Manipulating Interpolated Data
is Easier than You Thought

Stéphane Grumbach

INRIA

Abstract

Data defined by interpolation is frequently
found in new applications involving geo-
graphical entities, moving objects, or spatio-
temporal data. These data lead to potentially
infinite collections of items, (e.g., the eleva-
tion of any point in a map), whose definitions
are based on the association of a collection of
samples with an interpolation function. The
naive manipulation of the data through direct
access to both the samples and the interpo-
lation functions leads to cumbersome or in-
accurate queries. It is desirable to hide the
samples and the interpolation functions from
the logical level, while their manipulation is
performed automatically.

We propose to model such data using infinite
relations (e.g., the map with elevation yields
an infinite ternary relation) which can be ma-
nipulated through standard relational query
languages (e.g., SQL), with no mention of the
interpolated definition. The clear separation
between logical and physical levels ensures the
accuracy and the simplicity of data manipula-
tion. Moreover, we show that the evaluation
of queries, which includes the computation of
the sampling collections and the interpolation
functions of the output, can be done very effi-
ciently. The algorithms operating at the phys-
ical level are described.
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1 Introduction

The extension of database technology to handle spa-
tial applications raises complex problems related to the
modeling of data. One of the difficulties pertains to
the logical representation of pointsets allowing user-
friendly queries while guaranteeing reasonable com-
plexity for query processing.

In the context of spatial databases, most of the
efforts in the last decade has been devoted to 2-
dimensional data. The recent emergence of new appli-
cations, involving for instance mobile objects, Digital
Elevation Models (DEM), or spatio-temporal informa-
tion, requires the representation of data in a space of
higher dimension, and constitutes a new challenge to
spatial database modeling.

Mobile objects and DEMs constitute excellent ex-
amples of a specific type of spatial data defined by
interpolation. Interpolated data are either stored ex-
plicitly in the database, or computed from the stored
data by applying some interpolation function. The tra-
jectory of objects whose position depends upon time
is commonly represented by a sample of points with
time and position. The full trajectory can be recov-
ered from these points using linear interpolation. Sim-
ilarly, DEMs provide, at each point (z,y) of the earth
surface, the value of a variable h, typically the height
above sea level. It can be represented as a finite set of
points P along with their elevation. An interpolation
based on some triangulation of P gives the value of h
at any location.

Many applications require the manipulation of in-
terpolated data: traffic monitoring, intelligent naviga-
tion, mobile communication, as well as earth sciences
such as geography, meteorology and geology. Consider
an application which tracks the motion of aircrafts in a
given area. Typical queries are: “retrieve the aircrafts
which are in this region”, “show the aircrafts which
will be 1n the same region at the same time”, “give
the altitude of each aircraft with respect to ground or
sea level, as well as its position” | etc. These queries ad-
dress simultaneously several kinds of multidimensional
information (space, time, altitude), and existing query



languages such as SQL seem at first completely inad-
equate.

The main contribution of the paper is the design
of a data model for interpolated data, based on in-
finite relations manipulated by standard relational
means, which meets the classical requirements of logi-
cal database modeling: (i) abstract representation in-
dependent from the physical storage, (ii) user-friendly
query language, and (iii) reasonable complexity of
query evaluation. An important aspect of the model is
that the queries (including the examples given above)
can be expressed with SQL, and evaluated by an al-
gorithm which relies on a few simple geometric primi-
tives.

One of the main aims of the paper is to demon-
strate that it is neither desirable nor necessary to give
access to the samples and the interpolation functions
to the user for data manipulation purposes. As we
show this might indeed lead not only to cumbersome
queries, where for instance new samples need to be
defined, but more importantly, to inaccurate queries,
producing wrong output due to wrong interpolations.
There is a need for a clear separation between the log-
ical and the physical levels, to which the samples and
the interpolation should be relegated.

To satisfy this requirement, we suggest to extend
the relational data model to abstract infinite relations,
containing all the points in the extension of objects,
whether stored explicitly as samples, or computed by
interpolation. This framework offers sound modeling
of interpolated data. For instance, at this abstract
level, the interpolation can be formalized with classical
dependencies. The base domain (e.g., space for DEMs,
and time for moving objects) is the key of an interpo-
lated relation, and there is a functional dependency
from the key to the interpolated variables. Moreover,
any relational query language can be used to query
the database. This defines a very simple interface to
the end-user, who does not need to worry about com-
plex data structures or geometric algorithms. A simple
data format is introduced to represent the abstract re-
lations at the physical level.

The second fundamental issue is efficient query eval-
uation. It is well known that the complexity of opera-
tions on geometric objects increases dramatically with
their dimension [6], and that dimension 2 is the most
reasonable for practical purposes. Since interpolated
data is described in a d-dimensional space, with an
arbitrary d, this raises potentially the problem of ex-
pensive manipulation of d-dimensional objects.

Fortunately, interpolated data constitutes a very
specific type of object. For instance, a trajectory
can be viewed as a l-dimensional pointset embed-
ded in 4D-space, and a DEM as a 2D pointset in
3D space. More generally, if k is the dimension of
the base domain (space, time, etc.), an interpolated
pointset with d — k interpolated attributes can be
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viewed as a k-dimensional object embedded in a d-
dimensional space. The intuition of our technique is
that one should be able to evaluate queries with ge-
ometric algorithms that operate in dimension k, and
not in dimension d.

Our second contribution is to identify a class of
queries which can be evaluated over interpolated data
with a base of dimension at most 2, using efficient 2D
geometric algorithms. This shows that it is possible to
manipulate efficiently complex data of higher dimen-
sion, without specifying how it should be interpolated,
and using standard techniques (geometric algorithms,
relational optimization, etc.).

Related work

Interpolated data has been little studied in the
database literature. In the area of data modeling,
[12] proposes to integrate external interpolation pro-
cedures in the SQL language, and to introduce addi-
tional clauses to specify new samples. We shall re-
view this approach in Section 2. To the best of our
knowledge, no other work aims at integrating in a uni-
form data model all kinds of interpolated data. How-
ever the area of DEM is well-established in computa-
tional geometry and Geographic Information Systems
(GIS) [18]. DEM are used to represent natural phe-
nomena which are continuously variable (temperature,
pressure, slope, etc).

Recently the management of mobile objects has re-
ceived much attention (see for instance the European
ChoroChronos Project [5]). The MOST (Moving Ob-
jects Spatio-Temporal) model, presented in [16], relies
on the concept of dynamic attributes which encapsu-
late motion information (speed + direction) of a mo-
bile object. A prototype, DOMINO [19], has been
implemented to test the capabilities of MOST.

An alternative approach is to consider mobile
objects as geometric objects embedded in a high-
dimensional space, and to specify the appropriate
data types and operations [2, 4]. This extends the
traditional approach of adding new types to han-
dle geo-referenced objects. In the area of constraint
databases [8], some works address the modeling of
spatio-temporal data [7, 1]. Relevant research con-
cerns indexing of mobile objects [9, 17, 14] and uncer-
tainty of spatiotemporal information [10, 13].

We investigated the functionalities of some commer-
cial systems regarding the manipulation of interpo-
lated data. Object-relational database systems such as
Oracle8 [15] or PostgreSQL [11] provide spatial types
(lines, polygons). This clearly relates to the entity-
oriented modeling of space which focuses on separate
entities (parcels, roads, etc), whereas we are rather
interested in phenomena that are continuously vari-
able. In geographic applications, this is referred to as
field-oriented data [20]. To the best of our knowledge,
there is currently no support for such data in object-
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Figure 1: Triangulated Irregular Network

relational databases.

Regarding commercial GIS, there exists a module
(ArcTin) dedicated to the management of DEM in the
Arc/Info [3] software. Tt is possible, through a specific
set of commands, to combine elevation data with clas-
sical maps. However the user needs to be aware of the
physical representation in order to apply the proper
operations. The Arc/View product proposes a sim-
pler language, Avenue, to create scripts that call spa-
tial operations provided by the core. As in Arc/Info,
there 1s no high level query language.

In contrast, the present paper proposes a quite sim-
ple logical model which hides to the end user the in-
ternal representation of data and the operations which
must be applied to this representation to evaluate a
query. In addition, the data model integrates nat-
urally mobile objects with spatial data, and consti-
tutes an innovative approach to the modeling of multi-
dimensional applications.

The remainder of the paper is organized as follows.
Section 2 presents the general issues related to the
modeling of interpolated data. We demonstrate the
need for a logical level and describe a generalized re-
lational framework. The algorithms are described in
Section 3 together with some practically motivated re-
strictions of the model. Various extensions of this work
are presented in the conclusion.

2 Interpolated data modeling

In this section, we consider different approaches to
modeling interpolated data, and their impact on the
way queries can be expressed.

2.1 Interpolated data

A Digital Elevation Model (DEM) is defined as a con-
tinuous function in two (argument) variables, that, for
convenience, we shall denote z and y, while h denotes
the result of the function. The most common example
of a DEM is the elevation (i.e., the height above the
sea level), but the model is relevant for any location-
dependent attribute (e.g., precipitation, temperature,
pollution, etc.).

DEM’s are generally based on a finite collection of
sample values, from which other values are obtained
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by interpolation. There are various ways to define the
interpolation, which mostly depend on the sampling
policy. The most interesting is obtained by triangu-
lated irregular networks, TIN’s.

A TIN is based on a triangular partition of the space
with no assumption on the distribution and position
of the vertices of the triangles. The elevation value
is recorded at each vertex, and inferred at any point
P by linear interpolation of the three vertices of the
triangle that contains P (see Figure 1).

Another category of examples originates in spatio-
temporal applications with phenomena depending
upon time. The trajectory of a moving object shares
some fundamental common properties with the pre-
vious example. A trajectory can be seen as a triple
of functions (fz, fy, fa) from the time ¢ to z, y and
a respectively, where a denotes the altitude. A finite
representation can be supported by a set of positions
Pi(x,y,a,t). The position at any time ¢ can then be
approximated by interpolating the two nearest posi-
tions.

So the data we consider are represented by:

e A finite collection of sample points, with their as-
sociated value;

e An interpolation function.

The manipulation of such data is a priori not
easy. Indeed, it imposes to reconstruct the input data
needed by interpolation, but also and more impor-
tantly to generate the way the output is itself interpo-
lated. Neugebauer proposes in [12] to integrate exter-
nal interpolation procedures in the SQL language. The
syntax of SQL is extended with (i) aggregate functions,
and (ii) so-called “table functions”, with the nesting
of queries in the from clause. Interpolated and non-
interpolated data are logically modeled differently, and
the user has to manage the interpolation.

Consider the example of a cross-section of a TIN
with, say, the plane defined by the equation z = 50.
We assume that a TIN is represented by a relation Fi-
evation which contains a collection of triplets (z,y, h),
and an interpolation function my-function. The syn-
tax of [12] leads to a query of the type:
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Figure 2: Erroneous samples and interpolation functions

select y, h

from  Elevation by method my—function(h)
entry (x=50, y= 200)
step (0, 10)

where y <= 500

The query corresponds to an operation which can
be decomposed in two steps. First the user specifies
an output sample, 1.e., a collection of points where
the elevation value i1s required. This is done with
the clause entry which defines the starting point,
the clause step which gives the distance for z and
y between two consecutively generated points and the
clause where which gives a bound for y. In summary,
these clauses define a set S of 31 points along the seg-
ment [(50,200), (50, 500)].

In the second step a user-defined interpolation func-
tion is applied to the input sample in order to get the
elevation value at each point of the output sample.
This is done with the clause by method which spec-
ifies the interpolation function my-function.

The explicit specification of the interpolation mech-
anism in the query syntax raises technical problems.
The most important one 1s the dichotomy between the
sampling and the interpolation. First it is the respon-
sibility of the user to associate an interpolation func-
tion to a sample stored in the database, and second the
result consists of a user-defined sample of points, with-
out any associated interpolation function. The distinct
manipulation of a sample and its interpolation func-
tion might contradict the proper semantics of the data
resulting from the integration of the two components.

This may lead to erroneous results and computa-
tion. Consider again the cross section of a TIN ac-
cording to a new user-defined sample of points and
the usual linear interpolation function f. The original
data is shown in Figure 2.a. In Figure 2.b, the sam-
pling defined by the user returns the even points of the
input sample, using the functions f one obtains a flat
line which ignores all the mountains. Again Figure 2.c
illustrates a bad choice of output sample: by consider-
ing only the middle points in each slope, one obtains a
result which is not representative either of the actual
data.

Although this can be considered as extreme cases,
these examples illustrate how a wrong specification
of samples and interpolation is likely to result in an
important loss of information. Moreover, the output
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sample must be guaranteed to be finite, and it is prefer-
able not to leave this responsibility to the user. If we
forget the where clause in the above SQI query, the
execution will generate an infinite sample of points.

The specification of the samples and the choice of
the interpolation functions should be made during the
data acquisition phase. It has an impact on the preci-
sion of the data stored in the database. We show that
for relational queries, the system can completely han-
dle the samples and the interpolation, and it is prefer-
able to prevent the user from having to take care of
the correctness of the specifications.

An immediate consequence 1is that the system
should be able to perform the necessary tasks by it-
self. In particular, it should generate the appropriate
output sample supporting the correct representation
of the result, and build this result by exploiting prop-
erly the interpolation over the input sample(s). This
should be managed in a systematic way by maintain-
ing a strong integration of the elements that constitute
the semantics of an interpolated dataset: the sample
and the interpolation function.

2.2 Abstract modeling

We show how data modeling can be achieved in respect
of these principles with the abstract data model. It
consists simply in the classical relational model with
infinite relations instead of finite relations.

Let us give formal definitions. We consider the uni-
verse R of real numbers. A (database) schema s is a
finite set of relation symbols together with their arity.
An nstance I of s is an interpretation of the relation
symbols by relations of the corresponding arity over
R. A queryis a mapping from instances to relations.

In the abstract model, a DEM will be modeled as
an infinite ternary relation, with attributes z,y, h, in
which for each tuple over z,y, there is a unique value
for h. Similarly, a trajectory is modeled as an infinite
4-ary relation, with attributes ¢, z,y,a, in which for
each value of ¢, there is a unique value for z,y,a. In
both cases we have infinite relations satisfying a func-
tional dependency. We will see the importance of these
dependencies in Section 3.

Standard relational query languages can be used to
query infinite relations, such as relational algebra or
SQIL. Assume now that the FElevation relation is an
infinite set of ternary tuples. The cross-section query



discussed above can be simply expressed as follows.

select y, h

from Elevation
where 200 < y <500
and x= 50

Note that neither the collection of samples nor the
interpolation function are visible. They are hidden
inside the data. This presents numerous advantages.

e Correctness The answer to the query is correct
since the user cannot use inaccurate samples, or
a wrong interpolation function.

¢ User-friendliness It allows the use of standard
query languages, with the usual operations (join,
intersection, selection, etc.) and a clear meaning.
Moreover, no need to worry about samples and
interpolation.

e Safety The answer to a query can be infinite. The
fact that it can be represented by interpolation
over a finite collection of samples is considered in
the next section.

e Uniformity Relations are all dealt with uni-
formly, whether finite or infinite, interpolated or
not.

We next present several examples of queries; ex-
pressed in SQL, which combine the various types of
relations in the schema. It is not relevant whether a
relation is finite or interpolated. The database can be
queried in a purely declarative way. We consider a
database schema with the following relations.

e A map Map(z,y,name) which gives (attribute
name) the ground occupancy (forest’, ’pasture’,
etc.) at location (z,y). The key is (z,y).

e The trajectory of an aircraft, Traj(t,z,y,a), a
being the altitude with respect to the sea level at
each time ¢. The key 1s .

e A TIN, TIN(z,y, h) for the height above the sea
level. The key is (z,y).

1. Give the altitude and location of the aircraft at
time t1.

select x,y, a from Traj where t = 't1’

2. Show the trajectory of the aircraft with the alti-
tude above the ground at each point:

select t,tl.x,tl.y,a-h
from  TIN t1, Traj t2
where tl.x=t2.xand tl.y = t2.y
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3. Show the forests between 1000 and 2000m.

select t.x,t.y

from  TIN t, Map m

where tx=m.xandty=m.y
and 1000 < h < 2000

and name = ’forest’

4. Show the parts of the trajectory where the aircraft
was above the sea, and higher than 10000m.

select 1.x,ly, L.t

from  Trajl, Map m

where m.x=lxand m.y=1ly
and name = ’sea’

and a > 10000

These queries are very simple to express, in partic-
ular because there is no need to think about the in-
ternal machinery (interpolation functions or samples).
Designing a query just involves viewing the data as
infinite relations. This offers a good logical interface
to the user’s need.

During the evaluation phase, the system must
translate automatically a query into operations on the
physical storage. Infinite relations need to be encoded
in some finite way to be effectively manipulated. The
last aspect of the data model is thus a data format
which supports the representation of interpolated re-
lations.

2.3 Data format

We distinguish two levels of representation of the data.
The abstract level, presented above, aims at keeping
the essential features of the relational paradigm. The
physical level supports the finite representation of in-
terpolated relations, and specialized algorithms on this
representation.

The finite representation is a compact encoding of
all the information pertaining to an interpolated re-
lation, namely the sample and the interpolation func-
tion. We first take the example of a TIN. Let {T" | i €
[1,n]} be a partition of the plane into finitely many
triangles 7". Inside each triangle 7%, the elevation h
can be computed by a linear interpolation from the
heights of the three vertices of 7%. In other words, for
all points p in 7% we have h = fi(p) where fi is a
linear function depending only upon i. Let t!(z,y) be
the Boolean predicate which returns true iff the point
(z,y) belongs to T%. The TIN is symbolically repre-
sented by the collection {t!, fi | i € [1,n]} such that:

TIN = {(z,y,h) [t'(z,9) A= fi(z,y)}, i € [1,n]}

The trajectory of a moving object can be repre-
sented in a similar way. The position of the object is
recorded at finitely many time points. This leads to



finitely many time intervals 7%. The speed of the ob-
ject is assumed to be constant in each interval. The
coordinates of its position at time ¢ are defined by
z =u't+2', y=vt+ 4y and a = w't + @', where ¢
is the index of the interval 7% which contains ¢, and
u’ v w' the respective speeds on the axis of the object
during that interval. The trajectory Traj(z,y, a,t)
can thus be symbolically represented by the collection
{1 fL Zj,f; | i € [1,n]} such that:
Traj = {(z,y,a,t) | I?Z(t) ANez=frt) Ny = f;(t)
ANa= f;(t)a i € [lan]}

where ti(t) is a predicate which is true iff ¢ is in the
time interval 7% and where fi, fé and fi are respec-
tively the linear functions uit—l-mi, vit-l-yi and wit+a’.

More generally, let R(ki,...kp, h1,...hg) be an in-
terpolated relation with key {ki,...k,} and inter-
polated attributes {hi,...h,}. We use the follow-
ing terminology: p is the interpolation dimension,
p + q the global dimension and the key-space 1s the

p-dimensional space over the variables {ki,...kp}.

Definition 1 The finite description of R relies on the
following components:

1. A partition {c*,i € [1,n]} of m, &, (R) in cells.

2. A set f};j,i € [1,n],j € [1,q] of linear functions.
Each f}h is defined only on the cell ¢ and gives
the value of h;.

R is represented as a collection of elements

(c'; f,il, .. .f,iq), denoted blocks.

The relations T'I'N and Traj described above admit
such a representation.

3 Query evaluation

This section is devoted to the evaluation of relational
queries on interpolated relations. The main character-
istics of the techniques, which allow to compute rela-
tional operators on the data format, relies on (com-
plex) geometric computation applied to the convex
cells of the interpolated relations, followed by (simple)
propagation to the other attributes using the interpo-
lation function.

As shown in [18], this principle is verified for many
classical operations on interpolated data, such as inter-
section and difference of TIN’s, cross-section of TIN’s,
window and point queries on TIN’s, which require
only algorithms for data of the interpolation dimen-
sion (generally 2). This suggests that the set of inter-
polated objects defines a subclass which does not need
the full power of geometric computation in the global
dimension.

The operations on TIN’s mentioned above are eas-
ily expressed with a relational query on the abstract
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relations. If we consider these operations one by one,
one can easily find an evaluation strategy which is op-
timal. We design a general strategy which guarantees
that queries are evaluated with geometric operators in
low-dimensional spaces.

In fact we need to ensure both reasonable evalua-
tion complexity and query closure. The first require-
ment implies working on databases consisting of in-
terpolated relations with the interpolation dimension
bounded by 2. Indeed, the time complexity of manip-
ulating objects in dimension 2 is low, and the algo-
rithms are rather simple to implement. To this end we
require that the keys k; and k; of two distinct relations
are orthogonal, that is either k; C k; or ks Nk; = 0.
The second requirement of query closure means that
queries should deliver interpolated relations. In or-
der to achieve this, we need to restrict the relational
queries considered. First we concentrate on conjunc-
tive queries to avoid negation. Second we require that
the key of the output relation is a key of some of the
input relations. We call key-restricted such queries.
This 1s fundamental for the computation which aims
at preserving the functional dependencies, and needs
to identify the key during the query evaluation process.

In summary, we study the evaluation of conjunctive
queries mapping an interpolated database to an inter-
polated relation, such that the interpolation is always
based on one of the well-identified key-spaces of the in-
put schema. Typically these key-spaces will be space,
time, etc. Consequently, the evaluation of queries can
be reduced to some operation on the key attributes,
followed by an easy propagation to the interpolated
attributes via the proper linear interpolation function.

The algorithms relies on a small set of primitives
which operate on the cells of the key-space, and the
geometric part of query evaluation is reduced to these
primitives. The list of primitives is given below.

1. Projection, proj,(c), projects the cell ¢ on the
variable v.

2. Intersection, inter(ci,cs), computes the cell
corresponding to the intersection of ¢1 and ea.

3. Range, range(c, f), for any linear function f and
convex cell ¢, computes the interval [fiin, fmaz],
image of ¢ by f.

In dimension 2, these primitives enjoy a very low
time complexity (and can be found in most systems
handling spatial data). For instance, it suffices to scan
the n vertices of a convex polygon to compute proj and
range. The intersection of convex sets in dimension 2
is an easy task, since several simple algorithms com-
pute the intersection of convex polygons in O(n) [6].
Now, the algorithms exploit the interpolated form of
the data in order to organize the evaluation as a com-
bination of these primitives.
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Figure 3: Evaluation of ¢ = 0o,z 4a,y+anh=s(TIN)

We illustrate this intuition with several examples.
They are all based on a simple schema with two rela-
tions: TIN(x,y, h) which gives the height above the
sea, and Traj(t, z,y,a) which describes the trajectory
of an aircraft, x, y being the usual variables related to
the 2D-space, and a the altitude (w.r.t the sea level).
The keys are (z,y) for the relation TIN and ¢ for the
relation T'raj, all the other attributes being interpo-
lated from their respective key.

Selection

The following example illustrates how the selection can
be done efficiently by substitution techniques.

Example 1 Consider the query ¢ with the selection
1 = Coapota,yt+anh=a(TIN). This computes the part
of the TIN which is contained in a sub-space H defined
by a,x 4+ ayy + aph = 3, an operation which a priori
involves a 3D object. Let s be one of the blocks of
TIN, represented by

(¢*; f7)

where ¢* is the cell (triangle) in the key-space cor-
responding to the block s and f; the linear function
interpolating h on ¢*.

Selecting the points of the object represented by s
which are also in H can be achieved by considering
those points in H such that h = f/(z,y). One can
thus substitute h by f;(z,y) in the equation of H.
This defines a new object H* as the set of points (z, y)
which satisfies azx + ayy + ap fi(z,y) = B a convex
object in the 2D key-space.

Finally, the selection is performed by an iteration
on the set of blocks which performs at each step the
operation inter(c®, H*) and returns the block:

(inter(c®, H*); fi)

The interpolation function remains unchanged, while
an intersection is computed upon the key attributes z
and y with the inter primitive.
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This is depicted in Figure 3. A block s can be seen
as consisting of two parts: first a cell ¢(z, y) in the 2D
space defining a “cylinder” in the 3D space, second this
cylinder is “cut” by a hyperplane (the function A =
f(x,y)). Whenever a selection is performed, it suffices
to evaluate the operation on the cell. For instance the
selection 0o, o4a,y+anh=p(s) defines a new object 5" as
a restriction of the initial convex polygon. This yields
a new cylinder, cut by the same function f. a

We denote as o*u?** this operation. Tt illustrates a
simple substitution technique, based on the interpo-
lation function, which reduces the 3D operation of a
selection into a primitive applied to the cells.

Join

We now examine the techniques for more involved
queries featuring selection, join and projection. We
start with an example of a join which can be processed
using substitution techniques similar to the previous
example.

Example 2 Consider a query giving the values of £,
z and y when the aircraft was over a ground with al-
titude over 1000. The output key is ?.

select t, Traj.x, Traj.y

from  TIN, Traj

where h > 1000

and TIN.x = Traj.x and TIN.y = Traj.y

The algebraic expression is
Ttwy (TT(lj X Uh;lUOO(T[N))

First the selection can be evaluated with o as
before. The query involves then a join which delivers
pairs of blocks [r, s], from T'IN and Traj respectively,
of the following form:

(r) (" (x,y) ; h=fi(z,y)

() (d(t); x=g3(t) , y=gy(t) , a=ga(t))

subst
)



where ¢” and d* are respectively a triangle in the space
(#,y) and a time interval. It is possible to drop out the
terms h = f} (z,y) and a = ¢} (¢), which do not play a
role in the query anymore. The join operation creates
then structures, associating blocks, of the form:

[e"(z,y); d°(t) ; = =g5(1),

The join can be evaluated by first performing a gen-
eral substitution that replaces the variables z and y
according to their interpolated definition. One obtains
structures of the form:

[d°(1) 5 ¢ (92 (1), 9y() 5 & = g2 (1) ,

By computing d’ = inter(ds() (g (t), 5 (1)),
one gets the result of the join as a block in he ap-
propriate format (d'(t);z = g;(t),y = g,(t)). Note
that the interpolation functions for z and y remain
unchanged. O

y=gy(1)]

Y = gy(t)]

So far we have simply exploited the functional de-
pendencies to perform substitutions. We develop a
more involved example of application of the substitu-
tion mechanism within the next example.

Example 3 Consider the query computing the
ground level under the trajectory of the aircraft. One
obtains a profile curvature which gives the altitude of
the ground at each point of the polyline on [z, y]. The
query is:

select TIN.x, TIN.y, h
from  TIN | Traj
and TIN.x= Traj.x and TIN.y = Traj.y

The algebraic expression is g 4 n(TIN X Traj).
The query is very similar to the previous one, but the
final key is [z, y]. We therefore need to rewrite the in-
termediate structure associating blocks using the de-
pendency functions in order to get the appropriate key.
As in the previous example the intermediate structure
has the following representation:

[e(z,y) ; h= fu(z,y);

All the information pertaining to ¢ is an interval d =

tmin < 1 < tmar and two functions ¢ = g,(¢) and

Yy = gy(t). These functions' can be put in the form
— =1 _ -1 . .

t =g, (z) and t = g, (y), and this allows to rewrite

the system as follows:

[C(:’:;y) 3 tmin < gy_l(y) < tmas ;
97 (@) =97 () ; h=falz,y) ;s t = g7 (y)]

IThroughout this presentation, we assume that no degen-
erate case occurs. In particular, a linear function can be in-
verted, and two distinct functions are assumed to be linearly
independent.

dt) ; 2 =go(t) , y = gy(t)]
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The representation tmin < gy_] () < tmas ; g;] (z) =
g;l(y) describes a segment seg in the 2D space. In or-
der to get the correct result of the join in the right data
format it suffices to compute inter(c, seg). Finally one
removes the last term (¢t = g;l(y)_) to complete the
projection. O

We can now explain the general computation re-
quired for a join operation. It should be noted that
any join involving two interpolated relations can be
reduced to a join involving the key-spaces. Indeed, we
can substitute, in each block, any interpolated variable
by the proper function on the key. So, during a join
Ry X Ry, the computation is based on intermediate
structures of the form:

[cr(a:,y) ) Cs(uav) 5 fla"'afn]

where ¢"(z,y) and ¢*(u,v) are cells from respectively
Ry and Rs, and the f;’s are linear functions over the
variables (2, y, u, v). These functions define a mapping,
M, which associates the key-space of R; to the key-
space of Ry (recall that the key-spaces are orthogonal).
We denote by A the subset of the points of ¢” whose
image by M intersects ¢*, and by B the subset of the
points of ¢* which are image by M of some point of
¢ (see Figure 4.a). Computing A and B (and keeping
the functions) is sufficient to evaluate the join. Intu-
itively, the points in A and B are in relationship via
the mapping M, and thus qualify to the join semantics.
Let us assume first that the mapping M contains at
least two functions (one for each coordinate). In that
case, the first two functions can be rewritten as :

m={

where m defines a one-to-one linear application be-
tween the two key-spaces. Now, in the remaining func-
tions, u and v can be replaced by f(x,y) and g(z,y),
and thls yields a cell ¢(z,y). The sets A and B can

thus be easily obtained as follows:
(1) compute o = inter(c”, c),
(0),¢%),
(3) compute A = m~1(B).

(2) compute B = inter(m

We consider now the case where there is only
one function that links two key-spaces of dimen-
sion 2: M defines in that case a “loose”
tion between the two key-spaces. Imagine, for in-
stance, that the association between the space (z,y)
and the space (u,v) is reduced to the function v =
fu(z,y). The computation relies on range and proj:
first one computes range(c”, f,) = I = [Vmin, Vmaz);
and B = inter(l,c*). Then A is obtained as
inter(f~1(proj,(B)),c"): see Figure 4.b.

connec-
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v proj V(B)€]
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b. A mapping with a single function.

Figure 4: Evaluation of a join

We denote by JOINCELLS this operator. Tt takes as
input two cells from two distinct key-spaces, a set of
functions, and constructs the sets A and B. Essen-
tially, the techniques consist of some simple manipu-
lations from linear algebra to compute the image of
a cell by a system of linear functions, and the prim-
itives inter, range and proj. The join algorithm can
be described as a simple nested loop which evaluates
JOINCELL at each step.

The following example gives a new, general strategy,
based on the JoINCELLs algorithm, for evaluating the
queries presented in the Examples 2 and 3.

Example 4 We focus on the computation of the join
TIN XM Traj. The algorithm JOINCELLS operates
on a cell ¢"(z,y) from TIN, d*(t) from Traj, and
the set F of functions {g,, gy} which link the key-
space time(t) to the key-space space(z,y). In order
to evaluate the join, we compute JOINCELLS(C’", F,d*),
which yields A = inter(d*(t), ¢"(g;(t), g, (t))) and B =
inter(c” (z,y), seg(z,y)) (seg is the segment defined by
tmin < gy (J) < tmaz A 9z (33) - gy (J))

By replacing d® with A, and ¢" with B, one obtains
the following result:

[A; Z:gx(t), h:fh(may,); B]

So we computed the correct values on the cells, and
kept the interpolation functions unchanged. From this
result we can either project on (¢, z,y), by removing
B, g, and fp, or on (z,y, h) by removing A, g,, g, and
ga- We get the results of Examples 2 and 3. |

y=gy(t),a=galt),

We can directly relate the geometric complexity of
queries to the interpolated dimension of the relations
involved in the query. The intersection of two trajecto-
ries for instance does not even require a computation
in the 2D space: operations on time intervals suffice.
With opportune restrictions preventing the creation of
non-interpolated objects, it i1s possible to extend the
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set of geometric primitives (with 2D union and 2D dif-
ference for instance) in order to be able to evaluate
more queries.

4 Conclusion

We investigated the modeling of several innovative ap-
plications involving for instance mobile objects or digi-
tal elevation maps. Our goal has been to develop user-
friendly and efficient query languages, based on stan-
dard techniques. We demonstrated the need for a logi-
cal modeling clearly separated from the physical level.
In particular, we proved that the collections of sam-
ples together with the interpolation functions should
belong to the physical level, and be hidden from the
user, therefore resulting in query languages without
special primitives.

One of the contributions of the paper is to show that
such an approach is possible with simple formalization
of these data in the relational framework, together
with a data format which provides a compact rep-
resentation and supports the evaluation of relational
queries. A striking aspect of the model is the ability
to express SQI. queries on geometric data without any
geometric skill.

A challenging issue in this context is the complex-
ity of query processing, which strongly depends upon
the dimension. Hence, a crucial property of query
languages for multidimensional data should be the
independence of the complexity of query evaluation
from the dimension of the embedding space. Fortu-
nately, interpolated objects can be manipulated at a
cost which depends essentially upon the dimension of
the key-space, and not of their global dimension. We
described a set of algorithms which are used for query
evaluation.

The present approach offers a great potential for op-
timization. First the use of standard relational query
languages allows to rely on existing techniques. More



importantly, the physical data independence leaves full
control to the system over the definition of the sample
collections. In some cases it allows the use of indexes
in the collection of samples that would not be possible
if they were user-defined.

The current setting assumes keys of dimension at
most 2. This restriction is motivated by complexity
Indeed, objects of dimension 2 can be ef-
ficiently manipulated and the implementation of the
operators is relatively simple. It is straightforward to
generalize the 1deas to keys of higher dimension k& > 2.
In this case, the evaluation is performed using opera-
tors in dimension k.
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