with 2 buckets and

points v4 = 390 and v1; = 373 removed.
Problem 1 (Optimal Histogram Construction)

Guwven a sequence X of length N, a number of buckets
B, and an error function Ex(), find Hp to minimize
Ex(Hp).

The resulting optimal histogram is the well known
vopt histogram [IP95]. There exists an efficient al-
gorithm to determine the vopt histogram [JKM98].
This algorithm is based on dynamic programming and
it chooses the non overlapping sequences of points that
should be collapsed into single values (bucket bound-

aries), such that the total error metric is minimized.

3 Deviants: Motivation and Defini-

tions

Consider Figure 2(a) which represents a portion of time
series extracted from an AT&T data warehouse. Fig-
ure 2(b) presents the optimal histogram vopt on the
sequence in Figure 2(a) using B = 4. The approxi-
mation in Figure 2(b) has total (sum of squares) error

of 319. Assume that we are allowed to remove a point
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from the sequence and store it separately. This requires
two integers, one for the position in the sequence and
one for the value of the point. The storage required
for one histogram bucket is also two integers: the left
boundary and the average value. (Only one bound-
ary needs to be kept since buckets are non-overlapping
and adjacent. Without loss of generality, we keep the
left boundary.) Thus, we have spent the equivalent of
one bucket from our total bucket budget, and we must
approximate the remaining sequence with B — 1 buck-
ets, that is, 3 buckets in this case. One can observe
that by removing the point v1; = 373, the total error
of the approximation is reduced to 193 which is an im-
provement in accuracy of 40%. However, one should be
careful about removing the points since not all points
in the sequence of Figure 2(a) reduce the total error
when they are removed. For example, by removing the
point v; = 38, the total error in the approximation
increases (recall that after removing vy, only 3 buck-
ets are available for the remaining sequence). In the
case of a single point removal, one way to determine
which point to remove in order to obtain the largest
decrease in the total error would be to consider each
point in turn and use vopt on the remaining sequence;
there are a total of N vopt executions. Notice that the
point causing the largest decrease in error (v11) in this
example is not the point that has the maximum value.
We refer to points that have this property as deviants;

these are formally defined below.

Now consider removing two points. In this case,
the smallest error one can achieve by removing two
points and approximating the resulting sequence with
B — 2 = 2 buckets is 324. It is achieved by remov-
ing points vy = 390 and vy; = 373. The total error
however is larger than the one with B = 4 buckets,
so removing two points is not beneficial. In order to
determine the pair of points whose removal results in
the largest decrease in the total error of approximation,

if one were to consider each pair of points and apply

vopt on the remaining sequence when that pair 1s re-

moved, the total number of vopt executions required

N
is ( 5 ) In general, the total number of point sets

N
to consider for removal of “best” k points is ( . )

By trying to remove additional points, one can verify
that no further improvement is possible, with the given
bucket budget.

We now formally define the notion of deviants and

the problem of finding the optimal (“best”) deviants.

Definition 1 Given a sequence of points X and a
number of buckets B, a point set D C S 1s a de-
viant set if and only if Ex(H}) > EX—D(HE—|D|)f
where Hy is the optimal histogram on X with B buck-
ets (having error Ex(H},)) and HE—IDI is the optimal
histogram on X — D with B—|D| buckets (having error
Ex-p(Hg_p)))-

From the preceding discussion, it follows that for a
given sequence of points X and a given number of buck-
ets B, there is an optimal deviant set that, if identified,
can be used to construct a histogram representation
with minimum total error. (In the example above, the
optimal number of deviant points is one.) This obser-

vation leads to the following optimization problem:

Problem 2 (Optimal Deviant Set) Given set X
and buckets B, identify a set D C S such that
VD' ,D' C S, Ex_p(Hg_|p|) < Ex_p'(Hp_p1))-

4 Algorithms

We are interested in providing an efficient solution to
Problem 2. A straightforward solution, that was de-
scribed earlier, 1s to examine every possible point set
in turn and to compute the optimal histogram on the
remaining sequence after that point set has been re-
moved. The computational cost for such an approach
would be prohibitive, being exponential in the number
of deviants considered. We give a different algorithm

which is optimal, and is significantly more efficient. We
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first develop a solution to the following related prob-

lem:

Problem 3 (Optimal x Deviants) Given sequence
X, a budget of storage B and a non-negative inte-
ger k, identify set D C S with |D| = k such that
VYD',D' C S, |D'| =k, we have

EX—D(HE—H) S EX—D'(HJ*B—R)'

We are given a sequence X of numbers of total size V.
We are also given parameters B, the total storage and
&, the number of deviants. Our goal is to produce a
histogram consisting of B — k buckets and x deviants,
so that the total error of the histogram is minimized.

Let (s;, e;) denote the starting (leftmost) and ending
(rightmost) points respectively in sequence X, of the
points contained in bucket b;. Since some points in the
range (s;, ¢;) might be deviants, we have to redefine the
error formula given in eqn. (1) for the error induced
by the bucket, to account for the points (the deviants)
that are removed from the sequence. For bucket b; =
(si,e;), say there is a set T; of deviants in (s;, e;) and
|T;| = k. The refined SSE for bucket b; with these k
deviants is denoted F7Ti(s;---e;, k), and it is defined

as:

FT’(SZ'~~~6Z',]<7)I E

s:<j<e; &jET;

(vj = hiie)® (2)

T;
where hs“el

indices not belonging to 7;) within the bucket, that is,

is the average of non-deviants (values at

T, _ Z;;s, & jeT; Ui

ffi e — i+ 11—k
The total error of the approximation represented by
the histogram and a given set of deviants 7' is the sum
over the buckets of the error in each bucket b; when the
set of deviants 7; C T that fall within that bucket are
removed. Qur proposed solution for solving Problem
3 is based on dynamic programming. We first param-

eterize the error term that we wish to minimize. Let

E(i, j, k) represent the error of using j buckets on the
sequence vy through v; with k& deviants been identified
in [1...4], in the optimal way (therefore, the error is the
minimum possible). Using Bellman’s equation [Bel54]

we can write a recursive expression for F(i, j, k):

E(i, j, k) = m

= n
1<I<i, 0<m<k

3)
Here, F*(a- - -b,¢) denotes the minimumerror in the

bucket (a---b) with ¢ deviants, that is,

F*(a---b,¢c) FT(a---bc) (4)

= min
T| Te{a,...,b}, |T|=c

In other words, the equation for E(i, j, k) calculates
the error of the optimal strategy with £ deviants and j
buckets on the sequence vy - - -v; to be the sum of the
errors of the optimal strategy with m deviants and j—1
buckets on the sequence vy ---v;, and that for a single
bucket on the sequence w;41 ---v; using k — m (the
remaining) deviants. This is appropriately minimized
over the choices for the parameters m and [.

The 1nitialization to form the basis of this bootstrap-
ping approach comes from observing that F(i, 1, m) =
F*(1--+-4,m), for 1 <i < N and 0 < m < k. The
remainder of the algorithm uses equation (3) to con-
struct solutions for successively larger number of buck-
ets and number of deviants. After E(¢, 7, k) has been
constructed for 1 <1< N, 1 <j3< B—k,0<k <k,
the algorithm terminates.

The only piece that still remains unspecified is the
computation of F*(a---b,¢) for all possible values of
a,bye. e>b—a+1,clearly F*(a---b,¢) = 0. We
next show how to efficiently compute F*(a---b,¢) in
Recall the definition of F* from
Equation 4, and say the minimum there is reached

for the set 7. (We do not know 7™ apriori and it

all the other cases.

is used only for making the definitions formal.) De-
fine S*[a,b,c] to be sum of the non-deviant points
of the sequence (vq...vp) in the solution with er-
ror F*(a---b,c), that is, S*[a,b,c] = Zagigb, igT+ Vi-
Similarly, define SS*[a,b,c] to be the sum of the
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squares of the non-deviant points in this sequence, that
is, SS*[a,b,¢] = Y ,cich igre Vi-
use dynamic programming to compute S*[a,b,c] and

SS*[a, b, c], and use those to compute F*(a---b,¢) at

We will again

the same time.

Computing F*(a---b,c) has two parts, depending
on whether b is a candidate deviant point or not. If b
is a deviant point in the minimum error solution, we

would have to update the parameters as follows:

F*(a---bye)=F*(a---b—1,c=1)
S*[a,b,c] = S*[a,b—1,c—1]
SS*[a,b,c] = SS*[a,b—1,¢—1]

Since b is a deviant point, it is not included in the
computation of the error; b is extracted from the se-
quence. The other case is when b is not a deviant
point. In this case, the solution F*(a---b—1,¢) must
be adjusted to include v,. Thus, S* and SS* must
be updated as S*[a,b,¢] = S*[a,b — 1,c] + v» and
S5S*[a,b,e] = SS*[a,b—1,c]+ (vp)%. The F*(a---b,c)
value must be updated using the formula obtained by
simple algebraic manipulation:

S*[a,b,c]?

Fa-- (b—ati—-c

byc) =55"[a,b,c]— (5)

We consider both these cases and calculate the two
possible values of F*. We choose the case that yields
the smallest error F* and the values of F*, S* and
SS* are updated as described above depending on the
chosen case.

That completes the description of the algorithm
ComputeF* for computing F* values. These values
are stored in a table, which can be looked up whenever
needed while computing E(i, j, k)’s. That also com-
pletes the description of the algorithm for computing
E() values. The value E(N, B — k, k) gives the mini-
mum error in the solution to Problem 3. As in all dy-
namic programming solutions, it is now a standard step
to determine a set of k¥ deviants and the bucket bound-

aries of the histogram which result in E(N, B — &, k)

error of approximation.

Theorem 1 There is an O(N?(B — k)«?) algorithm
for solving Problem 3.

proof. We calculate S*[a---b,¢] for all 1 < a < N,
a+1<b< N and0< k< &; thus there are O(N%k)
values of S*[a---b,c] of interest. There are two cases
to consider for updating S* each of which takes O(1)
time. Thus, the time taken to calculate all the S*[]’s
is O(N?k); the same holds for the SS*[ ] and F*()
values too. After this precomputation, the value of
F*(a---byc)forany 1 <a< N,a<b< N,0< e <k,
can be retrieved in O(1) time.

We calculate E(i,j, k) for each 1 < i < N, 1 <
J < B—kxand 0 <k < &; hence, there are O(N(B —
k)k) values of E(i,j, k) of interest in all. Computing
each such value using Equation 3 involves considering
O(N k) values of E(l, j—1, m) which can be obtained in
O(1) time each using the dynamic programming tech-
nique, and O(N k) values of F*(I4+1-- -4,k —m) which
can be obtained in O(1) time each using the precom-
putation. Thus each E(i,j, k) takes time O(Nk) to
calculate and the total time taken is O(N?(B — )&?).
||

Optimal Deviant Set

Using the solution for Problem 3 we can obtain an ef-
ficient solution for Problem 2. The simplest approach
would be to solve Problem 3 with the number of de-
viants k taking values 0,..., B — 1 and the number of
buckets taking values B — & for each such choice of «.
This will involve invoking our solution to Problem 3
at most B times. However, we can solve Problem 2
in time that is essentially the time it takes to solve an
instance of Problem 3 once as follows.

Recall that the algorithm in the previous section
finds E(,j, k) forall 1 <i< N, 1<j< B-—xand
0 < k < kin time O(N?%(B—k)x?). We can extend the
algorithm to compute all those values for 1 < 7 < B
and 0 < k < B — 1 so the resulting algorithm takes
time O(N?B3).

error solution amongst F(, j, k) where j = B — k for

We can then read off the minimum
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all 0 < k < B — 1. This takes O(B) additional time.

Therefore we can conclude the following.

Theorem 2 There is an O(N?B3) time algorithm for
solving Problem 2.

5 Deviant Histogramming

In the previous section, we presented algorithms for
finding the optimal k deviants and for detecting the
optimal deviant set in a given sequence X. In fact,
our technique gives us a compact representation for X
comprising the deviant points, as well as the histogram
on the remainder. More precisely, we have x deviants
each stored as a pair of its position ¢ in X and its
value v;, and B — k buckets each stored as a pair of its
left endpoint in X and the average of the non-deviant
values in that bucket.

This compact representation may be thought of as a
histogram in itself, and i1t will serve the same purposes
as a histogram. In this section, we explore its use in se-
lectivity estimation. In particular, we focus on equality
queries (other queries such as range queries may also be
answered using our compact representation just as it
is done with standard histograms). An estimate for an
equality query 7 is obtained as follows. If 7 is a deviant,
we merely return its value v; and no error is incurred.
If 7 1s not a deviant, we determine the bucket to which
¢ belongs and return the value stored with that bucket
(recall that this is the average of the non-deviant points
that lie within that bucket) as an estimate of v;.

Here we report experimental results on a number of
experiments performed to assess the utility of the pro-
posed algorithm as a histogramming technique. The
common method for evaluating selectivity estimation
techniques on equality queries is to consider the sum-
of-squares metric, namely, Y, (v; — ¢;)* where ¢; is the
estimate for the point query v; [IP95]. This is the ex-
pected total error on a workload of equality queries
if all equality queries are equally likely. Poosala et
al [PTHS96] showed that the vopt histogram was the

optimal histogram for estimating equality queries, pro-

vided that one uses a histogram representation without
removing any points (deviants). We compare the vopt
histogram to our histogram wherein our histogram uses
the same space as the vopt histogram, but it uses a por-
tion of it for storing the deviants and the remainder for
the buckets.

We used real data sets extracted from an AT&T
data warehouse in our experiments. All data sets con-
sist of 2000 points in a time sequence. Because of pro-
prietary reasons, we are not able to disclose the specific
data sets used. However, we do number the data sets
in order of increasing skew — data set D4 is close to
a skewed (randomized) Zipfian whereas D1 is skewed

very little.

In all our experiments, we keep the total space (ex-
pressed in buckets) devoted to the histogram fixed, and
we vary the number of deviants. With total space B
devoted to the histogram and & deviants, B — k buck-
ets are placed in the sequence. (Recall that it takes the
same number of bytes to store one deviant point as it
does to store a bucket.) The case when k& = 0 is the

well known vopt histogram.

Figure 3 shows the results for the four data sets,
as k 1s varied, for a representative selection of three
values for B, the total storage. For all data sets we
see that the error decreases as more storage is devoted,
as expected. We also see that identifying and storing
deviants separately does help, and in some cases quite
substantially. For instance, for data set D3, the error
with a storage of 20 is approximately the same as the
error with double the storage and no deviants; most of
the space is devoted to the deviants in this case. In
other words, just by identifying deviants and storing
them separately, we are able to decrease error as if we

had doubled the storage!

However, most of the curves exhibit a clear mini-
mum indicating that there is a point beyond which de-
voting additional storage to deviants is not desirable.
This minimum represents the “optimal” number of de-

viants for the specific data set and the storage budget.
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As expected, the optimal number of deviants increases
(linearly) with the storage budget. Also, more skewed
is the distribution of data, greater is the benefit ob-
tained from identifying deviants and larger is the num-
ber of deviants at the optimal point. In fact, for a
highly skewed data set, D4, the minimum is beyond
the right end of the feasible region, indicating that it is
best for us to devote almost all of our storage budget to
the deviants. (In this case, the optimal solution is an

end-biased histogram where we keep the most deviant

values rather than the extremal values.)

6 Data Mining with Deviants

Consider an analyst examining a large time series. In-
stead of manually examining the entire sequence, it
would be beneficial to have it automatically tagged for
regions (or points) of potential interest. The crucial
issues are to define the notion of “interesting” regions
in a time series, and to design efficient algorithms for
finding such regions.

Deviants have an intriguing combination of local and
global property. A purely global approach to finding
interesting points in a time series may be to identify
points farthest away from the mean of the entire se-
quence [AAR95]. This approach would find all the ex-
tremal points. In contrast, a purely local approach to
finding interesting points may be to determine pairs of
neighboring points that differ by the largest amount.
The MaxDiff [TP95, GMP97] heuristic for histogram
construction accomplishes this efficiently. For exam-
ple, this technique will find all regions with the highest
derivative, that is, the slope. While the points deter-
mined for the purely local, or the purely global ap-
proaches may be of interest, there are instances when
one needs a more sophisticated notion of interesting
points or regions. An optimal set of deviants combines
the local and global aspects naturally: they are local in
so far as trying to minimize the deviation from the av-
erage within a bucket, and global in trying to minimize

the total sum of the errors from the different buckets.

Our overall approach for data mining with deviants
is as follows. We first determine a set of deviants in
the original time series. We then analyze the set of
deviants for useful structure. We discuss these two

steps in the following subsections.

6.1 Deviant Sets

One method for obtaining a set of deviants for further
analysis would be to choose parameters , the number
of deviants, and B, the total storage allowed, and use
the algorithmsin Section 4 to determine an optimal set
of deviants. A particular choice of interest for ¥ would
be the optimal number of deviants for a given storage
B. Another method would be to choose a small set of
values for these parameters and determine the optimal
deviant sets for each choice of the parameters. Then
one can collate the “consensus” deviant points from
the different optimal deviant sets. There are many

ways to define the notion of consensus. Here, we adopt

the notion exemplified in the following problem.

Problem 4 (Consensus Deviants) Given sequence
X of length N, a non-negative integer £ and parame-
ters ki, ky, By, By, tdentify the k most frequently oc-
curring elements in the sets D p for By < B < By,
and k; < k < ky,,, where each Dy p s the optimal set of

k deviants for sequence X gqiven B buckets of storage.

It may seem on the face of it that solving Problem 4
requires multiple solutions to Problem 3 for different
values of & and B. However, it turns out once again
that the solution to Problem 3 already computes all the
necessary additional solutions required here, so that
only a single run of Problem 3 with a sufficiently large
choice of k and B (k,,, and B, respectively) is required.
It follows from our results in Section 4 that Problem
4 can be solved in time O(N?%B,,k2). This method
calls for choosing the parameter values k;, kn,, Br, Bm
appropriately. Since one desires to isolate a few areas
of potential interest, keeping x small and varying k

and B over small ranges is recommended. Many other
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Figure 3: Histogram error for increasing number of deviants with fixed total space.

notions of consensus deviant sets can be incorporated

into our approach here.

6.2 Deviant Clusters

The individual points in a set of deviants may be of
interest by themselves, so they may be considered in
isolation. However, from a mining perspective, it is
useful to identify properties of groups of deviants in
addition to those of individual deviants. More specifi-
cally, we consider the clustering of deviants. Since the
deviants are derived from the underlying time series,
it seems reasonable to consider contiguous segments
(intervals) rather than arbitrary subsets of points in
the time series, in order to understand the clustering
of deviants. We adopt the rather natural notion that
an interval is interesting only so far as the number of
deviants in it significantly exceeds the “expected” num-
ber of deviants, based on uniformly random distribu-

tion of the deviants. The significance is controlled by

a user-specified parameter §. More precisely,

Definition 2 Consider the time series in which k de-
viants have been identified. An interval I 1s a deviant
cluster if and only if k > 6|I|%;, where k is the num-
ber of deviants in I and § is a user-defined parameter
of significance. Furthermore, I is a maximal deviant
cluster if I is not a proper subset of any other deviant

cluster.

Note that the deviant clusters are not monotonic
with respect to the interval size. To explain this fur-
ther, we consider the example in Figure 4. Say we have
identified six deviants and that we are interested in de-
viant clusters with size between six and twelve points
and § = 1. Note that while I1, I2 are deviant clusters,
14, I1 € 14 € 12, i1s not one. Hence 14, which has
a subset that is a deviant cluster and which 1is itself

contained in a deviant cluster, 1s not a deviant cluster.
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Figure 4: Non monotonicity of clusters.
Note further that while deviant clusters are mono-

tonic with respect to §, maximal deviant clusters do
not have this property. In particular, as § is decreased,
longer intervals may get declared deviant and could
subsume shorter intervals that were maximal deviant

clusters for smaller values of §.

6.3 Searching for Deviant Clusters

Given a set of k¥ deviants for a time series, we present
an algorithm to determine the deviant clusters. Rather
than return a specified subset of deviant clusters, our
algorithm returns all maximal deviant clusters (these
deviant clusters may overlap). Note that our algorithm
can easily output all deviant clusters, not merely the
maximal ones, but the output size may be too large for
user attention.

Formally, we are given a binary vector D =
dids...dy such that d; = 1 if d; is a deviant, and
it is zero otherwise. The user specifies a d controlling
the significance, as well as L, the minimum size and U,
the maximum size of clusters of interest. The goal is
to output all maximal deviant clusters of size between
L and U.

The algorithm first computes the prefix sum of the
number of deviants so that the number of deviants in
any interval can be determined efficiently by looking at
the prefix sums to the two endpoints of the interval.

The algorithm has two phases. In the first phase, it
determines all the deviant clusters of length between L
and U. In the first phase, the algorithm iterates over
all intervals of interest ((¢,i+j—1) for 1 <i< N—j+1
and L < j < U) and determines whether the number
of deviants in the corresponding interval is above the
threshold (%), and if it is, it marks the interval as a

deviant cluster by setting the array MaxCluster(i, ;)

to 1. It does not matter in what order the MaxCluster
array is evaluated: since deviant clusters are not mono-
tonic, proceeding in increasing values of j (for a given
i) does not necessarily help prune the search space.

In the second phase of the algorithm, deviant clus-
ters that are not maximal are removed. The algo-
rithm proceeds by setting MaxCluster(i,j) = 0 if
there exists a k > j, 1+ j — k < [ < i, such that
MaxCluster(/,k) = 1. (This is because if any such
MaxCluster(l,k) = 1, then there is a deviant cluster
[l,{+ k— 1] which would contain the cluster [7,i+4 j — 1]
that is under consideration.) This is implemented sim-
ply by iterating over all values MaxCluster(s, j) for a
given 1.

Upon termination, the maximal deviant clusters are
the intervals i to i+ j — 1 where MaxCluster(i,j) = 1.
The entire algorithm takes O(N (U — L)) time for each

of the two phases.

7 Mining Experiments

We implemented a prototype system incorporating
these algorithms that is capable of analyzing time se-
ries data. The user has to specify the parameters that
defines the deviants, the parameter § for the signifi-
cance of the cluster density, as well as the minimum
and maximum sizes of the clusters (L and U respec-
tively) that are of interest. The system determines the
deviants as described in Section 6 and also returns the
maximal clusters of deviants meeting these specifica-
tions.

We present an exploration of a variety of publicly
available data sets (M1 — M4 below).

experiments, we search for 10 most frequent deviants

In all our

(k = 10) and for choosing consensus deviants, we let
k range between 1 and 10, and B between 1 and 40.
Larger ranges for £ and B are certainly possible. These
values, however, provide a nice trade off between per-
formance and the quality of the information obtained,
in all our experiments. Figure 5 presents a subset of

our results. We keep ¢ * §- = 0.4 and search for clus-
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Figure 5: Mining for deviant clusters in sample time series.

ters of size between 1 (L = 1) and 10 (U = 10) points.
Note that one can potentially control the number of
the clusters identified by changing the values of U and
L.

The datasets that we present are described below:

M1:

of hours worked by people of a given age in a

A time series showing the total number

year, drawn from a census database (available at

www.kdnuggets.com).

M2:

of weeks worked by people of a given age in a

A time series showing the total number

year, drawn from a census database (available at

www.kdnuggets.com).

M3: A times series showing the heart rate of in-
dividuals of different ages with arrythmia cases
(available at www.ics.uci.edu/~mlean/Machine-

Learning.html).

e M4: A time series containing the closing S&P 500

index value each day starting from 1928.

For data set M1, we are able to identify the cluster
containing points 23 to 30 (labeled ¢l in Figure 5(a)),
the cluster between 48 and 51 (labeled c¢3), as well as
the cluster at point 91 (labeled ¢3). These clusters
seem to match our intuitive visual notion of deviant
sequences of points in this time series. If the value
of § is decreased, the identified clusters remain the
same, but they become larger in size (encompassing
more points). Similarly a larger value of § produces the
same, but smaller-sized clusters. Similar observations
hold for Figure 5(b) where four clusters are identified
(c1 to c4). Figure 5(c) is an example of a more “noisy”
time series. Again, we can identify clusters correspond-
ing to our intuitive visual notion of the “noisy” parts of

the series. Finally, Figure 5(d), presents the results for

M4. Curiously, cluster ¢y corresponds to a well known
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financial disaster in the US economy in 1929.

We leave it to the reader to judge subjectively the
quality of deviants we report. Notice that in each of the
figures, the reported deviants (clusters) are rarely at
the extrema of the functions; hence, deviant points and
clusters are not necessarily the global extrema. Also in
many cases, such as the datasets M1, M2, and M3 (in
Figure 5a-c respectively), no deviants have been identi-
fied in the region of the fastest change in the function.
Thus, deviants find regions that are not necessarily the

local extrema of changes.

8 Conclusion

This work makes two specific contributions. First, we
have presented a framework for the formal definition
of a deviant point in time series, and demonstrated it
to be of data mining value. We have proposed efficient
optimal algorithms for the identification and mining of
deviant points in a time series database. Second, we
have shown how these algorithms can be used to de-
crease histogram error (or reduce storage for the same

error) substantially.

This work raises several important issues for fu-
ture exploration. Deviant points might have other
properties as well, besides clusters, that might be of
great mining value. For example, one could extend
the framework and algorithms presented in this work,
to mine for periodic patterns of deviants. Moreover,
since deviants, most likely, will not be exactly peri-
odic, notions of approximate periodicity, in the spirit
of [HDY99], could be introduced. In addition, it would
be interesting to couple deviants with other attributes
as well, towards the design of effective discovery driven

exploration tools for time series analysis.
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