Identifying Representative Trends in Massive Time
Series Data Sets Using Sketches

Piotr Indyk

Stanford University
indyk@cs.stanford.edu

Abstract

Many data stores, including scientific and finan-
cial databases, business warehouses and network
repositories, contain time series data. Time se-
ries data depict trends for an observed value e.g.,
value of a stock, number of bytes sent on a router
interface, etc., as a function of time. Analysis of
the trends over different time windows is of great
interest.

In this paper, we formalize problems of identify-
ing various ‘representative” trends in time series
data. Informally, an interval of observations in a
time series is defined to be a representative trend
if its distance from other intervals satisfy certain
properties, for suitably defined distance functions
between time series intervals. Natural trends of
interest such as periodic or average trends are ex-
amples of representative trends.

We present efficient algorithms for analyzing mas-
sive time series data sets for representative trends
over arbitrary windows of interest. Our algo-
rithms are highly processor and 10 efficient; they
are approximate but provide probabilistic guar-
antees for the approximations achieved. Our ap-
proach for identifying representative trends re-
lies on a dimensionality reduction technique that
replaces each interval by a “sketch” which is a
low dimensional vector. We present efficient al-
gorithms to construct such sketches using a pool
of select sketches that we precompute using poly-
nomial convolutions. Using such sketches, we can
compute representative trends accurately.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

363

Nick Koudas
AT&T Laboratories

koudas@research.att.com

S. Muthukrishnan
AT&T Laboratories

muthu@research.att.com

Finally, we present results of a detailed experi-
mental study of our technique on very large real
data sets. Our results show that, compared to ap-
proaches that determine representative trends ex-
actly, our approach shows significant performance
gains with only a small loss in accuracy.

1 Introduction

Many data sources are observations that evolve over
time leading to time series data. For example, financial
databases depict stock prices over time which is a com-
mon example of a time series. Reporting meteorologi-
cal parameters such as the temperature over time gives
rise to a time series in the area of scientific databases.
Telecommunications and network databases represent
many different time series data derived from the usage
of various networking resources over time such as the
total number and duration of calls, number of bytes
or electronic mails sent out from one ISP to another,
amount of web traffic at a site, etc. Business ware-
houses represent time series such as the sale of a spe-
cific commodity over time. Therefore, time series data
abound in various databases.

Time series data depict the trends in the observed
value over time, and hence, capture valuable informa-
tion that users may wish to analyze and understand.
For example, users may wish to know for a given time
window, the “typical” trend of values or an “outlier”
trend, in the intuitive sense of these words; or, as a
dual, users may wish to find the time window such
that most trends are as similar as possible or clustered.
Finding such trends, what we will call “representative
trends”, will have many uses. For example, represen-
tative trends may be used in lieu of the entire data
for quick approximate analysis; this maybe thought of
as Data Reduction [2], specifically for the time series
domain. In addition they can be used for identifying
and detecting anomalous behavior or intrusion and for
prediction.

We formalize the problems of finding various “rep-
resentative” trends in time series data. In general, an
interval of observations in the time series is defined to

be a representative trend if its distance to other in-
tervals satisfy certain properties, for suitable distance
functions defined between intervals. However, the in-
tervals, properties and distance functions can vary and
this leads to many different notions of representative
trends. Another aspect of our study here is the fo-
cus on massive time series data. For example, AT&T
collects around 500GB of data per year about one of
the services it provides. Aggregate statistics about a
single attribute (say usage of that service for every
second) over a year results in a time series of size ap-
proximately 250MB, containing more than 31 million
values. Running a quadratic algorithm for data anal-
ysis to analyze, say 5 years worth of data, would be
prohibitively time consuming. The situation is aggra-
vated if one wishes to perform analysis over a longer
window of time or over a refined time scale.

In this paper, we formulate the problems of finding
representative trends and focus on designing proces-
sor and I/O efficient algorithms for identifying them
in large time series databases. In Section 2 we present
examples of representative trends. In Section 3 we for-
mally define various representative trends. Section 4
presents exact algorithms for identifying representa-
tive trends. These are expensive but exact. Section
5 presents our overall approach as well as our tech-
niques for preprocessing time series data, which will
be suitable for finding different representative trends.
Section 6 presents how these techniques can be used to
search for relaxed periods and average trends, present-
ing efficient algorithms for this task. Our algorithms
will be very efficient, but will only be approximate;
we provide guarantees on the accuracy. Section 7 con-
tains the results of a detailed experimental evaluation
of the proposed technique and algorithms, using real
data sets, analyzing various tradeoffs. Section § dis-
cusses other notions of representative trends and ap-
plication of our techniques to solve them. Section 9
presents related work and finally Section 10 presents
concluding remarks.

2 Examples of Representative Trends

In this section, we describe two examples of represen-
tative trends in some detail, namely, relaxed periods
and average trends, in order to motivate our more for-
mal study in the later sections.

Relaxed Periods. The notion of a period of a time
series is well understood[17]. Given a time series V,
its period is T if V = T*T" where T' is a prefix of
T and £ is some positive integer (typically taken to
be at least 2). Informally, V is a repetition of non-
overlapping copies of T'. For example, 113 is a period of
11311311311311. However, rarely do time series data
have exact period as defined above. So, in reality, one
needs a relaxed notion of a period. We define a relaxed
period of V to be T" if the sequence generated by re-
peating T” to the extent needed results in a sequence

V' whose distance from V is the smallest possible in
some distance measure, say, in sum of squares distance,
for concreteness. (This will be formally defined in Sec-
tion 3). According to this notion, the relaxed period
of 213123213132213 will be 213.If there was a period
for T, that will also be its relaxed period. [

Finding the Average Trend. Consider a time se-
ries V[1---n] and a length [. V consists of [%] dis-
joint subsequences of length ! (except possibly the last
one which may be shorter). One may ask which is
the subsequence whose total distance to all the other
subsequences is the smallest; again, we can fix the
sum of squares as the distance function. We will call
such a subsequence the average trend. For example,
if Vo= 113123213132113 and [= 3, then we have 5
subsequences of interest, namely, 113, 123, 213, 132
and 113. The average trend is 123 which has a smaller
total sum of squares distance than the others. 1

Both relaxed period and average trend will be in-
stances of representative trends we study in this pa-
per. Representative trends suitable in different ap-
plications may differ, and many different notions of
representative trends may be formalized and studied.
For example, representative trends may not be global
at all, but rather occur locally in significant ways and
indeed our formulation below will enable us to express
such variations. Our study will therefore be general,
encompassing the many different notions of represen-
tative trends.

3 Definitions

Let V[1,...n] be a time series of length n. We adopt
a vector notation and we refer to the time series V
as a vector V. We denote the i-th element of this
vector by V[i]. For some integer T', we define V(T') =
B} ={(VET+ 1, V[iT+2],.. ViT+T])},0<i<
7 —1; if T' does not divide n, the final subvector is not
considered. Let D(%¥,) be the distance between two
vectors. In this paper, we will focus on Ls which is a
natural measure of distance between two vectors. We

define

Cl(V(T) = 3 D,).

N3

[
I

Definition 1 Given a vector V and wntegers | and u,
the relaxed period of V' in range [l,u] is the T, | <
T < u such that C°(V(T)) is minimized.

Definition 2 Given vector V and wintegers | and u,

the average trend va in the range [l, u] is the subvec-
tor ©; such that C*(V(T)) is minimized for | < T < u.

Both relaxed periods and average trends are exam-
ples of representative trends. In both these defini-
tions, we have an interval [/, u] of interest which spec-
ifies the length of the trend of interest. Note that if

364

C°(V(T)) = 0, then T is the exact period of the se-
quence as is well understood [17]. Other variants of
representative trends will be of interest as well.

4 Exact Algorithms

Let V be a time series and [I, u] a range of interest in

V. Let us consider the exact algorithms to identify re-
laxed periods and average trends. Let V(T) = {v;} be
a set of vectors as defined in section 3, for [< T < u
and 0 <2 < 7 —1. The brute force algorithm for iden-
tifying relaxed periods exactly is an O(n?) algorithm:
for each T from [to u, for each i from 0 to n/T — 1,
determine the minimum value of D(vg, v;). It can be
implemented efficiently for large time series data, by
assuming that for every T € [, u] two vectors of size
T can be stored in memory at any time and u — 1 + 1
counters can be maintained in memory. Under these
assumptions the computation can be performed by a
single pass on ‘7, and is likely to be processor bound
for realistic sizes of V and [, u].

The brute force algorithm for identifying average
trends exactly, is as follows: for each T from [to u,
for each i from 0 to n/T — 1, for each j from 0 to
n/T — 1, determine the minimum value of D(v;, v}).
It is an O(n?) algorithm. In the worst case, we have
to scan the data set for every value of T' € [[, u] and
every 1,0 < i < 7 — 1. In the best case, V fits in
memory and for every value of T a quadratic number
of evaluations of the distance function D(.) between
vectors of length 7" has to take place.

Application of the above algorithms in large scale
time series data sets is formidably time consuming.
Even for vectors of a few thousand points the above
algorithms are very inefficient. In the next section, we
introduce a technique than can lead to the design of
efficient solutions for both problems even for very large
data sets.

5 Sketching Approach

We will develop algorithms for finding relaxed periods
and average trends which will be faster than the algo-
rithms in the previous section, but will only provide an
approximate answer. This is based on a sketch based
approach which (1) is general and it applies to other
notions of representative trends as will be discussed in
Section 8, (2) gives guaranteed approximation perfor-
mance, with high probability, as we prove. We will
present our overall approach in steps:

1. First, we will define the sketch of a vector and
state its properties. This will be useful in com-
puting the distance between two subvectors effi-
ciently.

2. We will then present an algorithm for finding the
sketch of all subvectors of a given width T effi-

365

ciently. This step will rely on polynomial convo-
lutions.

3. We will then show how to determine the sketch of
all subvectors of width in a given range. In order
to do this efficiently, this will involve preprocess-
ing the given vector into a pool of sketches for
a chosen subset of subvectors, and then we will
show how to extract the sketch of any subvector
from the pool efficiently.

4. We will show how to find the representative trends
of our interest using sketches. This will show the
improvement in performance over the exact algo-
rithms in the previous section as well as the guar-
antee on the loss in accuracy.

5.1 Sketch of a Vector

Given a vector ¢ = t[1 ---£], we present an algorithm

to construct its sketch vector g(t) S(t) is of size k.
We generate S(#)[:] as follows. We pick a random vec-
tor v;[1 - --£] by picking each component v;[j] to be an
independent random variable with normal distribution
N(0,1) and the entire vector #; is normalized to 1 in
magnitude. We define

Sl =15 = t[j]vli]

J

This 1s the well known inner product between two vec-
tors.

Example 5.1 Say { = (2,1,3,1) and suppose we
wish to construct a sketch vector of size two. We
choose two vectors ¥, = (—0.45,—0.09,0.10,0.87) and
7y = (—0.19,0.73,—0.61,0.21) and compute the inner
product. The sketch vector S(t) is (0.18,—1.28). |

The sketch of a vector has many nice properties of
which the one that interests us the most is the fol-
lowing which follows from the Johnson-Lindenstrauss
Lemma [11]; hence we do not include its proof here.

Lemma 5.1 For any given set L of vectors of length
L, for fized ¢ < 1/2, if k = 91%2'”, then for any pair
of vectors U, w € L

(1= ld — &[> < [|S(u) = S@)|I* < (1 +)lJid — &

with probability 1/2. Here ||U —V||? is the Ly distance
between two vectors U and V.

This lemma has the additional property that by in-
creasing k, one can increase the probability of success
as needed.

5.2 Fixed Window Sketches

In this section, we focus on computing the sketch
for each subvector of a given length £ in TT[l---n].
That is, we need to compute the sketch of [%] vec-
tors: t; = T[1.. 0]ty : T[2.. £+ 1],.. dn_pp1 =
Tln—+£+1,...,n]. Let us fix our attention on one of
components, say, S(t;)[j] for each such vector #;.

The straightforward method would be as follows.
We first generate random vector #;. We then consider
each of the vectors #; and compute T[i, ..., i4+£—1]-
T;[1---£] directly. This takes O(nf) time since there
are n—£+ 1 such vectors and for each we perform O(¥)
work computing the inner product. Now we can repeat
the whole procedure for the other components of the
k sized sketch, in all taking O(nfk) time all together.
While this algorithm is practical for small ¢, later, we
will need sketches for rather large time windows, that
is, large £ up to O(n). For such cases, the straight-
forward algorithm above takes time O(n%k) which is
prohibitive for large n such as the ones we consider in
our applications.

Our key observation here is that we can compute all
such sketches fast by using Fast Fourier Transforms.
Again, let us focus on one of the components of the
sketch, say, S(t;)[j] for all i. The key observation is
that the problem of computing the sketches of all sub-
vectors of length £ simultaneously is precisely the prob-
lem of computing the polynomial convolution of the two
vectors 1 and ¥;. This observation is evident when one
considers the definition of the polynomial convolution.

Definition 3 Given two vectors A[l---a] and
B[l---b], @ > b, their convolution is the vector
Cll---a+ b] where Clk] = > <;<p Alk — 1] x B[]
for 2 < k < a+ b, with any ouf of range references
assumed to be 0.

For example, if A = [1,10,2,4] and B = [7,2], we
have C' = [7,72,34,32,8]. Polynomial convolution of
two vectors can be computed in O(alogb) time using
Fast Fourier Transforms. Here, we observe that

Lemma 5.2 Sketches of all subvectors of length £ can
be computed in time O(nk logt) using polynomial con-
volution.

Proof. Consider reversing ¢; and performing the
polynomial convolution of # and ¥;. The output we
are interested in is precisely C[b + 1]---Cla + 1] of
the convolution. Repeat for all £ components of the
sketch. ||

Figure 1 presents an example of the use of convo-
lutions to compute sketches. A vector (2,1,3,1) is
convolved two times with normalized normal vectors
and the same coordinates of all three sketches of length
two are computed at the same time.

366

st s)

21 3 b comolutionvith

R \w‘ 1,08 = (L% L2 308 13 011)

«—

«—

S s sy

Figure 1: Using convolutions to compute sketches
5.3 Computing Sketches for Range of Subvec-
tors

In this section, we consider the most general problem
of computing the sketch for any subvector of length
between [and u, of a given long vector. The most
straightforward approach would be to consider all pos-
sible subvectors, and compute the sketch of each di-
rectly. There are O(Zlgigu %) such subvectors. In

the worst case, this is O(n?) subvectors and the ma-
jority of them are of size ©(n), hence, the entire al-
gorithm will take time O(n3) which is prohibitive. A
less straightforward approach would be to apply our
algorithm from the previous section with all possible
values of £. Since there are O(u —[) possible values of
¢, this algorithm will take O(n?log® n), which is bet-
ter, but still prohibitive. In this section, we propose
an algorithm to perform this task significantly more
efficiently.

Our algorithm has the following structure. We will
carefully construct a pool of sketches which we will
store; this will be a small subset of the set of all
sketches we need. Following this preprocessing, we
will be able to determine the sketch of any subvector
in the original vector in O(1) time fairly accurately. In
what follows, we will explain this procedure in more
detail.

First we focus on the preprocessing. We choose [<
£ < u such that £ is a power of 2. For each such ¢,
we compute the sketch of all subvectors of ¢ of that
length using our algorithm in Section 5.2. In fact, we
compute two versions of sketches, each using different
random variables; they are called S' and S?. The
resulting set of sketches is what we call the pool. This
is of size O(nlog(u — l)k) altogether and it takes time
O(nlogulog(u—1)k) to compute; this is O(nlog® n) in
the worst case, hence, this algorithm scales well with
the input size.

Second, we focus on determining the sketch for any
subvector ;. Let us fix a particular component, say,
S(t;)[4] for now. Two possibilities exist:

e [= 2" in which case, we have the sketches for
this subvector in our pool, so we merely lookup

,Sketch = (0.70, 0.60)

sketch = (0.0, ~1.44)
- .

(0.51, 1.08)

Sketch Pool 1.

-

Sketch Pool 2: sketch = (0.61, 2.04)

-

(0.45, 0.27)

Figure 2: Synthesizing sketches for a subsequence of
length 5 from sketches of subsequences of length 4
the desired sketch.

e 2" < L < 27t In that case, we compute as
follows: S'(T[i,...,i+L—1))[j] = SYT[i, -, i+
20 —)+ ST+ L —2,...,i+ L—1])[5])
(both the terms on the right belongs to our pool).
See Figure 2 for an example.

We claim that S’ satisfies a property very similar
to the one in Lemma 5.1, namely:

Theorem 5.1 For any given set L of vectors of length
L, for fized ¢ < 1/2, if k = 91%2'”, then for any pair
of vectors U, w € L

(1= oll@ —7|> < |5 (w) = §"(w)[]> < 2(1 + o)[|@ — |
with probability 1/2.

Note the additional factor 2 in the second inequality.

Proof. The idea of the proof is to use stochastic
dominance. Recall that for two random variables X
and Y we say that Y dominates X (or X < Y), if
for any z we have Pr[Y > z] > Pr[X > z]. The
dominance relation is known to be preserved under
monotone functions, i.e., if X1 < Yy, ..., X; <Y,
then f(X1,...,X;) < f(Y1,..., Y1) if f is a monotone
function. We will also use the additive property of
the normal distribution, namely if Xq,..., X; are in-
dependent variables with N (0, 1) distribution, then for
any sequence ai,...,a; of real numbers the variable
X = Y, a;X; has distribution N (0,5, a?). Finally,
for any interval I C {1...l}, define 1; to be a vector
of length [containing 1’s at positions belonging to [/
and zeros elsewhere.

We are now ready to prove the theorem. Define
L ={i...;i+l—1}and I, = {i,---,i+ 2" — 1}.
Note that 17, + 17, contains only 1’s and 2’s (no ze-
ros), since [y U Ty = {1,...,1}. Let v? be the vectors
used for sketch S°. Let 2 = u — w and observe that
5 ()5 ()] = &' (2)[i] = v} -a—+v-z = (o} +27) 2.
By additivity property, the jth coordinate of v} + v?
has distribution N(0,2) if j € I; NI, and N(0,1)
otherwise. Thus S’(z)[f] has distribution N(0, D),
where D = 3 .(15, + 11,)[51(z[4])?. For compari-
son, note that S(z)[¢] (as in Lemma 5.1) has distri-
bution N (0,3, (z[j])*) and V25(z)[i] has distribu-

tion N (0, ZE](:L‘[]])Z) Therefore (by monotonicity)

367

IS(2)|] < |1S"(2)]] < V2||S(%)||. The theorem then

follows from Lemma 5.1.

5.4 Using Sketches to Compute Representa-
tive Trends

In this section, we will show how to compute the rep-
resentative trends of our interest, namely, relaxed pe-
riods and average trends, using sketches.

Let us first consider finding relaxed periods. First,
we will preprocess the given vector V as in the pre-
vious section so that the sketch of any subvector
can be computed in O(1) time. This takes time
O(nlog(u — 1)k logu) if we know [I,u] or O(nklog® n)
in the worst case. As in the exact algorithm, we
will now consider all T, | < T < u, and for each
T, we compute C°(V(T)) by considering each #; in
turn and computing D(¥y, #;). The key is that we
can now estimate D(#, ¥;) in O(k) time by determin-
ing the sketch of ¥y and #;. This process takes time
O(> p #k) = O(nklogn) time in the worst case (here
we have used the harmonic series summation formula).
Choosing k = %gﬁ from Lemma 1, it follows that the
relaxed period we find will be at most a factor of 2 + ¢
away from the true relaxed period with high probabil-
ity (this probability can be made essentially as high as
we need by choosing larger k, for example, by picking
k to be twice as much, the probability that we find
a relaxed period more than 2 + ¢ away from the true
relaxed period is at most 1/n, a tiny quantity!).

The algorithm for computing the average trend us-
ing sketches is a similar modification to that of finding
exact average trend: wherever D(%;, ;) is needed, we
use the estimate for that distance derived from the
sketch of v; and v;. Again, we will find a (2 + €) ap-
proximation with very high probability.

6 Implementation Issues

Making our proposed sketching technique practical in-
volves addressing important issues such as constraints
in main memory size, efficient retrieval of sketches
from the pool, and the impact of these constraints on
the overall performance of our technique.

6.1 Computing Sketches

Assume the data set consists of n points, the sketch
window 1s £ and the size of each sketch 1s k points. If
no main memory constraints exist, an application of
our technique would involve reading the data set of N
points in memory, allocating kx (n— £+ 1) space for the
sketches and performing k convolutions to compute the
sketches each requiring time O(n logn). With realistic
data sizes and a fixed memory size, it is unlikely that
the data set will fit in main memory. In that case, we
have to read the data set in pieces, compute a batch
of sketches each time and insure that we have enough
space to keep both the computed batch of sketches as

well as the data points of the data piece we are working
on, in memory.

Let B be the total memory available for our ap-
proach. Let M be the size of the data piece that we
have to read from disk. Applying our sketching on M
points will produce M — ¢ + 1 sketches, each of size k.
Thus, we have to guarantee that M +kx(M—£+1) < B
and the value of M can be derived. Once the first
batch of sketches is computed in main memory we
can write i1t to disk and continue, by reading the next
piece and constructing the next sketch batch. This
process is repeated until we read the entire data set.
A data piece of size M is loaded into memory and the
sketches are computed for each subsequence of size k.
Notice that construction of the first batch of sketches
can be performed independently from the construction
of the second batch. We only need to maintain the last
k — 1 points from the first piece of size M, in mem-
ory, and continue with the construction of the second
batch, Thus, sketches can be computed with a single
scan of the underlying data set. The fact that sketch
batches can be computed almost independently, makes
sketching ideal for a parallel implementation, either on
an SMP or distributed memory environment. Only a
small amount of information needs to be communi-
cated across processors.

6.2 Retrieving Sketches from the Pool

Once sketches are computed and the sketch pool is
materialized on disk, we have to access the pool and
retrieve sketches required for computing sketches of
sequences in suitable range [/, u]. We discuss the fol-
lowing two cases:

Relaxed Periods. Under the assumption that we
have space in memory to store two vectors of size at
most u as well as u — [+ 1 counters in memory, we can
compute the corresponding clustering for every length
in the range with a single pass of the sketch pool. Clus-
tering CY evaluates the distance of the first sketch to
all the others, so we only need to maintain the first
sketch for each length in the range in memory and ac-
cumulate the value of the clustering for each length in
memory.

If this assumption does not hold, we have to per-
form random disk accesses and retrieve the required
sketches from secondary storage. However, clusterings
for a number of consecutive lengths in the range can
be evaluated at the same time. More specifically for
I <m <m+1 < u the offsets of required sketches are
at j sketches away for the case of the first sketch pool
and j + 1 away for the case of the second, 0 < j < %
Thus, if for each value of m and j we prefetch j (5+1)
sketches from the first (second) pool we would be able
to compute the sketches for the sequence of length
m + 1 entirely in memory, saving the disk accesses.
Thus, by employing selective prefetching between suc-
cessive values of m we can reduce the total number

368

of disk accesses by half. Subsequently, additional 10O
savings are possible if one is willing to prefetch more
aggressively. The amount of prefetching depends on
the memory constraints which in turn determine the
number of successive values of m one can evaluate si-
multaneously. This observation provides a nice trade-
off between main memory usage and disk access time.
Average Trend. Evaluating average trends involves
application of C? clustering. A single scan of the pools
is not enough, as all pairwise evaluations of distance
between sketches corresponding to sequences of the
same length is necessary. Constructing sketches by
random accesses for every length is needed. This way,
we are able to bring all sketches corresponding to a
specific length in memory and evaluate C? entirely in
memory. Prefetching can be applied in this case as
well, to save disk accesses by devoting more memory
to store sketches.

7 Experimental Evaluation

We implemented the proposed sketching technique as
well as the proposed algorithms to check for various
kinds of representative trends and in this section we
present detailed experimental results evaluating our
approach. We begin our description of the experi-
ments by describing the data used in our evaluation
and then we continue with the presentation of experi-
mental results from each of the classes of experiments
we performed. With the experiments in this section
we are interested in evaluating the time to construct
sketches as well as the time to compute relaxed pe-
riods and average trends. In all experiments in this
section whenever we retrieve sketches from the pool to
synthesize sketches we do so by random IO accesses
to the sketch pool. Our experiments were run on a
SUN sparc Ultra Enterprise 8 processor SMP. The 10
transfer rate in our configuration was approximately
10MB/sec.

Due to space limitations only a small subset of our
experimental evaluation is presented. More discussion
is available elsewhere [9].

7.1 Description of Datasets

All the datasets used in our performance study are
real, extracted from one of the warehouses we main-
tain at AT&T Labs. All the data sets are time series
containing utilization information of one of the ser-
vices AT&T provides to customers. The performance
data are collected in the granularity of a second and we
range the time duration from a month (approximately
16MB of data) to a year (approximately 256 MB).

7.2 Evaluating Time to Compute Relaxed Pe-
riods

We compare the performance of the proposed sketch-
ing technique, as applied in the identification of re-

laxed periods, with that of the brute force algorithm.
Our treatment of the brute force algorithm is favorable
since we assume that given a range of length p, we have
the space to store two vectors of size up to p as well
as space to maintain p variables, all in main memory.
Thus we can simultaneously evaluate the clustering for
all candidate relaxed periods in memory with a single
scan of the time series.

In Figure 3(a), we search for the best relaxed period
using our proposed sketching technique. The data set
size is 16MB and we are interested in finding the best
relaxed period, within specified ranges of values. The
impact of our approach is most evident when ranges
are large enough, so we start at offset 512 in the se-
quence. We vary the range from 512 to 128K. Thus,
the first range is [512,1024], the second, [512, 1536]
etc. Figure 3(a) presents the results of two experi-
ments. The first one uses a sketch size equal to the
logarithm of the number of data points in the data
set and the second uses a sketch twice that size. For
each range of values we compute the sketches neces-
sary, from scratch. We present, for each range, the
time required to construct all the necessary sketches
plus the time to search for the best relaxed period
within that range. For example, checking for the best
relaxed period in the range [512,1536] consists of con-
structing sketches with a window of 512 points, us-
ing these sketches to check the lengths in the range
[512,1023], and then constructing sketches with a win-
dow of 1024 points, and checking the lengths in range
[1024,1536]. As we increase the size of the sketch, the
time to perform the computation increases as is evi-
dent in Figure 3(a). This is because, the number of
required convolutions doubles, and thus the required
processor time.

Figure 3(b) presents the results of a scalability ex-
periment plotting the total time to search for the best
relaxed period in a range of size 8K as the size of the
data set increases. The total time includes the time
to construct the sketches on a suitable sketch window
and the time to search for the best relaxed period in
that range. Again, we report two experiments, using
sketches of size log(n) and 2 * log(n) were n is the
number of points in each data set. Our sketching ap-
proach requires time linear to the size of the data set.
Moreover, the time approximately doubles by doubling
the data set size. This is expected as the number of
sketches almost doubles by doubling the data set size
and thus the processor time required for their con-
struction. In addition more time is spent reading the
data set, but IO time is only a small fraction of the
computation.

As a comparison, figure 4(a) presents the total time
(in minutes) requested by the brute force algorithm to
compute the best relaxed period in a range p as the
range increases from 512 to 128K for a 16MB data
set. The time to read the data is constant for each of

369

the ranges since the computation for the entire range is
performed by a single scan of the time series. Thus, the
computation performed by the brute force algorithm
is processor bound. In figure 4(b) we present the time
to compute the best relaxed period for a range of 8K,
as the data size increases from 16MB to 256 MB.

From the experiments in this section, it is evident
that the proposed sketching technique offers impor-
tant savings during the search for the best relaxed
period, when compared with a brute force approach.
Contrasting figures 4(a) and 3(a) two major perfor-
mance trends are evident. First, as the range of lengths
increases the performance benefits of our sketching
approach become continuously better. For the 0.5K
range, the time required by our sketching algorithm is
slightly higher than that of brute force, when sketches
are computed from scratch. Sketching is not benefi-
cial for testing relaxed periods, in very small ranges, if
sketches have to be constructed from scratch, since the
overhead of constructing them becomes higher than
the time required by the brute force algorithm to per-
form the exact computation. This observation makes
sketching the method of choice for larger ranges. The
exact performance cross over point between the two
approaches is difficult to quantify since it depends
of the machine characteristics. In our case, for any
length above 512 points, sketching is always beneficial.
Second, by increasing the sketch size, the cross over
point essentially moves to the right, but again quickly
sketching becomes the method of choice. For the range
of values shown in the figure, sketching becomes al-
most an order of magnitude faster. The performance
benefits increase as larger ranges are considered.

Contrasting figures 4(b) and 3(b) one can make a
similar observation. Sketching appears 4 times faster
than brute force for a sketch size of log(n) and almost
2 times faster for 2 x log(n) sketch size. These per-
formance benefits will increase when a larger range of
lengths in considered, than the 8K range in the figures.
In particular the performance benefits of sketching ap-
proximately double by doubling the range of lengths
over which we search.

The application of the proposed technique to the
identification of average trends offers much larger per-
formance benefits when compared to brute force. De-
tails are available elsewhere [9].

7.3 Evaluating the accuracy of the approxi-
mation

The proximity of the resulting approximation to the
optimal relaxed period or average trend depends on
the sketch size. We showed analytically the exact de-
pendency of the sketch size to the approximation value
€. In this section we experimentally evaluate the influ-
ence of the sketch size to the resulting approximation.
We conducted the following experiment: for a specific
data set, we determine using the brute force algorithm

80 — H

so0 4

Time (Minutes)

a0

“ll

L}

1

Tl

Data Size

(a) Increasing Relaxed Period Range Data Size 16MB(b) Increasing Data size, window size 8K

Figure 3: Approximate relaxed period computation

450

300 —

0 Total Time

Time (Minutes)

oleem m [

B S A s o g

Relaxed Period Size

RS

Time (Minutes)

Total Time

@ Total Time

=4 >
5 XS
B L=y
~V e

Data Size

(a) Increasing Relaxed Period Size, Data Size 16MB(b) Increasing Data size, range 8K

Figure 4: Brute Force Algorithm

the optimal relaxed period and the corresponding Ls
error. We then use our technique to find the best re-
laxed period as the sketch size increases and we mea-
sure the absolute relative error between that of the
optimal L5 value and the Ls value resulting from our
approximation. Let O be the optimal Ly value and o'
the approximated. The absolute relative error (ARE)
is defined as:

0-0|

ARFE =
R 0]

(1)

Figure 5 presents the results of this experiment.
It shows the results for two data sets containing
1M points, representing utilization information of an
AT&T service. We include the results for two data sets
with different statistical characteristics. Let n be the
size of the data set. In both cases we can observe that
using a sketch size between log(n) or 2log(n) provides
reasonable accuracy, close to the optimal value. This
behavior was consistent over a large collection of data
sets we used 1n our experiments and we experimentally
recommend these values. If guaranteed accuracy is re-
quired, one should select the sketch size according to
Theorem 5.1 as a function of €, the error one is willing
to tolerate.

370

200

Absolute Relative Error

° 0 m m = =

5 10 20 40 80 160 320 s
Sketch Size

s I
10 20 40 80 160 320
Data Set 2

Data Set 1

Figure 5: Evaluating the accuracy as a function of the
sketch size

7.4 Comparison with Fourier Transform

Based Approach

In the context of times series data, the use of fourier
transform has been proposed in the community for di-
mensionality reduction and subsequent query process-
ing [5]. This approach consists of the following steps:
(a) compute the fourier transform of the time series
segment, (b) maintain a number of fourier transform
coefficients (usually the first few coefficients), and (c)

70000

60000

50000 -

40000 -
0 Exact

| Sketch
O Fourier

Eror

30000 -

20000 - —

10000 - —

Data Set 1 Data Set 2 Data Set 3

Figure 6: Error for exact relaxed period, relaxed pe-
riod based on sketches, and relaxed period based on
fourier coefficients

use the coefficient vector during query processing. No-
tice that performing such a fourier analysis of the time
series data does not provide us with relaxed periods or
average trends directly. However, a natural way to em-
ploy this approach for finding representative trends is
to use fourier transforms as sketches. A major techni-
cal hurdle for this approach is that we are not aware of
a method to combine fourier coefficients (in the spirit
of Theorem 5.1 for our proposed sketching approach)
and derive the fourier coefficients of a larger time series
segment. This means that fourier-transforms based
approach, at least in its natural version, will be inef-
ficient since we need to recompute the fourier trans-
form for every sketch window. Nevertheless, in order
to understand the relative merits of fourier transform
based approach for finding representative trends, we
focused only on comparing the accuracy of the two
methods (our approach vs the fourier transform based
approach) without regard to their respective efficiency.
We performed the following experimental study. For
the case of fourier transform, for each sketch window,
we computed the fourier transform and maintained as
many leading coefficients as the size of the sketch. (No-
tice that we explicitly compute the fourier transform
for each sketch window). For all the experiments we
performed, our proposed sketching technique, was al-
most always able to identify correctly the relaxed pe-
riod of the average trend in contrast with the use of
fourier coefficients that failed consistently to do so. In
the cases that the proposed sketching technique failed
to identify the exact relaxed period, the relaxed pe-
riod returned was more accurate than the one returned
with the use of fourier coefficients. Results for three
sample datasets are presented in figure 6.

7.5 Experimental Observations on Real

Datasets

We used the proposed sketching technique to analyze
large time series data sets in order to identify relaxed
periods and average trends. Our analysis revealed sev-
eral unexpected findings. For example in some data

371

sets, over a very large period of time, the relaxed pe-
riod was at the granularity of a week. Moreover, in
other data sets, the relaxed period was at the granu-
larity of a month. We also discovered data sets, having
both a relaxed period and an average trend at the gran-
ularity of a single day. Different services that provided
the data sets had particular bias: day, week or month,
etc. While one expects the “periods” to be aligned
with the natural time, it i1s intriguing why some data
sets align with days and others with weeks or months.

8 Extensions

The approach of using sketches is quite powerful. We
can formulate many other notions of representative
trends and compute them using sketches; the results
will of course be an approximation, but guaranteed
to be a small factor (such as 2 + ¢) with a very high
probability. The idea in all such applications is that
instead of using the distance D(%;, U;), we can use its
estimate from the sketch for ¢; and @;. The process
is extremely efficient because we can compute these
sketches in O(1) time after a preprocessing step of
O('nlog2 n) in the worst case. As an example we can
find local relaxed periods rather than global ones, that
1s, we can find all subvectors which have at least as
many period repetitions as specified by a threshold,
for a given window size 7. In particular the frame-
work presented in [7, 8] for partial periodic patterns,
can be expressed using sketches on subsequences.

9 Related Work

A number of dimensionality reduction techniques have
been proposed in the database literature including
FastMap [4], applications of fourier transforms [1, 5],
Singular Value Decomposition [16, 12], wavelet trans-
forms [14, 18], and the cosine transform [13]. However,
none of the above techniques has the property of our
sketching technique, as proved in Theorem 5.1. This
property is crucial for the algorithmic framework we
presented in this paper. Indyk and Motwani [10] and
Gionis et. al., [6] provide a framework based on lemma
5.1 for nearest neighbor search in multiple dimensions.

Identifying representative trends in a time series
database is a problem that, to the best of our knowl-
edge, has not been addressed in the database litera-
ture. In the case of identifying relaxed periodic pat-
terns, one can imagine the possible application of tech-
niques based on fourier transforms [15]. Our work,
specifically, for the problem of identifying relaxed pe-
riods, offers the following advantages: (a) it guarantees
that the identified relaxed period is the best internal
(consisting of a part of the data set) relaxed period,
as opposed to, a sinusoidal approximation of it (b) it
identifies relaxed periods under various metrics, as op-
posed to only Ly as is the case for fourier transforms
(c) since time series are approximately periodic (noisy

signals) an application of fourier transform will involve
filtering of the time series before processing to guaran-
tee accuracy. Even with state of the art filtering tech-
niques, and even assuming that no phase shifts have
occurred, fourier transforms cannot offer the type of
approximation guarantees that the approach presented
herein offers.

Han et. al., [8, 7] in their pioneering work, defined
notions of partial periodicity in time series and pro-
posed IO efficient algorithms to identify partial peri-
ods 1n time series datasets. Let p be a user specified
period in a time series of length n. Han et. al., [8] de-
fined partial periodicity as the existence of f * % (fa

user specified parameter) similar subsets (one for each
of the % segments), of maximum size p. Similarity be-
tween two subsets 1s defined in terms of equality in the
corresponding elements. Subsequently, Han et.al., [7]
generalized their framework to search for partial pe-
riods without specifying the period in advance. Our
framework for partial periodicity is related to that of
Han et.al. We do not consider similar subsets how-
ever, but similar subsequences. Two subsequences are
considered similar if their distance (under some met-
ric) is smaller than a user specified threshold. Been
less strict in our definition of partial periodicity, we
are able to scale our algorithms to massive datasets in
an approximate way.

Techniques based on Hidden Markov Models [3]
could be applied towards the type of time series anal-
ysis considered in this paper. We plan to investigate
the relationship further in the future.

10 Concluding Remarks

We introduced the problem of identifying representa-
tive trends in massive time series data sets. Our work
makes the following specific contributions. We pre-
sented processor and 1O efficient algorithms to search
for relaxed periods and average trends in large time se-
ries data bases. Our algorithms are based on a sketch-
ing technique where we showed how to efficiently con-
struct a pool of sketches and combine them in a spe-
cific way such that other sketches can be derived from
this combination efficiently. Our experiments with real
data sets of realistic size showed that sketching is a
fast approach for these problems and significant per-
formance benefits are attainable. To the best of our
knowledge our work is the first that addresses this im-
portant problem and provides efficient solutions for it.
Given the flexibility sketching offers for approximate
computations, it will be worthwhile to offer its ap-
plications to other problems of interest in time series
analysis.

11 Acknowledgments

We wish to thank the referees for their comments and
Dennis Shasha for overseeing the preparation of the

372

final manuscript.

References

(1]

(10]

(11]

(12]

(13]

(14]

18]

(16]

R. Agrawal, C. Faloutsos, and A. Swami. Efficient Simi-
larity Search in Sequence Databases. Proc. of the 4th Int’l
Conference on Foundations of Data Organization and Al-
gorithms, pages 69-84, Oct. 1993.

D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H. V.
Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross, and
K. Sevcik. The new jersey data reduction report. Data
FEngineering Bulletin, Sept. 1996.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1998.

C. Faloutsos and D. Lin. FastMap: A Fast Algorithm for
Indexing, Data Mining and Visualization of Traditional and
Multimedia Data Sets. Proceedings of ACM SIGMOD, San
Jose California, pages 163—174, June 1995.

C. Faloutsos, M. Ranganathan, and I. Manolopoulos. Fast
Subsequence Matching in Time Series Databases. Proceed-

ings of ACM SIGMOD, pages 419-429, May 1994.

A. Gionis, P. Indyk, and R. Motwani. Similarity Search
in High Dimensions via Hashing. Proceedings of VLDB,
Endiburgh, England, Sept. 1999.

J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial
Periodic Patterns in Time Series Databases. Proceedings
of ICDE, pages 106—115, Mar. 1999.

J. Han, W. Gong, and Y. Yin. Mining Segment-Wise Peri-
odic Patterns in Time Series Databases. KDD, pages 214—
218, Aug. 1998.

P. Indyk, N. Koudas, and S. Muthukrishan. Indentifying
Representative Trends In Massive Time Series Data Sets

Using Ske tches. AT&T Labs Technical Report, Feb. 2000.

P. Indyk and R. Motwani. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. 20th Sym-
posium on the Theory of Computing, Sept. 1998.

W. B. Johnson and J. Lindenstrauss. Extensions of Lipshitz
mapping into Hilbert Space. Contemporary Mathematics,
Vol 26, pages 189-206, May 1984.

K. V. R. Kanth and A. Singh. Dimensionality Reduction
For Similarity Searching In Dynamic Databases. Proceed-

ings of ACM SIGMOD, pages 97-105, June 1998.

J. Lee, D. Kim, and C. Chung. Multi-dimensional Selectiv-
ity Estimation Using Compressed Histogram Information.
Proc. of the 1999 ACM SIGMOD Intern. Conf. on Man-
agement of Data, June 1999.

Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based
Histograms for Selectivity Estimation. Proc. of the 1998
ACM SIGMOD Intern. Conf. on Management of Data,
Jun e 1998.

A. Oppenheim and A. Willsky. Signals and Systems. Pren-
tice Hall, Signal Processing Series, Aug. 1992.

V. Poosala and Y. Ioannidis. Selectivity Estimation With-
out the Attribute Value Independence Assumption. Pro-
ceedings of VLDB, Athens Greece, pages 486-495, Aug.
1997.

D. Sankoff and J. Kruskal. Time Warps, String Edits and
Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, Reading, Mass.,, 1983.

J. Vitter and M. Wang. Approximate Computation Of Mul-
tidimensional Aggregates On Sparse Data Using Wavelets.
Proceedings of SIGMOD, pages 193—-204, June 1999.

