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Abstract

Analysts and decision-makers use what-if
analysis to assess the effects of hypotheti-
cal scenarios. What-if analysis is currently
supported by spreadsheets and ad-hoc OLAP
tools. Unfortunately, the former lack seam-
less integration with the data and the lat-
ter lack flexibility and performance appropri-
ate for OLAP applications. To tackle these
problems we developed the SESAME system,
which models an hypothetical scenario as a
list of hypothetical modifications on the ware-
house views and fact data. We provide formal
scenario syntax and semantics, which extend
view update semantics for accomodating the
special requirements of OLAP. We focus on
query algebra operators suitable for perform-
ing spreadsheet-style computations. Then we
present SESAME’s optimizer and its corner-
stone substitution and rewriting mechanisms.
Substitution enables lazy evaluation of the hy-
pothetical updates. The substitution module
delivers orders-of-magnitude optimizations in
cooperation with the rewriter that uses knowl-
edge of arithmetic, relational, financial and
other operators. Finally we discuss the chal-
lenges that the size of the scenario specifica-
tions and the arbitrary nature of the operators
pose to the rewriter. We present a rewriter
that employs the “minterms’ and “packed
forests” techniques to quickly produce plans.
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We experimentally evaluate the rewriter and
the overall system.

1 Introduction

Recently the database community has developed data
warehousing and OLAP systems where a business ana-
lyst can obtain online answers to complex decision sup-
port queries on very large databases. A particularly
common and very important decision support process
is what-if analysis, which has applications in market-
ing, production planning, and other arcas. Typically,
the analyst formulates a possible business scenario de-
riving a hypothetical “world” that he consequently ex-
plores by querying and navigation. What-if analysis is
used to forecast future performance under a set of as-
sumptions related to past data. It also enables the
evaluation of past performance and the estimation of
the opportunity cost taken by not following alternative
policies in the past [PC95].

For example, an analyst of a brokerage company
may want to investigate what the effect on the return
and volatility of a customer’s portfolios if during the
last three years that the brokerage had recommended
purchasing Intel stock instead of Motorola. According
to his scenario, he (hypothetically) eliminates many
Motorola buy orders that the customer issued, intro-
duces Intel share orders of equivalent dollar value, then
recomputes the newly derived data. Subsequently, he
investigates the results of this hypothesis on specific
customer categories. More hypothetical modifications
and queries will follow as the analyst follows a partic-
ular trail of thought.

Spreadsheets or existing OLAP tools are currently
used to support such what-if analysis. Surprisingly, de-
spite its importance, what-if analysis is not efficiently
supported by either one. Spreadsheets offer a large
number of powerful array manipulation functions and
an interactive environment that is suitable for speci-
fying changes and reviewing their effects online. How-
ever, they lack storage capacity, the functionality of
DB query languages, and a seamless integration with
the data warchouse; once the data has been exported
to the spreadsheet it becomes disconnected from up-
dates that happen in the data warchouse.



OLAP systems offering what-if analysis [CCS] lack
the analytical capabilities of spreadsheets and their
performance is orders of magnitude worse than what
can be achieved by intelligent scenario evaluations,
such as thosee ones delivered by our SESAME proto-
type. To further understand the limitations of current
OLAP tools let us walk through a typical implemen-
tation of the what-if analysis example above. First,
an experienced user or the data warchouse’s admin-
istrator designs a “scenario” datacube and develops
a script (eg, see [CCS] for a scripting language) that
populates the scenario datacube with the data corre-
sponding to the hypothetical world developed by the
scenario.  Consequently, the cross-tabs (sums) and
other views are recomputed. Apparently, the creation
of the scenario datacube cannot be an online activity.

After the scenario is materialized the analyst will
issue queries, drill-down and roll-up [GMUW99] into
parts of the hypothetical world. At this point it be-
comes evident that materializing the full hypotheti-
cal world (and hence delaying query submission by as
much as a day) may have been an unnecessary over-
head. Consider the following two cases where the con-
ventional methodology underperforms. We comment
on how SESAME handles such cases.

First, queries and drill-downs on detailed data will
typically retrieve only a small part of the hypothetical
world. (After all, there is only so much real estate in a
mounitor.) For example, a query that investigates the
consequences of the scenario on the portfolios of the
first 50 investors does not have to materialize anything
more than the hypothetical portfolios of the specific
investors. Indeed, SESAME won’t even materialize the
hypothetical portfolios; it will simply retrieve the ac-
tual portfolios, it will remove the Motorola orders and
will dynamically introduce in the result Intel orders of
equal dollar value.

Second, queries that retrieve various aggregate mea-
sures, such as the SUM, can leverage the corresponding
aggregate measures of the “actual” datacube. For ex-
ample, SESAMEwill compute the hypothetical current
value V'[z] of the portfolio of customer z as follows.

Viz] = Bq(O[z,m,d)(T[m] — P[m,d]))

+4(Bd Ol m, d)(T1i) - Pli, d])

V'|x] =

where i stands for Intel, m for Motorola, V'[z] is the
hypothetical value of the portfolio of customer x and
V]z] is the actual value. The array entry Olx,y,d]
stands for the actual number of y shares bought (or
sold if the number is negative) by customer x on day
d, and Ply,d] stands for the (closing) price of shares
of y on day d. T[y] stands for the current value of
y. According to the above, the hypothetical value of
a portfolio is computed by adding to the portfolio’s
actual value the profit by each hypothetical investment
in Intel and subtracting the profit of each investment
in Motorola.

221

One may actually update the orders table and then
propagate the updates, possibly using one of the ef-
ficient update propagation techniques suggested by
the database community [BLT86, GMS93, RKR97,
LYGM99, MQM97]. However, SESAME’s no-actual-
update policy has the advantage that no backtrack-
ing of updates is needed after scenario evaluation is
complete nor is it necessary to lock the hypothetically
updated parts.

Technical Challenges and Contributions
First, we formally define scenarios as ordered sets of
hypothetical modifications on the fact tables or the de-
rived views of the warchouse. As usual, modifications
on views may be satisfied by multiple possible fact
table modifications. We extend prior work [AHV96]
on the semantics of select-project-join (SPJ) view up-
dates by introducing the notion of “minimally modified
database”, which is necessary for having reasonable
semantics in warchouses involving non-SPJ operators,
such as aggregation and arithmetic.

Second, we developed an extensible system where
arbitrary algebraic array operators can be used. Us-
ing the extensible algebra machinery we introduce op-
erators that combine spreadsheet and database func-
tionality. In this paper we present the join arithmetic
family of operators. More operators (moving windows
and operators for metadata handling) can be found
in the extended version [BPP]. Expressions involving
the novel operators are optimized by providing to the
rewriting optimizer appropriate rewriting rules.

Our most important contribution is SESAME’S sce-
nario evaluation, which is based on substitution and
rewriting. Given a scenario s, a query g on the hypo-
thetical database, and information on the warehouse’s
views, the substitution module delivers a query ¢’ that
is evaluated on the actual warechouse and is equiva-
lent to the result of evaluating ¢ on the hypothetical
database created by s. Then the rewriter optimizes
the query ¢’. In the spirit of conventional optimizers
it pushes selections down and it eliminates parts of ¢’
that do not affect the result (such parts typically cor-
respond to “irrelevant” hypothetical modifications.) Tt
also rewrites the query ¢’ in order to leverage on the
warchouse’s pre-computed views.

We identify and provide solutions to two major
rewriting challenges. First, the query expression ¢’ is
typically very large, as a result of the potentially large
number of hypothetical modifications. The good news
is that ¢’ has a particular structure that is exploited
by SESAME'’s minterm optimization. Second, rewrit-
ing queries using views, while non-conventional oper-
ators are involved in the algebra, is a novel challenge
that has not been considered by extensible rewriters
[HFLP&9] (they have not considered views) or by the
“rewriting using views” literature, which has focused
on conjunctive queries [LMSS95] or conjunctive with
SQL’s aggregation operators [SDJLI6, CNS99]. We
present the packed forests extension to System-R-style



optimizers that allows the development of rewriters
that trade the rewriter’s running time with the gen-
erality of rewriting axioms, queries, and materialized
views for which they can deliver the optimal result.

Finally, we incorporate SESAME as an add-on com-
ponent to an SQL Server that stores the warchouse
and provides the query processing engine for evaluat-
ing the optimized scenario/query.

1.1 Related Work

To the best of our knowledge what-if scenarios in an
OLAP environment have not been addressed by the
database research community. Our work brings to-
gether a multitude of concepts and techniques such
as substitution, extensible rewriting optimizers, view
updates and incomplete data, and logical access path
schemas (see below).

[GHI7] presents an equational theory for relational
queries involving hypothetical modifications and dis-
cusses its use in an optimizer that may choose between
lazy and eager evaluation. The substitution step of our
rewriter extends the lazy evaluation idea of [GH97] by
considering an environment including views as well.
However, the optimization and rewriting problem is
much more challenging in SESAME’s case.

The specification of the repercussion of a hypothet-
ical modification on the constituents of a view is in-
fluenced by works on the semantics of view updates
([AHV96] provides an overview.) The critical differ-
ence from the prior work is the introduction of the
“minimally modified datagraph” concept and the cor-
responding redefinition of “sure” answers. The dif-
ference is justified by the intuitive requirement that
base relation tuples that do not “contribute” to modi-
fied view tuples should remain sure and non-modified.
Not surprisingly, our definition of sure and the conven-
tional definition of [AHV96] coincide when we focus on
SPJ queries, which have been the focus of prior work,
but diverge when we consider aggregate, arithmetic
and moving window functions.

The datagraph schema, which helps us rewrite
queries using views, inherits from the LAP schemas
[SRN90] the idea of guiding the rewriting optimizer
by a graph indicating how the views are connected
to each other. However, LAP schemas have dealt with
SPJ queries only and this makes the rewriter described
in [SRN90] much simpler than SESAME’s.

The next section introduces the framework, syntax
and semantics used. Section 3 describes the architec-
ture and algorithms involved in SESAME.

2 Framework

We first present the datagraph model, which is our ab-
straction of warehouses and datacubes and extends
the datacube lattice model of [HRU96] and the log-
ical access path schemas of [SRN90] by allowing de-
rived views to be produced using an extensive set of
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Figure 1: Brokerage House’s Datagraph
operators.’ Section 2.1 describes novel operators and
Section 2.2 describes the formal syntax and semantics
of hypothetical modifications and scenarios.

The datagraph schema is a directed acyclic hyper-
graph that consists of

1. A set of nodes V = {vy,...,v, }. Each v; is a rela-
tion schema that has a unique name, zero or more
dimension attributes and one measure attribute.
Each dimension attribute a has a domain D(a),
which may be ordered (e.g., time) or unordered.
Measure attributes are of numeric types only —
float or integer. We may use the term relation
instead of node whenever there is no confusion.

2. A set of directed labeled hyperedges of the form
[V1,...,Um] = vg, where [v1,...,v] is the tuple
of parent nodes and vy is the derived node. The
label e is a SESAME algebra expression involving
the nodes vy, ..., v,

We will call fact nodes the ones with no incom-
ing hyperedges. They correspond to the fact table(s)
of OLAP systems. Internal nodes correspond to the
views in a warchouse system and the edge labels cor-
respond to the view definitions. Notice however that,
in the same spirit with the lattice model [HRU96] and
logical access paths [SRN90], multiple hyperedges may

1 As opposed to the de facto SUM operator of [HRU96] or the
SPJ operators of [SRN90].



be leading to the same node/view, hence encoding
multiple ways in which the node/view can be derived.
The hyperedges assist substitution and rewriting (see
Section 3).

Each node v is populated with a bag of tuples
S(v), called the state of v. Similarly to relational al-
gebra, cach SESAME algebra expression e(v, ..., vy),
whether it is a hyperedge label or a query, is a mapping
£ that given the input nodes’ states S(v1),...,S(Vm)
it produces an output bag £(S(v1),...,S(vm)).

The states of the nodes must be such that they sat-
isfy the hyperedge label expressions. Formally, a valid
datagraph state (or simply datagraph from now on)
is an assignment of a state S(v) to each node v of
the datagraph schema such that for every hyperedge
{v1,. vy 5 g it is S(vg) = E(S(v1), ..., S(vm)).
From now on we will omit mentioning S explicitly,
whenever the context makes clear that we refer to
states as opposed to schemas.

The datagraph schema must be consistent, in the
sense that alternative ways to compute a view have to
yield the same result.

Definition 1 The set of transitive hyperedges T of a
datagraph schema is computed as follows:

. v
1. for every mode v, T contains v = v,

2. if the datagraph schema contains the edge

{v1,...,0m} S v and T contains the edges V; =4
vi, i = 1,...,m then T also contains the edge

ated by substituting each v; in e with e;.

. o . € .
Given a transitive hyperedge {v1,...,v,} = vg we will
say that v; is an ancestor of vy (for every i) and, vice
versa, vq is a descendant of v;.

EXAMPLE 2.1 Figure 1 illustrates a brokerage
house’s datagraph that will serve as the running
example. A tuple (c¢,t,d,s) in the fact node Or-
derCTDS(Customer, Ticker, Date, Shares) indicates
that customer ¢, bought s shares of the stock with
ticker symbol ¢t on date d. If s has a negative value
it indicates selling of shares. For brevity we are writ-
ing only the relation name corresponding to the node
and, by convention, the capital letters at the relation
names’ suffix will stand for the initials of the attribute
names. The fact node PriceTDV(Ticker, Date, Value)
has tuples (t,d,v) that stand for the closing price v of
stock ¢t on date d.

The current posi-
tions node PositionCTS is derived from OrderCTDS
by the hyperedge { OrdersCTDS} 04 positionsCTS.
The operator ¥ pgre (which adapts the summation op-
crator of [GMUW99] to one-measure tables) outputs
all dimension attributes of the input except Date. For
each output tuple (¢, t,s) the measure s is the sum
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$1 + ...+ sp, where the s;’s are the measures of the
set of tuples {(c,t,dy,s1),...,(¢c,t,dy,s,)} that con-
sists of all input tuples where Customer = ¢ and
Ticker = t. In general, ¥ may have multiple parame-
ters, e.g., Xpate, Ticker- See [BPP] for a complete def-
inition of ¥ as well as all the operators in the current
implementation of SESAME.

For brevity we are going to represent attributes by
their first letter only and we may not include the full
operand names in the edge expression whenever it is
obvious from the context.

R

The hyperedge OrderCTDS y PositionHistCTDS
declares that the position history is the running
sum of orders according to date (D). In particu-
lar, PositionHistCTDS contains the tuple (c,t,d,,s)
if {(e,t,d1,51),...,(c,t,dn,5,)} is the set of all Or-
derCTDS tuples such that d; < dy < ... < d, and
$ =581+ ...+ s,. Of course, it is necessary that the
attribute parameter(s) of ¥ are of an ordered type.

The hyperedge {PositionHistCTDS, PriceTDV} =
ValueHistCTDV indicates that ValueHistCTDV, the
history of the dollar value each customer held in each
stock each day, may be derived by multiplying the
stock prices with the position history.

Finally as an example of datagraph consistency,
observe that ValueCTYV, which is the current dollar
value each customer holds in each stock, may be de-
rived in two ways, corresponding to the hyperedges A
and B of Figure 1, from OrderCTDS and PriceTDV.
The first one is the expression Y ,(OrderCTDS) *
(TPv 0 D=today PriceTDV) which first computes the
current positions of the customer and then multiplies
them with the current stock market prices (depicted by
arrow type A of figure 1). The second one is the expres-
sion WCTV’UD:today((Zg OrderCTDS) * PriceT DV)
which first computes the dollar value history for each
customer, stock and date (see above) and then selects
today’s data (depicted by arrow type A of figure 1).
The datagraph is consistent because the two expres-
sions always deliver the same result. O

2.1 Novel Operators in SESAME

SESAME is based on an algebra where arbitrary opera-
tors can be included as long as their input and output
is one-measure bags of tuples (see Section 2.) Besides
select, project, semijoin, union, difference and the ag-
gregate operators sum, min, maz, avg and count , we
have also included the novel join arithmetic family of
operators, presented below. QOur operators appropri-
ately merge the relational framework of SESAME with
array algebras and spreadsheet-style operations. They
lead to expressions that are much more concise than
relational algebra expressions that are extended with
generalized projections [GMUWY99] that accomplish
arithmetic operations. The conciseness greatly facil-
itates the development of rewriting rules and speeds
up the rewriter, which has to deal with smaller ex-



pressions.

Join Arithmetic Operators

The join arithmetic opera-
tors +, %, —, /¢ and +°, %, —* / take two operands, let
us call them the left(Dq, ..., Dg,..., Dy, M;) and the
right(D1, ..., Dg, M,). The dimension attributes of
right must be a subset of left). The result relation has
schema Result(Dy,...,Dy,...,D,, Measure). The se-
mantics depend on whether the operator belongs to
the semijoin sub-family +%,%, —*% / or the outerjoin
sub-family +, %, —, /°.

Semijoin Family

For every pair of tuples left(dy, ..., dg, ..., d,, m;)
and right(dy,...,dg, m,) the result has a tuple
Result(dy, ..., dg,...,dy,m®m,) where ® is one
of the four operators +,*, —, /.2 Note that the
without-superscript * and / are “semijoin” oper-
ators. For an example of (semijoin) multiplica-
tion, consider the contents of PositionHistCTDS
and PriceTDV that appear in the Figure 1 and
the corresponding content of ValueHistC'TDS =
PositionHistCTDS x PriceTDV .

Outerjoin Family The outerjoin family is defined
only when the two operands have identi-
cal lists of dimension attributes. For ev-
ery pair of tuples left(dy,...,dk,...,d,,m;) and
right(dy,...,dg,...,d,,m;) the result contains
the tuple Result(ds,...,dg,...,dn,my ®m,). For
every tuple left(dy,...,dg,...,d,,m;) with no
matching tuple the tuple appears as is in the re-
sult and so do tuples of right with no matching
left tuples. The no-superscript + is an outerjoin
operator.

Notice that, though the result relation name is by
default “Result” and the result measure is “Measure”
we may rename them to whatever we like by using the
renaming operator p. If the operator is used in the
datagraph schema then we will omit the p, using the
convention that the relation name and measure name
that have already been given to the view will override
“result’” and “Measure”.

Based on the above and the special relation a =
{(a)}, which has no dimensions and its single tuple has
measure a, we define the following four “macro” oper-
ators that add/subtract/multiply/divide a constant a
to the single operand’s measure.

ADD,R=R+*a
MULT,R=Rx*a

SUB,R=R—°a
DIV,R = R/a

Our “implicit join” approach simplifies the expres-
sion of array computations and simplifies the axioms
and rewriting rules which involve arithmetic (see Ap-
pendix).

2Division by 0 raises an exception.
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2.2 Scenarios

A scenario is a set of ordered hypothetical modifica-
tions on a datagraph D. The first modification results
in a hypothetical datagraph D!. The second modifi-
cation uses the state of datagraph D! and produces
a new hypothetical datagraph D?, and so on. Even-
tually a query is evaluated on the last hypothetical
datagraph. The following example illustrates the syn-
tax and semantics of scenarios.

OrderCTDS"' —
OA'D>’Jan15,97’/\T=Imfel,MULTl_gOrderCTDS
OrderCTDS? «— OrdersCTDS!
—0 D> Jan15,97 AT=Motorola OrderCTDS'
OrderCTDS® — OrderCTDS?

UT T Intel,c,D
(UT:]VIotO'r'olaAD>’Ja’n,15,97’ ValueHZStCTDV)

The three modifications above roughly correspond to
an update, a delete, and an insert. The first one states
that a hypothetical datagraph D! is created and its
OrderCTDS" node must be the result of “updating”
the fragment ops’ren15,97 AT=Intel OrderCTDS" with
MULT 2(0 D>/ Jan15,97 AT— Intet OrderCTDS!).

Notice the select-modify operator & that is used for
accomplishing the first modification. The function of
& is to (i) select the tuples satisfying the subscript
condition and apply to them the subscript operator
and (ii) union the result with the remaining tuples of
the input node. Hence, 6. rR = f(o.R)Uo_.R

The hypothetical modification will be reverberated
to all the nodes of the graph D!. For example, the
PositionsCTS! will reflect a 20% larger position in In-
tel. Intuitively D' is produced by having OrderCTDS!
be defined directly by the modification and all the
nodes that are descendants of OrderCTDS' are re-
computed according to the datagraph hyperedges.

Consequently, the datagraphs D? and D?® are de-
fined. Notice that the definition of D? uses both D?
and D (in particular, the node ValueHistCTDV of
D is used.) This facilitates expressing modifications
that happen “in parallel”. Then queries can be issued
against any node of D', D? or D3.

We now formalize the semantics of a scenario s on a
datagraph G. For uniformity we’ll be referring to the
actual datagraph G as G°. The notation e(V01:7)
denotes an expression e whose arguments are nodes of

G, G, ... G
o (%),
v3 —ea(Vy),
,Um - Cm(v%l"“’m_l)
Definition 2 assumes that the first ¢ — 1 datagraphs are

known and uses the i-th modification of s to derive the
i-th hypothetical datagraph. Definition 3 specifies the



induction that defines G from G°. Note in the follow-
ing definition that the hypothetical datagraph is not
an arbitrary datagraph that satisfies the modification
and the edge expressions; in addition, it will have to be
in agreement with all minimally changed datagraphs.
The intuition behind this definition is illustrated in
Example 2.2.

Definition 2

Consider the datagraphs G°,GY,...,G""1 and a mod-
ification vi «— e(V?""’l_l). The hypothetical datagraph
G" meets the following properties:

1. For every node 10 of GO there is a node v’ of
G" with identical schema, modulo having a su-
perscript * on the relation name. For every edge
VO 5 0 of GO there is a corresponding edge
Vi St of G

2. () = e(SO )

3

3. Fach node v of G contains the intersection
Nj=1,..xV5 of the corresponding nodes vi, ..., vj,
of all minimally modified datagraphs M;,. .., M}.
A datagraph M' is called minimal if there is no
L7 that meets conditions 1 and 2 and for every
node v of L', which corresponds to nodes v* of M*
and v of G it s v] — v C ot — o' and
vl — ol C ot =0t (Le., you cannot “cancel”
any tuples’ insertion or deletion in a minimally
changed datagraph and still have a valid modified
datagraph that meets conditions 1 and 2.)

Definition 3 A hypothetical datagraph G* given the
scenario s is a datagraph such that there is a sequence
of datagraphs G, ..., G* such that G' is a hypothetical
datagraph of G, ... Gt given the modification v} «
e;(Vi_1), for eachi=1,... k.

We denote by G(G,s) the set of all hypothetical

datagraphs given a scenario s and a datagraph G.

Note the following two points which are illustrated
in Example 2.2. First, there is no guarantee on the
number of hypothetical datagraphs. Second, not all
modified datagraphs are hypothetical according to our
definition.

EXAMPLE 2.2 Consider the hypothetical modifi-
cation
PositionCTS! 6T:>qmelw,MULTMPositionCTSO
that hypothetically increases by 20% the customer
holdings on Intel. There are more than one hypo-
thetical datagraphs because there are multiple ways
to derive an OrderCTDS! state such that the sum
of the OrderCT DS Intel tuples will be increased by
20%.

There are modified datagraphs that satisfy the
modification but affect “irrelevant data”. For ex-
ample, there are datagraphs that lead to the same
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PositionCTS' but they update non-Intel tuples as
well. We believe that such datagraphs should not be
considered valid hypothetical datagraphs. We exclude
them from the set of hypothetical datagraphs by plac-
ing the third condition in Definition 2.

Finally note that we do not restrict valid hypothet-
ical datagraphs to the minimally modified ones (see
Definition 2.) For example, a valid hypothetical data-
graph for the running example is one that increases ev-
ery Intel order by 20%. However, such a datagraph is
not minimal. The only minimal datagraphs are those
that assign the full increase of the Intel position to a
single order. We believe that being restricted to min-
imal datagraphs would unnecessarily disqualify mean-
ingful hypothetical datagraphs. O

If a modification is applied on a node with no in-
coming edge, say the OrderCTDS of Figure 1, and
the edge expression operators are total then there is
exactly one hypothetical model.

The result of a query or, more general, the result of
an expression (say, the expression that is used on the
right side of an assignment) is comprised of a sure and
a non-sure part as defined below.

Definition 4 (Sure Expressions) Given a data-
graph schema G and a scenario s, consisting of m
modifications, the expression e(V™) is sure if for ev-
ery state of G the result of evaluating e(V™) on every
hypothetical datagraph in the set G(G,s) is identical.®

It is interesting to note the difference of our defini-
tion of “sure” with the one used in [AHV96] for the
definition of updating a select-project-join view. The
latter one does not use “minimality of changes” and
this makes it inappropriate in an OLAP environment
with arithmetic and aggregate operators. For example,
according to the definition of [AHV96] the updating of
a fragment of a sum aggregate node makes the whole
source node unsure.

3 Sesame’s Algorithms, Implementa-
tion and Performance Results

The SESAME system is the middle layer in the 3-
tier OLAP architecture of Figure 2. The ware-
house is actually stored in a relational database
— currently Microsoft’s SQL  Server. On the
client side there is a user interface that creates
the scenarios and hypothetical queries that are
sent to SESAME. A simple GUI is available at
www.db.ucsd.edu/projects/sesame/demo.htm and
demonstrates the rewriter and the execution engine of
SESAME. SESAME processes the hypothetical query
(along with the corresponding scenario) in three steps:

3Note that according to the above definition — and according
to SESAME, which follows the above definition — the “sureness”
of an expression depends only on the datagraph schema and not
on the specific datagraph state. This decision is justified by
obvious implementation considerations.
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First, the substitution module (see Figure 2) com-
bines the scenario and the original query into a new
query, called dereferenced, that refers directly to the
original datagraph.

Then the rewriter turns the dereferenced query into
an optimized one, which may even use materialized
views. Rewriting is driven by the datagraph and a set
of rules related to the involved operators (the complete
list can be found in [BPP].)

EXAMPLE 3.1 Consider the single-modification
scenario on the datagraph shown on Figure 1, where
position on the stock “MSFT” is increased by 10%.

PositionCTS* «— 6 PositionCTS

T=MSFT,Mult, ,
Then consider the query that retrieves the hypothet-
ical value of the account of client John

T John Value cTv!

The substitution module will combine the scenario and
the query into the following dereferenced query. The
specific steps are explained in Section 3.1 and Exam-
ple 3.3.

C JOhTL( (O'T MSFT,Mult1. 1P0§ZtZOILCTSO)
*PmceTodayTVO)

Next, the rewriter makes the following transforma-
tions:

Oc_ John( (O'T MSFT,Multy, 1POSZtZOW,CTSO)
* Price TodayTVO)
Oc_ JOhn(UT MSFT,Multy 1 ValueCTVO)
= OT=MSFT,Mult1 19 c_ John, ValueCTV®

= Mubfl 10(T=MSFT)AND(C=John) ValueCTV°
ValueCTV®

(T;ﬁMSFT)AND(c:John)
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At this point the query processor has achieved two
goals: (I) It has expressed the query in terms of ac-
tual, stored relations. (II) It has optimized the expres-
sion by pushing selections down the query tree and by
using the appropriate materialized views. In partic-
ular it has used the ValueCTV® — as opposed to the
PositionCTS°. |

Finally, SESAME’s execution engine treats the ex-
pression produced by the rewriter as an execution
plan.* The engine traverses the plan tree bottom-up.
When it locates a subtree ¢ that corresponds to a single
SQL statement ¢ it sends ¢ to the SQL server. Con-
sequently the server creates and stores the result ta-
ble 7 of ¢ and the engine replaces the subtree ¢ with
the table r. However, many SESAME operators cannot
be reduced to SQL (e.g., moving windows and finan-
cials). For each operator of this kind SESAME has a
stored procedure written in Microsoft’s Transact-SQL,
which has the full power of a programming language.
Each procedure implements the functionality of a spe-
cific SESAME operator. Note that all processing is
done at the SQL Server and no data is moved between
SESAME’s execution engine and the SQL Server. Only
the final result passes through the engine, before it is
sent to the client.?

EXAMPLE 3.2 The engine will translate the plan
produced by the rewriter in the Example 3.1 into the
SQL query

SELECT C, T,
FROM ValueCTV
WHERE T = "MSFT" AND C = "John"

(V% 1.1) ASV

UNION
SELECT * FROM ValueCTV
WHERE T != "MSFT" And C = "John"

For the sake of the example, let us assume that SQL
does not have a multiplication operator. Then the
engine will execute the plan by issuing the following
three commands to the SQL Server:
1. SELECT * INTO #Tmpl FROM ValueCTV
WHERE T = "MSFT" AND C = "John" (Creates
#Impl = 01 _r1spryanD(C=John) ValueCTV)
2. Run a Transact-SQL procedure that creates a #1Tmp2
where V' is multiplied by 1.1.
3. SELECT * FROM ValueCTV
WHERE T != "MSFT" AND C = "John"
UNION
SELECT * FROM #Tmp2

O

In many real-world situations, substitution and
rewriting are not as simple or as fast as the few steps of

4We have not yet separated the notions of logical and physical
plan [GMUW99] mainly because the physical work is passed to
the SQL server.

5Note also that in order to improve the performance the in-
termediate tables are stored in a special temporary database
which is kept in the main memory.



the Example 3.1 suggest. In the general case they both
reduce to combinatorial problems. We have sped up
substitution by focusing our algorithms on the class of
structurally sure scenario queries. For this class sub-
stitution is polynomial in the size of the query and the
datagraph. Then we present a series of rewriters that
address the performance challenges that are special to
what-if scenarios.

Section 3.1 describes the substitution step. Sec-
tion 3.2 gives an overview of a straightforward rewrit-
ing algorithm and its performance problems in non-
trivial scenarios. Section 3.3 introduces the minterms
replacement for efficiently rewriting scenarios with
multiple select-modifications. Section 3.4 describes the
packed forest rewriter. Section 3.5 provides experi-
ment results.

3.1 Substitution

The substitution module receives (i) a datagraph DY,
(#) a scenario s illustrated in (SQ5) that produces
an hypothetical datagraph D™ and (iii) a query q =
eq(Vy) on D™. The module derives a query ¢' that (1)
uses exclusively the nodes of the original datagraph
DO, and (2) when evaluated on DY it returns the same
answer that ¢ returns when it is evaluated on the data-
graph D™. We will call ¢/ the dereferenced query.

(Y

—e; (V)

1
72”’ 0,2
— GQ(VQ )

Vi

- (5Q5)
vpy < en (VO )

eq(Vi) Yoquery

The implemented substitution module works for the
class of structurally sure scenario-queries, which are
guaranteed to be sure (as defined in Section 2.) Struc-
tural sureness leads to a very efficient substitution al-
gorithm, because it depends on the graph structure
of the datagraph schema and scenario modifications,
but not on the datagraph’s edge expressions and the
related axioms.

Given a datagraph D° and the scenario-query (SQ5)
the following nodes of D°,..., D™ are structurally
sure. For each structurally sure node v we also pro-
vide a set of expressions C(v) that compute v using D°
nodes exclusively.

Initial Nodes Every node v° is structurally sure. For
each 9 it is

C(v%) = {°}

Directly Modified Nodes If the nodes Vo' !
used in the ith modification are structurally sure
then the directly modified node v?, is also struc-
turally sure. The set of expressions that compute

vy, is constructed by applying the modification

227

expression e; on each expression ¢/ that computes
the corresponding node vi 1 of D71 ie.,

Clvy,) = {eile)]e’ € Clup 1)}

Unmodified Nodes If the node v’ is not a descen-
dant of an ancestor of the node vf, that was mod-
ified in the ith step of the scenario then v? is also
structurally sure. One can easily see that such
nodes v? are left unmodified by the ith modifica-
tion. Hence

C(v') =Cv'™h)

Indirectly Modified Nodes If there is an hyper-

edge A" = o' and all of the nodes a; € A" are

structurally sure then v* is also structurally sure.
In general, there are many ways in which we can
compute v?. For example, given the hyperedge la-
beled by e and given expressions €q that compute
each of the a,z’v € A’ one expression that computes
v? is derived by substituting each instance of a,;i
in e with the corresponding Cqi- However there

may be many hyperedges leading to v and cach
source node aj of the hyperedge may be computed
;) will typically
have more than one expressions.) Hence C(v?) is

the following set.

by multiple expressions (i.e., C(a

Cv)=1{ e/(al— €qis-nor 0
Bat.. . al} S o,

where the notation e/(a}
€qi ) stands for the substitution of each a,j =

m, in e with eg:.
J

geeey

Finally, a scenario-query is structurally sure if every
node in the node set V', which is used by the query, is
structurally sure. It is easy to see that the query can
be computed by any expression of the set

Cq — { eq/(y? = eypn, . U (:‘1,1")
lewp € C(v]), ... epn € C(v7)}

The implemented algorithm computes the C sets
top-down unlike the above definitions that hint a
bottom-up algorithm. The top-down derivation com-
putes fewer C sets than the bottom-up one, because
the bottom-up one computes C sets even for the nodes
that are “irrelevant” to the query.

EXAMPLE 3.3 Counsider (again) the modification
and the query of Example 3.1. The substitu-
tion algorithm first locates a transitive hyperedge
that leads to ValueCTV* and contains only directly
modified and unmodified nodes.  Such a transi-
tive edge is the {PositionCTS*, PriceTodayTV'} =



ValueCTV* since PositionCTS" is directly modified
and PriceTodayTV" is unmodified. Now we can re-
place the query with:

Uczjohn(PositionCTSl * PriceTodayTV")

Then PositionCTS" is replaced by the right hand
side of the hypothetical assignment. PriceTodayTV*
is replaced by PriceTodayTV because it is “unmodi-
fied”. Hence, we end up with the dereferenced query
6= John\ O - p s, MULT, 4y PO51tionCTS)
PriceTodayTV)

3.2 SESAME’s Rewriters

This section describes the challenges that arise during
the rewriting of dereferenced queries and the solutions
developed for SESAME’s rewriter.

The variety of operators, datagraphs and scenario
queries that have to be considered during query rewrit-
ing, prompted us to first develop the wltra-conservative
rewriter that exhaustively searches the space of plans.
We configured this rewriter with a set of 9 operators,
formally defined in [BPP] and the 15 rewriting rules
listed in [BPP].6

Although for a small set of inputs the ultra-
conservative algorithm might perform reasonably well,
in the general case its running time is very poor. An
exponential blowup was observed, resulting in poor
performance for queries with more than four select-
modifications.

The poor performance of the ultra-conservative al-
gorithm is due to challenges that relate to the struc-
ture and size of dereferenced queries. We describe next
the challenges along with the solutions that SESAME’s
rewriter gives.

3.3 Exponentiality in the number of Select-
Modifications and the Minterms Solution

The first challenge is the exponential size of the deref-
erenced query after replacing each select modification
Oc,, sz with f; aclRU 0-c; R. For example, the expres-
SION O, £, 0y, 200y, f2 1T 18 TEeWTitten as:

J10¢1(f20¢5 (J10c3 RU 0—c3 R) UGy (f10c3 RU 0-c3 R))
Uo—c (f20e5 (f10c3 RU 0—cy R) U 0—cy (f10c3 RU 0—c3 R))

One may wonder whether considering common
subexpressions could lead to a faster rewriter that
would optimize each common subexpression just once.
The shortcoming of this approach is that the modify-
ing functions (f1, fo and fs above) will make each of
the two copies of the common subexpression interact
differently with the rest of the expression and hence it

6This set of rules does not create an infinitely large space of
plans.
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will become impossible to optimize the common subex-
pression just once.

SESAME’s rewriter, provides an efficient solution to
this problem by identifying the minterms of R. A
minterm is a set of tuples on which exactly the same
modifying functions are applied. Identifying minterms
in a query that involves select-modifications allows the
rewriter to remove the exponentiality in the number of
select-modifications; instead, the result is exponential
only in the number of dimensions referenced in the se-
lections of the query. The minterms technique can be
applied in the case of scenarios where:

1. The conditions of the select-modifications do not
involve measure attributes.

2. The modifying functions
in the select-modifications are commutable with
selection and union operators.

Though the above requirements seem strict, they are
quite common. Indeed, modifying functions consisting
of arithmetic operators, which we believe are predom-
inant in what-if practice, meet the above conditions.

Now consider the following scenario/query, which is
amenable to the minterms technique because the mod-
ifying functions commute with selection and union and
the conditions are of the form A € range; or A = ¢;
where A is a dimension. For simplicity let us consider
equality conditions as a special case of range condi-
tions.

scenario V%' «— G acpy i)V
V2 b 4¢ vt

l2,uz),e2

V “— UAG[ n—1

eq(V™)

I Un) €n

query

The dereferenced query for the above is

€q (UAe[ln.,un),en e

(Q0)

Using the minterm technique this scenario query can
be rewritten into the minterm form

TAcla,uz),e2 0 A€l1 ur)e1 V)

eq( (Uj=22n0a¢(e, 1.c))€hen_1 -+ €1V)U (Q7)

O—AE[CLC%)V)
where the points cq, ..., co, are simply an ordered list
of the I; and w; points (ie., ¢7 < 2 < ... < cap).
el is e; if the range [I;,u;) covers the range [¢; 1, ¢;)
and it is the identity function otherwise (i.e., it can be
omitted as well.)

EXAMPLE 3.4 The expression

UDe[1/1/98 1/15/98), Mult1, 10Dm[1/10/98 1/25/98), Mult 2
G De(1/20/98,1/30/98), Mult, , OTderCT DS



reduces to the following after the select modifications
are removed using the minterms technique

UD€[1/1/98,1/10/98) Mult1_1 OrderCTDS
UUDE[1/10/98,1/15/98) M’ltltl,QM’lthl.lO?"de?"CTDS
UUD€[1/15/98,1/20/98) MUltl_QOT’dGT’CTDS
UUDE[1/20/98,1/25/98) M’ll/ltl,3M’ll/lt1.207"d67"CTDS
UUD€[1/25/98,1/30/98) M?thl_gOTdGT’CTDS
UO’Tg[1/1/98’1/30/98>O?"de?"CTDS

O

Note that the above minterm form is linear in the
number of select-modifications — as opposed to ex-
ponential. We can generalize the above transforma-
tion to one where the conditions involve d dimensions.
In this case the number of minterms (i.e., the num-
ber of operands in the above union) will be less than
((2n+1)/d)?. A polynomial time algorithm that per-
forms the above transformation is in [BPP].

3.4 Multi-Operand Operators Challenge and
the Packed Forests’ Solution

The second challenge arises when the rewriter opti-
mizes unions and other multi-operand operators. In
this case, the rewriter produces an exponential num-
ber of equivalent expressions.

EXAMPLE 3.5 Assume that the operators a and b
are commutative. Then, given the expression a(b(R))U
(a(b(S)) the rewriter will also derive a(b(R))U(b(a(S)),
b(a(R)) U (a(b(S)), and b(a(R)) U (b(a(S)). O

System-R style optimizers resolve this problem by
optimizing each branch of the union separately, i.e.
by employing local optimization (called dynamic pro-
gramming in the context of System-R.) However, the
local optimization algorithms may miss the opportu-
nity to use a materialized view. The following example
illustrates the problem.

EXAMPLE 3.6 Consider the dereferenced query
Avg(Multy 1 OrderCTDS) x Countc(OrderCTDS)

against a datagraph containing the views

Vi =3 OrderCTDS
Vo = Avg(OrderCTDS)

If the optimizer processed each operand of the mul-
tiplication operator separately, it would arrive to
Multy 1Va % Counte(OrderCTDS) and would not be
able to reach the optimal Mult, V7 . O

Packed Forests

The above example demonstrates that local optimiza-
tion may miss the optimal rewriting. Our rewriter
tackles the problem by employing the packed forests
data structure, which efficiently stores all equivalent
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function buildForest(query g, rules R, datagraph D)
returns forest F’

for every hyperedge {v1,...,v,} = vg
insert e(v1,...,vn) — vg In R
Queue — [q]
insert the node ¢ in F'
while Queue is not empty
remove from Queue its first element ¢
for every rule r in R
if r.match(q’)=true
and returns the set of bindings B
for every binding b from the set B
generate new tree t = r.rewrite(b)
traverse t’s non-forested part bottom-up,
applying buildForest() to every node.
if ¢ is not already in F insert ¢ in Queue
insert the node ¢ in F

Figure 3: Packed Forests Optimizer
plans for each subexpression — as opposed to System-
R optimizers, which note only the optimal plan and
discard the rest.

Technically, a packed forest is a data structure that
can encode in a compact way a class of equivalent ex-
pressions. A forest of an expression E is a set of all
expressions equivalent to E. A packed forest of F is a
forest in which every subtree of each expression is also
a forest.

Packed forests have been used to save space in pars-
ing of natural languages [RN95]. To illustrate how
packed forests are used to improve efficiency of the
query rewriting let us reconsider the union expression
of Example 3.5. The packed forest of this expression
is {a(b(R)), (b(a(R))} U{a(b(S5)), b(a(5))}.

Notice that if the union had n operands and the
packed forest of each one had two equivalent expres-
sions the packed forest encoding would require space
linear in m while it represents 2" equivalent expres-
sions.

The packed forest rewriting algorithm shown in Fig-
ure 3 creates the packed forest of a given query. Let
us illustrate this algorithm with the rewriting of the
query: ZC((}[Year:1998,1v1ult1_2](CST))

In the first step (see Figure 4) , the initial tree is tra-
versed bottom up starting at oy cqr—1998 and a forest
is built out of each non-leaf node. In Figure 4 dotted
circles indicate the roots of the subtrees for which the
buildForest() is called, and solid boxes indicate com-
pleted forests. Since no rules match any of the nodes,
until the rewriter reaches the root node ), every for-
est contains exactly one tree (step 2 in the figure). At
this point the rule 3 , (R1UR2) = (3° 4 R1)UQ_ 4 R2)
fires and adds the second tree to the forest that is be-
ing built (step 3). Note, that the new tree already has
forests built for #1 9 and oy cqrt1908, because these sub-
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Figure 4: Example of Packed Forest Optimization
trees where copied from the original expression with-
out modifications.

Next, the buildForest() function is called for every
non-forested child of U i.e., both its children. It starts
with the left ). This instance of buildForest() uses
the Y , Mult, = Multy ) , rewriting and produces
the expression 77 = Mult1 2" (0year—1908(CST)).
Then it recursively calls buildForest() on Ty (step 4).
The rest of the forests is produced, in the similar fash-
ion.

By default, SESAME’s rewriting rules use only the
local optimum plan of each subexpression, thus being
almost as fast as local optimization algorithms. How-
ever, specially written rules spend extra time to scan
(not only the local optimum but also) the equivalent
subexpressions and hence find the optimal rewriting.
In our current system implementation only the rule
AvgeR * CountcR = )~ R is implemented in this
fashion. The match() function of this rule looks at
the roots of all trees in the operand forests, selecting
Sum’s in the first operand and Count’s in the second.
Then pairs of Sum and Count with the same operands
and parameters should be identified, and bindings be
produced for each of those pairs.

Packed forests greatly reduce the amount of space
required by the rewriter and allow us to trade the
rewriter running time with the complexity of rewrit-
ings it can do.

3.5 Experiment results

This section presents two sets of experiments. First,
we evaluate the running time of an optimizer that em-
ploys the techniques described in Sections 3.2, 3.3, and
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Figure 5: Query on PositionCTS.
3.4 on the performance of the rewriter. Second, we
evaluate SESAME’s overall performance in comparison
with recomputation and incremental update policies
in a conventional data warehouse.

The data presented in this section were obtained
on the same Pentium II 333 MHz, Windows NT,
JDK1.3 with Hotspot Java Virtual Machine configura-
tion where the data for the ultra conservative rewriter
were obtained. In all cases the rewriter was set up
with the datagraph schema of Figure 1. The same set
of rewriting rules listed in [BPP] was used.

Rewriter Running Time Experiments

In this section we evaluate a rewriter employing
minterms and the packed forest technique. We do
not show results for rewriters without these two tech-
niques, for their performance is non-competitive. For
our experiments we report only the running time of
the rewriter and not the number of produced plans,
because the number of produced expressions is linear
with respect to the running time (see [BPP].

For the experiments of Figures 5 and 6 the scenario
consists of N = 1,...,10 modifications of the form

O’I"dG’I"CTDSi = (}A—;,MULTC,L- OrderCTDSFl

where A; were conditions on the dimensions T and
C. The first query was ocg PositionC' ST | where Cg
was a condition on the T dimension. The second query
was ocgValueCTVYN . Thus the dereferenced queries
are of the form:
0csYpateda, MULT,, --04, MULT,, OrderCTDS, and
0cs(Xpated Ay, MULT,, -
04, murt,, OrderCTDS) x PriceTodayTV

Figures 5 and 6 present how the rewriter’s running
time increases as a function of the number of modifi-
cations.

Overall Performance Experiments

In conclusion we present an experiment in which the
same hypothetical query ooy PositionC'STYN (where
N =1,...,4is the number of modifications in the sce-
nario) that was used for the rewriting experiment, was
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Figure 6: Query on ValueCTV

Modi- Sesame Incremental Repla Affected
fica- Exec. time | Exec. time cement tuples
tions Exec. Time
1 0.25 sec 202 sec 630 sec 151 K
2 0.9 sec 225 sec 630 sec 168 K
3 1.1 sec 289 sec 630 sec 249 K
4 1.0 sec 298 sec 630 sec 257 K

Table 1: Overall performance vs. the MS SQL Server

executed by SESAME’s execution engine and by Mi-
crosoft SQL Server. Since SESAME’s rewriter can opti-
mize this query to be answered entirely using the orig-
inal materialized view PositionC'ST, SESAME’s lazy
evaluation approach has huge advantage over the ea-
ger execution one, as Table 1 clearly demonstrate.

The second column indicates the time that it took
SESAME’s execution engine to carry out the optimized
dereferenced plan.

The third column reflects the time that it took the
MS SQL Server to update the fact nodes and relevant
views according to the scenario, execute the hypothet-
ical query and roll back the modifications. This result
is equal to the time this scenario would take in a ware-
house system that supports incremental updates, i.e.,
the time to create the delta tables for OrderCTDS and
PositionCST, run the query and destroy the deltas.
The fourth column reflects the time that it took the
MS SQL Server to execute the query without the sim-
ulated incremental updates. In this case the hypo-
thetical database was created, all the data was copied
from the original fact tables along with the necessary
modifications, all the views were recomputed, and the
query was executed on the hypothetical database.

The data warehouse used for this experiment con-
tained only one million orders or about 50 MB of data.
In a more realistically sized warchouse, SESAME’s ad-
vantage would be even more striking.
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