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Abstract

The ability to maintain transactional interaction in
a distributed system has proven to be a key feature
in information systems. Unfortunately, as technology
moves towards more distribution and decentralization,
it becomes increasingly difficult to use existing trans-
actional tools. In fact, current solutions are entirely
unsuitable for what we call composite systems. Com-
posite systems can be characterized as a collection of
distributed, autonomous components, linked in an ar-
bitrary configuration. In this paper, we describe Chee-
Tah, a Java based set of tools for building composite
components capable of interacting transactionally in
arbitrary, dynamically changing configurations. We
describe the technology provided, how designers would
use it to build composite transactional systems, and
examine in detail the performance of the resulting so-
lution. Among the results we have achieved, the per-
formance and the simplicity of use are of particular

interest.

1 Introduction

Transactions greatly facilitate the task of dealing with
failures, recovery, and concurrency control. They also
allow to encapsulate operations and associate concrete
semantics to them. Tools that provide transactional
primitives for the design and development of informa-
tion systems have a long history behind them, start-
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ing with the first TP-monitors [BN97] of almost three
decades ago. Today, transactional technology is well
understood and widely used.

In spite of this success, there is a growing number
of applications for which existing tools are not suit-
able. The main problem is that current products use
a centralized component for scheduling transactions
[BK99]. To centralize operations in this way might be
exceedingly difficult if the components reside in dif-
ferent organizations or if the components interact over
the Internet. It may also be quite difficult in large web-
farms or in clusters expanding several LANs. Unfortu-
nately, none of the existing alternatives quite solves the
problem. For instance, the TIP protocol [LEK99] pro-
vides a limited form of atomicity but no concurrency
control. Similarly, persistent queues [IBM99] provide
atomic asynchronous interaction but concurrency con-
trol cannot be easily enforced. In practice, we do not
know of any tool or product that supports transac-
tional interaction without a centralized monitor and
without enforcing a static configuration of the compo-
nents. We see this as a significant limitation in the
current state-of-the-art.

At ETH Zurich, we have made this limitation one of
our main research themes and have studied its the-
oretical aspects in great detail [ABFS97, AFPS99a,
AFPS99b]. In this paper, we show how a system de-
signer can use the set of tools we provide to build
completely autonomous components that, without any
centralized coordination, can interact transactionally.
The components act as application servers that in-
voke each other’s services to implement increasingly
complex application logic. The components can be
combined in any configuration and can be dynamically
added or removed without compromising correctness.
They can be used as wrappers for legacy applications
or as infrastructure for transactional agents working
across the Internet. They can also be used as EJB
containers in the Java Business Components paradigm
[EJB]. Our approach has the significant advantage of



not requiring a very large infrastructure. All a de-
signer has to do is to instantiate and extend a number
of classes. In addition, our performance results show
that the technology we have developed is not only vi-
able but also quite adequate to the task at hand.

The paper provides an example of composite systems
(Section 2), describes CheeTah (section 3), and pro-
vides an extensive performance analysis (Section 4),
before discussing future work (Section 5). Readers
interested in additional information about CheeTah
(including a longer version of this work in the form
of a technical report) can consult our web pages:
www.inf.ethz.ch/personal /pardon/Chee Tah.html.

2 Motivation: state of the art and re-

lated work

2.1 Composite systems

We are interested in distributed and dynamic envi-
ronments where a collection of different, autonomous
information systems interact transactionally. We call
such systems composite systems. Figure 1 is an exam-
ple of such a composite system. The figure illustrates
the hierarchy of invocation calls between different ser-
vices across a variety of components (e.g., purchase
access system, product catalogue server, etc.). Each
component is implemented as an independent entity
residing in a different location. These components in-
voke the services provided by other components (Fig-
ure 1.a) forming an arbitrary nested client-server hi-
erarchy in which increasing levels of abstraction and
functionality can be introduced (Figure 1.b).

In our model, each component consists of an appli-
cation logic layer (a server) that provides access to a
resource manager (usually a database). The aim is
to design and implement a mechanism that allows to
combine such components in any possible configura-
tion so that transactions can be executed across the re-
sulting system guaranteeing (transactionally) correct
results even if the configuration is dynamically altered.
Moreover, these application layers must remain inde-
pendent of each other, that is, there should not be a
centralized component controlling their behavior.

2.2 Transactions in composite systems: theo-
retical aspects

Composite systems pose quite challenging problems
from the theoretical point of view. At a first sight (Fig-
ure 1.b), one could think that a composite system is
simply another version of nested [Mos81] or multilevel
transactions [Wei91]. However, there are some fun-
damental differences that introduce non-trivial prob-
lems when deciding on correct executions. One im-
portant new aspect is that each scheduler is now en-
tirely independent for concurrency control and re-
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covery purposes. Another key difference is that the
structure is not regular: schedules cannot be repre-
sented as balanced trees. These problems were first
addressed in [ABFS97] where an extension to nested
[Mos81, BBG89] and multilevel transaction theory
[BSW88, Wei9l] was proposed. In [AFPS99b] three
basic configurations of composite systems were stud-
ied in detail. The basic configurations considered were
the stack, the fork, and the join. These cases can be
readily identified in Figure 1.b: Sg forms a fork with
Ss, S10 and S;. Similarly, S7, S5 and S7; form a
stack while S19, S7 and S12 form a join. Finally, in
[AFPS99a] a general solution to the problem of com-
posite systems was suggested by formulating a correct-
ness criterion for arbitrary, dynamic configurations of
composite systems.

2.3 Transactions in composite systems: prac-
tical aspects

Most existing systems use a flat transaction model
where resources allocated to the transaction (locks,
sockets, connections, and context information) are
kept until the transaction commits. This is a concern
for system designers due to the overhead it introduces
[Moh98]. In composite systems, the limitations of the
flat model become even more acute. Note that, in the-
ory, one could use open nested transactions [GR93] to
avoid these limitations. Open nested transactions al-
low to release resources of each subtransaction before
the global transaction commits. The only requirement
is to have a compensation action for the subtransac-
tion in case it needs to be aborted. Although open
nested transactions have been discussed in the litera-
ture and their theoretical advantages are well known,
there are very few examples of successful implemen-
tations. Even in those systems where closed nested
transactions are supported (e.g., Encina [Cor95] or in
the CORBA specification where they are an optional
feature), there are significant practical problems that
have not yet been adequately addressed. As an ex-
ample, most database products do not support nested
transactions. As a result, many of the advantages of
nested transactions are lost by having to map them
to a flat model. In practice, there are two ways to
do this mapping. One is to map each subtransaction
to a different local transaction. The other is to map
all subtransactions of the same root to a single local
transaction. If each subtransaction is converted into a
separate local transaction, a transaction will deadlock
itself if there are conflicts among the subtransactions.
This behaviour can be observed in, e.g., Encina. If all
subtransactions are mapped onto a single local trans-
action, concurrent subcalls are not safe because sub-
transactions are not isolated from each other. More-
over, this mapping has to be specified as part of the
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Figure 1: Invocation hierarchy (a, left-hand side) and transactional structure (b, right-hand side) in a composite

system

server configuration, meaning that it can not be dy-
namically changed by a client. For instance, if some
client wishes its subtransactions to be executed in par-
allel, it has no way of asking a server to treat its calls
as different transactions in the local database. These
limitations have often been used to argue that closed
nested models are not feasible in practice, let alone
open nested models. CheeTah provides an alternative
solution to this and many other problems associated
with the implementation of nested models. In fact,
CheeTah proves that open nested models are feasible
and can be used in practice. In CheeTah, we use an
open nested model where subtransactions are always
different local transactions, but we take care of pre-
venting deadlocks while still releasing resources early
enough to significantly improve performance.

3 The CheeTah approach to transac-
tional interaction

3.1 System architecture

The main idea behind CheeTah is to provide a light-
weight architecture where each component is in itself
its own advanced mini-transaction processing monitor.
To accomplish this, CheeTah has been implemented
as a set of Java classes. The resulting architecture is
as follows. In a composite system (Figure 1.b), each
server (from Sy to Sis) is an independent component
performing its own scheduling and transaction man-
agement. These servers are built using Java and in-
heriting from the classes Cheetah provides. The inter-
face to each server defines the services it implements.
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An invocation of one of these services (through RMT)
results in the creation of a local transaction (child of
the invoking transaction and parent of any transac-
tion that might be triggered by invoking the services
of other servers). Fach transaction is a thread that
can invoke SQL statements in a local database (di-
rectly connected to that server) as well as services of-
fered by other servers. All the information required
to build a global composite transaction is implicitly
added by the system to each call. However, it is im-
portant to emphasize that each transaction is inde-
pendently handled at each server. That is, the servers
neither communicate among themselves nor rely on a
centralized component to make scheduling or recovery
decisions. In this way, components can be dynamically
added and removed from the system without compro-
mising correctness. All a new server needs to know is
the interface and address of the servers it will invoke.
Regardless of the configuration, CheeTah guarantees
that transactions executed over these servers will be
correct (serializable) and recoverable at a global and
local level.

3.2 Scheduling and concurrency control

For notational purposes, ¢ will denote a local transac-
tion in a server. Each incoming RMI invocation trig-
gers a local transaction: start(t) will be the start of the
transaction, commit(t) the local commit, abort(t) the
local abort, and globalCommit(T)/global Abort(T)
the notification to the server where ¢ runs that 7', the
root transaction (root is the term we generally use for
the top-level transaction) of ¢, has committed/aborted.



In each server, concurrency control and scheduling are
based on call level locking. That is, checking for con-
flicts is done at the service level and not merely at
the level of the operations used to implement those
services. Internally, each server uses traditional 2PL
to guarantee correctness using standard mechanisms
[GRI3] but these resources (including connections and
internal locks) are always released upon commitment
of a local transaction. Call level locks are also acquired
following a 2PL discipline but they are kept until the
global transaction terminates or until the server uni-
laterally aborts the corresponding local transaction.

A call level lock is always acquired when a service is
invoked. With each server, a conflict matrix needs to
be supplied by the programmer. This matrix consid-
ers the effects of the forward operation and also of the
compensation of an operation. An important charac-
teristic is that, unlike in classical multilevel models,
the conflict matrix for our system needs to take only
local effects into account: whatever is done by remote
calls is handled at the remote server. This greatly sim-
plifies the task of identifying conflicts. Informally, we
say that two call level locks, I; and [, obtained on
behalf of two local transactions (service invocations)
t1 and t5, conflict if t1 conflicts with ¢4 or 5 conflicts
with uq, uy being the compensation of ¢;. For simplic-
ity, we currently use a symmetric conflict table but
this can be easily changed if necessary. There is also
the possibility of defining conflicts on item level gran-
ularity (i.e., conflicts are only possible if both ¢, #;
are on the same data item) or on service granularity
(invocations of t1, t3 always conflict regardless what
item is accessed).

Although this locking strategy provides correctness,
the arbitrary configurations possible in a composite
system require a more sophisticated treatment of call
level locks. The key problem is that without any ad-
ditional information, a server cannot distinguish be-
tween invocations that have nothing to do with each
other and invocations that actually belong to the same
root transaction (siblings). In the former case the or-
der of execution is not relevant. In the latter case it is
relevant. Not to be able to distinguish between these
cases can quickly lead to inconsistencies and incorrect
executions. Closed nested transactions avoid these sit-
uations by simply blocking all conflicting calls. In a
composite system, if a server were to block invoca-
tions from siblings, a transaction could easily dead-
lock itself (which does happen in existing implementa-
tions of closed nested transactions). Preventing such
deadlocks would require to have knowledge of the con-
figuration, which contradicts the spirit of composite
systems. To avoid such problems, an additional rule is
observed at each server: if ¢; and t5 conflict but both
are children of the same root transaction, they can
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both be executed provided that they are not executed
in parallel. This implies that start(t2) must happen
after commit(t;). With this rule, the scheduler can
now block conflicting invocations from other transac-
tions and allow conflicting invocations from the same
transaction to proceed.

3.3 Implementation of locking

Each incoming request to a server is mapped to a
thread (since they are RMT invocations, this happens
automatically). Setting the corresponding call level
lock is done by the thread by creating an entry in the
local lock table. If there is no conflicting lock, the
thread proceeds to execute the code implementing the
service. Otherwise, the thread returns with an excep-
tion (implying rollback of the local transaction). By
immediately returning an exception, we force the client
to be programmed in such a way so as to take into
account that an invocation may not succeed the first
time. On the other hand, resources are more readily
available and allow ongoing transactions to terminate
sooner.

To facilitate the identification of siblings, the system
automatically includes the root id with each RMI call.
For faster checking, the root id of a transaction is in-
cluded in the lock table with the corresponding call
level lock. Incoming requests are checked against the
corresponding call level lock to see if they conflict and
whether they are from the same root transaction.
Lock table management in CheeTah is done follow-
ing Gray and Reuter [GR93], although the conflict in-
formation is more detailed (because of the call level
mechanism and user-defined semantics).

3.4 Atomicity: Recovery and undo

At each server and for each service there is an undo op-
eration provided by the designer of the service. Undo
operations are local: only the local database updates
are compensated. In case of abort of siblings, exe-
cuting all conflicting undo transactions for the same
root in the reverse order of their respective executions
guarantees that all changes are undone. Any remote
calls will be handled by the undo transactions on the
remote servers involved. If no undo operation is pro-
vided, the invocation of the service will be treated as
a closed nested transaction: resources are not released
until the termination of the global transaction.

To be informed about the fate of a transaction, we use
the root id (automatically propagated with the RMI
call). If the local transaction is still being executed
and needs to be aborted, it is undone using tradi-
tional mechanisms. If the local transaction needs to
be aborted after having been committed, the undo op-
eration is used. The call level lock guarantees that the



undo operation can be applied. If the root transaction
commits, then an optimized form of 2 Phase Com-
mit is used to commit all subtransactions throughout
the system (releasing the call level locks). Note that
for early committed subtransactions, this termination
protocol simply involves releasing call-level locks, write
a log entry and cascade the decision to any remaining
servers.

3.5 Implementation of Atomicity

A global transaction is committed using a cascaded
variant of 2PC: each server assumes the role of co-
ordinator for all servers it invokes. To speed up
the process, different servers are contacted in paral-
lel: each communication round in the two-phase com-
mit protocol is implemented by one separate thread
per server involved. The two-phase commit proto-
col uses the root identifier as the label to indicate to
each server which subtransactions are to be commit-
ted. Just like all other communication in CheeTah,
2PC happens through RMI. This solves problems with
firewalls, because RMI calls can automatically be tun-
neled through http. A negative acknowledgement (a
NO vote) is implemented as a RemoteException being
thrown.

In addition, and also for reasons of efficiency, it is not
always feasible to wait until the root decides to abort
or commit. For instance, servers could be disconnected
from the rest of the system or network partitions may
In those cases, and given that the system is
built upon independent components, each server has
the right to undo local transactions on its own — as long
as it has not heard from any global outcome. After
the undo, all local locks and the call level lock can be
released. The “right” to undo a local transaction has
to be constrained, otherwise a server could undo its
local transaction during the time the global commit
message travels through the system. Thus, when a
server receives a prepare message and agrees to it, it
loses the right to perform a server-side undo.

This approach is complicated by the fact that RMI
does not provide ezactly once semantics. More pre-
cisely, the failure of a remote call does not necessarily
mean that it has not been executed. It could have been
executed, leaving behind a locally committed transac-
tion (#1) and the corresponding call levels locks set.
The invoker, however, sees the call fail and may think
the transaction has actually aborted. In that case, the
server will eventually time out and undo the transac-
tion locally, releasing the call level locks. This might
result in incorrect executions if — on that server — later
(successful) calls exist for the same root transaction.
Let ¢2 denote one such sibling subtransaction executed
right after ¢;. Locally undoing ¢; with u; will only be
correct if the sequence #; ty wuy is equivalent to the

occur.
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sequence t1 uj tg or tg t1 uy. To avoid these and sim-
ilar problems, we have taken an expeditive approach.
When a server propagates a globalC'ommit operation,
it adds to the message the number of invocations it
has made to a given server on behalf of the root trans-
action to be committed. The server that receives the
globalCommat checks this figure against its own. If
they match, then the commit protocol proceeds. Oth-
erwise, the transaction will be aborted. Since in the
latter case there are discrepancies about what has been
done at each node, aborting seems to be the safest op-
tion.

To keep track of all the information needed to perform
these operations, CheeTah relies on logging. FEach
server keeps a log-table and an undo-table inside its
local database. As soon as a transaction commits lo-
cally, the log-table reflects the fact that the transaction
made local changes (needed after recovery). The undo-
table contains the needed parameters for executing a
compensation if necessary. All this data is written in
the same transaction as the user’s logic, thereby reduc-
ing the number of database transactions to a minimum
(one, in this case). A file based log is used to keep
track of the two-phase commit status of a transaction
after it has been locally committed. On recovery, the
system can determine the right action by inspecting
the log-table in the database and combining this with
the external log file information. For instance, upon
restart, a transaction may appear in the database log
table but not in the external log file. This is a transac-
tion that locally committed but without a global out-
come. The transaction will be compensated as part of
the restart procedure, thereby ensuring consistency.

3.6 Dealing with undo operations

Undo operations play an important role in CheeTah.
Thus, a key question is whether we can always undo
an operation. In this regard, it is important to em-
phasize that we rely on the service designer to provide
the undo operation. Since in CheeTah the program-
mer only needs to worry about the data integrity of
the local server, writing undo operations is relatively
straightforward. Nevertheless, if no undo is provided,
the system will simply retain resources until the root
commits as it is done in existing products. The advan-
tage of CheeTah is that knowledgeable users can ex-
ploit open nested transactions to significantly increase
the degree of parallelism.

From the concurrency control point of view, executing
an undo poses no problem because there is a lock on
the corresponding service. If an undo operation needs
to be executed, it will always be serialized immediately
after the operation it is supposed to undo. However,
writing undo operations can be made quite complex
by the underlying database system. The typical prob-



lems involve dealing with constraints and triggers. In
general, as long as there are no non controllable side
effects (triggers or constraints that the system — or
its programmer — does not know about), CheeTah can
handle these cases just like any existing system han-
dles them. That is, by blocking concurrent updates to
the same items; so-called strict 2PL behaviour.

From our experience working with CheeTah, the
knowledge necessary to write undo operations can be
compared to what a typical database designer has to
know about isolation levels to ensure data consistency
in the local database.

3.7 Optimizations of Logging and Locking

Any information that the undo operation may need
must be persistently stored (logged). With CheeTah,
doing this is quite easy. The programmer only needs to
push any information needed for the undo into a stack
object. This information can be the value of certain
variables, the tables used for the undo, transaction
id’s, and so forth. When the transaction commits,
this stack object is written into the log table. In case
an abort occurs, the system restores the transaction’s
undo stack. The undo operation can then read this
object and proceed.

When creating the log entry, we use a very impor-
tant optimization. If this information were saved as
an insert into a logging table, and eventually discarded
by a corresponding delete, performance would be very
poor. Rather, CheeTah uses a pool of undo entries in
a fixed-size table (a parameter that can be changed
if needed). This table is indexed on a numeric in-
dezx entry. The server component keeps in RAM a list
of available entries in the logging table, and allocates
them to a transaction when needed. Storing undo data
is done by updating the log table, rather than inserting
into it. Without this technique, we would never have
been able to reach the current performance.

3.8 A CheeTah Server

With these ideas, the structure of a CheeTah server
can be summarized as shown in Figure 2. The struc-
ture depends on the particular application, the one
shown here being the same one we have used for our
experiments.

The server simulates a purchase point where a number
of different items can be bought. The interface to the
service is a method, Buy, that takes as argument the
id of the item to be bought, itemid. The method is
implemented as a Java program that makes calls to a
local database and invokes the services of other servers
(through RMI calls). This is the code that needs to be
implemented by the designer. The lock table provided
indicates that two invocations to the Buy service con-
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flict if they have the same itemid (i.e., they are buying
the same thing). Each server uses a local database
(currently Oracle8) for storing its own data (log and
undo tables) and also to act as the local application
database. Access to the database takes place through
a JDBC interface using connection pooling.

The server also uses the local file system to store ad-
ditional information (namely, the global log used to
track the progress of 2PC). Each server has concep-
tually (internally they are deeply intertwined) three
transaction managers (incoming TM, internal TM and
outgoing TM). The incoming TM takes care of the in-
coming RMI calls and uses the call level lock table to
determine what to do (whether to proceed or to return
an exception). It also produces the entries stored in
the file system log (related to 2PC) and the undo ta-
ble. Context information, root id for the transaction,
overall status and any additional information related
to the composite transaction is stored in main memory
and managed by the incoming TM. Messages about
termination of global transactions are rerouted to the
incoming TM where they are processed as explained
above. The internal TM takes care of internal consis-
tency (access to shared variables and internal data, as
well as access to the local database). Tt produces the
entries in the database log table and it is in charge
of rolling back active transactions if they are aborted.
Once a transaction commits locally, the internal TM
discards all the information related to this transaction.
The outgoing TM is quite limited in that it only adds
the root transaction data to each remote call.

4 Performance Analysis
4.1 Application Scenario and Parameters

The tests performed are based on the component
shown in Figure 2. For simplicity, the server imple-
ments one single service invoked with different items
as argument. The service is implemented as a Java
program that performs a number of internal opera-
tions, including a short local transaction (updating the
record with key itemid) and one service invocation for
Both the local trans-
action and the Java program itself have been kept as

each server on the next level.

short as possible to make sure the measurements re-
flect the overhead caused by CheeTah and not that of
the database or the JVM.

The experiments conducted were based on a total of
10 different system configurations, ranging from the
simple wrapper mode (/z1) to complex invocation hi-
erarchies (3z3 or 422) including well-known structures
like federations (2z5) (see Figure 3 for an example).
The goal of the experiments was to analyze the per-
formance of CheeTah and to better understand the im-
pact of system depth and system width on the overall
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performance. For each root transaction, the depth of
the system indicates the height of the transaction (how
many levels until the leaves are reached). The width
of the system indicates how many direct subtransac-
tions each (sub)transaction has. Thus, for instance,
in the 323 configuration each subtransaction has three
children (the root has three children and each one of
these subtransactions has another three children). To
indicate how many subtransactions are executed on
behalf of a given root transaction, we use C, the car-
dinality. Thus, the 323 configuration has a cardinality
of 13 (the root, plus three children, plus three children
for each child of the root). Since invocation of child
subtransactions is done serially, the width of the sys-
tem significantly affects the time it takes to execute a
transaction.
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In all but two experiments transactions conflict when-
ever they access the same item. Only for the configu-
ration 422 we tested conflict reduction through seman-
tics on the higher level. We considered three cases: no
semantics used, half of the servers can use semantics
to make conflicts disappear, and all of the servers can
make conflicts disappear.

Table 1 summarizes the common settings that apply
to our tests. For each one of the tested configurations,
we measured throughput, response time and abort rate
at the root level and also overall throughput (transac-
tions per minute at all servers). The measurements are
For
throughput, we measured the time the server needed
per 100 transactions, yielding about 100 measurements
per experiment in case of our 10.000 roots. The aver-
age throughput was obtained by averaging these 100
throughput results for each experiment. The standard

based on executions of 10.000 root transactions.

deviation represents the confidence (stability) that can
be attached to the results. For response times, the av-
erage of each of the 10.000 roots’ individual response
times is given, as well as the standard deviation which
reflects the confidence interval.

It is important to emphasize that the tests were all
performed on a worst case scenario basis. Transac-
tions are made as complex as the system configura-
tion, no semantic information is used to reduce conflict
rates (except in two experiments where this technique
was tested), and subtransactions are invoked serially.
In addition, the load in the system is kept artificially
high (as soon as one transaction finishes another one
is submitted). The idea behind this approach is that if
CheeTah can be made to work on such adverse circum-



Node CPU

Sun Ultra 5, 269MHz UltraSparc ITi CPU

Node RAM 192 MB
Node OS Solaris 2.6
Node interconnection 100Mbps Ethernet
Java platform Sun JDK 1.2
Java VM heapsize 16 MB
RDBMS Oracle 8.0.3
DB Buffersize 64 MB
Database size (per node) 10K tuples

Access path (per node)

unique index on primary key (itemid)

Access mode

80-20 (80% of transactions is on 20% of records)

JDBC Connection pool size (per component) 7

Number of concurrent top-level clients (roots) 25

Root inter-arrival time (per client) 0 (worst possible load)
Total number of root transactions per test run 10,000

Table 1: General system parameters

stances, it will certainly work in more realistic, not so
demanding environments. In practice, not all trans-
actions will use all servers in the composite system,
subtransactions can be executed in parallel, and us-
ing semantic information helps to reduce abort rates.
Any of these optimizations will improve the results ob-
tained.

4.2 Measurements and Results

Table 2 contains the results of the experiments for the
configurations considered (the standard deviation for
the overall throughput has been omitted for reasons
of space; it is similar to that of the throughput at the
root).

Response Time versus Cardinality
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Figure 4: Response Time vs Cardinality

As expected, the throughput at the root decreases and
the response time increases with system complexity
(i.e., cardinality). This is easier to see in Figures 4 and
5, which show the throughput and response time as a
function of the cardinality. In terms of response time,
the behavior is obvious. A bigger cardinality implies
more complex transactions that naturally take longer
to complete. However, the linear relation observed in
Figure 4 (almost matching RT = C' - RT1;1) demon-

strates that the increase in response time is directly
related to the complexity of the transaction. There-
fore, CheeTah does not add additional overhead as the
system becomes more complex. This is surprising since
one would expect that longer transactions would block
more resources and, therefore, will add more overhead.
In practice, CheeTah behaved very well. Observing
each individual server, it turned out that the open
nested policy allowed servers to free resources quite
quickly. The policy of aborting transactions as soon
as they run into a conflict also helped in that these
transactions could be quickly restarted and, with high
probability, succeeded the second time. By aborting
them early, the overall delay introduced was minimal,
even in those cases with high abort rates (323 and 4z2).

Throughput versus Cardinality
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Figure 5: Throughput vs Cardinality

The throughput results are also interesting. As the
lower curve in Figure 5 shows, the throughput at the
root quickly decreases with cardinality. This is an arti-
fact of the experimental setting (we maintained a fixed
number of root transactions in the system at all times;
the more complex the transaction, implies the longer
it takes to complete and, therefore, the less transac-
tions entering the system). In practice, we observed
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Configuration C | tpm (root) tpm tpm (overall) | Resp.Time | Resp.Time | Abort Rate (%)
(Levels x Width) Avg Stdev Avg Avg (ms) Stdev (ms) Avg
1x1 1 1400 150 1400 520 500 0
2x1 2 1000 100 1991 1060 530 1
3x1 3 870 160 2647 1300 380 1.7
4x1 4 720 170 2872 1700 510 5.7
2x2 3 800 60 2402 1650 700 1.6
3x2 7 400 80 2872 3200 1100 7.1
4x2 14 175 25 3096 6500 1100 31
2x3 4 720 70 2882 1800 600 2.1
3x3 13 200 20 2924 5900 1000 22
2x5 6 410 20 2485 3000 800 5.7

Table 2: Results for different configurations

that, even for the highest cardinalities, the servers
had enough spare capacity to run additional transac-
tions. This is clear from the results for overall through-
put. As the upper curve in Figure 5 shows, the overall
throughput increases as we go from cardinality 1 to 3
and then remains stable (the bump in the curve is a re-
sult of the different configurations; the low point being
cardinality 6, in the 225 case). Again, this proves that
system complexity does not affect performance. In re-
ality, as the system becomes more complex, there is
more processing capacity. If transactions follow differ-
ent paths from the root to the leaves, then the system
will be able to process many more transactions. In
fact, in our experiments, we only saturated the server
in the 1z case.

These results show that CheeTah is very close to hav-
ing optimal performance. For the range of configu-
rations tested, the response time directly depends on
transactional complexity and the throughput remains
stable. Both parameters are unaffected by the com-
plexity of the composite system.

For high cardinality, the number of aborted transac-
tions is very high (31 % for the 422 and 22 % for the
323 configuration). These results, however, are due to
the worst case scenario we used for tests and not to
any characteristic intrinsic to CheeTah. Any system
with this kind of load would have similar abort rates.
In more realistic applications, these numbers will go
down significantly. To test this hypothesis, we ran
a set of experiments using semantic information to re-
duce conflict rates. The experiments are performed for
the 4z2 configuration assuming all transactions access-
ing the same item conflict (as in Table 2), eliminating
half of these conflicts and then eliminating these con-
flicts entirely. The results are shown in Table 3.

These results show that, once transactions follow dif-
ferent paths, subtransactions are executed in parallel,
and the inter-arrival rate is more evenly distributed,
the percentage of aborts will drop significantly. Inter-
estingly, throughput and response times do not seem

to improve by exploiting semantics. This is due to
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the fact that transactions that abort are aborted very
quickly (because of conflicts at the higher levels in the
system) and then restarted, thereby incurring in a min-
imal penalty in terms of response time. Similarly, and
as pointed out above, since the system is far from its
saturation point, abort rates have no influence on the
throughput.

The results of the tests were hindered by a feature
of the JDBC implementation we were using: not ex-
plicitly closing a statement after it has been executed
(notably in case of exceptions) causes the server to
run out of memory. The only solution (on the level of
connection pooling) is to catch this error and re-open
the connection. The resulting overhead is quite large.
For instance, we have peak results of 2400 transactions
per minute (in the 1x1 case), although the average is
only 1400 tpm. The difference is largely due to this
phenomenon.

4.3 Comparison with Existing Systems

The previous results show that CheeTah has close to
an ideal performance behavior as the system complex-
ity increases. To evaluate the basic overhead of Chee-
Tah, we compared similar systems implemented in a
commercial database and a commercial TP-Monitor.
To obtain clear results, we compared the 1x1 case.

The comparison with the TP-Monitor provides us with
a yardstick to test CheeTah against tools used in 3
tier architectures. In the 7z1 configuration, CheeTah
achieved more than three times the throughput reach-
able with the TP-Monitor. The reason is that Chee-
Tah performs all the transaction management inside
the server and, unlike in the TP-Monitor, no context
changes are necessary to access the different modules
of the TP-monitor. We corroborated these results by
also comparing performance in the 2z2 case. For root
transactions, CheeTah again outperformed the TP-
Monitor, a fact that became very clear when the over-
all throughput in the system is considered. Again, this
is due to the fact that the TP-Monitor, like existing
commercial products, uses a centralized component for



Configuration C | tpm | tpm (overall) tpm Resp.Time | Resp.Time | Abort Rate (%)
(Levels x Width) Avg Avg Stdev | Avg (ms) Stdev (ms) Avg

4x2 (all conﬂict) 14 175 3096 25 6500 1100 31

4x2 (half conﬂict) 14 210 3300 30 6000 1200 17

4x2 (no conﬂicts) 14 200 3100 20 6700 1200 1.25

Table 3: Results with high-level semantics advantage

transaction management. Thus, distribution does not
bring much in terms of overall performance since the
centralized component is the bottleneck and it can-
not be distributed. This is where CheeTah excels:
each component has its own transaction manager and,
therefore, the more components, the more distributed
is the load on the transaction manager functionality.
These results clearly speak in favor of the language
framework approach followed in CheeTah.

The comparison with a commercial database gives us
a way to test the performance of CheeTah against 2
tier architectures. For the test, the equivalent to a
CheeTah server was implemented in a normal RMI
server application that directly uses the database. The
database was accessed via a pure JDBC interface and
connection pooling (of the same size as in CheeTah)
was used. This eliminated the typical CheeTah over-
head for propagating transaction context and doing
extra logging. The peak rates obtained proved that
the performance of CheeTah is comparable to that of
commercial databases.

5 Conclusions

We have presented CheeTah, a light weight transaction
monitor implemented as a Java framework. CheeTah
introduces many novel aspects, the main contributions
being the composite systems structure, the use of open
nested transactions, and the framework approach. We
see composite systems as a key configuration in dis-
tributed environments, one that will certainly be pro-
moted by developments like Java, component based
design, and standards like Enterprise Java Beans. In
such systems, the efficient implementation of transac-
tional interaction requires open nested transactions.
To our knowledge, CheeTah is the first working imple-
mentation of open nested transactions made publicly
available. Finally, the framework approach to building
transactional components is an entirely new paradigm.
The transactional properties traditionally provided by
large systems like TP-Monitors are provided by Chee-
Tah by simply writing services that inherit from cer-
tain classes. The development effort is thus signifi-
cantly reduced. Our results prove that the ideas im-
plemented in CheeTah are feasible in practice and have
excellent performance.
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