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Abstract

Commercial OLAP systems usually consider
OLAP dimensions as static entities. In prac-
tice, dimension updates are often necessary in
order to adapt the multidimensional database
to changing requirements. We have already
defined a taxonomy for these dimension up-
dates in previous works, and a minimal set of
operators to perform them. In this paper, we
show the need to keep track of the history of
the data warehouse. In order to address this
problem, we propose a new (temporal) mul-
tidimensional model, along with a query lan-
guage supporting it. We formally define the
model, introduce the language by means of ex-
amples, and define its syntax and semantics.
Finally, we discuss implementation issues, and
how a translation into SQL:99, TSQL2 or
other SQL-based languages can proceed.

1 Introduction

OLAP (On Line Analytical Processing) has received a
lot of attention from the database community in the
last few years. As a consequence, several models for
OLAP applications have been proposed [Kim96, CT98,
Leh98]. In these models, data is organized into dimen-
sions and fact tables [Kim96]. Dimensions are usually
organized as hierarchies, providing a way of defining
different levels of data aggregation, a central issue in
data analysis. It is a frequent assumption in these
works that data in fact tables reflect the dynamic as-
pect of the data warehouse, while dimension data rep-
resent static information. This assumption is often vi-
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olated in practice [HMV99a, HMV99b]. For example,
a dimension like Store (in a retail warehouse applica-
tion) may change as new stores open and close, or a
store is reassigned from one region to another; in ad-
dition, the structure of the Store hierarchy itself may
change as a level of grouping, such as Region, is elim-
inated, or a new one introduced. Since the schema of
the fact table or tables is composed of attributes from
the dimensions, such changes may trigger schema evo-
lution in the fact tables. We argue that in an envolving
scenario like this, OLAP systems need temporal fea-
tures to keep track of the different states of a data
warehouse throughout its lifespan.

There are many real life situations in which these re-
quirements arise. Consider for example an NBA (pro-
fessional basketball) warehouse where the fact table
Points has just two dimensions, Player and Time, and
a measure, Points Scored. The Player dimension hi-
erarchy is structured by grouping players into teams
called Franchises. Suppose a user wants to know the
total number of points scored by the players of the
Portland Blazers. This query could be interpreted in
two different ways: the user could be asking for the
sum of total points ever scored by all players who are
currently on the Blazers, or for the sum of the points
scored by these same players since they joined the
Blazers. For instance, the points scored by Damon
Stoudamire (who is currently on the Blazers) while
playing for the Toronto Raptors in the 1998-99 season
should only be added under the first interpretation. A
query language of a standard commercial OLAP sys-
tem will not be able to distinguish one interpretation
from the other. The reason is that state-of-the-art
OLAP systems just record the last value of dimen-
sional attributes and give no access to their historic
values. In the language we will introduce in this paper,
a query for the first interpretation will be expressed as:

Q(x,SUM(p)) +— Points(x,p,t),

Now .
x — franchise: ‘Blazers’.

This means: for each player x, add up all the points
scored by x where x currently “rolls up” to the Blazer
franchise. The query for the second interpretation will



read:

Q(x,SUM(p)) +— Points(x,p,t),

t .
x — franchise: ‘Blazers’.

Descriptive attributes make queries like “total num-
ber of points scored by Stoudamare while playing for the
Toronto Raptors” easy to express.

Q(SUM(p)) <+— Points(x,p,t),

¢ .
x — franchise: ‘Raptors’,

¢ .
x.name=‘Stoudamire’ .

The queries above operate at a high level of abstrac-
tion, without requiring low-level knowledge about the
database design that underlies the dimensional model.

1.1 Motivating example

We will use the same retail data warehouse through-
out the paper, adding dimensions or fact tables when
it becomes necessary. For the remainder of this sec-
tion we will consider dimensions as snapshot relations
representing data as of the current time. This is a stan-
dard practice in commercial OLAP. Let us start with
the following dimensions: Time, Product, C'ustomer,
Salesperson.  Moreover, as dimensions are orga-
nized in hierarchies, let us also assume the hierarchy
{itemId — itemType,itemId — brand}; and the fol-
lowing rollup functions from itemld to itemType :
{(#1,11), (2, 1), (i3, t2), (i1, t2) } (we will not be using
brand at this time). The following fact table represents
sales facts.

timeld | spld | customerld | itemld | salesAmount
dl S1 C1 il 100
d2 S2 C2 il 100
ds 81 c3 13 100
d4 S2 Cq4 i4 100

A query asking for the total sales per salesperson
and product type would return the following table:

spld | itemType | salesAmount
S1 tl 100
S2 tl 100
S1 t2 100
52 l2 100

Suppose now that at an instant immediately after
d4, product ¢ 1s reassigned type ¢3. A non-temporal
star or snowflake schema will store < i1,%5 >, replac-
ing the tuple < i1,#; >, i.e., there will be no mem-
ory of the former description of an item. If the user
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poses the same query, as all the sales occurred before
the revision, she would expect to get the same result.
However, she gets the following:

spld | itemType | salesAmount
51 (2 200
59 iy 200

What happened is that the contribution of items of
type t1 is ignored, because now all items are of type
to.

Notice that in order to issue the query above, the
user needs to know the schema of the data warehouse,
that 1s, what are the attributes in the fact and di-
mension tables. This schema may change over time.
For instance, itemld may not always have been an at-
tribute of the fact and/or dimension tables, if in the
early days of this data warehouse data with granu-
larity ¢temlid was not available at the sources. In this
case, the query above, which is ignorant of this schema
change, will only consider total sales made since the
time at which temld was added to the fact table,
although information is available to obtain the total
sales over the whole lifespan of the data warehouse.
All these situations must be handled ad-hoc by cur-
rent OLAP systems, which have no built-in temporal
capabilities.

1.2 Related Work

The problem of handling “slowly changing dimen-
sions” was mentioned by Kimball [Kim96], who sug-
gested some partial solutions (which neither take
schema evolution into account, nor consider complex
dimension updates). Based on this proposal, a tem-
poral star schema was introduced [BSSJ98]. This
work compares two different temporal implementa-
tions against the usual non-temporal star schema, and
constitutes a first step toward recognizing the prob-
lem. More recently, a multidimensional model for han-
dling complex data has been introduced [PJ99], where
the temporal aspect is considered as a modeling is-
sue, and is addressed in conjunction with another data
modeling problems. None of these works propose a
data warehouse evolution framework or a temporal
query language for OLAP. Recent works on mainte-
nance of temporal views [YW98, YWO00] present a view
definition language operating over non-temporal data
sources, along with techniques for maintaining tempo-
ral views. Although dealing with temporal databases,
these works are orthogonal to ours, as they focus on
the data sources and on how a set of temporal views
are obtained and maintained, while we focus on query-
ing a temporal multidimensional database.



1.3 Our approach

In light of the above, we introduce a temporal mul-
tidimensional data model and a temporal query lan-
guage supporting it, which we called TOLAP (Tem-
poral OLAP.) TOLAP combines some of the tem-
poral features of query languages like TSQL2 or
SQL/TP [Sno95, Tom97] with some of the high-
order features of languages like HiLog or Schema-
Log [CKW89, LSS97], in the OLAP setting. We in-
troduce TOLAP by means of examples, formally de-
fine its syntax and semantics, and discuss its expres-
sive power. We show that TOLAP allows queries like
(a) “List the amount of sales by product type, using
the categorization each item had at the time it was
sold”; (b) “Were products categorized by brands two
years ago?”; or (c) “How were customers classified
three years ago?”. Notice that the last two queries
are performed over the evolving dimension’s metadata.
We also introduce an extension to TOLAP, allowing
queries which TOLAP cannot express, like: “list the
total sales per item and region, using only the cur-
rently existing regions”. Finally, we discuss different
possible implementations, involving the translation of
a TOLAP program to SQL.

1.4 Discussion

One might argue, at first sight, that a generic temporal
query language like TSQL2 [Sno95] could be used in-
stead of defining a special-purpose one like TOLAP.
There are two reasons why we prefer to introduce a
new language. First, a language designed specifically
for the multidimensional model makes typical OLAP
queries much more concise and elegant. In a generic
language, queries would have to be laboriously en-
coded using detailed knowledge of the low-level rela-
tional structures used to encode the dimensional data.
Second, the best-known temporal languages, such as
TSQL2, support only a minimal level of schema ver-
sioning ( [Sno95] p.29).

Another alternative would have been to add tempo-
ral features to other languages with schema manage-
ment features, such as HiLog [CKW89] or Schema-
Log [LSS97]. Again, using a language specifically
designed for OLAP yields much simpler syntax and
semantics, and just the high-order features that are
needed to support schema evolution.

The remainder of the paper is organized as follows:
in Section 2 we introduce the data model. In Section
3 we define the query language. We discuss its imple-
mentation alternatives in Section 4, and conclude in
Section 5.

2 Temporal Multidimensional Model

In previous works [HMV99a, HMV99b], we introduced
a multidimensional model supporting dimension up-
dates. In that model, dimensions were non-temporal
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structures, like the ones of Section 1.1. In the Temporal
Multidimensional Model we introduce here, dimension
elements are timestamped at the schema or instance
level (or both) in order to keep track of the updates
that occur during the dimension’s lifespan.

In the rest of the paper we will be dealing with what
in temporal databases is called valid time [Sno95], that
is, the timestamp represents the time when the fact
recorded became valid, rather than the time when it
was recorded (transaction time). The concepts pre-
sented here could be easily extended to handle trans-
action time too. We will consider time as discrete;
that is, a point in the time-line, called a time point,
will correspond to an integer.

2.1 Temporal Dimensions

The following sets are defined : a set of level names
L, where each level [ € L is associated with a set of
values dom(l); a set of attribute names A, such that
each attribute a € A is associated with a set of values
dom(a); a set of temporal dimension names TD; and
a set of fact table names F. We assume instant t, to
be the dimension’s creation instant.

Definition 1 (Temporal Dimension Schema) A4

temporal dimension schema is a tuple (dname,L A, =<, A,
>, 1) where: (a) dname € TD is the name of the
temporal dimension; (b) p is a level in the Time di-
mension. Intuttively, p defines the granularity of the
dimension dname; (¢} L C L is a finite set of lev-
els, which contains a distinguished level name All, s.t.
dom(All) = {all}, where {all} is considered valid dur-
ing the complete lifespan of the dimension; (d) X is a
funetion with signature dom(p) — L, defining the in-
stants when each level was part of the dimension; (e)
< is a function with signature dom(u) — 2¥*¥ such
that for each t € dom(p), =: is a relation s.t. =f,
the transitive and reflevive closure of =<; 1s a partial
order, with a unique bottom level, l;ny € A(t), and a
unique top level, All, where, for every level | € A(t),
ling =7 Land 1 <7 All hold; (f) A is a finite set of
attributes; (¢/> is a function with signature dom(p)
x A = L, s.t. for every level | € A(t), a >>»; | means
that of the function is applied to an attribute a, it re-
turns the level |, where attribute a belongs or belonged
to level | at time t.

Notice that [;,; is unique at any time instant ¢,
although it may not be unique across time.

Note In the rest of the paper we will use the retail
data warehouse introduced in Section 1.1, with tem-
poral dimensions instead of dimension snapshots.

Example 1 Let us add a dimension Store to our
data warehouse, s.t. dname = Store, p = month,
L = {storeld, city, region, All}, \(t) = LVt > ty, and
=t = {Storeld =<, cily,cily <, region, region =,
All} NVt > tg. Also, lel  us  suppose a new level



All

storeType  regjion

city

[t2.43]

Storeld

@ (b)
Figure 1: (a) Schema (b) Instance.

storel'ype is inserted above storeld, at time ty.
Thus, the following holds: {storeld <, StoreType;,
storeType = All}, Nt > t1. See figure 1{a)!.

Definition 2 (Temporal Dimension Instance) A
temporal dimension instance is a tuple (D, TRUP,
TDESC ), where D is a temporal dimension schema,
and:

e TRUP (temporal rollup) is a set of functions,
satisfying the following conditions: (a) for every
instant t € dom(u), and for each pair of lev-
els l1,ls € A(t) such that Iy = la, there exists
in TRUP a rollup function p[t]ﬁf s dom(ly) —
dom(ls); thus, a function is defined for every
snapshot taken at any instant t € dom(u); (b) for
every instant t in the dimension’s lifespan, and for
every pair of paths in the graph with nodes in (1)
and edges in =y, T =< li,la,.. g, 1, >, and
=< Iy, l's, ... Uk, 1, >, we have p[t]ﬁf o...0

p[t]ﬁ)’: = p[t]ﬁlf °0...0 p[t]ﬁ,"k; (¢) at every instant
t of the dimension lifespan, and for each triple
of levels 11,15,l3 € A(t) such that Iy =; 1y and

ly =1 &s,ran(p[t);}) € dom(plt];y).
e TDESC (temporal description) is a set of partial

funetions > with signature dom(l) — dom(a), for

each level | € A(t) and attribute a s.t. a > [.

We call condition (b) in the definition of temporal
rollup, snapshot consistency, meaning that each ele-
ment in each level must reach some element in every
level above it in the hierarchy, and if there are different
paths from one level to another, composing the rollup
functions along the different paths must produce the
same function.

I'We will not be using level storeType in the following
sections.
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Example 2 Figure 1(b) shows a temporal dimension
wnstance for dimension Store. The rollup functions
weth no label are valed for the whole lifespan of Store,
while piltilield[t](55) = c3,Yt, 1o <t <ti3. Rollup func-
tions with label t > t1 suggest that level storel'ype was
created at time ty.

Clearly, the definitions we gave above are not ap-
plicable to the Time dimension. Thus, we will treat it
in the usual way.

Definition 3 (Temporal Fact Table) A temporal
fact table schema is a tuple s = (fname, f,m, p),
where m 1s a level name, called the measure of the
fact table, p is a level in the Time dimension, and fis
a function with signature dom(u) — 2L

Given a temporal fact table schema (fname, f,m, p),
a set of levels L in the range of f, and a level p
m the Time dimension, a mapping from each level
l; € (LU{u}) to dom(l;) is called a point.

Given a temporal fact table schema s = (fname, f,
m, pt), a temporal fact table instance over it is a par-
tial function which maps points of s to elements in
dom(m).

Definition 4 (Base Fact Table) Given a set D of
temporal dimensions, a base fact table s a fact table
with schema (fname, fp,m, pt), such that for each t €
dom(p), every level in fp(t) is a bottom level of its
dimenston. Thus, a base fact table is a fact table such
that its attributes are the bottom levels of each one of
the dimensions in D.

Definition 5 (Multidimensional Database)

A temporal multidimensional database schema, de-
noted Bg, is a pair (Dg,Fg), where Dy is a set of
temporal dimension schemas, and Fg is a set of tempo-
ral fact table schemas. A temporal multidimensional
database instance I(B), is a tuple (F1, D1), where Dy
and F1 are dimension and fact table instances, respec-
tively, defined as above.

2.2 Temporal OLAP queries

Usually, in an OLAP environment, queries require the
computation of aggregates over base fact tables. More-
over, in order to obtain good performance, some sys-
tems pre-compute aggregates over different groups of
attributes. In the presence of dimensions with hierar-
chies of levels, queries computing aggregates over vari-
ous dimension levels are often required. As we claimed
that dimensions change over time, this must be taken
into account, in order to give the user the desired an-
swer to a query she poses to the system. We will de-
note by temporal OLAP query, a query over a set of
temporal dimensions and fact tables. The example be-
low will show the difference between a temporal OLAP
query and a non-temporal one.



Example 3 Consider a set of dimensions D =
{Produect, Store} from our retail data warehouse, and
a base fact table with schema (Sales, f, sales, day). As-
sume no schema update occurred (this will be stud-
ied in Section 3.2). Thus, f maps each instant to
{itemlId, storeld}. The instance of dimension Store
1s the one of figure 1, and for the instance of dimen-
sion Product we have pxzzﬁ/pe[t] ={iz = t1,i3 =
G}V > doy e = (i = 0}, Ve do < T <
dy , and pxzzﬁ/pe[t] = {iy = t2},Vt,1 > ds(a reclas-
sification occurred at day ds). Assume that in Time
we have: pZU;;k ={d1 = wy,ds = wi,ds = we,ds —
wa,ds — wat{and the rollups from week to All). Fi-
nally, we have the following instance for the Sales fact
table (Day is displayed for the sake of clarity, but could
have been omitted, like in TSQL2):

itemld | storeld | day | sales
il S1 dl 600
22 82 dy 100
i2 S1 d2 100
23 82 do 100
i3 83 d3 100
23 84 ds 100
il S1 d5 100

Let us now suppose we are given the query: “ list
the weekly total sum of sales, by city and item type”.
As in the example of Section 1, two interpretations
could be given to this query. The first one, possibly the
most usual one, would expect to get the sum of sales
considering the type an item had when it was sold. In
this case, for instance, ttem i, would contribute to the
aggregation in the following way: the first three tuples,
with a total of 800, will add to the group {t1,c1, w1},
while the last one will contribute to {ta,c1,ws}. The
result will be given by the following table:

itemType | city | week | sales
tl C1 w1 800
t2 C1 w1 100
t2 C2 w2 200
t2 C1 w2 100

The second interpretation, which ts the only one
supported by non-temporal systems, would ask for the
sum of the sales, considering that each sold item has
the current type, regardless of the time the sale oc-
curred. The result a user would get under this inter-
pretation is given by the table below, which was com-
puted in the following way: the rollup function for ev-

. L . dtemType . \ _
ery occurrence of item i1 is set to: pio 7 V(1) = ta.
Thus, all the i1 tuples will contribute to type to. For in-
stance, the first tuple will now contribute to the group
{t2, c1,w1}. In the next Section we present a language
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that lets the user distinguish the two interpretations.

itemType | city | week | sales
tl C1 w1 200
t2 C1 w1 700
t2 C2 w2 200
t2 C1 w2 100

3 TOLAP: A Temporal Multidimen-
sional Query Language

In this section we propose our multidimensional query
language TOLAP (standing for Temporal OLAP). We
introduce 1t first by means of examples, and then de-
fine its syntax and semantics.

3.1 TOLAP By Example

Let us consider again the set of dimensions D =
{Produect, Store} from our running example, and the
corresponding base fact table named Sales, of Exam-
ple 3. In the Product dimension, p = day. Also assume
that there is a fact table (Price, fp, price, pi : month),
containing the price of each item each month(fp(¢) =
{itemId} for each t).

3.1.1 Simple queries

We begin with queries not involving aggregates.

Example 4 A query returning the sales for stores in
Buenos Aiwres, on a daily basis, will be expressed n

TOLAP as:

BASales(p,s,m,t) <— Sales(p,s,m,t),

t .
s — city:‘BA’,
t— month:i¢;.

In TOLAP, the query above returns the tuples in
Sales such that s rolls up to BA, where s represents
an element in the lowest level of the dimension Store.
This query is expressed in a point-based fashion (see

Section 3.4 for details).

We assume a fixed ordering of the attributes in the
base fact tables. For instance, in the base fact table
Sales, the first position from the left will always cor-
respond to dimension Product.

3.1.2 Queries with aggregates

In order to address queries involving aggregation, we
adapt non-recursive Datalog with aggregate functions
[CM90], which, in turn, was based on the approach of
Klug’s relational calculus with aggregates [Klu82].



Example 5 Consider the query : “list the total sales
per item, region and week,” where we want aggregates
to be computed using temporally consistent values (i.e.,
a sale in a given store must be credited to the region
that corresponded to that store at the time of the sale).

WS(it,re,w,SUM(m)) <+— Sales(it,st,m,d),
st 2% region:re,
d — month:mo,

d — week:w.

Note that although in Example 5 we made explicit
the rollup between the time granularity of the Sales
and Store dimension, (i.e. day and month), this could
be easily avoided, allowing a limited form of “schema
independence”, as in Schemalog or SchemaSQL. Later
examples show the use of variables that range over
level names, pushing this independence farther.

Example 6 We now introduce descriptive attributes
of dimension levels. Suppose we want the total sales
by store and brand, for stores with more than ninety
employees. Assume that level storeld is described by
an attribute nbrEmp.

SB(br,st,SUM(m)) <+— Sales(i,s,m,t),

i L> brand:br,

t — month:mo,
mo

s — storeld:st,

s.nbrEmp > 90.

3.1.3 Metaqueries

We would also like to query the system about the
rollup functions themselves, regardless of the facts.
Some examples of these kinds of queries are:

o “Give me the time instants at which store s; be-
longed to the Southern region”, expressed as:

StoreTime(t) <+— Store:storeld: ‘s’

t .
— region: ‘Southern’.

Note that we must specify the name of the dimen-
sion in the atom Store:storeld: ‘s;’, because
there is no fact table in the body of the rule to
bind s.

o “Were products categorized by brands two years

ago?” (this is the query of example (b) of Sub-
section 1.3 ).

1/1/9

8
ProdBrand() ¢— Product:X:x —— brand:y.

In this example, X is a variable over level names.
The expression above means that if any element,
in any level in the Product dimension rolled up to
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an element in level brand at the required date, the
answer to the query will be ‘yes’.

3.2 Data Warehouse Evolution in TOLAP

According to the definitions of Section 2, our model
supports evolution of the schema over time (in tem-
poral database terminology, this is called schema ver-
stoning or schema evolution. For instance, suppose in
our running example that the bottom level of the Store
dimension in Figure 1 was, initially city, and that, at
time ds, storeld was inserted below it. A fact table
with attributes itemld,city, sales,day 1s in effect be-
fore ds. After the update, the fact table attributes will
be: itemld, storeld, sales, and day. In TOLAP, if an
element was not defined at a given instant, it will not
contribute to the result. For instance, given the query
“list the total sum of sales by brand and storeld”, we
have:

SB(br,st,SUM(m)) <+— Sales(i,s,m,t),

.t

i—>brand:br,

t — month:mo,
mo

s —rstoreld:st.

The expression s——storeld:st means that if an
element in any level, which was once a component of
a base fact table, rolled up to level storeld at time
mo, it contributes to the aggregation. Thus, the sales
made before the month corresponding to ds will not
contribute to the aggregation in the head (condition
s—% storeld:st will not be satisfied). Analogously,
a query like “total sales by store and itemld” would
return exactly the instance of the second fact table
above.

Finally, suppose that at time do, level brand is
deleted from the dimension Product. The remain-
ing levels would be étemId,(bottom level), itemType,
company, and All. The query “total sales by brand and
region” would read in TOLAP:

BR(br,reg,SUM(m)) <+— Sales(i,s,m,t),

i%brand:br,

t —month:mo,

sﬂ)region:reg.
Any sale taking after dy will not be considered, as

brand 1s not a level of the dimension any more.

3.3 Syntax

In this section we will formally define the syntax of a
TOLAP rule. We will first give some definitions which
will be used below, and then formalize the concepts
introduced in the previous section.

3.3.1 Preliminary definitions

Given a set T, and a discrete linear order <, with no
endpoints, we define a point based temporal domain



as the structure Tp = (7,<). Analogously, given
Tp = (T,<), we define the set I(T) = {(a,b)|a <
bya,b e TU{—00,+0c0}}, and let us denote as 6 as the
set of the usual interval comparison operators. Then,
Tr = (I(T),0) is an Interval-based Temporal Domain
corresponding to Tp. These domains will are denoted
Temporal Domains, and allow us to define the abstract
and concrete rollup functions [Tom97]. We will define
the rollup functions over Tp.

3.3.2 Atoms, Terms, Rules, and Programs

Assume Bg(Dg, Fy), and I(B) are a multidimensional
database schema and instance, respectively, as defined
in Section 2. Let Vi, and Vp be a set of level and data
variables, respectively. We have also the sets Cy, and
Cp of level and data constants, respectively. Let P be
a set of intensional and extensional predicate symbols,
and Fg is a set of aggregate function names.

Definition 6 (Terms) (a) A data term is either a
variable in Vp or a constant in Cp; (b) a rollup term
1s an expression of the form d:X:x, X:x or x, where X
15 a level name variable in Vi, or constant in Cy,, X is a
data term, and d is a constant in Cy; (¢) a descriptive
term ¢s an expression of the form x.a where x and a
are data terms (d) an aggregate term is an expression
of the form £(d) s.t. £ 1s a function name in Fgp. A
term s a data, rollup, descriptive or aggregate term.

Definition 7 (Atoms) (a) A fact atom is an expres-
sion of the form F(Xy,...,Xn,M,t), where F is a fact
table in Fg, and Xq,..., Xy, M and t are data terms;
a rollup atom s an expression of the form X AN Y,
or X — Y, where X and Y are rollup terms, and t
is a data term; (c) a descriptive atom is an expres-

sion of the form x L y, where x is a descriptive term,
and y and t are data terms; (d) an aggregate atom
is of the form Q(R,...,Z) s.t. Q € P, and R,...,Z
are data terms s.t. at least one is an aggregate term;
(e) an expression t; 0 ty, where t; and t2 are data
terms, and 6 is one of {<, =}, is a constraint atom; (f)
ifg :NX.. xN—=Nis a scalar function, g(ni,...ny,),
wheren; are data terms, is a scalar atom; (¢} an inten-
sional(extensional) atom is an expression of the form
p (X,..,Z) where X,Y,Z are data terms, and p is an
intensional(extensional) predicate symbol.

An atom is a fact, rollup, descriptive, aggregate,
constraint, scalar, intensional or extensional atom. An
expression —ty, where ty is an atom, is a negated
atom.

Definition 8 (TOLAP rules) A TOLAP-rule is a
formula of the form A +— Ay A, ...A,, where A is an
intensional(possibly aggregate) positive atom, and A;,
i =1...n are non-aggregate atoms. A TOLAP ruleT
satisfies the following conditions: (a) If a variable ap-
pears in the head of the rule, it must also appear in its
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body; (b) every position in a fact atom corresponds to
the same dimension, with the rightmost position corre-
sponding allways to the Time dimension. (c) for every
level /data variable v, all the rollup terms where v ap-
pears are associated to the same dimension; (d) if there
is an aggregate atom Q(ai,...,a,) in the head of the
rule, for all atoms in the body, of the form d:X:x SN
y:ra;, d:Xix — y:a;, orx.y L ai, y s a constant
data term; (e) if x.a is in the body of T', at least one
rollup term in the body s of the form d:X:x, X:x or
x; (f) every variable which appears in a negated, con-
straint or predicate atom in the body of a rule, must
also appear wn a positive rollup or fact atom. A TO-
LAP Program is a finite set of TOLAP-rules.

From the rules above, it follows that there is a func-
tion, call it dim, that maps each data variable x to a
unique dimension dim(x), and each level variable X
to a unique dimension dim(X). Furthermore, there is a
function level, that maps each instant t to a unique
level level(x,t) of the dimension dim(x), and to a
unique level level(X,t) of the dimension dim(X).

3.4 Semantics

We will use point-based semantics [Tom95] for the
rollup functions. This means, for instance, that in
a dimension such as Store of our running example, a
value of a rollup function, say, storeld:s > city:c,
exists for each month.

Let us assume that for each dimension instance we
have a pair of relations, call them Rp and Dp, rep-
resenting the sets TRUP and TDESC of Definition
2, respectively. The multidimensional database is de-
fined over three different domains: D, N, Tp, where
variables ranging over D belong to an uninterpreted
sort, the ones ranging over N belong to an interpreted
sort (numeric), and the temporal variables range over
Tp, defined in 3.3.1.

A wvaluation 8§ for a TOLAP rule T, is a tuple
(0s,0r), where 0, is called a schema valuation, and 6y is
an instance valuation. Valuation f; maps the level and
attribute variables in I" to level and attribute names in
Bs, while 0; maps domain variables to values in 7(B).

Definition 9 A schema valuation for a rule T, de-
noted 0,(T') maps level and attribute variables in the
atoms of T' as follows: (a) given a rollup atom of the

formd:X:x N Y:y, 0; maps d to a dimension name
m Dy, t to a value w € Tp, and X and Y to a pair of
values v, u s.t. v <% u holds in 4 € Dy; (b) if the

rollup atom 1s of the form X:x SN Y:y,, 8 maps t
to a value w € Tp, and X and Y to a pair of values v, u
s.t. v =% w holds in dim(X) € Dy; (c¢) if the rollup

atom 1s of the form x SN Y:y,, 0 mapst to a value
w € Tp, and Y to a value u s.t. level(x,w) =¥ u holds
in dim(x) € Dy; (d) for the rollup atoms of the form



X:x —> Y:y, 8, maps X and Y to dimension levels in
dim(X) s.t. v,u s.t. v =<* w holds in dim(X); (e) given

a descriptive atom of the form x.A L y, 65 maps t to
a value w € Tp, and A to an attribute name u € A,
s.t. u > level(x,w) in dim(x) € Dy;

Given a rule schema valuation 05(T') for a rule T, an
instance valuation is a function 01 s.t.(a) it maps the
domain variables x and y in the rollup atoms defined
above, to values in Rp over levels defined by 0; (b)
61 maps variable x in the descriptive atoms defined as
above, to values in Dp, over levels defined by 0; (c)
0r maps a fact atom F(x1, .., 2, M, 1) as follows: F is
mapped to a fact table name in Fg, the rightmost term
t in F, to a value w € Tp, each domain variable x; in
F to a value in dom(level(x;,w)), and the data term
M in F to a value in N.

A constraint atom z {<,=} y evaluates to true
whenever 07(x) {<,=} 01(y). A negated atom is eval-
uated using the Close World Assumption. Thus, =( x

N Y:y ) is true if, given a valuation 0 s.t. 0(x) = u,
0t) =w, 0(Y) =1, and 0(y) = v, then it does not exist
a rollup in dim(x) s.i. pllevel(xyw) [w](u) = v. Predicate
and function symbols are valuated as in standard dat-
alog.

Let AGG be the set of aggregate functions, with
extension AGG = {MIN,MAX, COUNT,SUM},
and 7 a relation. The aggregate operation [CM90]
'yfA(X)(r) is the relation

'yfA(X)(r) = {t t is an XA-tuplei[X] €

mx (r), t[A] = fa(ox=ux)(r))},

over XA, st. XA € schema(r),f € AGG, and
fa(r) denotes the aggregation of the values in t[A],t €
r, using f. Thus, we can now define the semantics of a
TOLAP rule T of the form Q(a1, as, .. ., an, AGG(m))
+— Ay, ..., A, as follows: For each level or data vari-
able v; in the body of I', and for a valuation # of the
variables in the rule’s body, we have:

rr =4{< 6(v1),...,8(vy) > |6 is a valuation of T'}.

Then

Q= ’YAGGm(al,...,an)(rr)~

3.5 Expressive power

In this section we study, somewhat informally,
TOLAP’s expressive power. We also define an ex-
tension to TOLAP which will let us express queries
like the fourth one of Section 1.3, which cannot be
expressed in basic TOLAP.

3.5.1 What can be expressed in TOLAP?

Intuitively, it is not hard to see that TOLAP has at
least the power of first-order query languages with ag-
gregation. However, in a sense it goes beyond this
class. Note that in our data model, only the direct
rollups are stored, and their indirect consequences are
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left implicit. Thus, to evaluate a rollup atom like
d:X:x L>Y:y, we effectively need to compute the
transitive closure of the rollup functions for dimension
d. It is well-known that this cannot be done in first-
order, even after adding aggregate functions [LW97].
However, as long as the dimension schema is fixed, this
computation can be done in first order, because for a
fixed schema, the number of joins needed to transi-
tively close the rollup functions is known in advance.

Not only the structure of a dimension is subject
to updates. There are common real-life situations in
which the instance of a dimension may be modified in a
non-trivial fashion. Suppose for instance, a company
considers some country as divided into four regions,
north, south, east, west, in order to assign representa-
tives; at some time, 1t is decided that the northern
region should be divided into two or more, for any
given business reason. We call this change a split. As
another example, several airlines could become a sin-
gle one as a result of a corporate fusion, a common
situation nowadays. We call this action a merge of
elements.

Let us suppose the query “total sales per item and
region, using only the currently existing regions(or
their descendants)”. This query cannot be expressed
in TOLAP. To show this, suppose a region r is split
into 71 and rs. After that, r1 is merged with another
region 4. In the meantime, maybe some region could
have been deleted. With the tools defined so far, we
could not find the “descendants” of r . There are two
reasons for this: (a) so far, the model does not keep
track of splits and merges, which can be solved by
adding such information to the model, which we will
do shortly; (b) this, is, again, a transitive closure prob-
lem, even if the schema remains fixed, so the extended
language we define below is in some sense harder to
evaluate than the basic one.

3.5.2 Extending TOLAP

We extend TOLAP in order to be able to express
the class of queries exemplified above. First, we add
two predicates to the data model introduced in Sec-
tion 2: split(x,y, L,t) and merged(z,y, L, t), with the
following meanings: (a) split(z,y, L,t) is true if the
element x in level L was split at time ¢, and y 1s
one of the elements resulting from this splitting; (b)
merged(z,y, L,t) is true if element z in level I was
merged into element y at time ¢; these are event pred-
icates, in the temporal database sense. The formal
meaning of these predicates depends on the specifica-
tion of the update operators split and merge, given
in [HMV99b].

Using the split and merged predicates, we add to the
syntax of TOLAP defined in Section 3.3.2 a new kind
of atom,d : Ly : x N La(t2) : y. The valuation of this
atom proceeds as in Section 3.4. The interpretation
is as follows: the atom evaluates to T'rue whenever y



is the element in level Ly in dimension d, to which an
element x in level L; rolled up at time ¢5, given that
y is a successor(if ¢2 > #1) or predecessor (if #; > t2)
of an element z in Ls, s.t. x rolled up to z at time ;.

In order to clarify the meaning of the expression
d:Lg:x % La(ta) 0y let us explain it in terms of
datalog with stratified negation expressions. Let us
define a predicate shift(xz,y, L,t) as follows:

shift(x,y,L,t)
shift(x,y,L,t)
shift(x,y,L, t2)

split(x,y,L,t).
merged(x,y, L, t).
shift(x,z,L,ty),
merged(z,y, L, t2), t2 > t1.
)
)

T

shift(x,y,L, t2) shift(x,z,L,ty),

split(z,y,L,tz2),t2 > ti.

From predicate shift we derive another one,
called shiftPers(x,y, L,t), which extends the valid-
ity of the split or merge, to every instant ¢ be-
tween updates For instance, if shift(r,ry, L,10) and
shift(ry, 72, L,13) hold, then, shiftPers(r,ri, L, 11)
and shiftPers(r,r1, L,12) also hold. This has been
called Persistence [BWJ98]. Thus:

shiftPers(x,y,L,t) +—
shiftPers(x,y,L,s(t)) +—

shift(x,y,L,t).
shiftPers(x,y,L,t),
—shift(y,yi, L, s(t)),
¥ # y1,8(t) < Now,
—deleted(y,L,s(t)).
shiftPers(x,y, L, ty),
deleted(y,L, t1),
—inserted(y,L, ta),
inserted(Y,L,t),

£y < ta, b2 < t.

shiftPers(x,y,L,s(t)) +—

Here, s(t) stands for the successor of {. Predicates
deleted(y, L,t) and inserted(y, L,t) represent the dele-
tion of an element y from a level L containing it, or
the insertion of an element into a level, respectively,
and can be derived from the available data.

Now, we can define the meaning of L; : = BN
La(t2) : y by means of the following datalog rules:

L1:xi>L2(t2):y — lexl>L2:y7
Li:x i} Lo :y.
L1:xi>L2(t2):y  Liix S
Li:x i} Lo :y,
shiftPers(z,y, L, t2).
Li:x l} L2 : z,
Li:x i} Lo :y,
shiftPers(y,z, L, t,).

We will denote this extension of TOLAP as
TOLAPT. The meaning of a TOLAPT query is anal-
ogous to the meaning of a TOLAP one. Now, we can
express the query “total sales per item and region, us-
ing only the currently existing regions”, as:

N

)

L1:xi>L2(t2):y —
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IR(p,r,SUM(s)) +— Sales(p,st,s,t),
t — month:mo,

st Breg(Now):r.

In order to make things more clear, suppose that a
sale such as (p1, s1, 30, 10) occurred, and also suppose
that at instant “1” store s, belonged to region ro which
no longer exists at time “10”, because it was split
into 791 and ros. After a series of updates(including
the deletion of ro; and ra3), store sy currently be-
longs to region r5. According to the semantics defined
above, this sale will not contribute to the query re-
sult, because r5 is not a descendant of ry. However,

if the rollup st ﬂ>reg(]\70w) :r were replaced by st

Mreg:r, the sale in question would be included in
the aggregation. If we wanted this to occur, we must
have asked for the “total sales per item and region, us-
ing the current rollups from stores to regions”, which
can also be expressed in TOLAP.

4 Implementation

TOLAP could be implemented in at least two different
ways: (a) translating TOLAP queries to SQL, or (b)
using a temporal query language like TSQL2 [Sno95].
To make these ideas concrete, we use a data structure
that encodes the dimensions into one schema relation
and a set of instance relations. The schema relation de-
scribes all the dimensions in the data warehouse, with
structure: (Dimension, upLevel, loLevel, From, To),
where loLevel =(prom o) uplLevel. Although there
is one instance relation for each dimension instance,
two approaches can be followed: in the first one, the
instance relation has the form (upLevel,loLevel,up Val,
loVal, From, To), where pfopLL;Zl[(From, To)|(loVal) =
upVal. In the second approach, which we will call the
“denormalized” representation, a dimension instance
is stored as relation with a column for each dimen-
sion level, plus two columns From, To. This relation 1s
updated every time a dimension update occurs, either
at schema or instance level. In this way, the transi-
tive closure of an instance is stored in a single tuple,
which allows a more appropriate implementation of the
rollup functions.

4.1 Translation into SQL.

The first alternative we analize consists in translat-
ing TOLAP queries to SQL, using the data structure
defined above. The following example will show that
even simple TOLAP queries can have non-trival SQL
translations.

Suppose that in our running data warehouse, level
ttemId was deleted from the Product dimension at a
certain time, causing the fact table schema to change.
After that update, the query “total sales by brand, re-
gion and month” is 1ssued . In TOLAP this query
would read:



BRM(b,r,mo,SUM(m)) +— Sales(it,st,m,t),

. t
it — brand:b,
st 2% region:r,
t — month:mo.

This TOLAP query will yield the following SQL

code:

SELECT T.month,P.upVal,S2.upVal,SUM(sales)

FROM Salesg_1 S, Productgs P , Store S1,Store S2,

Time T

WHERE S.itemld = P.loVal AND P.loLevel = ‘“itemlId’ AND
P.uplevel = ‘brand’ AND S.storeld = S1.loVal

AND S1.loLevel = ‘storeld’ AND Sl.upLevel=‘city’
AND S1.upLevel = S2.loLevel

AND S1.upVal = S2.1loVal AND S2.upLevel = ‘region’
AND T.day = S.day AND P.From <= S.day

AND S.day <= P.To AND S1.From <= T.month

AND T.month <= 81.To AND S2.From <= T.month
AND T.month <= 852.To

GROUP BY T.month,P.upVal,S2,upVal
UNION

SELECT T.month, P.loVal,S2.upVal,SUM(sales)
FROM Salegs 2 S, Products P , Store S1, Store
82, Time T

WHERE S.brand = P.loVal AND P.loLevel =
S.storeld = S1.1oVal AND S1.loLevel =

‘brand’ AND
‘storeld’

AND S1.uplevel=‘city’ AND S1.upVal = S2.loVal
AND S1.upLevel = S2.loLevel

AND S2.upLevel = ‘region’

AND T.day = S.day AND P.From <= S.day

AND S.day <= P.To AND S1.From <= T.month
AND T.month <= 81.To AND S2.From <= T.month
AND T.month <= 852.To

GROUP BY T.month,P.loVal,S2.upVal

The consequences of the update in the generated
query, are shown in italics in the WHERE clause.
The attribute P.loVal in the second SELECT clause
is needed because, after the update, brand became the
bottom level of the dimension, being also one of the
aggregation levels. Also note that the composition be-
tween levels storeld and region must be preformed ex-
plicitly.

Implementing the “denormalized” alternative deliv-
ers a better performance, at the expense of a more
sophisticated update procedure. Here, instead of the
level,value pairs, each column stores the correspond-
ing values for the level it represents. Thus, the query
above generates the following SQL code:

SELECT T.month,P.brand,S1.region,SUM(sales)
FROM Sales_1 8, Products P , Store S1, Time T
WHERE S.itemId = P.itemId

AND S.storeld = S1.storeld

AND T.day = S.day AND P.From <= S.day
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AND S.day <= P.To AND S1.From <= T.month
AND T.month <= S1.To
GROUP BY T.month,P.brand,31.region
UNION
SELECT T.month,P.brand,S1.region,SUM(sales)
FROM Sales 2 S, Products P , Store S1, , Time T
WHERE S.brand = P.brand
AND S.storeld = S1.storeld
AND T.day = S.day AND P.From <= S.day
AND S.day <= P.To AND S1.From <= T.month
AND T.month <= S1.To
GROUP BY T.month,P.brand,31.region

4.2 Translation into TSQL2

Translating TOLAP into TSQL2 seems to be a natu-
ral choice, as we can avoid much of the explicit time
manipulation, and the generated queries are simpler
than their SQL equivalents. However, the translator
must deal with the CAST, VALID, and other TSQL2
clauses. For instance, the first term of the query of
Subsection 4.1 will look like:

SELECT VALID CAST (VALID(S) AS MONTH),P.upVal,

S52.upVal,SUM(sales)

FROM Saleg_1 S, Productsg P

82, Time T

WHERE S.ItemId = P.loVal AND S1.loLevel = ‘storeld’
AND P.loLevel = ‘itemId’ AND P.uplLevel = ‘Brand’
AND S.storeld = S1.1loVal AND S1.upVal = S2.1loVal
AND S2.upLevel = ‘region’ AND S1.upLevel=‘city’
AND S1.upLevel = S2.loLevel

GROUP BY VALID(S) USING 1 MONTH ,P.upVal, S52.upVal

, Storesg S1, Stores

We are currently implementing TOLAP at the
University of Buenos Aires. We choose the “denor-
malized” implementation presented in Subsection 4.1,
based on the results of early tests performed over pro-
totypes. We have also developed a visual interface
which allows the user to visually browse the schema
and instance of the dimensions in a multidimensional
database, at any given instant . The screen is split into
two windows. On the left one, the user browses the
different schemas which the dimension goes through
over time. In the right window, a tree-view of the
rollup fuctions is displayed, synchronized with what 1s
displayed in the other window. A bar in the lower
part of the screen shows the validity intervals for
these schemas and instances. We are developing using
Java | connecting to an Oracle 8 database via JDBC
drivers. The figures included in the Appendix will give
the reader a better idea about the interface described
above

5 Conclusion

We presented a temporal model for multidimensional
OLAP, motivated by the observation that ignoring



temporal issues leads to impoverished expressive power
and questionable query semantics in many real-life sce-
narios. Qur model supports changes both in the in-
stances and in the structure of OLAP dimensions, sup-
porting schema evolution. We also proposed TOLAP,
a language that supports the model, allowing the ex-
pression of temporal OLAP queries in an elegant and
intuitive fashion. We studied the expressive power of
TOLAP and introduced an extension that allows tran-
sitive closure queries. Finally, we suggested how to
translate a TOLAP query to different SQL dialects.

Although we presented TOLAP using a ruled-based
framework, it is straightforward to translate it to an
SQL-style if it is considered more expedient. For in-
stance, the query we used as an example in Section 4
could be written as follows.

SELECT br, reg, m,SUM(S.sales)
FROM Sales S, Products P , Store ST, Time T
WHERE P.RUP(S.1,Brand,br)

AND ST.RUP(S.2,Region,reg)

AND T.RUP(S.time,Month,m).
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APPENDI X

Here we show an example of our graphic interface. The left window shows a
dimension schemafor Product, with levels Brand, Categoryand Itemld. The window on
the right displays the rollup functions, and the instance set of the highlighted level.

The figure below displays the dimension after a series of updates. We can see how
the instances displayed in the right window change according to the schema. The
bars on the lower part of the screen allow browsing through time.
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