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ABSTRACT
Graph Convolutional Networks (GCNs) are increasingly adopted
in large-scale graph-based recommender systems. Training GCN
requires the minibatch generator traversing graphs and sampling
the sparsely located neighboring nodes to obtain their features.
Since real-world graphs often exceed the capacity of GPU memory,
current GCN training systems keep the feature table in hostmemory
and rely on the CPU to collect sparse features before sending them
to the GPUs. This approach, however, puts tremendous pressure
on host memory bandwidth and the CPU. This is because the CPU
needs to (1) read sparse features from memory, (2) write features
into memory as a dense format, and (3) transfer the features from
memory to the GPUs.

In this work, we propose a novel GPU-oriented data commu-
nication approach for GCN training, where GPU threads directly
access sparse features in host memory through zero-copy accesses
without much CPU help. By removing the CPU gathering stage,
our method significantly reduces the consumption of the host re-
sources and data access latency. We further present two important
techniques to achieve high host memory access efficiency by the
GPU: (1) automatic data access address alignment to maximize PCIe
packet efficiency, and (2) asynchronous zero-copy access and kernel
execution to fully overlap data transfer with training. We incorpo-
rate our method into PyTorch and evaluate its effectiveness using
several graphs with sizes up to 111 million nodes and 1.6 billion
edges. In a multi-GPU training setup, our method is 65-92% faster
than the conventional data transfer method, and can even match
the performance of all-in-GPU-memory training for some graphs
that fit in GPU memory.
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Figure 1: Challenge of GPUs accessing fine-grained sparse
features in host memory.
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1 INTRODUCTION
Acceleration of modern machine learning models is often severely
limited by insufficient memory bandwidth [26, 49, 50]. To provide
the best possible memory bandwidth, data is usually placed in
memory closest to the processing units of the accelerators [45,
54]. However, with extremely large datasets, it is inevitable to put
data farther from the processing units to take advantage of larger
capacity (e.g., host memory). In this case directly accessing remote
data from the processing units can be very inefficient due to slow
external interconnects. To free processing units from spending
excessive amount of time accessing remote data, modern hardware
systems utilize direct memory access (DMA) engines.

DMA engines are specialized in transferring large blocks of
data independently. By providing source and destination memory
pointers along with the data size, DMA engines transfer data behind
the scenes while keeping processing units available for other tasks.
Initiating each DMA requires multiple interactions between the
user application and the operating system, but these overheads can
be offset by transferring large data blocks (Figure 1 (a)).

The recent adaptation of machine learning to a wide range of
tasks has led modern deep neural networks to work on more com-
plicated data structures such as graphs. Graphs are essential in

doi:10.14778/3476249.3476264

2087

https://doi.org/10.14778/3476249.3476264
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/K-Wu/pytorch-direct_dgl
https://doi.org/10.14778/3476249.3476264


9

2

725

Node 2
Node 4

Node 7
Node 9

Node 25

(a) Neighbor Aggregation (b) Node Feature Tensor

4

Node Feature

Figure 2: (a) A simple example of GCN training on single
node. (b) An illustration of node features in memory. The
neighboring nodes’ features are scattered in memory.

representing real-world relational information in social networks
and e-commerce. The capability to build high-quality recommender
systems on graphs is indispensable to multiple businesses. In these
graph data structures, the data which we need to access is often
not coalesced together, but scattered in memory (Figure 1 (b)).

One of the most successful adaptations of deep neural network
models to graph data is Graph Convolutional Network (GCN) [22].
The core idea of GCN is to create node embeddings by iteratively
aggregating neighboring nodes’ attributes using neural networks.
Due to its neighboring node’s attribute lookup, training GCN re-
quires accessing multiple scattered locations in memory. In Figure 2
(a), we show a simple example of GCN training. To generate the
embedding of node 4, we traverse the input graph and aggregate
node 4’s features alongside the features of all neighboring nodes in
the node feature tensor. The example that we show here is only a
toy example. In real-world graphs, each node can be connected to
thousands of nodes. To collect relational information from those
neighboring nodes, we may need to access thousands of scattered
locations in memory. Without a doubt, such data access patterns
make the traditional block data transfer method ineffective.

In this work, we propose a processor-oriented, software-defined
data communication architecture. Instead of using DMA engines,
we program GPU cores to directly access host memory with zero-
copy memory access. This approach allows the application devel-
opers to direct the GPU cores to exactly the locations that hold
the data needed for computation. Conventional wisdom may still
argue that since the node feature data is in host memory, CPU has
significant bandwidth advantage over GPUs and therefore DMA
should be a better option because CPU can quickly gather the sparse
features on the fly. However, recent work has shown that the ability
to issue a massive number of concurrent memory accesses enables
GPUs to tolerate latency effectively when accessing complicated
data structures like graphs that reside in host memory [28]. There-
fore, in GCN training, if GPUs can make targeted fine-grain host
memory accesses for sparse features while fully utilizing system in-
terconnect (e.g., PCIe) bandwidth, the proposed approach can offer
significant advantage over the DMA approach. The removal of CPU
gathering stage not only shortens data access latency for GPUs,
but also greatly reduces the CPU and host memory utilization (Fig-
ure 3). Offloading CPU workloads to GPUs also helps on training
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Figure 3: Workload comparison between DMA-based
method and the proposed zero-copy-based method.

GCN with multiple GPUs as we can prevent the CPU becoming the
bottleneck with increasing number of workers.

In order to propose the GPU-oriented data communication ar-
chitecture for GCN training, we address three major questions in
this work. First, can zero-copy memory access fully utilize PCIe
bandwidth while training GCN considering the long latency for
accessing host memory? Second, what would be the price of con-
suming GPU cores for zero-copy memory access? Finally, after
resolving the above two questions, can we show real end-to-end
application performance benefit from our method?

In this work, we answer all three questions. First, to maintain
the best possible PCIe packet efficiency with zero-copy memory
access, we propose an automatic data access alignment optimiza-
tion in GPU data indexing kernel. With our optimization, zero-copy
PCIe bandwidth can match up to 93% of block transfer PCIe band-
width. Second, we propose a novel CUDA multi-process service
(MPS) [37] based resource provisioning optimization to minimize
GPU resource consumption of zero-copy memory accesses. Based
on careful investigation of PCIe protocol and GPU architecture,
we conclude that we can saturate PCIe even if only a few number
of GPU cores are generating zero-copy accesses. Therefore, our
optimization isolates only small portion of GPU resources for the
zero-copy accesses and leaves the rest for computationally intense
workloads.

Finally, we build an end-to-end zero-copy GCN training flow in
PyTorch. To enable zero-copy memory access, we devise a new class
of tensor called "unified tensor". This tensor provides an address
mapping of host memory for GPUs so they can directly access host
memory with zero-copy accesses. By simply declaring multiple uni-
fied tensor instances for multiple GPUs, our GCN training flow can
also support zero-copy access in multi-GPU training environment.
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Our modifications are seamlessly integrated with the existing Py-
Torch framework and therefore we can quickly apply our method
on existing GCN training applications. We evaluate our design on
multiple large graph datasets where the largest one has 111 millions
of nodes and 1.6 billions of edges. In a single-GPU training envi-
ronment, our method is 16-44% faster than the DMA-based method,
but in a multi-GPU training environment, our method becomes
65-92% faster than the DMA-based method. Our method is efficient
in hiding the remote sparse feature access time with the training
time and can even match with the all-in-GPU-memory method for
some graphs that fit in the GPU memory.

In summary, the main contributions of this paper are as follows:
• As opposed to the traditional DMA-based data communi-
cation architecture, we propose GPU-oriented, software-
defined data communication architecture with zero-copy
memory accesses for efficient sparse accesses to graph node
features in GCN training.

• To improve the efficiency of zero-copy memory access, we
propose automatic data alignment and a novel CUDA MPS
based resource provisioning optimizations.

• We seamlessly integrate our modifications with the existing
PyTorch framework for easier programming and show 65-
92% of end-to-end training performance gain.

The rest of the paper is organized into the following sections.
Section 2 provides the necessary background for the proposed ap-
proach. Section 3 gives a brief overview of the proposed approach.
Section 4 presents an experimental evaluation of the proposed ap-
proach. Section 5 discusses potential future work. Section 6 presents
related works. Section 7 offers concluding remarks.

2 BACKGROUND
2.1 Graph Convolutional Network
The idea of Graph convolutional networks (GCN) [4, 8, 14, 21, 22,
34, 57] started by an attempt to apply filters similar to convolutional
neural networks (CNNs) [25] on graph structures. Bruna et al. [4]
was the first to propose the GCN model, where the authors utilized
Laplacian filters as hidden layers to exploit global structure of the
graph. Such spectral construction is later adopted by many GCNs,
including [8, 22].

GCNs are widely adopted in graph representation learning [15],
where GCN is trained to produce high-quality embeddings of the
given nodes. These embeddings can be used for performing several
tasks such as link prediction and node classification. Traditional
representation learning algorithms, including node2vec [13] and
DeepWalk [43], are inherently shallow, transductive, and do not
share parameters or utilize node attributes to encode node [15].
These limits the representation power of the model, and disables
the model to infer the representation when the nodes or edges
are unseen in training. GCN opens up the potential to develop
algorithms to tackle these problems [14, 57].

One severe issue with the early GCN is that the Laplacian filters
in each layer are matrices whose dimension increases as the number
of nodes in graph increases. This effectively throttles the depth of
GCN and the size of graph it can be applied due to the large memory
footprint. As an example, Kipf et al. [22] presents a model for semi-
supervised node classification using GCN. The simplified form of

its forward-propagation function can be written as:

𝐻 (𝑙+1) = 𝑓

(︂
𝐻 (𝑙) , 𝐴

)︂
= softmax

(︂
𝐴𝐻 (𝑙)𝑊 (𝑙)

)︂
where 𝐴 is an 𝑁 × 𝑁 adjacency matrix (𝑁 is a number of nodes)
representing the node connectivity,𝐻 is an embedding table,𝑊 is a
weight table, and 𝑙 is a layer number. 𝐻 (0) is the input node feature
table. Here, we can see the memory requirement of the operation
is directly related to the size of 𝑁 .

2.2 Neighborhood Sampling
To tackle the limitation of GCN, GraphSAGE [14] introduces neigh-
borhood sampling and aggregating approach. By sampling fixed
number of neighboring nodes instead of demanding the whole
adjacency matrix, neighborhood sampling essentially reduces the
computation and memory footprints and enables a fixed-size mini-
batching in both training and inference.

GraphSAGE models are a sequence of aggregation layers, which
can be LSTM, pooling, or mean operations. The neighborhood
sampling is applied to every neighboring node in every aggrega-
tion step. GraphSAGE uses uniformly random selection process
to sample the neighboring nodes, but other works such as Fast-
GCN [5], VR-GCN [6] use more complex algorithms to determine
the neighboring nodes that need to be sampled. The commonly
used hyperparameters for the neighborhood sampling size 𝑆𝑙𝑎𝑦𝑒𝑟
are (𝑆1, 𝑆2) = (10, 25) and (𝑆1, 𝑆2, 𝑆3) = (10, 10, 10). It is uncommon
to go beyond the three layers of sampling due to the exponential
growth on the number of nodes that need to be sampled. Such
lower depth of network layers compared to other deeper neural
networks [18, 51] makes the optimization of data transfer time crit-
ical in GCN training. After the sampling, a sub-graph which only
contains the sampled nodes is created so the computation kernel
knows how to aggregate the node features of interest. Over different
epochs of training, a new sampling is done to increase the learning
entropy and to cover more corner cases. The exact implementation
of the sampling process is framework-dependant. In case of deep
graph library (DGL) [55], this part is written in C++ with OpenMP
to maximize the performance, but PyTorch-Geometric [9] simply
uses a python code.

If the entire node feature table is not fitting in the GPU memory,
the sampled nodes’ features must be transferred after each sampling
step [57]. Since the sampled nodes’ features are scattered over
the feature table, the current GCN implementations in PyTorch or
TensorFlow, the frameworks which use DMA as a data transfer
method, require the features to be collected into a dense format
prior to the data transfer.

2.3 CPU–GPU Data Communication
CUDA provides developers with three ways to transfer data be-
tween host and GPUs: (1) DMA APIs, (2) automatic page migration,
and (3) zero-copy access [47].

As the first method, CUDA provides both synchronous and asyn-
chronous APIs to copy data among host and devices. The two most
commonly used APIs are cudaMemcpy() and cudaMemcpyAsync().
Both functions take a source pointer, a destination pointer, a data
size, and a data transfer direction. For this method, DMA engine is
used for the data transfer. DMA engine is efficient in transferring
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a single large data block, but sub-optimal for transferring small
sized data due to the DMA request setup latency caused by user
program <-> operating system interactions. According to Pearson
et al. [42], to make the effective bandwidth of DMA to about 90% of
maximum PCIe 3.0 x16 bandwidth, the data block size should be at
least 256KB. With 64KB of data block transfer, the DMA efficiency
drops to less than 50% of the maximum PCIe 3.0 x16 bandwidth.

Page migration is the second way. To provide convenience to pro-
grammers, NVIDIA introduced the Unified Virtual Memory (UVM)
[17, 35, 36, 38, 42]. Data pointers to thememory regions managed by
the UVM driver can be dereferenced by both GPU kernels and CPU
functions.When a processor (either CPU or GPU) attempts to access
a page that it does not own in its local memory, the accessed page
needs to be migrated from a remote location. Similarly, if other pro-
cessor accesses this page later on, page migration to that processor
will be triggered. The minimum migration granularity is identical
to the system page size (4KB), but it can be as large as 2MB. UVM
makes programming easier by removing the need of explicit call of
cudaMemcpy() by users. To allocate the UVM-backed memory re-
gion, programmers simply need to call cudaMallocManaged()with
the desired size. However, the programmer-friendly page migration
is not designed to be a performant mechanism of data transfer. Its
performance is limited with irregular access patterns due to high
page miss rate. This leads to an excessive amount of page faults that
stall the execution and create I/O read amplification. With larger
discrepancy between the dataset size and the GPU memory size,
there will be more frequent page migrations incurred by severe
page thrashing.

Finally, CUDA enables zero-copy access, which is also known as
direct access. In a zero-copy access, GPU sends a cacheline-sized
memory request directly through external interconnect (e.g. PCIe),
without explicit data copy or page migration that will happen in the
aforementioned two methods. The source memory region can be
the host memory, peer PCIe devices, or other GPUs connected over
NVLink. Zero-copy is useful in accessing fine-grained data, but it
needs GPU cores to be engaged in generating memory requests.

3 GPU-ORIENTED DATA COMMUNICATION
ARCHITECTURE

Due to the wide spread use of DMA-based data communication
architecture, there are some number of system-level modifications
that must to be established to support our GPU-oriented data com-
munication architecture in the higher-level programming models.
In this section, we first describe how we enable zero-copy accesses
in PyTorch and then we discuss some of the technical aspects of
zero-copy access to identify its weaknesses and how to overcome
them. Finally, we describe the end-to-end GCN training flow using
zero-copy accesses.

3.1 Zero-Copy Enablement in PyTorch
For GCN training, we use PyTorch which is one of the most pop-
ular python-based ML frameworks. However, including PyTorch,
there are no python-based ML libraries which naturally support
zero-copy access for GPUs. To overcome such issue, we create an
extension of the existing PyTorch implementation with several
modifications in its source code.

Table 1: PyTorch Tensor Class Comparison.

Existing This Work

Context CPU CUDA Unified
Worker CPU GPU GPU

Data Storage Host Memory GPU Memory Host Memory

Listing 1: PyTorch Programming with Unified Tensor
1 import torch
2
3 # Input tensor data in host memory
4 input_tensor = torch.randn ([100] , device="cpu")
5
6 # CUDA tensor created, data copied by DMA (e.g. cudaMemcpy())
7 gpu_tensor = input_tensor.to(device="cuda")
8
9 # Unified tensor created, no data copy occurs
10 unified_tensor = input_tensor.to(device="unified")
11
12 # gpu_tensor data comes from GPU memory
13 # unified_tensor accessed through zero-copy access to host memory
14 # Computation done by GPU
15 output = gpu_tensor + unified_tensor

In PyTorch, data is allocated through a class called "tensor". The
physical location of data is determined by a context value which
is passed to the class upon a declaration (Table 1). In the current
implementation of PyTorch, processing units can only compute data
located within their own local memories. For example, to perform a
GPU-accelerated matrix multiplication on CPU tensor, a new tensor
with CUDA context should be created. When the new CUDA tensor
is created based on the old CPU tensor, PyTorch automatically calls
DMA to copy the data in the host memory to the GPU memory.

In our design, we aim to aggressively avoid the implicit DMA
data copy performed by PyTorch. We give GPUs direct access to
tensor data in the host memory by mapping the host-memory data
pointers into the GPU address space. To achieve our goal, we create
a new class of tensor with a new "unified" context. A tensor with
this new context can be declared from any existing CPU tensors.
Upon the declaration, the tensor calls the cudaHostReigster()
and cudaHostGetDevicePointer() CUDA APIs internally.

Calling cudaHostReigster() page-locks the given CPU tensor
data and cudaHostGetDevicePointer() maps page-locked data
into the GPU address space and returns a device pointer which can
be used in GPU kernels for zero-copy accesses. There are several
other ways of allocating a host memory space for zero-copy such as
cudaMallocHost(), cudaHostAlloc(), or cudaMallocManaged()
with cudaMemAdvise(), but these methods have some limitation
for multi-GPU training, which we will explain in Section 3.4.

Besides the pointer manipulation, other existing PyTorch tensor
mechanisms remain the same and therefore there are no noticeable
functional differences introduced to the end-users. Listing 1 shows
a simple vector addition example in PyTorch using unified tensor.
From the code, we can see declaring the unified tensor is as simple
as declaring the existing CUDA tensor. While the CUDA tensor is
created by explicitly copying data from the CPU tensor, the unified
tensor only creates a mapping to the host memory for the GPU.
We have empirically measured that the GPU memory usage by the
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Figure 4: (a) A perfectly coalesced 128-byte access from a
warp. (b) A warp accessing a misaligned data needs to gener-
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memory mapping is about 1/512 of the data size. Therefore, while
the CUDA tensor will immediately fail on declaration if the data
size is larger than the GPU memory capacity, the unified tensor can
hold up to 512 times more.

3.2 Improving Zero-Copy Efficiency Over PCIe
One of the common misconceptions of zero-copy access is its low
data transfer efficiency compared to the DMA-based methods [11].
The misconception is mainly coming from the fact that the users
are treating the zero-copy without any specific care. However, as
the zero-copy access requests are made over PCIe, it is important
to understand how the zero-copy accesses interact with PCIe. In
this section, we take a deep-dive into the technical aspect of PCIe
protocol and its interaction with GPUs. We then present two im-
portant techniques for maximizing the zero-copy efficiency during
GCN training.

3.2.1 Aligned Memory Access. Even though our purpose of using
zero-copy is to make fine-grained memory accesses to the host
memory, it is still desirable to make coarser-grained PCIe memory
requests whenever possible for a couple of reasons. First, each
PCIe packet has 12–16 bytes of header overhead. Therefore, to
compensate the overhead, it is better to increase the payload size
by requesting a larger memory request. Second, PCIe devices have
a hard limit on the number of outstanding requests they can create.
Since the PCIe round trip time (RTT) is very long (1–5us, variable), it
is necessary to submit multiple read requests in a pipelined fashion
to fully occupy the interconnect. However, if we squander the
capacity by generating too many small read requests, it becomes
difficult to fully tolerate the latency and utilize the PCIe bandwidth.
The numbers of maximum outstanding read requests for PCIe 3.0
and PCIe 4.0 are 256 and 768, respectively.

Now, with all that in mind, how do we generate coarser-grained
PCIe requests? According to Min et al. [28], to make PCIe read
requests more efficient, the same technique used for the GPU mem-
ory coalescing [16] can be used. In Figure 4, we explain two cases
where (a) memory accesses from a warp are contiguous and aligned
with the GPU cacheline, and (b) memory accesses from a warp are
contiguous but misaligned with the GPU cacheline. In case of (a),
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Figure 5: Circular shift optimization explained. Circular
shift transforms memory requests into a GPU cacheline-
friendly way.

the accesses from the threads in a warp are perfectly coalesced and
the coalesced requests becomes a single 128B PCIe read request. In
case of (b), the accesses from a warp are scattered over two GPU
cachelines and they result in generating two separate PCIe read re-
quests. The possible memory access granularities are 32B, 64B, 96B,
and 128B, while 32B is a single sector size of GPU cacheline [40].
Each GPU cacheline is composed of four sectors.

Of course, we would not need to worry about the misaligned
accesses if the node feature objects always start at 128B boundaries
and the sizes of node features are always multiples of 128B, but it is
very unlikely to be so in reality. For example, if a certain dataset’s
node feature size is 480B, accessing the second node feature will
start from accessing 480th byte in memory address. In this case, we
are off by 32B from the closest 128B boundary (512B). To automati-
cally resolve such issue, we add a circular shift stage in the PyTorch
indexing CUDA kernel. In Listing 2, we show the circular shift
stage code we added, but in a simplified manner. The shifting stage
is aware of the GPU cacheline size and shifts the memory access
indices by calculating the offset between the nearest 128B aligned
location and the current indexing location. The visualization of our
circular shift mechanism is shown in Figure 5. In this example, we
want to access the second node feature with zero-copy access where
each node feature size is 480B. Without the optimization, each warp
start reading from misaligned locations and end up generating 8
PCIe requests. However, once our optimization is applied, the warps
adjust their indexing locations and try to generate aligned memory
accesses as much as possible. In this example, the total number of
PCIe read requests is reduced to 5.

We do not apply the circular shift stage if the node feature size is
less than the GPU cacheline size or if it is already a multiple of the
GPU cacheline size. All these adjustments are transparent to the
high-level programmers as a result of our modifications to PyTorch
source code.
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Listing 2: GPU Indexing Kernel and Automatic Alignement
1 #define WARP_SIZE 32
2
3 __global__ void index(float* dst , float* src ,
4 int* idx_list , int feat_size ,
5 int numElem) {
6 int linearIdx = blockDim.x * blockIdx.x
7 + threadIdx.x;
8
9 for (int i = linearIdx; i < numElem;
10 i += blockDim.x * gridDim.x) {
11 int dstIdx = i / feat_size;
12 int offset = i % feat_size;
13
14 // src: host memory, dst: GPU memory
15 int dstStart = dstIdx * feat_size;
16 int srcStart = idx_list[dstIdx] * feat_size;
17
18 int dstOffset = offset + dstStart;
19 int srcOffset = offset + srcStart;
20
21 // Cacheline-size-aware circular shift stage added
22 if (feat_size > WARP_SIZE && feat_size % WARP_SIZE) {
23 int diff = (dstStart - srcStart) % WARP_SIZE;
24 diff = diff < 0 ? diff + WARP_SIZE : diff;
25
26 dstOffset += diff;
27 srcOffset += diff;
28
29 if (srcOffset >= srcStart + feat_size) {
30 dstOffset -= feat_size;
31 srcOffset -= feat_size;
32 }
33 }
34
35 dst[dstOffset] = src[srcOffset ];
36 }
37 }

3.2.2 Asynchronous Operations and Resource Provisioning. One
important distinction of our design is that zero-copy accesses are
done by GPU kernels. In other words, the other following GPU
kernels need to wait until the zero-copy kernel is finished even
if all it’s doing is simply reading the host memory. However, like
in many other ML algorithms, GCN can also greatly benefit from
overlapping data communication time and training time, which
naturally happens in DMA-based methods. To achieve the best
training performance, we must devise a way to overlap the training
GPU kernels and the zero-copy GPU kernels in our design.

Normally, concurrency and overlapping activities can be accom-
plished by using CUDA streams. CUDA streams allow GPU kernels
and API service activities in different streams to execute in arbi-
trary order so as to enable overlapped operations. Unfortunately,
there are several situations where achieving the concurrency is
impossible. First, there are several blocking CUDA APIs such as
cudaMalloc(), cudaFree(), and cudaEventQuery() that serialize
the GPU operations. In current implementation of PyTorch, some
of the listed APIs are called in background implicitly, such as by
memory allocation manager. If one of the CUDA APIs are called in
between the zero-copy GPU kernel and the training GPU kernel,
the latter GPU kernel must wait until the entire operation of the
earlier GPU kernel to be finished. Second, when the GPU resources
are completely consumed by a current GPU kernel, the following
kernel must wait until the resources are released. In general, most

Table 2: NVIDIA RTX 3090 Specifications.

Category Specification

PCIe Generation 4.0

Max # of Outstanding PCIe 4.0 Read Requests 768

# of Multiprocessors 82

# of Threads per Multiprocessor 1536

# of Threads per Warp 32

of the GPU kernels try to occupy as much as of GPU resources they
can and the serialization situation is very likely to occur.

However, in fact, we have missed a fundamental question here.
Before we think about the concurrency, how much of GPU resource
do we need for the zero-copy GPU kernels? If we need the entire
GPU resource to fully utilize the PCIe bandwidth, then there is no
point of attempting to achieve the concurrency in the first place.
This is the core question which needs to be answered to verify the
validity of idea of overlapping zero-copy and training GPU kernels.

To answer to this question, we explore the architecture details
of NVIDIA GPUs. In NVIDIA GPUs, to better utilize computation
units and to hide long GPU memory access latency, each single
physical core may have multiple active warps to issue instructions
from [52]. In this way, the physical core won’t be stalled when
some of the warps are waiting for the completion of their memory
requests. Therefore, the number of physical GPU cores we need to
reserve is much smaller than the number of memory requests we
want to generate.

As we discussed in the previous Section 3.2.1, there is a hard limit
on the number of outstanding PCIe read requests that PCIe devices
can generate at a given moment. Therefore, if we can prove that we
only need small amount of GPU resources to fully saturate the limit,
it is worthwhile to seek for a way to achieve the concurrency. In
Table 2, we list the specifications of NVIDIA RTX 3090 GPU which
we use for our evaluations. At any given moment, the GPU cannot
generate more than 768 outstanding PCIe read requests. To identify
the portion of GPU resource we need to generate 768 outstanding
PCIe read requests, we perform the following calculation. First, lets
assume each warp’s memory requests are coalesced to a single PCIe
read request, and lets ignore the payload size for now. In this case,
we need 768 warps available to the scheduler to reach the PCIe 4.0
limit. Since each streaming multiprocessor (physical processor) can
hold up to 1,536 threads at a given moment, each multiprocessor
can sustain up to 1,536 / 32 = 48 outstanding PCIe read requests.
Now, we have 82 multiprocessors in RTX 3090, so the amount of
GPU resource that we need to reserve for the zero-copy GPU kernel
is about 16 / 82 = 19.5%. However, this is the upper bound for the
extreme case. If we assume we can always generate 128B PCIe read
requests, we can saturate the PCIe 4.0 bandwidth with much fewer
outstanding requests. For example, the measured maximum PCIe
bandwidth with cudaMemcpy() in RTX 3090 is 25.8GB/s and if we
assume RTT (Round-Trip-Time) of PCIe is 1.5us [32], the number of
outstanding requests that we need to sustain is (25.8GB/s) / (128B)
× 1.5us = 324.6. That is, assuming all PCIe requests are 128B in
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the producer and the producer gathers scattered node features in the host memory. The consumer uses the gathered node
features for training. (c) A visualization of processing pipeline.

size, we need to reserve only 8.2% of the total GPU resource for the
zero-copy GPU kernel. In reality, since some of the requests will
be smaller, this number is a lower bound and the actual number
will be somewhat higher. In short, even if we try to maximize the
zero-copy GPU kernel efficiency, there is at least 80% and up to
91.8% of the GPU resources available for other workloads.

Now, finally, since we realized howmuch of GPU resource should
be allocated for the zero-copy kernel, we explore the method to
enforce the limitation in practice. Fortunately, NVIDIA GPUs al-
ready provide support for limited execution resource provisioning
through CUDA multiprocessing service (MPS) [37]. MPS is origi-
nally designed to improve quality of service (QoS) between different
clients’ workloads, but we utilize this service to control the resource
utilization of the zero-copy GPU kernel. To assign different resource
limitations to different kernels, the kernels must be running in dif-
ferent processes. Since PyTorch already supports multiprocessing
programming model, it is simple to launch the zero-copy GPU ker-
nel and the training GPU kernel in two separate processes. Before
we launch the zero-copy GPU kernel, we modify the GPU resource
limitation to𝑋% with the nvidia-cuda-mps-control utility. Next,
before we launch the training GPU kernel, we also modify the re-
source limitation to (100 − 𝑋 )%. In our PyTorch code, the whole
process is scripted for an easier use. It would be more elegant if the
resource limitation can be configured in the user CUDA code in-
stead of the MPS utility, but currently CUDA does not support such
functionality. Another side benefit of the multiprocessing approach
is that the different GPU kernels running in different processes
are not affected by the other processes’ blocking CUDA API calls.
With our approach, zero-copy accesses can saturate the PCIe band-
width while leaving majority of GPU resources opened for other
computationally intensive workloads.

With this optimization, we can basically transform the GPU cores
into an intelligent DMA engine which can asynchronously perform
complex data accesses such as data dependant index calculations
and fine-grained host memory accesses. This optimization can be

also useful for some of the workloads which utilize peer-to-peer
GPU memory accesses with zero-copy accesses.

3.3 Workload Scheduling
In this section, we combine all the implementation details we dis-
cussed in the previous sections, and explain the overall flow of our
GCN training with zero-copy accesses enabled. In Figure 6 (a), we
show the initial tensor allocations during the initialization step.
First, we map the whole node feature tensor into the GPU address
space by using the unified tensor. This unified tensor holds a mem-
ory pointer which GPU can use in its kernel to generate zero-copy
accesses to the node feature tensor. Next, we create two sets of ping
pong buffers for interprocess communications. The goal of using
ping pong buffers is to remove the usage of locking mechanisms
between two different processes sharing data and to allow them
to start working for the next minibatch immediately after finish-
ing their current works. In our design, each process needs to be
synchronized just once per minibatch.

After the initialization, the training pipeline begins from the sam-
pler process randomly selecting nodes and collecting their neigh-
bors’ node indices (Figure 6 (b)). Once all the node indices are
identified, the combined list is transferred to the producer process
running on GPU for the zero-copy accesses. The list of node indices
is transferred over DMA as it is contiguous and small. Once the
node features are all gathered into one of the ping pong buffers,
the producer notifies the consumer to train on the new minibatch
data as soon as it is ready. Since the GPU ping pong buffers are
located in the same GPU memory, it naturally makes sense for
the consumer to directly access the buffer owned by the producer
instead of copying it to its own space. To achieve this, we utilize
CUDA interprocess communication (IPC) APIs. With the CUDA IPC
APIs, two different GPU kernels running on different processes can
share the same GPU memory space without data copies in between.
This specific GPU pointer sharing procedure is implemented in the
PyTorch Queue class and we utilize it for our application. The ping
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pong buffers are statically located for the entire training process
and therefore the pointer sharing needs to be done only once at the
beginning of the producer process.

From the user’s point of view, the training process is pipelined in
a sampler→ producer→ consumer order (Figure 6 (c)). Except the
unified tensor declaration, the rest of our end-to-end GCN training
implementations is developed with the existing PyTorch function-
alities, and this makes our method more accessible for the existing
users. Another benefit of using PyTorch is the access to multiple
fault-tolerant mechanisms in PyTorch, such as checkpointing and
TorchElastic [44] framework, which allow users to recover from
failure or to steadily train even with faulty hardware. Our imple-
mentation does not alter those mechanisms, and they can be used
at the same time. Our modifications are isolated into the data trans-
fer portion of the GCN training and the training algorithms are
unaffected.

3.4 Multi-GPU Training
The final challenge of our method is supporting multi-GPU training
environment. Multi-GPU training is one of the keystones of modern
ML for reducing the training time, and the existing DMA-based
method already supports the multi-GPU training. Therefore, it is
infeasible to propose a method which can only support a single-
GPU training environment.

For multi-GPU training, we take the data parallelism approach
used in DGL [55]. In the original DGL implementation, the multi-
GPU training is done by increasing the number of sampler-consumer
pairs and assigning one GPU to each pair. On top of the DGL imple-
mentation, we add the GPU-based producer process into each pair.
The DGL implementation does not have a dedicated producer pro-
cess as it assumes the node feature data is collected by the sampler
and transferred into each GPU’s memory. The simplified diagram
of our multi-GPU training design is shown in Figure 7.

Listing 3: Unified Tensor Declaration inMultiprocessing En-
vironment

1 import torch
2 import torch.multiprocessing as mp
3
4 def producer(features , process_id , ...):
5 # Specify target GPU ID
6 torch.cuda.set_device(process_id)
7 # Map host shared memory to GPU address space
8 features = features.to(device="unified")
9 ...
10
11 if __name__ == '__main__ ':
12 features = torch.randn ([100] , device="cpu")
13 # Allocate shared memory space
14 features = features.share_memory_ ()
15 ...
16 # Pass feature tensor alloctead in shared memory space
17 # and call producers for multiple GPUs
18 producer1 = ctx.Process(target=producer ,
19 args=(features , 0, ...))
20 producer2 = ctx.Process(target=producer ,
21 args=(features , 1, ...))
22 ...

The main difficulty of multi-GPU training with zero-copy ac-
cesses lies on sharing the same host memory space across different
GPUs running in different processes. In general, sharing the host
memory space across different GPUs is simple when the kernels are
launched by a single process. In this case, programmers simply need
to allocate amemory space by either calling cudaHostAlloc()with
a cudaHostAllocPortable flag or calling cudaMallocManaged().
However, with this method, the host memory space allocated is
bound to the process which called the memory allocators. Currently,
due to the way how the CUDA memory allocators work, there is
no way for the users to make the space allocated by them to be
shareable with the other processes. It is possible to create multiple
copies of node feature tensors for each training process, but this
leads to an extremely inefficient usage of host memory capacity.

Therefore, in our implementation, we take an opposite direction
of memory allocation. Instead of attempting to share a memory
space after allocating with CUDA APIs, we first allocate a shareable
memory space and then call CUDA APIs to allow GPUs access
the space. In Linux, to allow multiple processes to share a same
memory space, shared memory can be used. Here, this shared mem-
ory refers to a specific Linux implementation to allow interprocess
communication and it should not be confused with other similar
terminologies, such as the GPU shared memory. We utilize the
cudaHostRegister() API becasue it can be used on top of the
Linux shared memory. Therefore, by letting different processes to
call cudaHostRegister() individually on the same sharedmemory
space which has been already allocated, each GPU can get identical
address mapping to the same host memory space. The specific code
that implements this approach is shown in Listing 3. Line 14 shows
the declaration of a shared memory tensor in the main process.
Shared memory allocation is already supported in PyTorch code by
simply adding .share_memory_() command after the CPU tensor
instance. To map this shared memory space for different GPUs, we
pass the shared CPU tensor to the producer processes running on
the GPUs (Lines 18 and 21). Each producer process simply calls the
unified tensor declaration (Line 8) to effectively convert the shared
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CPU tensor into a unified tensor and maps it into the GPU’s address
space for zero-copy access.

Inside the producer code (Lines 4-9), the first thing that we must
do is selecting the correct CUDA device (e.g. producer0→ GPU0,
producer1→ GPU1, and so on). Without this step, all unified tensor
declarations in different producer processes will create a mapping
for the default CUDA device defined by the system (e.g. GPU0).

4 EVALUATION
This section presents an evaluation of the impact of our proposed
design on GCN training time. We first take a closer look of the
improvements made by our optimizations one by one, and then
show the overall training time reduction achieved.

4.1 Methodology
4.1.1 Evaluation System. For our evaluation, we use the system
described in Table 3. Our host system can hold two RTX 3090 GPUs
and both are operating in PCIe 4.0 mode. With PCIe 4.0 intercon-
nects, both GPUs can achieve about 25.8GB/s of host to GPU DMA
bandwidth in our microbenchmark. The measured aggregated band-
width of the two GPUs performing DMA on host memory at the
same time is about 51.7GB/s.

4.1.2 Application. Our unified tensor implementation and the in-
dexing kernel modification are based on PyTorch 1.8.0-nightly ver-
sion. For the GCN training, we use the GraphSAGE [14] imple-
mentation of DGL [55]. We only modify the data communication
portion of the implementation. The sampling mechanism and the
training algorithm remain unmodified.

(a) CPU-Only implementation only uses CPU for training GCN.
In this case, there is no need of data transfer over PCIe since GPUs
are not involved in the training.

(b) DMA-based implementation uses CPU to gather node fea-
tures into a contiguous buffer. The gathering process in CPU is
multithreaded by default in PyTorch and the data transfer time is
overlapped with the training time by using asynchronous DMA.

(c) Naïve Zero-Copy uses zero-copy as a main data transfer
method, but do not include any optimizations we discussed in this
paper. Unified tensors are used to allow GPUs to perform zero-copy
accesses on host memory.

(c) Zero-Copy implementation enables zero-copy accesses and
additionally includes all optimizations we discussed in this paper.
Unified tensors are used to allow GPUs to perform zero-copy ac-
cesses on host memory.

(d) All-in-GPU implementation allocates the entire node fea-
ture array into each GPU memory before the training begins. This
implementation is used to show the rough upper bound of the per-
formance improvement we can achieve through the data transfer
optimization. Due to the limited GPU memory capacity, we do not
evaluate all datasets with this implementation. We explicitly denote
as "out-of-memory (OOM)" for such cases.

4.1.3 Dataset. In Table 4, we show the datasets we used for the
evaluation. wikipedia [24] network consists of the wikilinks of the
Wikipedia in the English language. Nodes are Wikipedia articles,
and directed edges are wikilinks. amazon [33] dataset is based on
Amazon product network connected by "also viewed" and "also

Table 3: Evaluation system configuration.

Category Specification

CPU AMD Ryzen Threadripper 3960x 24C/48T

Memory DDR4 3200 MHz 256GB in Quad Channel

GPU 2x NVIDIA Ampere RTX 3090 24GB

OS Ubuntu 20.04.1 & Linux Kernel 5.8.0

S/W CUDA 11.2 & PyTorch 1.8.0-nightly

Table 4: Evaluation Dataset.

Name #Feature #Node #Edge Size

ogbn-products 128 - 4096 2.4M 61.9M -
wikipedia 315 13.6M 437.2M 17.1GB
amazon 578 14.7M 64.0M 34.0GB

ogbn-papers100M 128 111.1M 1.6B 56.9GB
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bought" links. ogbn-papers100M dataset is a directed citation graph
of 111 million papers indexed by MAG [53]. The above datasets
are used for basic performance evaluations. ogbn-products [19]
dataset is based on Amazon co-purchasing network [3] where
nodes represent products sold in Amazon, and edges between
two products indicate that the products are purchased together.
ogbn-products is only used for the training time vs. node feature
size sensitivity analysis on Section 4.4.2.

4.2 Bandwidth Analysis
In Figure 8, we show the comparison of the effective bandwidths we
measured during the wikipedia dataset training. To observe the im-
pact of the misaligned node feature access on the PCIe bandwidth,
we sweep the node feature size from 1024B to 1044B in this experi-
ment. Zero-copy naïve approach does not implement the circular
shift optimization we discussed in Section 3.2.1. Throughout the
experiment, the effective bandwidth of the DMA-based approach is
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only about half of the zero-copy approaches as it requires a long
CPU gathering process.

When the node feature size is 1024B, regardless of the circular
shift optimization existence, the zero-copy implementations show
the best effective bandwidth numbers. Because the GPU cacheline
size is 128B, in this case accessing any node features results in
generating perfectly coalesced accesses. Considering that the best
cudaMemcpy() bandwidth we achieved is about 25.8GB/s, we can
roughly estimate the upper bound efficiency of zero-copy access is
about 95.1%. With more misaligned accesses, the efficiency of the
naïve zero-copy implementation drops to 78-82% while the opti-
mized zero-copy implementation can achieve 88-93% of efficiency.

In general, the results re-emphasize the importance of making
cacheline-aligned accesses whenever using zero-copy accesses. For
savvy programmers, we expect them to understand the underlying
hardware mechanism and to consider padding the input data if the
overhead is not too big. However, even if they fail to do so, our
optimizations would still reduce the performance penalty for them.

4.3 Concurrency Analysis
The best way to check if our MPS-based resource provisioning
is helping the concurrency is profiling the workload and visually
inspecting the GPU kernel timeline. In Figure 9, we show two
profiling results of GCN training where (a) we do not apply any
resource restriction and (b) we allocate 10% of GPU resource for
the zero-copy kernels and 90% for the training kernels. Without
any MPS running, there is almost no concurrency occurring since
each kernel is trying to consume the whole GPU resource. In this
specific case, the indexing (zero-copy) kernel is blocking other
training kernels using GPU resources. The training kernels are
already scheduled into the queue, but most of them cannot be
actually executed until the zero-copy kernel is finished. Only a
few kernels which require a small amount of GPU resource can be
executed along the zero-copy kernel. In the NVIDIA tools, the GPU
is considered to be 100% utilized at this point, but as we discussed
in Section 3.2.2, in fact only a limited number of cores can actually
submit memory requests over PCIe due to the protocol limitation.

0

5

10

15

20

25

0

5

10

15

20

25

(2.5,97.5) (5,95) (10,90) (15,85) (20,80) Z
e

ro
-C

o
p
y
 B

a
n
d
w

id
th

 (
G

B
/s

)

M
in

ib
a
tc

h
 T

im
e
 (

m
s
)

GPU Resource Assignment (%)
(Zero-Copy Kernel, Training Kernel)

Minibatch Time Zero-Copy Bandwidth

Figure 10: MPS resource partitioning ratio sensitivity analy-
sis.

Most of the cores are simply stalled, waiting for their turns to
submit memory requests.

On the other hand, when we enable the MPS and limit the GPU
resource usage for the zero-copy kernel to 10%, it does not block
the following training kernels anymore. Furthermore, even though
the zero-copy kernel can now use only up to 10% of the GPU re-
source, there is no significant bandwidth drop caused from it. In
Figure 10, we show the zero-copy PCIe bandwidth change over al-
locating different amount of GPU resource to the zero-copy kernel.
With 2.5–10% of resource allocations, the zero-copy kernel can-
not generate enough number of PCIe read requests and therefore
the measured PCIe bandwidth is limited to 9.5–20.2GB/s. Further
increasing the GPU resource allocation can make the zero-copy
bandwidth to reach around 23.0GB/s, but we do not observe any
significant improvement after 15% of allocation. At this point, the
amount of GPU resource allocated is excessive and we have already
reached the maximum number of PCIe read requests that we can
generate. The results roughly fall in to the estimation we made in
Section 3.2.2. If the other users want to apply the same optimization
technique on different types of GPUs, the same methodology we
used to make the estimation could be useful.

For the training time, 2.5–5% of resource allocation is not enough
to overlap (hide) the zero-copy kernel time with other processes
and therefore the minibatch time is longer than the optimal case.
We achieve the best minibatch training time when the resource
allocation is 10%. With more resource allocation on the zero-copy
kernel, the computation kernels start to starve from lack of GPU
resource. If one wants to apply the same technique for different
types of workloads, it might be worth to fine-tune the ratio. How-
ever, still, one must be aware of the PCIe bandwidth limit. For the
rest of our evaluations, we simply use an allocation ratio of 10:90
since the minibatch time is quite stable with small variations in the
allocation ratio.

4.4 Training Performance
4.4.1 Overall Comparison. In Figure 11, we show the overall train-
ing performance comparison. Throughout the entire comparison,
the CPU-only case shows the worst performance. By limiting the
computation unit to CPU, there is no need to worry about efficient
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Figure 11: GCN training time comparison. OOMdenotes out-
of-memory.

data transfers over PCIe but at the same time the computation power
is severely limited. In general, the CPU-only method is 2.3–3.1×
slower than the DMA-based method. This performance difference
is an important motivation for moving the training part into the
GPUs.

For the DMA-based method, doubling the number of GPUs does
help reducing the overall training time, but an additional GPU
results in only 21-27% performance improvement across different
datasets. Because the DMA-based method amplifies the usage of
CPU resource and host memory bandwidth, increasing the number
of GPU quickly makes the entire training process to be throttled.
In fact, the host memory overutilization exists even with a single
GPU. In the DMA-based method, each DMA transfer is preceded by
two memory accesses as shown in Figure 3. This means, to sustain
a single PCIe 4.0 x16 bandwidth (25.8GB/s), additional 51.6GB/s of
host memory bandwidth is wasted by the CPU gathering process.
Based on our measurement, we find our machine can provide about
59GB/s of host memory bandwidth with real workloads. Therefore,
the sum of bandwidth requirement (77.4GB/s) well goes beyond the
available host memory bandwidth.

For the naïve zero-copy method, we observe 2–17% of perfor-
mance degrade compared to the DMA-based method in a single-
GPU setup. This degradation is consistent with some of the conven-
tional wisdoms that naïve zero-copy is inferior to DMA-based meth-
ods. Without our proposed optimizations, the zero-copy method
suffers from the low bandwidth and the serialization issues de-
scribed in Section 3.2.1 and Section 3.2.2. This result also gives us
an idea how the programmers can make a premature conclusion to
not further investigate the usage of zero-copy accesses.

With two GPUs, the naïve zero-copy method shows much better
performance as well as performance scalability than the DMA-based
method. In a dual-GPU setup, the naïve zero-copy method becomes
30–41% faster than the DMA-based method. This is because, even
without the optimizations, the zero-copy method by default much
more efficiently uses the CPU resource and host memory bandwidth
than the DMA-based method. However, this benefit is not visible
until the number of GPUs increases.
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Finally, with our zero-copy optimizations, we can now clearly
see the benefit of zero-copy in all cases. In a single-GPU setup,
the optimized zero-copy method is 16–44% faster than the DMA-
based method and in a dual-GPU setup, it is 65–92% faster. More
surprisingly, with all optimizations included, the performance of
the zero-copy method matches with the all-in-GPU method for the
wikipedia dataset training. Since the data communication time
is completely hidden by the training process in this case, there is
no disadvantage compared to the all-in-GPU method. Overall, we
observe a very significant benefit of using zero-copy accesses for
GCN training. Thanks to the design flow optimizations we discussed
in Section 3.3, we do not observe any noticeable performance impact
from the interprocess communications.

4.4.2 Node Feature Size Sensitivity Analysis. Even though we use
multiple different graphs to evaluate GCN training performance,
some of other real-world datasets can have very different node
feature dimensions. For example, the node feature dimension of
Pinterest dataset [57] is about 4096, which is far larger than the
node feature dimensions in our datasets. However, many of those
real-world datasets are proprietary and it is difficult to obtain for
academic purposes. Therefore, in this section, we artificially sweep
the node feature dimension of ogbn-products dataset and compare
the performances of zero-copy method and DMA-based method.

In Figure 12, we show the node feature size sensitivity analysis re-
sults. In this experiment, we use two GPUs. With small node feature
dimensions, the zero-copy method is only 1.5–1.6× faster than the
DMA-based method. However, when the node feature dimension
is 4096, the zero-copy method is about 2.7× faster than the DMA-
based method. This is an expected behavior as with small node
feature dimensions, other overheads in the GCN training processes
take a sizeable portion of training time and therefore the data trans-
fer time is relatively less important. This experiment result stresses
the necessity of using efficient data communication architecture
when training GCN with large node feature dimensions.

5 DISCUSSION
Physical GPU Resource Partitioning. Even though the CUDA
MPS is already providing workload partitioning service, it is still a
logical partitioning rather than a physical partitioning. To guarantee
a stable and high zero-copy PCIe bandwidth, it is better to physically
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isolate the GPU resources used by the training kernels from those
used by the zero-copy kernels. With recent introduction of Ampere
architecture GPUs, NVIDIA started to support partitioning of a
single GPU into multiple GPU instances [39]. Each GPU instance
has dedicated GPUmemory resources which limit both the available
capacity and bandwidth, and provide memory QoS. Currently it
is impossible to share a same piece of data between different GPU
instances, but such advances in supporting hardware partitioning
capability can potentially help isolating the zero-copy kernels with
better QoS in the future.

DMAvs. Zero-CopyTrade-OffPoint.By increasing the length
of feature dimension, theDMAmethodmay become efficient enough
to send each node feature to GPU without the need of CPU gath-
ering. To understand this trade-off, we conduct a microbench-
mark measuring the setup time of asynchronous DMA. In this
microbenchmark, we send a series of DMA requests back-to-back.
The microbenchmark result shows that the average DMA setup
time is about 3.16𝜇s in our setup, which is identical to the time
of sending 85.5KB of data over PCIe 4.0 x16. Therefore, if the size
of individual item is larger than 85.5KB, using a series of DMA
operations can be an alternative of zero-copy method. For the GCN
training, our current largest node feature size is 16KB, as shown in
Section 4.4.2, which is only about 18.7% of the 85.5KB requirement.

Applications BeyondGCNs.Our work benefits other machine
learning models than GCNs as well, as embedding is a widely
adopted technique to represent entities, especially when the data
scale is large. For example, Facebook’s large-scale recommenda-
tion systems model DLRM [31] involves sparse embedding lookup
process, thus benefiting from our work[23, 48]. Aside from models
for large-scale recommendation systems, our work also benefits
some traditional machine learning operators. For instance, the Hum-
mingbird compiler [30] converts many supported machine learning
operators to tensor operations. Tensor operations of tree models af-
ter conversion show the same feature gathering challenge in batch
inference. Therefore, such scenarios would identically benefit from
our work when the input data size is large.

6 RELATEDWORKS
GCN Training on Very Large Graph. One of the most notable
works of extreme-scale GCN training is PinSage [57] which used a
graph with 3 billions of nodes and 18 billions of edges. In this work,
multiple GPUs were used to accelerate the training process. Similar
to the DMA-based method that we described in our paper, PinSage
also utilizes CPU to gather node features from the host side and then
DMA to GPUs. There are other works which desert GPUs and train
only with CPUs due to the extreme memory capacity requirement.
SIGN [10] uses GPUs in training, but the whole neighboring node
aggregation steps are actually done by CPU. DistDGL [59] uses CPU-
only distribute system to parallelize graph neural network training.
To manage the distributed storage, DistDGL requires complex data
management processes to provide data in a timely fashion. Results
in our work show that having GPUs to perform zero-copy access
to the host memory can offer major performance advantage over
using only the CPUs.

Alternative GCNAlgorithms. The out-of-GPU-memory issue
can be also circumvented bymodifying the application itself. Several

works [7, 20, 27, 58] attempt to partition input graphs into smaller
clusters prior to the training phase so each cluster can be fit into
the GPU memory. In this case, each training processor does not
have view to the entire graph but only to the assigned clusters. The
immediate issue of this method is that partitioning graphs creates
bias in the training result as it clusters similar nodes together [7].
Furthermore, partitioning graphs results in losing multiple edges
which represent relational information [56]. Especially with larger
graphs, we need to create more number of partitions, and thus we
also need to remove more number of edges during the partition. It
is empirically shown that the partitioning methods result in lower
accuracy in several GCN training workloads [1].

Other Graph Workload Accelerations on GPU. GCN train-
ing is not the only workload where the GPUs suffer from inefficient
irregular host memory accesses. There are several works which try
to utilize GPUs in graph traversal workloads like PageRank [41]
with large datasets. Due to the usage of sparse matrix format for
the representation of graph structure, traversing graphs results in
generating very irregular memory accesses. Considering that large
graphs such as WDC14 [2] has about 64 billions edges, the graphs
cannot be placed in GPU memory and therefore the graph traversal
workloads face the similar issue in this paper. EMOGI [28] utilizes
zero-copy accesses to enable fine-grained host memory access dur-
ing several graph traversal workloads. Halo [12] tries to ensure
the spatial locality of graph nodes in the memory as well through
extensive pre-processing. However, the effectiveness of this method
is completely random depending on the shape of the input graph.
Subway [46] uses a method very similar to the DMA-based method
used in this work, which tries to utilize CPU as much as possible to
gather scattered data for more efficient DMA. Marius [29] performs
locality aware graph partitioning for a large scale knowledge-graph
training.

7 CONCLUSION
In this work, we introduced a GPU-oriented, software defined data
transfer architecture for efficient GCN training on large graphs.
In large-scale GCN training, one of the most challenging tasks
is that how to efficiently transfer node features scattered in the
host memory to GPUs. As opposed to the traditional DMA-based
method, we directly utilize GPU cores as a data moving agent to
access sparse features in the host memory over zero-copy accesses.
Our evaluations show that together with zero-copy accesses and
our optimizations, the GCN training performance can be improved
by 65–92%. Furthermore, the benefit of our proposed approach is
significantly larger for 2-GPU training than 1-GPU training. By
implementing the end-to-end zero-copy based GCN training flow
in PyTorch, we also show that our modifications can be seamlessly
integrated with the existing high-level DNN programming models.
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