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ABSTRACT
Cutting-edge machine learning techniques often require millions

of labeled data objects to train a robust model. Because relying on

humans to supply such a huge number of labels is rarely practical,

automated methods for label generation are needed. Unfortunately,

critical challenges in auto-labeling remain unsolved, including the

following research questions: (1) which objects to ask humans to

label, (2) how to automatically propagate labels to other objects,

and (3) when to stop labeling. These three questions are not only

each challenging in their own right, but they also correspond to

tightly interdependent problems. Yet existing techniques provide at

best isolated solutions to a subset of these challenges. In this work,

we propose the first approach, called LANCET, that successfully

addresses all three challenges in an integrated framework. LANCET

is based on a theoretical foundation characterizing the properties

that the labeled dataset must satisfy to train an effective prediction

model, namely the Covariate-shift and the Continuity conditions.

First, guided by the Covariate-shift condition, LANCET maps raw

input data into a semantic feature space, where an unlabeled ob-

ject is expected to share the same label with its near-by labeled

neighbor. Next, guided by the Continuity condition, LANCET se-

lects objects for labeling, aiming to ensure that unlabeled objects

always have some sufficiently close labeled neighbors. These two

strategies jointly maximize the accuracy of the automatically pro-

duced labels and the prediction accuracy of the machine learning

models trained on these labels. Lastly, LANCET uses a distribution

matching network to verify whether both the Covariate-shift and

Continuity conditions hold, in which case it would be safe to termi-

nate the labeling process. Our experiments on diverse public data

sets demonstrate that LANCET consistently outperforms the state-

of-the-art methods from Snuba to GOGGLES and other baselines

by a large margin – up to 30 percentage points increase in accuracy.
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1 INTRODUCTION
Motivation. Labeling is a key bottleneck that limits the success of

modern machine learning architectures, such as deep learning, in

enterprise deployments. Many AI-based applications from digital

health to autonomous cars [4] require hundreds of thousands or

even millions of labels to train an accurate and robust machine

learning model. As a motivating example, we have been developing

a large scale labeling system in collaboration with the Neurology

Department of Massachusetts General Hospital, that is used to

label EEG segments (450 million segments, 30TB data size) with 6

classes representing different types of seizures. These labeled EEG

segments are used to train a seizure classifier that automatically

detects seizures based on EEG signals collected during the clinical

observation of patients. Our neurologist collaborators expect that

well over 20 million labeled EEG segments are needed to cover the

full range of variations in seizures. Relying on the domain experts to

manually provide this large quantity of labels is impractical, given

medical experts’ time is extremely limited.

In this work, we tackle this challenge by building a labeling

system that produces a sufficient number of labels with minimal

human effort. To achieve this, several problems have to be solved:

(1) Which objects to ask human experts to label? To minimize the

labeling efforts, a subset of objects must be selected for the human

annotators to label. Compared to other possible subsets of objects,

labeling of this chosen subset should maximally improve the per-

formance of the machine learning model subsequently trained on it.

This selection is critical for minimizing the human effort, especially

when annotating data requires strong domain knowledge.

(2) How to automatically generate additional labels? Given that

human experts will not be able to provide all necessary labels, a

mechanism is needed to auto-generate labels by propagating manu-

ally produced labels to similar but still unlabeled objects. This label

propagation is difficult, particularly when dealing with EEG/EKG

data signals, video clips from autonomous vehicles or other such

complex data types. First, when measuring the similarity of com-

plex and thus often high-dimensional objects, we cannot simply

rely on raw features of the data to distinguish between objects of

different classes. Second, we need an appropriate distance func-

tion to measure the closeness of pairs of objects. Third, a distance

threshold is required to determine if two objects are close enough

to be labeled by the same class.

(3) When to stop the labeling process? To avoid wasting valuable

human labeling effort, an effective labeling system must determine
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whether the labels acquired so far are sufficient to achieve high

training accuracy of the machine learning model. Although ac-

quiring more labels may not hurt the performance of the machine

learning model, the performance improvement brought by new

labels is expected to diminish as the number of the labels increases.

Therefore, an effective labeling system should automatically deter-

mine when the promise of additional performance improvement

diminishes sufficiently so to safely terminate the labeling process.

State-of-the-Art.Although previous research has introduced some

techniques for reducing human labeling efforts, in particular by

weak supervision [7, 30, 38] and active learning [10–12, 32, 34, 34,

40], none of these works solve all three problems outlined above.

First, weak supervision methods such as Snorkel [30], Snuba [38],

and GOGGLES [7] automatically generate labels using some label-

ing seeds. However, they assume the labeling seeds are provided

either via some user defined labeling functions or are a priori user-

supplied labeled examples. Although these labeling seeds impact

the number and the error rate of the automatically produced labels,

weak supervision does not address this critical question of which

seeds are most effective at producing quality labels and thus should

be initially acquired. That is, weak supervision addresses Problem 2

(Automatic Label Generation), but does not solve Problem 1 (Label

Candidate Selection).

The problem of label candidate selection (Problem 1) is the fo-

cus of active learning [10–12, 32, 34, 34, 37, 40]. Active learning,

however, does not tackle the challenge of automatically generating

labels (Problem 2). Further, active learning techniques typically

were designed to serve specific machine learning models such as

Convolutional Neural Networks [32] or SVM [37]. Even if the label-

ing candidates recommended by active learning were potentially

effective at improving the accuracy of specific prediction models,

they are not guaranteed to be effective when used for automatic

label generation.

One might think it would be possible to combine weak supervi-

sion and active learning to address our overall problem. However,

our experiments (Sec. 7.2) show that combining the state-of-the-

art weak supervision [38] to solve problem (2) and active learning

techniques to solve problem (1) together does not improve the cor-

rectness of the produced labels compared to simply using randomly

sampled labels in weak supervision. This implies that the two prob-

lems of which objects to label and how to automatically produce

labels from such initially chosen candidate sets are interdependent
and thus must be solved jointly, which is the approach we follow.

Finally, to the best of our knowledge, the above works do not

offer a safe criteria for terminating the labeling process (Problem

3). Instead they leave this task to the users, for example by setting

a labeling budget.

Proposed Approach. In this work, we propose the first end-to-

end solution that effectively labels complex data at scale, called

LANCET. Instead of providing a collection of independent tech-

niques each targeting only one of the three research problems in

isolation, LANCET solves all three of the above core automated

labeling problems using a principled approach.

LANCET is built on a theoretical foundation that introduces the

Covariate-shift condition and the Continuity condition in Sec. 3,

guiding us to develop the label propagation and label candidate

selection strategies.

Label Propagation. The Covariate-shift condition means that

the unlabeled objects share the label with their near-by labeled

neighbors. Intuitively if the distributions of the labeled objects and

the unlabeled objects satisfy the Covariate-shift condition, then

we can accurately produce labels by automatically propagating

labels from the labeled objects to their near-by unlabeled neighbors.

However, this Covariate-shift condition rarely holds true in the raw

feature space of complex data. To solve this problem, we propose

a feature embedding strategy, called conditional feature matching
(CFM), to learn a new feature space satisfying this Covariate-shift

condition. The key idea is to express the Covariate-shift condition

as a conditional feature matching loss that serves as a regularization
term to the loss function of any semi-supervised feature embedding

method we plug into LANCET.

We then show in Sec. 5, that in this feature embedding space, a

simple linear model would be sufficient to automatically propagate

labels – without having to explicitly specify a distance function nor

a distance threshold. This is beneficial as it is often impossible for

experts familiar with their domain but not with machine learning to

provide such machine learning specific parameters and functions.

Label Candidate Selection. Next, we observe that to reliably

assign a label to each unlabeled object in a to-be-labeled dataset,

each unlabeled object should always have some sufficiently near-

by labeled neighbors in this embedding space. This observation is

formalized as the Continuity condition in Sec. 3.

Guided by the Continuity condition, we design a label candidate
selection strategy. It selects the candidate objects to be labeled by

the domain experts as those whose coordinates 𝑥 in the data space

has a large value on the probability density function (PDF) of the

unlabeled objects, but a small value on the PDF of the labeled objects.

We call these unlabeled objects as the objects with large probability
density ratios. These objects are not well represented by existing

labeled objects.

Because estimating the PDF is notoriously hard in a high dimen-

sional space [6, 9, 33, 43], we propose a strategy that estimates the

density ratios without having to explicitly know the PDF. It lever-

ages our insight that the density ratio estimation problem can be

mapped to a distribution matching problem. That is, we show that

given a set of weights w.r.t. each unlabeled object, if these weights

together minimize the difference (distance) between the weighted
distribution of the unlabeled objects and the distribution of labeled

objects, they effectively estimate the density ratios.

We then solve this distribution matching problem by designing

a distribution matching network (DMN), which given an object, de-

termines if it is sampled from the weighted unlabeled distribution

or the labeled distribution. We then learn these weights by maxi-
mizing its classification error rate and thus effectively minimizing

the difference between those two distributions.

Labeling Termination. Using the above DMN, we naturally

establish an effective termination condition for the labeling process.

Namely, given objects in our data set, if the classification error rate

of the DMN is close to 0.5 – indicating that it fails to distinguish

labeled objects from unlabeled objects – then the labeling process

should stop. The intuition is that because this condition assures

that labeled objects effectively represent the distribution of the

unlabeled objects, it would no longer improve the accuracy of the

prediction model if we were to label more objects.
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Figure 1: Overview of LANCET

The conditional feature matching strategy, the label candidate
selection strategy, and the labeling termination condition jointly

ensure that LANCET produces a sufficient number of quality labels

with minimal human efforts.

Contributions. Our key technical contributions include:

• We propose LANCET, an end-to-end solution that effectively

labels complex data at scale by solving the problems of label propa-

gation, label candidate selection, and the termination of labeling in

a principled, integrated fashion.
• We propose a conditional feature matching strategy that pro-

duces a feature space in which the objects belonging to different

classes are linearly separable and thus greatly simplify the auto-
matic label generation problem.

• We develop a density ratio estimation method that uses a distri-

bution matching network to discover the labeling candidates that,

if selected, would be most effective at improving the accuracy of

the prediction model – solving the label candidate selection problem.

• We establish an effective criteria to promptly terminate the label-
ing process when additional labels will no longer bring a significant

performance gain to the prediction model.

• Our experiments on diverse data sets ranging from images

to time series confirm that LANCET significantly outperforms all

alternative methods in the accuracy of both the generated labels

and the machine learning models trained on these labels – up to 30

percentage points increase in accuracy.

2 LANCET OVERVIEW
LANCET targets the multi-class classification problem defined over

an input spaceX ∈ R and a label spaceY = {1, ...,𝐶}. The objective
of LANCET is to use minimal human labeling efforts to produce

labels that are sufficient to solve the classification problem.

As shown in Fig. 1, LANCET consists of four components, namely

feature embedding, label propagation, label candidate selection,

and labeling termination. Next, we briefly introduce how to use

LANCET to solve the labeling problem.

Labeling in LANCET is an iterative process. Using the existing

manually labeled objects, LANCET first employs the feature em-

bedding component to project the raw input data into a semantic

feature space that takes the classification task into consideration.

On top of the semantic feature space, LANCET uses the label prop-

agation component to propagate labels from the manually labeled

objects to the unlabeled objects. The labeling termination compo-

nent then determines if existing labels are already sufficient to train

an accurate classification model. If not, LANCET uses the label can-

didate selection component to select at most 𝑏 objects as candidates

for manual labeling, where 𝑏 is a user-controlled parameter.

In the next iteration, LANCET uses the enriched pool of manually

labeled objects to update the semantic feature space and continues

the labeling process. It stops when the labeling termination com-

ponent determines that continuing to label will not lead to clear

performance gains.

3 LANCET THEORETICAL FOUNDATION
In this section, we establish the theoretical foundation for LANCET.

The key insight is that as long as the distributions of both the labeled

objects and unlabeled objects satisfy certain statistical properties,

we can accurately infer the labels of the unlabeled objects. This

finding guides the design of our strategies for feature embedding,

label propagation, and label candidate selection.

We denote the labeled objects asD𝑙 = {(𝑥𝑖
𝑙
, 𝑦𝑖

𝑙
)}𝑁𝑙

𝑖=1
and unlabeled

objects as D𝑢 = {𝑥𝑖𝑢 }
𝑁𝑢

𝑖=1
, where 𝑦𝑖

𝑙
is the label of object 𝑥𝑖

𝑙
, and

𝑁𝑙 and 𝑁𝑢 denote the number of labeled and unlabeled objects,

respectively. We assume the labeled objects are sampled from the

joint probability distribution 𝑃𝑙 (𝑥,𝑦) in domainX×Y. Accordingly,

the unlabeled data objects are sampled from the joint probability

distribution 𝑃𝑢 (𝑥,𝑦). Note that in practice, we do not have access

to their ground truth labels for the unlabeled data objects {𝑦𝑖𝑢 }
𝑁𝑢

𝑖=1
.

We show that, if the labeled and unlabeled objects jointly satisfy

certain conditions detailed below, we can accurately predict the

label𝑦𝑢 of each unlabeled object 𝑥𝑢 . More formally, as long as these

conditions hold, there exists a classification model 𝜙 (𝑥) that makes

Eq. 1 hold.

E(𝑥,𝑦) ∈𝑃𝑢 (𝑥,𝑦) [𝑙𝑜𝑠𝑠 (𝑦,𝑦)] =
∫
𝑥

𝑝𝑢 (𝑥)𝑙𝑜𝑠𝑠 (𝑦,𝑦)𝑑𝑥 < 𝜖 (1)

In Eq. 1, 𝜖 is a positive value that can be arbitrarily small. 𝑦

represents the label w.r.t. each object 𝑥 predicted by 𝜙 (𝑥). loss(ŷ, y)
corresponds to the cross entropy loss between the prediction 𝑦 =

𝜙 (𝑥) and the ground truth label 𝑦, as defined in Eq. 2.

𝑙𝑜𝑠𝑠 (𝑦,𝑦) = −
𝐶∑
𝑖=1

𝑝𝑢 (𝑦𝑖 |𝑥)𝑙𝑜𝑔𝑝 (𝑦𝑖 |𝑥) (2)

In other words, the two conditions introduced below ensure that

the label propagated to the unlabeled objects has an expected cross
entropy loss close to 0 and hence is near perfect. Next, we introduce
these two conditions and then formally prove the above sufficiency
claim in Lemma 1.

Definition 3.1. The Covariate-shift condition [33, 43], ex-

pressed by Eq. 3, indicates that the joint distribution of unlabeled

objects 𝑝𝑢 (𝑥,𝑦) and that of labeled objects 𝑝𝑙 (𝑥,𝑦) should have the
same conditional probability mass function given a value 𝑥 in the

feature space X.

𝑝𝑢 (𝑦 |𝑥) = 𝑝𝑙 (𝑦 |𝑥) (3)

Intuitively, if the Covariate-shift condition holds, highly likely an

unlabeled object will share the label with its close labeled neighbors.

Otherwise, it would be impossible to accurately infer the labels of

unlabeled objects no matter how many labeled objects were to exist.

This is because machine learning models tend to infer the class

of an unlabeled object based on its similarity to labeled objects.
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This Covariate-shift condition guides us to develop the feature
embedding approach to simplify the label generation problem, as

described in Sec. 4.

Continuity Condition. The Continuity condition is based on the

concept of Radon-Nikodym derivative (RND) [43].

Definition 3.2. The Radon-Nikodym derivative (RND) [43] is de-

noted as 𝛽 (x) = pu (x)
pl (x) , where 𝑝𝑢 (𝑥) and 𝑝𝑙 (𝑥) represent the prob-

ability density functions (PDF) of unlabeled objects and labeled

objects respectively. The Continuity condition holds if 𝛽 (x) < B
and B ≪ ∞.

The Radon-Nikodym derivative (RND) is also called the impor-
tance weight or density ratio in the literature [23, 43]. RND is not

well defined if there exists an unlabeled object with coordinate 𝑥

such that 𝑥 has a large value on the PDF of the unlabeled objects

(pu (x) > 0), but a very small value on the PDF of the labeled ob-

jects (pl (x) ≈ 0). Intuitive, in this case this object does not have

close labeled neighbors to represent it. Driven by this Continuity

condition, we design a label candidate selection method (Sec. 6).

Based on the definitions of Covariate-shift condition and Conti-

nuity condition, we are ready to prove the key sufficiency claim.

Lemma 1. Assume in a feature space X, the unlabeled objects 𝑥𝑢
∈ D𝑢 and labeled objects 𝑥𝑙 ∈ D𝑙 satisfy the Covariate-shift and
Continuity conditions. Then given a classification model 𝜙 (𝑥) which
infers the label of each object𝑦, if

∫
x∈Dl

pl (x)loss(ŷl, yl))dx ≤ 𝜖
𝐵
,then∫

x∈Du
pu (x)loss(ŷu, yu))dx ≤ 𝜖 , where 𝜖 corresponds to a positive

value that can be arbitrarily small and B is the threshold used to
define Continuity condition.

Proof. When the Covariate-shift and Continuity conditions

hold, the expected cross-entropy loss on the unlabeled objects can

be easily estimated based on the training loss of the labeled objects

and the RND value 𝛽 (𝑥) used in Continuity condition.∫
𝑥

𝑝𝑢 (𝑥)𝑙 (𝑦𝑢 , 𝑦𝑢 )𝑑𝑥 = −
∫
𝑥

𝑝𝑢 (𝑥) [
𝐶∑
𝑖=1

𝑝𝑢 (𝑦𝑖 |𝑥)𝑙𝑜𝑔𝑝 (𝑦𝑖 |𝑥)]𝑑𝑥

= −
∫
𝑥

𝑝𝑢 (𝑥)
𝑝𝑙 (𝑥)

𝑝𝑙 (𝑥)
𝐶∑
𝑖=1

𝑝𝑙 (𝑦𝑖 |𝑥)𝑙𝑜𝑔𝑝 (𝑦𝑖 |𝑥)𝑑𝑥

=

∫
𝑥

𝛽 (𝑥)𝑝𝑙 (𝑥)𝑙𝑜𝑠𝑠 (𝑦𝑙 , 𝑦𝑙 )𝑑𝑥

≤ 𝐵

∫
𝑥

𝑝𝑙 (𝑥)𝑙𝑜𝑠𝑠 (𝑦𝑙 , 𝑦𝑙 )𝑑𝑥 ≤ 𝜖
(4)

Lemma 1 is proven. □

Lemma 1 shows that a model 𝜙 (𝑥) will be effective at propagat-
ing labels in a feature space that satisfies the Covariate-shift and

Continuity conditions, if 𝜙 (𝑥) is able to minimize the training loss

on the labeled objects close to 0. Such a model 𝜙 (𝑥) tends to exist

in practice. This is because it is widely observed [44] that machine

learning models, especially deep learning models, can perfectly fit

any training dataset even if its labels are randomly produced. In

other words, they are able to minimize the training loss to 0.

However, usually the Covariate-shift and Continuity conditions

do not naturally hold in the real world, complex data sets. The goal

of LANCET is thus to make the data satisfy these conditions and

ensure the effectiveness of the downstream classification tasks by

transforming the data space (Sec. 4), effectively propagating labels

(Sec. 5), and smartly selecting objects for human to labels (Sec. 6).

4 FEATURE EMBEDDING

Feature Embedding
by State-of-art

Higher 
certainty

Higher 
certainty

(a)

Desired 
Feature Embedding

(b)

Figure 2: (a) The semantic features extracted by existing
semi-supervised models [6, 31]. Because theses models
tend to overfit the labeled objects by pushing them far
from decision boundaries, the semantic features of la-
beled and unlabeled data diverge from each other. (b) The
desired semantic features to perform label propagation.
The labeled and unlabeled objects should be close to each
other if they fall into the same class.

According to the Covariate-shift condition, to accurately infer

the labels of the unlabeled objects, any unlabeled object should

share the label of its close labeled neighbors as shown in Fig. 2

(b). However, this often does not hold in the raw feature space of

the input data, especially for the highly complex, high dimensional

data such as images or time series. This is because the raw features

of the complex data typically are not informative at distinguishing

between the objects belonging to different classes [16]. Thus, the

objects are not naturally separable by their classes.

To solve this problem, we develop a feature embedding method

customized for our labeling task, called conditional feature match-

ing or CFM for short. Guided by the small number of labels at hand,

CFM projects the input data into a semantic feature space Z in

which Eq. 3 holds, as required by the Covariate-shift condition.

4.1 Conditional Feature Matching
Our goal is to learn a feature embedding model M(𝑥) that maps

the input data X into a semantic feature space Z satisfying the

Covariate-shift condition. LANCET learnsM(𝑥) based on both the

labeled objects D𝑙 and unlabeled objects D𝑢 . We use both classes

of objects for two reasons. First, the Covariate-shift condition re-

flects the statistical properties of both labeled and unlabeled objects.

Therefore, the feature embedding model has to take the labeled

objects into consideration. Purely unsupervised feature embedding

method such as AutoEncoders [36, 39] do not satisfy this need.

Second, in the labeling task, not many labeled objects are available

apriori. Therefore, it is not practical to train a purely supervised

feature embedding model.
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Intuitively, semi-supervised classification techniques such as

SemiGAN [6, 31] appear to be a natural solution to this prob-

lem. Semi-supervised classification learns a classification model by

jointly minimizing the loss incurred by both the labeled objects

and unlabeled objects, namely the labeled loss and the unlabeled

loss. Similar to the classical deep learning models, the learned clas-

sification model F (𝑥, 𝜃 ) automates the feature extraction process.

Therefore, logically it can be decomposed into a feature extractor

M and a classifier 𝑓 . That is, F (𝑥, 𝜃 ) = 𝑓 (M(𝑥)). M(𝑥) produces
a semantic feature space Z.

The Insufficiency of Existing Semi-supervised Feature Em-
bedding. Although the semantic features learned in this way is

shown to be effective at separating objects belonging to different

classes, they do not necessarily respect the Covariate-shift condi-

tion. In particular, we observe that these techniques tend to overly

minimize the labeled loss by pushing the labeled objects far from

the classification decision boundary in the learned semantic fea-

ture space. As a consequence, the labeled objects often are isolated

far from the unlabeled objects, thus violating the Covariate-shift

condition, as depicted in Fig. 2 (a).

Solution: Condition Feature Matching. To solve this problem,

we propose the conditional feature matching strategy. The key idea

is to express the Covariate-shift condition defined in Eq. 3 as a

conditional feature matching (CFM) loss (Eq. 5). This way, it can be

seamlessly plugged into the loss function of the semi-classification

model F (𝑥, 𝜃 ) which originally had only included the labeled loss

and the unlabeled loss. As a regularization of the learning process,

this conditional feature matching loss enforces that the unlabeled

objects are close to the labeled objects in the semantic feature space

Z if they belong to the same class; and it satisfies the Covariate-shift

condition with a theoretical guarantee.

In the semantic feature spaceZ, we denote a labeled object as

zil,cm if it belongs to class 𝑐𝑚 . We use 𝑁𝑙,𝑐𝑚 to represent the number

of labeled objects that belong to class 𝑐𝑚 . Accordingly, we denote

one unlabeled object as ziu,cm if it is classified to class 𝑐𝑚 . 𝑁𝑢,𝑐𝑚
denotes the number of unlabeled objects classified to class 𝑐𝑚 . Next,

we formally define the CFM loss.

𝑙𝑜𝑠𝑠𝑐 𝑓𝑚 =

C∑
𝑐𝑚=1

[∥𝜇𝑙,𝑐𝑚 − 𝜇𝑢,𝑐𝑚 ∥ +
C∑

𝑛≠𝑚

max{0, 𝜆 − ∥𝜇𝑙,𝑐𝑚 − 𝜇𝑢,𝑐𝑛 ∥}]

(5)

In Eq. 5, 𝜇l,cm = 1
Nl,cm

∑Nl,cm
i=1 zil,cm represents the center of all class

𝑐𝑚 labeled objects, while 𝜇u,cm = 1
Nu,cm

∑Nu,cm
i=1 ziu,cm represents the

center of all unlabeled objects that are predicted as class 𝑐𝑚 . 𝜆

controls the distance between 𝜇𝑢,𝑐𝑚 and 𝜇𝑢,𝑐𝑛 , where 𝑐𝑚 and 𝑐𝑛
denote two different classes. Minimizing Eq. 5 thus will encourage

the unlabeled and the labeled objects to centralize into the same

region in the semantic feature space if they potentially share the

same label, and push them far away from each other if they belong

to different classes.

Theoretical Guarantee.We first show that an unlabeled object is

guaranteed to share the label with its close labeled neighbor if we

can minimize the CFM loss to 0. Then we establish the connection

between the CFM loss and the Covariate-shift condition.

Input Data Feature Embedding

Supervised 
Loss

Unsupervised 
Loss

Desired 
Semantic Features

Conditional 
Feature Matching 

Loss
Labeled Data
Unlabeled Data
Backpropagation

Figure 3: Training Process of Conditional Feature Matching

Assume the unlabeled objects in class 𝑐𝑚 follow the Gaussian

distribution. So do the labeled objects. The distributions are inde-

pendent to each other. Their covariance matrices are the unit matrix,

i.e. {𝑧𝑖
𝑙,𝑐𝑚

}𝑁𝑙,𝑐𝑚

𝑖=0
∼ N(𝜇𝑙,𝑐𝑚 , 𝐼 ), {𝑧

𝑗
𝑢,𝑐𝑚 }𝑁𝑢,𝑐𝑚

𝑗=0
∼ N(𝜇𝑢,𝑐𝑚 , 𝐼 ). Given

a pair of labeled and unlabeled objects (𝑧𝑖
𝑙
, 𝑧

𝑗
𝑢 ), we use c(i = j) to

represent that they belong to the same class and use 𝑃+
𝑖 𝑗
to denote

its probability. Accordingly we use c(i ≠ j) to represent the pair of

objects belonging to different class and denote its probability as 𝑃−
𝑖 𝑗
.

We use 𝑑𝑖 𝑗 to denote 𝑧𝑖
𝑙
− 𝑧 𝑗𝑢 .

Lemma 2. Assume the labeled objects {𝑧𝑖
𝑙,𝑐𝑚

}𝑁𝑙,𝑐𝑚

𝑖=0
and unlabeled

objects {𝑧 𝑗𝑢,𝑐𝑚 }𝑁𝑢,𝑐𝑚

𝑗=0
of class 𝑐𝑚 independently show Gaussian dis-

tribution. Then given a pair of labeled and unlabeled objects (𝑧𝑖
𝑙
, 𝑧

𝑗
𝑢 )

where ∥𝑑𝑖 𝑗 ∥ < 𝜖 with 𝜖 denoting a small value close to 0, if the CFM

loss is minimized to 0, then 𝑃 (𝑐 (𝑖 = 𝑗)
��∥𝑑𝑖 𝑗 ∥ < 𝜖) ≥ 𝑃+

𝑖 𝑗

𝑃+
𝑖 𝑗
+∑𝑖≠𝑗 𝑃

−
𝑖 𝑗
𝑒
− 𝜆2

4

.

Due to space limit, please refer to the extended version [1] of

this paper for the proof.

Note 0 ≤ 𝑃−
𝑖 𝑗

≤ 1. Because the parameter 𝜆 is large, 𝑒−
𝜆2

4 is close

to 0. Therefore, typically 𝑃 (𝑐 (𝑖 = 𝑗)
��∥𝑑𝑖 𝑗 ∥ < 𝜖) is close to 1. This

shows that, if a pair of labeled and unlabeled objects are close, then

the probability that they belong to the same class is close to 1.

The Connection to Covariate-shift Condition. By Lemma 2

if ∥𝑧𝑖
𝑙
− 𝑧 𝑗𝑢 ∥ < 𝜖 , then the probability that they belong to the same

class is close to 1. That is, 𝑃 (𝑐 (𝑖 = 𝑗)
��∥𝑧𝑖

𝑙
− 𝑧 𝑗𝑢 ∥ < 𝜖) = 1. This is

equivalent to pl (y |z) = pu (y |z + 𝜖 · r), where 𝑟 represents any unit

vector. When 𝜖 approaches to 0, then (z + 𝜖 · r)→ 𝑧. Therefor, the

Covariate-shift condition 𝑝𝑢 (𝑦 |𝑧) = 𝑝𝑙 (𝑦 |𝑧) holds.

4.2 The Feature Embedding Method
Because Eq. 5 is differentiable, the conditional feature matching

loss can be seamlessly plugged into the loss function of the semi-

supervised classification model F (𝑥, 𝜃 ), requiring no change to its

learning strategy. Therefore, we can leverage any existing semi-

supervised model to learn a semantic feature space satisfying the

Covariate-shift condition. In this work, we adopt the state-of-the-art

of semi-supervised classification, namely, Generative Adversarial

Network (GAN)-based SemiGAN model [6, 31].

An Overview of SemiGAN. SemiGAN is an extension of the Gen-

erative Adversarial Networks(GAN) [24, 29]. GANs were originally

developed to generate synthetic data objects. Toward this goal, a

GAN model trains a Generator network 𝐺 to transform a random
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vector 𝑧 ∼ N(0, 𝐼 ) to a synthetic data objects. To evaluate the qual-

ity of generated objects, a GAN contains a discriminator network

𝐷 that is trained to distinguish the true data objects and synthetic

data objects. The generator network is then trained to fool the

discriminator network to accept its output as being real. In turn the

discriminator network needs to learn a precise boundary of true

data objects to reject the fake objects. In the learning process, a

GAN produces a good feature embedding of the true data.

As with GANs, a SemiGAN also has a generator 𝐺 and a dis-

criminator 𝐷 . Unlike the traditional GAN, in the SemiGAN model,

the discriminator and generator use different objective functions in

order to leverage a small number of available labels. The generator

aims to generate fake objects that have a similar feature embedding

to that of real objects in the semantic feature space. The discrimi-

nator is jointly trained to satisfy two objectives, namely correctly

classifying the labeled objects and distinguishing the fake objects

from real objects.

Formally, the objective function of the generator in SemiGAN is:

𝑙𝑜𝑠𝑠𝐺 = | |E𝑥 (M(𝑥)) − E𝑠 (M(𝐺 (𝑠))) | |2
2

(6)

where M is the feature embedding model of the discriminator. 𝑠

is the input of the generator model and sampled from a Gaussian

distribution.𝐺 (𝑠) is the fake data object produced by the generator.

In a 𝐾 class classification task, the objective function of the

discriminator in SemiGAN is composed of two types of losses,

namely, the labeled loss to classify the real objects:

𝑙𝑜𝑠𝑠𝑙 = E𝑥,𝑦∈D𝑙
(𝑙𝑜𝑔𝑃𝐷 (𝑦 |𝑥,𝑦 ≤ 𝐾)) (7)

and the unlabeled loss that distinguishes the real and fake objects:

𝑙𝑜𝑠𝑠𝑢 = E𝑥,𝑦∈D𝑢
(𝑙𝑜𝑔𝑃𝐷 (𝑦 ≤ 𝐾 |𝑥)) + 𝐸𝑠 (𝑙𝑜𝑔𝑃𝐷 (𝐾 + 1|𝐺 (𝑠))) (8)

The discriminator classifies the unlabeled real objects into one

of the 𝐾 classes, while assigns the fake objects to a 𝐾 + 1th class.

Enhancing SemiGANwith CFM. LANCET learns a semantic fea-

ture space that satisfies the Covariate-shift condition by adding the

conditional feature matching loss 𝑙𝑜𝑠𝑠𝑐 𝑓𝑚 (Eq. 5) into the objective

of the discriminator, as depicted in Fig. 3.

𝑙𝑜𝑠𝑠𝐷 = 𝑙𝑜𝑠𝑠𝑙 + 𝑙𝑜𝑠𝑠𝑢 + 𝑙𝑜𝑠𝑠𝑐 𝑓𝑚 (9)

Because the conditional feature matching 𝑙𝑜𝑠𝑠𝑐 𝑓𝑚 is differen-

tiable, the optimization strategy of SemiGAN is still effective at min-

imizing the new form of loss function 𝑙𝐷 without further change.

Note that LANCET does not rely on any specific semi-supervised

models to extract features. Rather, users can choose a semi-

supervised model that best fits their targeted classification task

and their dataset. Our conditional feature matching loss can seam-

lessly be added into its loss function.

5 LABEL PROPAGATION
Next, we introduce our label propagation strategy that automati-

cally propagates labels from manually labeled objects to the unla-

beled data objects. As described in Sec. 4, after the semantic feature

embedding, objects belonging to the same class are close to each

other in the semantic feature space. In this scenario, label propaga-

tion seems straightforward. For example, we could first measure the

similarity between the labeled object 𝑧𝑙 and the unlabeled object

𝑧𝑢 , and then if they were close enough we could propagate the

label of 𝑧𝑙 to 𝑧𝑢 . However, this intuitive strategy raises some critical

research questions:

(1) How to decide if two objects are similar? The semantic feature

space typically corresponds to a high dimensional space, especially

when the original input data is complex. Yet effectively measuring

the similarity in high dimensional spaces remains an open problem

due to the curse of dimensionality [25].

(2) How close is close enough?We need an appropriate similarity

threshold to determine if two objects are close enough to be said to

belong to the same class. This threshold is hard to set.

ALinearModel-based Solution. LANCET uses a lightweight ma-

chine learning model to solve the above problems. It fully explores

the advantage of the semantic feature space Z produced by our

conditional feature matching (CFM) strategy in that it satisfies the

Covariate-shift condition (Def. 3.1). Instead of explicitly measuring

the similarity among the objects and carefully selecting a similarity

threshold to propagate labels, LANCET learns a machine learning

model F (𝑧) to propagate labels in the semantic feature space Z.

This model F (𝑧) produces a prediction for each unlabeled object

given its features in Z. Because Z satisfies the Covariate-shift

condition, F (𝑧) can be very lightweight. We will prove that in fact

a linear neural net [22] is sufficient for this label propagation task.

More precisely, we parameterize the linear neural network F (𝑧)
by a weight matrix𝑊 and a bias vector 𝑏, i.e., F (𝑧 |𝑊,𝑏) =𝑊 ·𝑧 +𝑏.
We use cross-entropy as the loss function. Given an unlabeled object

𝑧𝑢 , F (𝑧 |𝑊,𝑏) produces a label vector 𝑦𝑢 = [𝑦1, ...., 𝑦𝐶 ], where 𝐶
represents the number of classes. Each dimension of 𝑦𝑢 represents

the probability that 𝑧𝑢 belongs to one particular class i ∈ {1, ...,𝐶}.
In deep learning, this vector is typically produced by a softmax func-

tion 𝑓 (·). Learning this linear neural network is straightforward,

and we use the common approach of SGD optimization [16].

Theoretical Guarantee.We formally prove that this lightweight

model is effective at propagating labels, leveraging that the semantic

feature space satisfies the Covariate-shift condition (Eq. 3). Due to

space limit, please refer to the extended version [1] of this paper

for the proof.

Jointly Learning with Conditional Feature Matching. Due to
the linearity of this model, it is jointly learnable with the semantic

feature embedding model. For example, if LANCET uses SemiGAN

to realize our CFM strategy to produce the semantic feature space,

then our linear neural network can thus be simply implemented as

the final layer of the discriminator of SemiGAN. Therefore, LANCET

can learn the semantic feature extraction model and the label prop-

agation model jointly using Stochastic Gradient Decent (SGD) and

back propagation, following the typical training process of Semi-

GAN. This produces a propagation model best aligned to the se-

mantic feature embedding.

6 LABEL CANDIDATE SELECTION &
LABELING TERMINATION

In this section, we first introduce our label candidate selection

method. Then in Sec 6.4 we show that this method naturally estab-

lishes an effective criteria for termination of the labeling process.

Continuity Condition Driven Label Candidate Selection.
Guided by the Continuity condition in Sec. 3, LANCET selects

(at most) 𝑏 objects that, if labeled by the human annotators, would
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be most effective at improving the quality of the produced labels,

where 𝑏 is a user configurable parameter.

Our label candidate selection method is inspired by the Continu-

ity condition. To recap, the Continuity condition holds as long as

the Radon-Nikodym derivative (RND) 𝛽 (z) = pu (z)
pl (z) is bounded by a

small value (Sec. 3). Here 𝑝𝑢 (𝑧) and 𝑝𝑙 (𝑧) represent the probability
density functions (PDF) of unlabeled objects and labeled objects,

respectively. Intuitively, given an unlabeled object with its value

as 𝑧, if the RND 𝛽 (𝑧) is large, then it does not have a close labeled

neighbor to represent it.

We thus conclude that to satisfy the Continuity condition, we

should give high priority to the unlabeled objects with large RND

when selecting objects for labeling, so that unlabeled points have

sufficient numbers of labeled points near-by to perform propaga-

tion. Therefore, once we have computed the RND for each object,

naturally we can select as labeling candidates the 𝑏 objects that

have the largest RNDs.
However, calculating the RND requires the estimation of the

PDF 𝑝𝑢 (𝑧) and 𝑝𝑙 (𝑧). This is hard in our scenario where the di-

mensionality of the semantic feature space often is high, because

accurately estimating the PDF of high dimension data is an open

problem [6, 9, 33, 43].

6.1 Learning RND By Distribution Matching
To solve this problem, we propose a method that directly estimates

the RND 𝛽 (𝑧) without having to first separately estimate 𝑝𝑙 (𝑧) and
𝑝𝑢 (𝑧). For the ease of presentation, we define the concept of weight
w(z) = pl (z)

pu (z) as the reverse of 𝛽 (𝑧). Essentially,𝑤 (𝑧) represents the
probability that a unlabeled object has a close labeled neighbor.

Solution: Mapping to the Weighted Distribution Matching
Problem. Our insight is that the problem of estimating the𝑤 (𝑧)
can be transformed into the weighted distribution matching problem.

𝑤 (𝑧) = 1

𝛽 (𝑧) =
𝑝𝑙 (𝑧)
𝑝𝑢 (𝑧)

⇒ 𝑤 (𝑧)𝑝𝑢 (𝑧) = 𝑝𝑙 (𝑧) (10)

As shown in Eq. 10, after being weighted by 𝑤 (𝑧), the proba-
bility density 𝑝𝑢 (𝑧) of the unlabeled objects is equivalent to the

probability density 𝑝𝑙 (𝑧) of the labeled object. This implies that we

can directly estimate 𝑤 (𝑧) by identifying an appropriate weight

for the unlabeled objects such that the weighted distribution of

unlabeled objects matches the distribution of labeled objects.

However, even learning𝑤 (𝑧) by distribution matching is chal-

lenging. First, given two distributions in a high dimensional space,

we need a method to evaluate if these two distributions match with

each other. Second, even if we can correctly evaluate if the weighted

distribution of the unlabeled objects matches the distribution of

the labeled objects, we still need an effective yet efficient method

to search for the weight𝑤 (𝑧) to match the distribution.

We propose to use a distribution matching network (DMN) to
solve this problem. We first introduce the concept of a DMN and

then show how to efficiently learn these weights through DMN.

6.2 Distribution Matching Network (DMN)
Let 𝜙 (𝑧, 𝜃𝑑 ) denote a neural network model, where 𝜃𝑑 represents

the parameters. We use 𝑦𝑑 to denote the label of 𝑧, indicating which

distribution 𝑧 belongs to. The objective is to assign each object to

one distribution from which it is most likely sampled. Therefore,

we call this neural network the Distribution Matching Network
(DMN). If two distributions exactly match each other – meaning

𝑝𝑙 (𝑧) = 𝑝𝑢 (𝑧), DMN will fail to distinguish between the labeled

and unlabeled objects in the semantic feature space Z. As a result,

its classification errors would be around 0.5 on average. Formally,

a DMN 𝜙 (𝑧, 𝜃𝑑 ) minimizes the weighted expected loss between the

predicted label 𝑦𝑑 = 𝑒𝜙 (𝑧,𝜃𝑑 )∑
2

𝑖=0 𝑒
𝜙 (𝑧,𝜃𝑑 )𝑖 and 𝑦𝑑 , as defined below.

E(𝑙𝑜𝑠𝑠 (𝑦𝑑 , 𝑦𝑑 )) = −
∫
𝑧

[𝑤 (𝑧)𝑝𝑢 (𝑧)𝑝 (𝑦𝑑 )𝑙𝑜𝑔𝑝 (𝑦𝑑 |𝑧𝑢 )+

𝑝𝑙 (𝑧)𝑝 (𝑦𝑑 )𝑙𝑜𝑔𝑝 (𝑦𝑑 |𝑧𝑙 )]𝑑𝑧

=
1

(𝑁𝑢 + 𝑁𝐿)
[
𝑁𝑢∑
𝑖=0

𝑤𝑖𝑙𝑜𝑠𝑠 (𝑦𝑑𝑖 , 𝑦𝑑 ) +
𝑁𝑙∑
𝑖=0

𝑙𝑜𝑠𝑠 (𝑦𝑑𝑖 , 𝑦𝑑 )]

(11)

𝑦𝑑 |𝑧𝑖 =
{
0, if 𝑧𝑖 is unlabeled

1, if 𝑧𝑖 is labeled
(12)

In Eq. 11,𝑤𝑖 denotes the weight corresponding to 𝑧𝑖 .𝑤𝑖 is given

beforehand and remains fixed throughout the training process. The

expected loss 𝐸 (𝑙𝑜𝑠𝑠 (𝑧,𝑦𝑑 )) corresponds to the H divergence, a

widely used metric to measure the difference between two distribu-

tions [3, 13, 14]. DMN learns the parameter 𝜃𝑑 to minimize the H
divergence.

If 𝐸 (𝑙𝑜𝑠𝑠 (𝑧,𝑦𝑑 )) is still large after the DMN converges, then

the weighted distribution of the unlabeled objects matches the

distribution of the labeled objects. In particular, when the two

distributions are identical, the expected loss 𝑙𝑜𝑠𝑠 (𝑧,𝑦𝑑 ,𝑤 (𝑧)) should
be around 1.38 [33], which corresponds to the maximal value of

cross-entropy loss in binary classification. This offers us a criteria

to verify if two given distributions match each other.

6.3 Learning Weights Through DMN: Online
Weight Approximation

Key Idea. DMN offers us a tool to effectively verify if the weighed

distribution of the unlabeled objects matches the distribution of the

labeled objects, assuming the weights𝑤𝑖 were to be available before-

hand. Next, we show how to use the DMN to learn these weights.

The key idea is to treat the weights {𝑤𝑖 }𝑁𝑢

𝑖=0
as the hyper-parameters

of the DMN and learn them by maximizing the expected loss of

𝜃𝑑 (𝑧,𝑦𝑑 ). The intuition is that the appropriate weights should best

match the distribution of unlabeled objects to that of labeled objects,

while two matching distributions will lead to a large loss in DMN,

as discussed above. This objective is formalized in Eq. 13.

𝜃∗ (𝑤) = argminE(𝑙𝑜𝑠𝑠 (𝑦,𝑦𝑑 ) |𝑤)

𝑤∗ = argmax

𝑁𝑢∑
𝑖=0

𝑤𝑖𝑙𝑜𝑠𝑠 (𝑦,𝑦𝑑 ) |𝜃 (𝑤)
(13)

Here 𝜃∗ (𝑤) indicates the learned parameter of DMN given the

current weights.

Learning the optimal value of𝑤𝑖 can be very expensive, because

the re-weighting process requires two loops of learning, namely,

(1) learning the parameter 𝜃∗ of DMN to minimize the loss in Equa-

tion 13, and (2) learning the weights to maximize the loss of DMN

based on the newly learned parameter 𝜃∗. The two loops iterate

back and forth until convergence – until the loss of DMN is around
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Figure 4: Training Process of OnlineWeight Approximation
1.38, because by [33] it indicates the two distributions now match

with each other.

Online Weight Approximation: an Efficient Method.We pro-

pose an online weight approximation (OWA) strategy to efficiently

learn 𝑤𝑖 . OWA alternates updates of 𝜃∗ with updates of 𝑤∗
, as

shown in Fig. 4. Because the number of unlabeled object 𝑁𝑢 can

be large, training a DMN by iteratively learning the weights with

respect to all objects is very expensive. OWA employs a mini-batch

based optimization strategy to address the efficiency concern. Dur-

ing each training iteration, OWA randomly divides the data into

many mini-batches and concurrently learns the weights with re-

spect to each mini-batch, so called online weight approximation.
Each mini-batch contains only 𝑛 ≪ 𝑁𝑢 objects.

More specifically, given a DMN 𝜙 (z, 𝜃d ), at the 𝑡-th iteration of

the training, 𝜙() is trained to minimize the weighted loss of the

current batch with size 2𝑛, which includes𝑛 labeled data objects and

𝑛 unlabeled data objects, assuming each𝑤𝑡
𝑖
is fixed at the current

iteration 𝑡 .

𝑙𝑜𝑠𝑠 (𝑦𝑑 , 𝑦𝑑 )𝑡 =
1

2𝑛
[
𝑛∑
𝑖=0

𝑤𝑡
𝑖 𝑙𝑜𝑠𝑠 ( ˆ𝑦𝑑𝑢 , 𝑦𝑑𝑢 ) +

𝑛∑
𝑖=0

𝑙𝑜𝑠𝑠 ( ˆ𝑦𝑑𝑙 , 𝑦𝑑𝑙 )]

𝜃𝑡+1
𝑑

= 𝜃𝑡
𝑑
− 𝜂▽

2𝑛∑
𝑖

𝑙𝑜𝑠𝑠 (𝑦𝑑 , 𝑦𝑑 ) |𝜃𝑡𝑑

(14)

where 𝜂 is the descent step size of the optimizer.

OWA searches for the optimal𝑤∗
of the unlabeled objects in the

mini-batch that maximizes the weighted loss 𝑙𝑜𝑠𝑠 (𝑦𝑑 , 𝑦𝑑 ) by Eq. 14.

𝑤∗ = argmax

𝑤

1

𝑛

𝑛∑
𝑖=1

𝑙𝑜𝑠𝑠 (𝑦𝑑 , 𝑦𝑑 ) |𝜃𝑡+1 (15)

OWA adopts gradient descent to update the weight𝑤𝑡
𝑖
at each

iteration 𝑡 . OWA recalculates the loss based on the updated parame-

ters, and then updates the weight of the unlabeled objects according

to the updated loss.

𝑙𝑜𝑠𝑠 ( ˆ𝑦𝑑𝑢 , 𝑦𝑑 )𝑡+1 =
1

𝑛

𝑛∑
𝑖=0

𝑤𝑡
𝑖 𝑙𝑜𝑠𝑠 ( ˆ𝑦𝑑𝑢 , 𝑦𝑑 ) |𝜃𝑡+1

𝑤𝑡+1
𝑖 =

𝜕

𝜕𝑤𝑡
𝑖

𝑙𝑜𝑠𝑠 ( ˆ𝑦𝑑𝑢 , 𝑦𝑑 )𝑡+1
(16)

At the end of each iteration, the weights of all objects in each

mini-batch have to be normalized to make sure the total sample

weights add up to 1. It is also necessary to ensure𝑤𝑖 ≥ 0 for all 𝑖 ,

since minimizing the negative training loss can result in unstable

behavior. Therefore, we enforce these constraints:

(1)𝑤𝑡
𝑖 = max(0,𝑤𝑡

𝑖 ); (2)𝑤
𝑡
𝑖 =

𝑤𝑡
𝑖∑𝑁

𝑖=0𝑤
𝑡
𝑖

(17)

Eventually OWA trains the DMN based on Eq. 14 and Eq. 16∼ 17.

It assigns a small weight to an unlabeled object if it has a small loss

as computed in Eq. 14, because a small loss indicates this object

is very different from any labeled objects and hence can be eas-

ily recognized to be unlabeled. An unlabeled object with a small

weight is less likely to have a labeled neighbor and thus violates the

Continuity condition. Accordingly, LANCET selects the 𝑏 objects

with the smallest weights for annotators to label.

6.4 Termination Condition
To save the human annotator’s efforts, the label candidate selection

process should terminate when labeling more objects would not

significantly reduce the errors of the automatically produced labels.

In LANCET, the distribution matching network (DMN) used in

our label candidate selection method naturally offers an effective

yet simplistic way to terminate the labeling process. Specifically,

LANCET will suggest the annotators to terminate the labeling

process when the following two conditions hold: (1) when the

weighted distribution of the unlabeled objects is similar to the

distribution of the labeled objects; (2) when the Radon-Nikodym

derivative (RND) 𝛽 (z) = pu (z)
pl (z) is bounded by a small value 𝛽𝑡 and

consequently the Continuity condition holds.

Verifying Condition (1) is straightforward. As discussed in

Sec. 6.1, when the two distributions are identical, the expected

loss 𝑙 (𝑧,𝑦𝑑 ,𝑤 (𝑧)) (Eq. 11) should be around 1.38 by [33]. Therefore,

we can determine if Condition (1) holds simply by checking the

value of Eq. 11.

LANCET verifies Condition (2) based on the weight𝑤𝑖 estimated

by our online weight approximation (OWA) method for each un-

labeled object. By Eq. 10, the weight𝑤𝑖 w.r.t. each unlabeled data

𝑧𝑖 corresponds to an approximation of the reverse RND value at

𝑧𝑖 . Therefore, if ∀ unlabeled object 𝑧𝑖 , wi > 𝛼t where 𝛼t =
1
𝛽t
, then

Condition (2) holds.

Intuitively, when 𝛼𝑡 is large (or 𝛽𝑡 is small), Condition (2) is

hard to satisfy. In this case, LANCET is guaranteed to produce

a sufficient number of labels to train a robust machine learning

model, but potentially wasting some labeling efforts. Based on our

experiments, setting 𝛼𝑡 around 0.1 or 𝛽𝑡 around 10 balances the

label sufficiency requirement and the labeling costs in all cases.

Therefore, we can apply this same threshold to different datasets

without careful tuning.

7 EXPERIMENTS
Our experimental study focuses on the following three questions:

1. Quality of Generated Labels: How does LANCET compare

with existing labeling approaches in term of the quality of the

generated labels?

2. Accuracy of Trained Machine Learning Models: How
does the performance of the machine learning models trained with

labels generated by LANCET compare with the models trained with

the labels generated by existing labeling approach?
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3. Ablation Study: How do the key techniques of LANCET

work?

7.1 Experiment Setup
Datasets.We evaluate our methods on classification tasks using in

total four benchmark datasets including two classic image datasets

and two popular time series datasets described below.

• SVHN Street View House Numbers dataset [27] is a widely used

real-world image dataset obtained from house numbers in Google

Street View images. Each image contains a digit ranging from 0 to 9;

thus it has 10 classes. SVHN consists of 73257 training images and

26032 images for testing. The resolution of each image is 3×32×32.
• CIFAR-10 benchmark dataset [20] is a popular image dataset

composed of 10 classes of natural scenes with 50000 training images

and 10000 testing images. Each is an RGB image of size 32×32.
• HAR Human Activity Recognition dataset [2] is a popular mul-

tivariate time series dataset built from the recordings of 30 subjects

performing activities throughout their day while carrying a waist-

mounted smartphone with embedded inertial sensors. The activities

correspond to 6 classes including Sitting, Standing, Walking, etc.

The continuous recordings are broken into 10,299 none-overlapping

time segments. Each segment is composed of 128 readings over

time with each reading a 9-tuple produced by 9 sensors – thus a

9×128 time series.

• SpeechCommands [41] is a public time series dataset used for

speech recognition. It has 65,000 utterances of 30 short words by

2,618 speakers. Each utterance is stored as a one-second (or less)

WAVE format file encoding the sample data as linear 16-bit single-

channel PCM values at a 16 KHz rate. To preprocess the utterances,

we first extract normalized spectrograms from the original wave-

forms and then resize the spectrograms to equalize their sizes at

160×101, as in [41].

Alternative Methods. We compare LANCET against the core

state-of-the-art labeling approaches including Snuba [38], GOG-

GLES [7], and Core-Set [32]. We also compare LANCET against

SemiGAN [6] and AutoEncodoer [39] as additional baselines.

• Snuba [38] is the state-of-art of weak supervised label genera-

tion system. As the successor of Snorkel [30], Snuba uses a small

set of manually labeled examples as seeds to produce labels.

• GOGGLES [7] is the most recent labeling approach targeting

on image data. Because GOGGLES does not support time series

data, we compare against GOGGLES using the two image datasets.

We use the code made available by the authors.

• Core-Set [32] corresponds to the state-of-art of active learning
designed for deep neural nets which are used in our experiments.

• SemiGAN [6] is the state-of-the-art of semi-supervised feature

embedding. It is also able to produce a prediction with respect to

each unlabeled object in the given dataset.

• AutoEncoder [39]. AutoEncoder is a popular feature embed-

ding method. we develop this baseline by replacing the feature em-

bedding component of LANCET with a pre-trained AutoEncoder

model. This new baseline then uses LANCET’s label propagation

method to produce labels.

• Ground Truth. The machine learning models trained with the

ground truth labels using the deep neural networks are also eval-

uated. They represent the best case upper bound on the prediction

accuracy w.r.t each dataset, as they are given apriori all the correct

labels instead of first having to infer these labels.

Methodology.We measure the quality of the produced labels
and the testing accuracy of the machine learning models trained

on these labels. Following the state-of-the-art [7], in most cases we

evaluate LANCET on CNN-based classification problems, because

CNNs are known to perform better than other models on complex

data such as images or time series. We also run additional exper-

iments to evaluate the performance of LANCET on other model

architectures. In particular, we use Support Vector Machines (SVM)

as the downstream machine learning model. We run the experi-

ments on the HAR dataset, because SVMs are known to work well

on it. We measure the quality of the produced labels following

the experimental methodology of Snuba and GOGGLES. That is,

given a small set of human supplied labels, we use one label genera-

tion approach to propagate labels to all unlabeled objects and then

evaluate the accuracy of the automatically produced labels. Here

accuracy is measured as the ratio of the correctly generated labels

over all generated labels.

When evaluating the accuracy of the trained machine learning

models, in addition to comparing to Snuba, GOGGLES, SemiGAN,

and AutoEncoder, we also compare LANCET against the models

trained on the labels supplied by the active learning method Core-

Set, as well as the models trained using the ground truth labels.

In our ablation study, we evaluate the accuracy of the models

trained on the labels produced by different LANCET-based vari-

ants to verify the effectiveness of our condition feature mapping

(CFM) strategy and the label candidate selection method, which

correspond to the key techniques of LANCET. In addition, we also

evaluate how active learning works when used together with weak

supervision (Snuba + AL).

Finally, we evaluate the termination condition by varying the

termination threshold 𝛼𝑡 and measuring how the label propagation

efficiency of the full-fledged LANCET changes, where propagation

efficiency represents the number of correct labels automatically

inferred per human label.

7.2 The Accuracy of Generated Labels
In this set of experiments, we evaluate LANCET, Snuba, SemiGAN,

and AutoEncoder on all four image and time series datasets, while

GOGGLES was only run on the image datasets, because GOGGLES

is specific to image data.When running Snuba on the image datasets,

we first use the pre-trained VGG16 model on ImageNet to extract

features from the raw image data. We then use principal component

analysis (PCA) to project the extracted features into a lower dimen-

sional space with densely rich features, as in the GOGGLES [7]

paper. For the time series datasets, Snuba directly uses the raw data

as input features to train the models.

All experiments start with a small initial pool of labeled examples

randomly sampled from the dataset, corresponding to about 0.5%

of the total dataset. The pool of unlabeled data corresponds to the

remaining data, from which candidates are selected for the human

labelers to annotate. Because all datasets have ground truth avail-

able, in our experiments an oracle who already knows the ground

truth beforehand simulates human labeler (that is, the oracle will

always provide a perfect label when asked). We gradually increase
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(a) SVHN (Image) (b) CIFAR-10 (Image) (c) HAR (Time Series) (d) Speechcommands (Time Series)

Figure 5: Accuracy of Generated Labels: Varying the Number of Manually Supplied Labels

(a) SVHN (Image) (b) CIFAR-10 (Image) (c) HAR (Time Series) (d) Speechcommands (Time Series)

Figure 6: The Accuracy of the Trained Machine Learning Models: Varying the Number of Manually supplied Labels

the number of human supplied labels and evaluate the accuracy of

the generated labels. We use the same number of human supplied

labels for all methods in all experiments.

As shown in Fig. 5, LANCET consistently outperforms other

methods on all datasets with a large margin. Next, we explain

where the superiority of LANCET comes.

First, our conditional feature matching (CFM) strategy presented

in Sec. 4.1 produces a feature embedding satisfying the Covariate-

shift condition (Def. 3.1). That is, in the embedding space, the objects

belonging to different classes arewell separated; while the unlabeled

objects tend to share their label with that of their near-by labeled

neighbors. We confirm this by visually examining the plot of objects

from each dataset by plotting the feature embedding produced by

LANCET using t-SNE, a widely used visualization technique that

perceives proximity when mapping to 2-dim space to support visual

inspection. Because the feature embedding satisfies the Covariate-

shift condition, LANCET is able to effectively propagate labels from

labeled objects to their unlabeled neighbors using a lightweight

linear model, as analyzed in Sec. 5.

Although SemiGAN also produces a feature embedding that sep-

arates objects belonging to different classes, it tends to push the

labeled objects far from any unlabeled objects. Thus, it violates

the Covariate-shift condition, as depicted in Fig. 2 (a). It is thus

ineffective in helping the system to predict the labels of the unla-

beled objects, because many of them do not have near-by labeled

neighbors to utilize. Therefore, although SemiGAN has been shown

to perform better than other baseline methods, especially when

handling image datasets, LANCET still consistently outperforms

SemiGAN by up to 20 percentage points.

Second, driven by the Continuity condition (Def. 3.2), our dis-

tribution matching network-based (DMN) method presented in

Sec. 6.3 successfully discovers the areas in the high dimensional

embedding space that do not contain enough labeled objects. By

selecting objects in these areas for the human domain expert to

manually label, LANCET discovers the labeling seeds that are most

effective at automatically producing new labels. Therefore, LANCET

quickly reaches a high accuracy using very few labels and is able

to consistently improve the accuracy of the generated labels as the

number of human labels increases, as shown in Fig. 5.

7.3 The Accuracy of Trained Models
As was done in Snuba and GOGGLES, we evaluate the accuracy of

themachine learningmodels trained on the automatically generated

labels. For all datasets, we use the standard train/test split from the

original source.

For the image classification task, all methods use the popular

Preact-ResNet [17] as the downstream machine learning archi-

tecture, as was done in GOGGLES [7]. For the timeseries dataset

Speechcommands, we designed CNN-based deep neural net to clas-

sify them by treating them as image data. Our experimental results

in 6(d) show it works well. For the timeseries dataset HAR, we
use Support Vector Machine (SVM) as the downstream machine

learning model, because SVM is known to work well on it. We

gradually increase the number of human supplied labels until we

meet the termination condition of LANCET, where the termination

threshold 𝛼𝑡 is set to 0.1.

Fig. 6 shows the accuracy of LANCET is at least 40 percentage

points higher than that of Snuba and GOGGLES. LANCET also

significantly outperforms SemiGAN and AutoEncoder by up to 25

percentage points. This is because the labels produced by LANCET

are much more accurate, for the reasons described above in Sec. 7.2.

Although the active learning method Core-Set is able to im-

prove the model accuracy as the number of manual labels increases,

LANCET still outperforms active learning in all scenarios. This is

because LANCET automatically produces a large number of labels
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(a) Speechcommands (Time Series) (b) SVHN (Image)

Figure 7: Ablation Study

with high accuracy, while a much larger training set tends to pro-

duce a more accurate machine learning model when the error rate

on the labels is low.

In comparison to the fully supervised model trained on the full

set of ground truth data, the accuracy of LANCET is only slightly

less than the ideal model by 0.05 to 0.1, while using at most 11% of

the ground truth labels as human supplied labels.

In particular, in the case of the SVHN dataset (Fig. 6(a)), LANCET

performs almost identically to a model trained on the fully labeled

dataset, while it only uses 1% of the manually supplied labels. We

believe the superior performance of LANCET on SVHN comes from

the high quality feature embedding LANCET produces. To confirm

this, we use t-SNE to visualize the feature embedding produced

by LANCET and by SemiGAN. We find that LANCET’s feature

embedding component, that effectively enhances SemiGAN with

our conditional feature matching (CFM) strategy, is able to produce

a high quality feature embedding where objects from different

classes are well isolated from one another and the labeled objects

share the same label with their near-by labeled neighbors. Thus it

satisfies the Covariate-shift condition (Def. 3.1).

The feature embedding produced by SemiGAN also separates the

objects belonging to different classes. Therefore, similar to LANCET,

using a small number of manual labels, SemiGAN achieves high

accuracy and outperforms other baselines. This indicates that the

SemiGAN structure effectively captures the distinct properties of

different classes in SVHN and in turn explains the extraordinary

performance of LANCET in this case.

7.4 Ablation Study
We conduct an ablation study on SpeechCommand and SVHN

datasets. We evaluate the effectiveness of our key techniques includ-

ing the conditional feature matching (CFM) for feature embedding

and label candidate selection (LCS) strategies, subject to different

types of datasets (image data and time series data). LANCET-CFM

uses our CFM strategy for feature embedding, but randomly sam-

ples objects for the humans to label (no label candidate selection).

LANCET-LCS uses our label candidate selection method to select

labeling candidates, but employs SemiGAN [6] to learn feature em-

bedding model (no CFM). We compare the LANCET-based methods

against SemiGAN and Snuba.

As shown in Fig. 7, LANCET-LCS outperforms SemiGAN by

up to 17 percentage points. Because LANCET-LCS uses the same

feature embedding model to SemiGAN, this confirms that the label

candidate selection strategy of LANCET is clearly more effective

than randomly picking objects for humans to label.

(a) Speechcommands (Time Series) (b) SVHN (Image)

Figure 8: The Accuracy of Snuba with/without Active
Learning

LANCET-CFM significantly outperforms SemiGAN by up to

26 percentage points. Because LANCET-CFM and SemiGAN both

randomly picking labeling candidates, this confirms that our CFM

strategy effectively improves the quality of feature embedding.

LANCET-FULL outperforms LANCET-CFM and LANCET-LCS.

This shows that our CFM strategy and label candidate selection

strategy are compatible with each other, because they are developed

based on one unified theoretical foundation in an integrated fashion.

Weak Supervision + Active Learning. This set of experiments

also compares Snuba + AL against the original Snuba. The original

Snuba uses randomly sampled manual labels as the labeling seeds,

while Snuba + AL uses active learning (Core-Set method) to select

the manual labels. The results in Fig. 8 show that Snuba + AL

performs even worse than the original Snuba, confirming that the

active learning methods do not necessarily work well when used

together with weak supervision, as noted in the introduction.

7.5 Evaluation of Termination Condition
Weevaluate the effectiveness of the termination condition in LANCET.

We report the results on CIFAR-10 and Speechcommands datasets.

The results on SVHN and HAR datasets show the similar trend.

For this, we vary the termination threshold 𝛼𝑡 from 0.001 to 0.1.

As analyzed in Sec. 6.4, the larger the 𝛼𝑡 is, the more human labels

will be collected.

To quantify the effectiveness of the acquired human labels in

improving the quality of the automatically produced labels, we

define a metric, Propagation Efficiency (PE), which measures the

number of correct labels automatically inferred per human label.

For example, if 500 human labels correctly result in the production

of 5,000 labels, then the propagation efficiency (PE) is
5000

500
= 10.

When evaluating the termination condition, after reaching each

𝛼𝑡 and where the algorithm would normally terminate, we instead

conduct one additional round of labeling and measure the PE based

on the new acquired human labels. As shown in Fig. 9, the PE de-

creases as 𝛼𝑡 gets higher. In particular, in both cases when 𝛼𝑡 is

higher than 0.03, the PE gets stable and drops to below 0.5, indi-

cating two human labels only produce one additional label. This

confirms the effectiveness of using 𝛼𝑡 as the termination condi-

tion. Based on the experiments, we recommend the users to set 𝛼𝑡
around 0.03 - 0.1.

8 RELATEDWORK
Weak Supervision. In recent years, the database community is

interested in developing systems and techniques [7, 30, 38] to solve

the labeling problem. They aim to use only a small amount of
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(a) Speechcommands (Time Series) (b) CIFAR-10 (Image)

Figure 9: Termination Condition: Varying Threshold 𝛼𝑡

manual labeling to learn good machine learning models. In par-

ticular, Snorkel [30] and Snuba [38] use the concept of weak su-

pervision. The goal is to produce high quality labels from a set

of labeling sources which produce a large amount of noisy labels.

They then produce the final labels by combining the noisy labels

using ensemble-based techniques.

Snorkel [30] provides interfaces for users to write labeling func-

tions, which as the labeling sources, produce labels for subsets of

data. However, in some scenarios, especially in complex scenarios

such as our medical application, designing these labeling functions

is hard even for domain experts. Our LANCET instead only requires

users to provide some examples for each class, and thus tends to be

more user-friendly than Snorkel.

Snuba [38] uses some lightweight machine learning models as

labeling sources, such as decision tree or logistic regression, because

they are less label thirsty than deep learning and potentially can be

trained using a small number of manually supplied labels. However,

when applied on complex data such as images and time series, these

simplistic models tend to produce poor predictions, as confirmed

in our experiments (Sec. 7.2 and 7.3). Therefore, ensemble cannot

extract much useful information from them to produce accurate

labels. In contrast, because of its feature embedding strategy and

the ability of automatically modeling the data distribution in high

dimensional space, our LANCET effectively processes complex data.

GOGGLES [7] uses a transfer learning inspired method to label

image data. Given an input dataset, it first leverages the pre-trained

deep learningmodel for the big ImageNet [8] data to extract features

for all instances in the given dataset and calculates the affinity score

between each pair of instances. Then, based on this affinity matrix,

it infers the labels of the unlabeled images given some manually

labeled images. The intuition is that if the instances in the input

data resemble some instances of ImageNet, then a fine tune using

a small number of labels potentially is sufficient to adapt the pre-

trained model to the input data. Therefore, GOGGLES only targets

image data. Our LANCET is instead more general and can handle

other types of complex data such as time series.

Active Learning. Similar to the label selection of our LANCET,

active learning aims to construct a small training set that can train

a specific machine learning model with satisfactory accuracy. In

general, the active learning methods can be divided into two cate-

gories. The first category [10–12, 34] uses metrics to evaluate the

importance of the samples to the performance of the current model,

such as uncertainty [11], entropy [12] and expected loss [10, 42].

However, it has been shown that such metrics are often hard to esti-

mate in the cutting edge machine learning techniques for example

Deep Neural Networks [32]. The second category [32, 34, 40] seeks

to form a compact set of unlabeled instances that represents the

overall distribution of the entire unlabeled dataset. However, for

high dimensional data such as images, it requires a large number

of samples to represent such a distribution. Driven by the Conti-

nuity condition, LANCET instead cleverly picks specific samples

to label that ensure the unlabeled objects always have near-by la-

beled neighbors. This maximizes the efficacy of automatic label

propagation – a critical feature not considered in active learning.

Semi-supervised Classification. Semi-supervised classification

leverages the properties of unlabeled data objects to improve the

accuracy of machine learning models. Its goal is to classify data as

accurately as possible, assuming a small set of labels is available

beforehand. Although similar to our work in that it also solves

problems caused by a shortage of labeled objects, it tackles classifi-

cation as a problem rather than the labeling generation problem.

Therefore, unlike LANCET, it does not cover the label selection

problem, that is, how to select the most informative objects to label.

Some semi-supervised classification techniques [6, 18, 19, 21, 26,

31, 35, 36, 39] use unlabeled data to learn the low dimensional mani-

fold of the dataset. They then train amachine learningmodel on this

low dimensional feature embedding and thus are unlikely to overfit

the small labeled dataset. As discussed in Sec. 4.1, our conditional

feature matching strategy naturally leverages these techniques to

produce feature embeddings that best fit label propagation.

Deep Learning-based Feature Extraction. Deep learning mod-

els have been proposed to extract features from complex datasets

such as images. In particular, Generative Adversarial Net (GAN) [6,

29, 31] extracts features by forcing a neural network to learn a high

density manifold distribution to resist the adversarial attacks from

another co-trained neural network. Auto-Encoder [18, 19, 39] meth-

ods extract features that are most informative for reconstructing the

data objects. Some other works instead design customized heuris-

tics for a certain type of datasets, such as data-augmentation [5, 35],

rotation prediction [15], relative patch prediction [28] and coloriza-

tion [45]. Although all these deep learning-based methods can be

used by LANCET to extract features, these methods do not guar-

antee that the objects belonging to the same class fall into a small

region in the learned feature space – essential to LANCET.

9 CONCLUSION
In this work, we tackle the challenging problem of how to produce

a sufficient number of labels for data sets void of labels so to train la-

bel thirsty machine learning models with minimal manual labeling

effort. Our proposed solution, LANCET, solves three critical inter-

dependent subproblems essential for an effective labeling solution,

namely, what objects to label, how to automatically produce labels,

and when to terminate labeling. LANCET does so in a principle

way based on a solid theoretical foundation. Our experiments using

multiple public data sets demonstrate that LANCET significantly

outperforms all alternative solutions in both accuracy of labels gen-

erated and quality of the machine learning models, including weak

supervision and active learning based methods.
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