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ABSTRACT

Graph clustering and community detection are central problems in
modern datamining. The increasing need for analyzing billion-scale
data calls for faster and more scalable algorithms for these problems.
There are certain trade-offs between the quality and speed of such
clustering algorithms. In this paper, we design scalable algorithms
that achieve high quality when evaluated based on ground truth.

We develop a generalized sequential and shared-memory par-
allel framework based on the LambdaCC objective (introduced
by Veldt et al.), which encompasses modularity and correlation
clustering. Our framework consists of highly-optimized implemen-
tations that scale to large data sets of billions of edges and that
obtain high-quality clusters compared to ground-truth data, on
both unweighted and weighted graphs. Our empirical evaluation
shows that this framework improves the state-of-the-art trade-offs
between speed and quality of scalable community detection. For
example, on a 30-core machine with two-way hyper-threading, our
implementations achieve orders of magnitude speedups over other
correlation clustering baselines, and up to 28.44x speedups over our
own sequential baselines while maintaining or improving quality.
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1 INTRODUCTION

As a fundamental tool in modern data mining, graph clustering, or
community detection, has a wide range of applications spanning
data mining [21], social network analysis [15], bioinformatics [22],
and machine learning [20], and has been well-studied under many
frameworks [1, 36]. As the need to analyze larger and larger data
sets increases, designing scalable algorithms that can handle graphs
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with billions of edges has become a central part of graph clustering.
A major challenge is to design algorithms that can achieve fast
speed at high scale while retaining high quality as evaluated on
data sets with ground truth. Many graph clustering algorithms have
been proposed to address this challenge, and our goal is to develop a
state-of-the-art algorithm from both speed and quality perspectives.
In particular, we adopt a new LambdaCC framework, introduced by
Veldt et al. [41], which provides a general objective encompassing
modularity [17] and correlation clustering [4]. Veldt et al. show that
LambdaCC framework unifies several quality measures, including
modularity, sparsest cut, cluster deletion, and a general version of
correlation clustering. Modularity is a widely-used objective that
is formally defined as the fraction of edges within clusters minus
the expected fraction of edges within clusters, assuming random
distribution of edges. The goal of correlation clustering is to max-
imize agreements or minimize disagreements, where agreements
and disagreements are defined based on edge weights indicating
similarity and dissimilarity.

It is NP-hard to approximate modularity within a constant factor
[9], so optimizing for modularity, and by extension optimizing for
the LambdaCC objective, is inherently difficult. The most success-
ful and widely-used modularity clustering implementations focus
on heuristic algorithms, notably the popular Louvain method [6].
The Louvain method has been well-studied for use in modularity
clustering, with highly optimized heuristics and parallelizations
that allow them to scale to large real-world networks [25, 37–39].

In this paper, we design, implement, and evaluate a generalized
sequential and shared-memory parallel framework for Louvain-
based algorithms including modularity and correlation clustering.
We optimize the LambdaCC objective with state-of-the-art empiri-
cal performance, scaling to graphs with billions of edges. We also
show that there is an inherent bottleneck to efficiently parallelizing
the Louvain method, in that the problem of obtaining a clustering
matching that given by the Louvain method on the LambdaCC
objective, is P-complete. As such, we explore heuristic optimiza-
tions and relaxations of the Louvain method, and demonstrate their
quality and performance trade-offs for the LambdaCC objective.

As part of our comprehensive empirical study, we show that
our sequential implementation is orders of magnitude faster than
the proof-of-concept implementation of Veldt et al. [41]. We note
that for both LabmdaCC and correlation clustering objective, we
are unaware of any existing implementation that would scale to

2305

https://doi.org/10.14778/3476249.3476282
https://github.com/jeshi96/parallel-correlation-clustering
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476282


even million-edge graphs and achieve comparable quality. We fur-
ther show that our parallel implementations obtain up to 28.44x
speedups over our sequential baselines on a 30-core machine.

Moreover, we show that optimizing for the correlation clustering
objective is of particular importance, by studying cluster quality
with respect to ground truth data. We observe that optimizing for
correlation clustering yields higher quality clusters than the ones
obtained by optimizing for the celebrated modularity objective. In
addition, we compare our implementation to two other prominent
scalable algorithms for community detection: Tectonic [40] and
SCD [28] and in both cases obtain favorable results, improving both
the performance and quality. Finally, even in the highly competitive
and extensively studied area of optimizing for modularity, we obtain
an up to 3.5x speedup over a highly optimized parallel shared-
memory modularity clustering implementation in NetworKit [37].

Further related work.Optimization for correlation clustering has
been studied empirically in the case of complete graphs, which is
equivalent to LambdaCC objective with resolution 𝛾 = 0.5 [11, 27].
In this restricted setting, several scalable parallel implementations
have been obtained based on theKwikCluster algorithm [8, 14, 27].
We observe that KwikCluster typically obtains a negative Lamb-
daCC objective, which significantly limits its practical applicability.

Scalable modularity clustering has been extensively studied both
in the shared-memory [12, 13, 19, 25, 37, 42] and distributed mem-
ory [16, 29, 32, 35] settings. The two fastest implementations that
we identify are NetworKit [37] and Grappolo [16, 19]. Both of them
offer comparable performance, but we observed the NetworKit typ-
ically computes solutions with slightly larger objective, and thus
we compare to NetworKit in our empirical evaluation. We also note
that compared to these papers, our algorithm optimizes for a more
general LambdaCC objective.

2 PRELIMINARIES

We consider undirected weighted graphs 𝐺 = (𝑉 , 𝐸,𝑤), where𝑤 :
𝐸 → R denotes the weight of each edge, and undirected unweighted
graphs 𝐺 = (𝑉 , 𝐸), where 𝑤𝑢𝑣 = 1 for all (𝑢, 𝑣) ∈ 𝐸 (𝐺). We let
𝑛 = |𝑉 | and𝑚 = |𝐸 |, and we let 𝑑𝑣 denote the degree of vertex 𝑣 .

We use a generalized correlation clustering objective that is
equivalent to the LambdaCC objective given by Veldt et al. [41].
Note that under a specific set of parameters, our objective similarly
reduces to the classic modularity objective. Moreover, our definition
can be more generally applied to weighted graph inputs.

We fix a clustering resolution parameter 𝜆 ∈ (0, 1). We define
non-negative vertex weights 𝑘 : 𝑉 → R+0 , where unless otherwise
specified, we take 𝑘𝑣 = 1 for all 𝑣 ∈ 𝑉 (a redefinition of 𝑘 is required
for the modularity objective). We also define the rescaled weight
𝑤 ′ of each pair of vertices (𝑢, 𝑣) ∈ 𝑉 × 𝑉 to be 𝑤 ′𝑢𝑣 = 0 if 𝑢 = 𝑣 ,
𝑤 ′𝑢𝑣 = 𝑤𝑢𝑣 − 𝜆𝑘𝑢𝑘𝑣 if (𝑢, 𝑣) ∈ 𝐸, and𝑤 ′𝑢𝑣 = −𝜆𝑘𝑢𝑘𝑣 otherwise.

The goal is to maximize the CC objective, CC(𝑥) = ∑
(𝑖, 𝑗) ∈𝑉×𝑉

𝑤 ′
𝑖 𝑗
· (1 − 𝑥𝑖 𝑗 ), where 𝑥 = {𝑥𝑖 𝑗 } represents the distance between

vertices 𝑖 and 𝑗 in a given clustering. Specifically, 𝑥𝑖 𝑗 = 0 if 𝑖 and 𝑗
are in the same cluster, and 𝑥𝑖 𝑗 = 1 if 𝑖 and 𝑗 are in different clusters.

The modularity objective can be obtained from the CC objective
by defining vertex weights 𝑘 and setting 𝜆 appropriately. Note that
Reichardt and Bornholdt [31] defined a modularity objective with
a fixed scaling parameter 𝛾 ∈ (0, 1) to be 𝑄 (𝑥) = 1

2𝑚
∑
𝑖≠𝑗 (𝐴𝑖 𝑗 −

𝛾
𝑑𝑖𝑑 𝑗

2𝑚 ) (1 − 𝑥𝑖 𝑗 ), where 𝐴𝑖 𝑗 = 1 if 𝑖 and 𝑗 are adjacent, and 𝐴𝑖 𝑗 = 0
otherwise. Setting 𝛾 = 1, this objective is equivalent to the simpler
modularity objective given by Girvan and Newman [17]. To modify
CC to match the modularity objective, we set the node weights
𝑘 (𝑣) = 𝑑𝑣 for each 𝑣 ∈ 𝑉 , and we set the resolution 𝜆 = 𝛾/(2𝑚) .
Maximizing the two objective functions is then equivalent.

3 ALGORITHM AND OPTIMIZATIONS

3.1 Sequential Louvain Method

We begin by describing the classic sequential Louvain method from
Blondel et al. [6], Seqential-CC, adapted for the correlation clus-
tering objective. We include the pseudocode in the full version of
the paper. 1 The main idea is to repeatedly move vertices to clusters
that would maximize the objective, and once no vertices can be
moved, compress clusters into vertices and repeat this process on
the compressed graph. In more detail, the algorithm takes as input
a graph𝐺 and node weights 𝑘 , and begins with singleton clusters.
Then, it iterates over each vertex in a random order, and locally
moves vertices to clusters that maximize the CC objective. The
computation to determine the cluster that vertex 𝑣 should move to
can be performed by maintaining the total vertex weight of each
cluster. We provide the formula in the full version of the paper.

After all vertices have been moved, the algorithm repeats this
step of locally moving vertices until no vertices have performed
non-trivial moves. If no vertices changed clusters during this phase,
then Seqential-CC terminates. Otherwise, once a stable state
has been achieved, the algorithm compresses the graph 𝐺 (using
a subroutine Seqential-Compress) by creating a new graph 𝐺 ′
with vertex weights𝑘 ′. Each cluster 𝑐 in𝐺 corresponds to a vertex in
𝐺 ′ with vertex weight 𝑘 ′(𝑐) = 𝐾𝑐 . Edges (𝑢, 𝑣) in𝐺 are maintained
as edges between the vertices corresponding to their clusters in𝐺 ′,
where multiple edges incident on the same vertices are combined
into a single edge with weight equal to the sum of their weights.

Finally, the algorithm recurses on𝐺 ′ and 𝑘 ′. It takes the returned
clustering 𝐶 ′ on the compressed graph 𝐺 ′, and composes it with
the original clustering𝐶 (using a subroutine Seqential-Flatten).
It assigns the cluster of a vertex 𝑣 in 𝐺 to be the cluster of its
corresponding vertex in the compressed graph 𝐺 ′, composing the
clustering obtained in the recursion onto the original graph.

The main bottleneck in parallelizing Seqential-CC is the se-
quential dependencies in moving each vertex to the cluster that
maximizes the objective, and we prove a related P-completeness
result in the full version of the paper, showing that the problem
of obtaining a clustering equivalent to any clustering 𝐶 given by
moving each vertex to its best cluster, is inherently sequential to
solve under standard complexity-theory assumptions.

As such, to obtain an empirically efficient implementation that
achieves good parallelism, we heuristically relax the sequential
dependency and allow vertices to move to clusters concurrently.
While vertices move to clusters that would individually maximize
the objective, these moves in tandem may lower the total objective;
there is no guarantee of convergence.We show an example in Figure
1. Note that this is a common parallelization technique in Louvain
methods for modularity clustering, and it has been observed that in
1The full version of the paper is available at https://github.com/jeshi96/parallel-
correlation-clustering.
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Figure 1: An example where parallel local vertex moves lowers the

total objective. Assume 𝜆 = 0 and initial clusters are singletons with

objective 0. If 𝑏 and 𝑐 are both scheduled to move at the same time,

they each choose cluster {𝑎}, leading to a single cluster {𝑎,𝑏, 𝑐 }with

objective -1.

Algorithm 1 Parallel Louvain method for correlation clustering
1: procedure Best-Moves(𝐺 , 𝑘 , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ,𝐶)
2: Define id(𝑐) to be the index of cluster 𝑐 ∈ 𝐶
3: 𝐷 ← array of size 𝑛
4: 𝑉 ′ ← 𝑉

5: for 𝑖 in range(𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ) do
6: parfor 𝑣 ∈ 𝑉 ′ do
7: 𝐷 [𝑣 ] ← id(𝑐) such that moving 𝑣 to 𝑐 ∈ 𝐶 would maximize CC(𝐶)
8: Move 𝑣 to 𝐷 [𝑣 ]
9: if no moves were made in iteration 𝑖 then break
10: 𝑉 ′ ← { neighbors of 𝑣 | 𝑣 moved}
11: return𝐶

1: procedure Parallel-CC(𝐺 , 𝑘 , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 )
2: 𝐶 ← singleton clusters for each 𝑣 ∈ 𝑉
3: 𝐶 ← Best-Moves(𝐺 , 𝑘 , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ,𝐶)
4: if no moves were made in Best-Moves then
5: return𝐶

6: 𝐺′, 𝑘′ ← Parallel-Compress(𝐺 ,𝐶)
7: 𝐶′ ← Parallel-CC(𝐺′, 𝑘′, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 )
8: 𝐶 ← Parallel-Flatten(𝐶 ,𝐶′)
9: 𝐶 ← Best-Moves(𝐺 , 𝑘 , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ,𝐶)
10: return𝐶

practice this technique converges for the modularity objective [37].
We now discuss optimizations that can be used with this relaxation.

3.2 Parallel Louvain Method and Optimizations

Algorithm 1 contains the pseudocode for each of the main opti-
mizations that we consider in our parallelization of the Louvain
method for the CC objective. Each optimization is highlighted in
blue, and we display in the pseudocode only the best settings that
offer a reasonable trade-off between quality and performance, as we
show in Section 4.1. We discuss in the following sections the other
modular options in our framework for each of these optimizations.

Our parallelization uses a natural heuristic relaxation of the
sequential dependency in moving vertices to their desired clusters.
Amore faithful parallelizationwould fix a random permutation of𝑉 ,
and move in parallel the first ℓ vertices in order for the largest ℓ such
that moving these ℓ vertices would not affect each other’s objectives.
However, compared to a heuristic relaxation, not only does this
involve greater overhead due to the prefix computation of vertices
that do not conflict, but it also respects sequential dependencies
that may not affect later vertex moves. Thus, in the interest of
performance, we consider the parallelization given in Algorithm 1.

Note that the heuristic relaxation to allow vertices to move con-
currently to their desired clusters is encapsulated in the subroutine
Best-Moves. We include an additional parameter, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 , which
bounds the number of iterations in which we move each vertex to
its desired cluster; this is necessary due to the lack of guarantee of

convergence. Moreover, in order to allow each vertex to efficiently
compute its best move, we maintain the total vertex weights 𝐾𝑐 of
each cluster 𝑐 , which is not shown in the pseudocode for simplicity.

Our main optimizations introduce symmetry breaking and work
reduction techniques to improve performance while maintaining
the objective. We also discuss a refinement step that improves the
objective at the cost of running time and a higher memory overhead.

3.2.1 Optimization: Synchronous vs Asynchronous. The first op-
timization involves scheduling individual vertex moves in Best-
Moves, on Line 8. We explore two options: synchronous and asyn-
chronous. These options have been previously studied in paralleliz-
ing the Louvain method for the modularity objective [35, 37].

In the synchronous setting, instead of moving vertices on Line
8 immediately after the computation of their desired cluster, we
move all vertices in parallel to their desired cluster 𝐷 [𝑣] after the
parallel for loop on Line 6. This can be efficiently performed in
parallel by aggregating vertices that move from the same clusters
and vertices that move to the same clusters. In the asynchronous
setting, we perform vertex moves on Line 8 as highlighted in blue.
Note that moving a vertex 𝑣 in this manner potentially interferes
with the computation that each vertex performs on Line 7, where
other vertices’ computations of their desired cluster may depend
on 𝑣 ’s current cluster, and the total vertex weight of 𝑣 ’s prior and
𝑣 ’s new cluster. Instead of using locks or other synchronization
methods, we relax consistency guarantees, performing separate
operations to update the cluster and the total vertex weight of the
cluster that 𝑣 moves to. Thus, there is no guarantee that the stored
total vertex weights of clusters represent the actual totals.

We show in Section 4.1 that perhaps surprisingly, the asynchro-
nous setting outperforms the synchronous setting, particularly in
terms of objective. Of the optimizations, the asynchronous opti-
mization contributes most significantly towards an improvement
in objective. This is because the asynchronous setting allows for
symmetry breaking, while in the synchronous setting, vertices that
are attempting to move away from each other may inadvertently
move to the same cluster, since they must move in lockstep. For cer-
tain graphs, this symmetry breaking also allows the asynchronous
setting to outperform the synchronous setting in running time, due
to fewer vertex moves required to obtain the maximal objective.

Previous uses of the Louvain method for other objectives ex-
plored different schedules for vertex moves with more granular
trade-offs [3, 25]. We found that our asynchronous setting outper-
forms methods that maintain consistency, in quality and speed.

3.2.2 Optimization: All Vertices vs Neighbors of Clusters vs Neigh-
bors of Vertices. We now consider optimizations that reduce the set
of vertices to consider moving in every iteration of Best-Moves.
When considering vertices on Lines 6 – 7, we note that following
a set of vertex moves in the previous iteration, we can reduce the
number of vertices that would be likely to be induced to change
clusters by the vertex moves in the previous iteration. This idea
has been previously used in work on the Louvain method for the
modularity objective [3, 26]. Notably, the Best-Moves subroutine
takes a significant portion of total clustering time, and reducing the
subset of vertices to consider offers performance improvements.

In more detail, isolating a vertex 𝑣 which has in the previous
iteration moved from cluster 𝑐 to cluster 𝑐 ′, the vertices that would
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be affected by this move in the next iteration belong to three cat-
egories: (a) neighbors of 𝑣 , (b) neighbors of any vertex in 𝑐 , and
(c) vertices in 𝑐 ′. Any vertex not in one of these categories is not
induced to move clusters due to 𝑣 ’s move. This is due to the change
in objective formula. For conciseness in describing category (b),
we formally define neighbors of clusters 𝐶 to be the union of the
neighbors of each vertex in each cluster in 𝐶 .

In our algorithm, we consider three options for this optimization:
restricting considered vertices to neighbors of vertices moved in
the previous iteration, restricting considered vertices to neighbors
of clusters that vertices have moved to in the previous iteration,
and considering all vertices in each iteration. The first option cor-
responds to the update on 𝑉 ′ in Line 10, highlighted in blue. The
second option would instead replace this line with setting 𝑉 ′ ← {
neighbors of the current cluster 𝐶 [𝑖] | 𝑣 moved from cluster 𝐶 [𝑖]
to cluster 𝑐}, and the final option would set 𝑉 ′ ← 𝑉 .

We show in Section 4.1 that restricting𝑉 ′ to the set of neighbors
of vertices that have moved in the previous iteration outperforms
both other options while maintaining comparable objective. This is
because the vertices that are most affected by moving vertices in
terms of objective are neighbors of the moving vertices, and thus
most of the objective obtained is from considering these neighbors.
While there may be contrived scenarios in which more objective is
affected due to non-neighbors of moving vertices with sufficiently
large edge weights 2, we do not see these scenarios in practice, and
considering a smaller subset of vertices in each iteration allows for
less total work to be performed, since we save on the cost of comput-
ing best moves for other vertices. The performance improvements
outweigh the marginal loss in objective from these cases.

3.2.3 Optimization: Multi-level Refinement. Finally, we consider
a popular multi-level refinement optimization [33, 37]. Note that
the first phase of our parallel algorithm and the classic Louvain
method involves what can be viewed as successive coarsening steps,
in which we perform best vertex moves and compress the resulting
clustering into a coarsened graph; vertices in the coarsened graph
correspond to clusters, or sets of vertices, in the original graph.
For instance, each vertex 𝑣 in the original graph is clustered into a
cluster𝐶 , which corresponds to the vertex 𝑣 ′ in the coarsened graph.
We then recurse on the coarsened graph. Following the recursion,
we receive a clustering on the coarsened graph, which we must
translate to a clustering on the original graph. Each vertex 𝑣 ′ in
the coarsened graph now belongs to a cluster 𝐶 ′ in the coarsened
graph, and we must now assign the cluster of the original vertex
𝑣 . We use a flattening procedure for this, where we simply assign
each vertex 𝑣 in the original graph to the corresponding cluster 𝐶 ′.

However, note that 𝑣 did not have an opportunity to move clus-
ters individually in successive recursive steps, and because there
is no guarantee of convergence, clusters may not reach a steady
state before compressing the graph. 𝑣 may have ended up in a sub-
optimal cluster 𝐶 when the coarsening was performed and would
have been unable to move after the coarsening. Now, given its new
cluster 𝐶 ′, 𝑣 may desire to change clusters. The multi-level refine-
ment optimization allows for 𝑣 to move by performing a refinement

2For instance, given a large enough star graph where each leaf has a small enough
positive edge weight to the center, following the first set of moves in which every leaf
clusters with the center.

step after each flattening step, as we traverse back up the recursive
hierarchy. We simply perform a further iteration of Best-Moves
on each individual vertex 𝑣 , before returning the clustering.

This refinement optimization is shown on Line 9, highlighted in
blue. Omitting this line removes the optimization. The optimiza-
tion increases the space usage and the amount of time required for
our implementation, since it requires each compressed graph to be
maintained throughout and since it adds an additional subroutine,
but it non-trivially improves quality, as we show in Section 4.1. This
is due to the lack of guarantee of convergence in Algorithm 1, where
vertices may be coarsened non-optimally. The refinement step al-
lows for these vertices to move to better clusters as we traverse
back up the recursive hierarchy, resulting in better quality.

3.2.4 Other Optimizations. We discuss in the full version of the
paper other optimizations that we use, including our efficient par-
allelization of Seqential-Compress and Seqential-Flatten.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our algo-
rithms, showing significant speedups over state-of-the-art imple-
mentations and high-quality clusters compared to ground truth.

We show that optimizations that address symmetry breaking and
work reduction result in an overall faster implementation while
maintaining objective, and additional refinement steps improve
the objective at the cost of performance and memory usage. We
also demonstrate significant speedups over state-of-the-art imple-
mentations due to our theoretically efficient parallelization of key
subroutines, while obtaining high quality compared to ground truth.
Environment. We run most experiments on a c2-standard-60
Google Cloud instance, with 30 cores (with two-way hyper-threading),
3.8GHz Intel Xeon Scalable processors, and 240 GiB main memory.
For experiments on large graphs we use a m1-megamem-96 Google
Cloud instance, with 48 cores (with two-way hyper-threading),
2.7GHz Intel Xeon Scalable processors, and 1434 GiB main memory.
We compile our programs with g++ (version 7.3.1) and the -O3 flag,
and we use an efficient work-stealing scheduler, which, as shown
in [5], provides on average a 1.43x speedup over Intel’s Parallel STL
library. We also terminate any experiment that takes over 7 hours.
Graph Inputs.We test our implementations on real-world undi-
rected graphs from the Stanford Network Analysis Project (SNAP)
[24], namely com-dblp, com-amazon, com-livejournal, com-orkut,
and com-friendster. We also use twitter, a symmetrized version of
the Twitter graph representing follower-following relationships
[23]. Details of these graphs are shown in the full version of the
paper. To show the quality of our implementations, we compare
with the top 5000 ground-truth communities given by SNAP. These
communities may overlap, so to compute average precision and
recall, for each ground-truth community 𝑐 , we match 𝑐 to the cluster
𝑐 ′ with the largest intersection to 𝑐 .3 This matches the methodology
used by Tsourakakis et al. in evaluating Tectonic [40].

We also use an approximate 𝑘-NN algorithm [18] to construct
weighted graphs from pointset data, from the UCI Machine Learn-
ing repository [10]. We defer a discussion of our weighted graph
data to the full version of the paper. Additionally, we demonstrate

3Any given cluster 𝑐′ may be matched to multiple or no ground-truth communities 𝑐 .
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scalability using synthetic graphs generated by the standard rMAT
graph generator [7], with 𝑎 = 0.5, 𝑏 = 𝑐 = 0.1, and 𝑑 = 0.3.

All experiments are run on c2-standard-60 instances, except for
experiments on the twitter and friendster graphs, which are run on
m1-megamem-96 instances due to the higher memory requirement.
Implementations. We test the Louvain-based implementations
of our sequential and parallel correlation clustering algorithms
(Seq-CC and Par-CC respectively). We also redefine vertex weights
and 𝜆 as discussed in Section 2 to obtain modularity clustering
implementations (Seq-Mod and Par-Mod). For our parallel imple-
mentations, we use 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 = 10 unless otherwise specified. For
our sequential implementations, we use the superscript con if we
run to convergence (without restricting the number of iterations),
and we use no superscript if we use 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 = 10. We run each
experiment 10 times and report the average time and objective. 4

We compare to two correlation clustering implementations, namely
the parallel C4 and ClusterWild! by Pan et al. [27] (based on the
sequential correlation clustering algorithm KwikCluster [2]), and
the sequential Louvain-based implementation in the correlation
clustering framework LambdaCC, by Veldt et al. [41].

We note that there is a rich body of work on pivot-based correla-
tion clustering algorithms, both parallel and sequential, including
prior work by Chierichetti et al. [8] and by García-Soriano et al. [14].
These works are based onKwikCluster (also known as Pivot), and
offer faster performance with matching or worse approximation
guarantees. However, in our comparison to C4, which parallelizes
KwikCluster and which matches KwikCluster’s approximation
guarantee, we note that while C4 is much faster than Par-CC, the
quality is poor compared to Par-CC in terms of both the CC ob-
jective and comparison to ground-truth communities, resulting in
clusters of vertices with proportionally lower similarities to each
other. Thus, we omit pivot-based work that offer the same or worse
quality guarantees compared to C4.

We also compare to two state-of-the-art community detection
algorithms which are based on triangle counts: the sequential Tec-
tonic by Tsourakakis et al. [40], and the shared-memory paral-
lel SCD, by Prat-Pérez et al. [28]. Both algorithms were shown
to deliver superior quality to multiple similarly scalable baseline
methods. In the special case of modularity, we compare to the par-
allel Louvian-based modularity clustering implementation in the
NetworKit toolkit (networkit), by Staudt and Meyerhenke [37].

4.1 Tuning Optimizations

We evaluated the effectiveness of the different optimizations dis-
cussed in Section 3.2, namely, considering synchronous versus asyn-
chronous vertex moves, considering all vertices versus neighbors of
clusters that vertices have moved to versus neighbors of vertices that
have moved as the vertex subset𝑉 ′ to iterate over, and considering
multi-level refinement versus no refinement. We establish here that
the optimizations that offer reasonable trade-offs between speed
and quality are asynchronous vertex moves, considering neighbors
of vertices that have moved as𝑉 ′, and using multi-level refinement.

4The average objective is non-deterministic when using the asynchronous setting
from Section 3.2.1.
5We take the symmetric log of 𝑥 to be sign(𝑥) · log |𝑥 |. We use a symmetric log scale
to more accurately depict the CC objectives, because the objectives are very large
positive and negative numbers.
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5
(top)

and multiplicative increase in the modularity for Par-Mod over no

optimizations (bottom), of each optimization and every optimiza-

tion. Objectiveswere obtained on amazon, orkut, twitter, and friend-

ster, with 𝜆 = 0.01, 0.85.

We tuned these optimizations on the graphs amazon, orkut, twit-
ter, and friendster, with 𝜆 = 0.01, 0.85. Note that lower resolutions
produce a clustering with fewer clusters, and higher resolutions
produce a clustering with more clusters; these resolutions effec-
tively model both scenarios, where differences in the number of
clusters produced may affect performance. We fix the synchronous,
all vertex moves, and no refinement options, and give running
times and objectives considering turning on a single optimization
at a time; these are the natural settings that do not optimize the
basic sequential Louvain method. Considering both Par-CC and
Par-Mod, Figure 2 shows the multiplicative slowdowns of synchro-
nous over asynchronous, all vertices over neighbors of clusters, all
vertices over neighbors of vertices, multi-level refinement over no
refinement (note that multi-level refinement causes slowdowns, but
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improves quality over the basic no refinement option), and no opti-
mizations over every optimization. Figure 3 shows the objectives
for these optimizations.

We see speedups of up to 2.50x, with a median of 1.21x, using
the asynchronous over the synchronous setting across Par-CC and
Par-Mod. For Par-CC, the synchronous setting often produces neg-
ative objective, whereas in the asynchronous setting, the objective
is always positive, and we see a 1.29–156.01% increase in objective.
The objective in the synchronous setting is negative likely due to
the phenomenon shown in Figure 1, which is more likely to appear
for large resolutions due to the objective computation. This phe-
nomenon has additionally been discussed in prior work in relation
to the modularity objective [30, 37]. For Par-Mod, we see a 0.0015
– 5.84% increase in modularity using the asynchronous setting over
the synchronous setting. The synchronous setting often leads to
very poor objectives due to a lack of symmetry breaking, compared
to the asynchronous setting where there is inherent randomness.

The asynchronous setting is also often faster than the synchro-
nous setting, because due to the symmetry breaking, fewer vertices
end up making moves that decrease the objective. For Par-Mod
on orkut and twitter, the asynchronous setting is not faster than
the synchronous setting, but the increase in modularity using the
asynchronous setting is more significant, compared to that obtained
on other graphs. Up to 1.43x more time is spent computing best
moves in the asynchronous setting compared to the synchronous
setting, due to an increased number of vertex moves required to
obtain the higher objective. Overall, considering tradeoffs between
objective and speed, the best setting is the asynchronous setting.

We see up to a 1.98x speedup, with a median of 1.03x, consider-
ing neighbors of vertices compared to all vertices as the subset 𝑉 ′,
and we see up to a 1.32x speedup, with a median of 1.01x, consider-
ing neighbors of clusters compared to all vertices. Moreover, the
objectives obtained in all settings are comparable. This is because
neighbors of previously moved vertices, and by extension neigh-
bors of clusters of previously moved vertices, are most significantly
affected in terms of objective by previously moved vertices, based
on the change in objective formula. In the cases where the speedup
is minimal, vertices in these classes represent a larger proportion of
all vertices, which we show in the full version of the paper; however,
due to the cases with more significant speedups, the best setting in
general is considering neighbors of vertices as the subset 𝑉 ′.

Finally, we see slowdowns of up to 2.29x, with a median of 1.67x,
using multi-level refinement, compared to using no refinement.
However, using refinement, we see 1.12 – 36.92% increase in the
CC objective, and up to a 6.41% increase in modularity. Refinement
improves objective because it allows vertices to move to better
clusters following the compression steps, increasing the objective
in situations where compression was not optimal. The increase in
time is due to the added work in refinement, and in general, the best
setting is to use refinement. Note that these results mirror prior
work applying multi-level refinement for the modularity objective
[33, 37]. For the modularity objective using small resolutions, the
increase in objective is minimal; this is because in these cases, the
objective obtained without using refinement is already very high
(on average 0.99, where the maximum is 1.00).

In the remaining experiments, we fix the asynchronous setting,
using neighbors of vertices, and using multi-level refinement, as
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ing resolutions. Seq-CC timed out on twitter for 𝜆 = 0.01, 0.1, and
0.25, and on friendster for 𝜆 < 0.75.

the overall optimal settings, although we note that for small resolu-
tions, multi-level refinement often offers little increase in objective
considering the increase in running time. Overall, using all opti-
mizations, we see up to a 5.85x speedup and up to a 156.01% increase
in objective. For Par-Mod, there are scenarios with up to a 2.20x
slowdown in running time due to contention in the asynchronous
setting compared to the synchronous setting, but in these cases, we
see significant increases in modularity, of 2.93% – 8.09%.

4.2 Speedups and Scalability

Speedups.We first note that there exist no prior scalable correla-
tion clustering baselines that offer high quality in terms of objective.
The existing implementations are the parallelC4 andClusterWild!
[27], which are based on a maximal independent set algorithm, and
the sequential Louvain-based method in LambdaCC [41]. Our im-
plementations significantly outperform these baselines, and we
present a detailed comparison in the full version of the paper. No-
tably, C4 and ClusterWild! offer significant speedups of up to
428.64x over Par-CC, but achieve poor and often negative objective,
with a decrease in the objective of 273.35 – 433.31% over Par-CC.
C4 and ClusterWild! also achieve poor precision and recall com-
pared to ground truth communities, with precision between 0.44
– 0.65 and recall between 0.10 – 0.15. In comparison, on the same
graphs, Par-CC achieves recall between 0.61 – 0.98 for precision
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Figure 6: Scalability of Par-CC over rMAT graphs of varying sizes.
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greater than 0.50. Furthermore, LambdaCC is a MATLAB imple-
mentation that uses an adjacency matrix to represent the graph,
and cannot scale to graphs of more than hundreds of vertices. Thus,
we demonstrate the speedups of our parallel implementations pri-
marily against our own serial implementations, which include the
applicable optimizations discussed in Section 4.1, namely the neigh-
bors of vertices and multi-level refinement optimizations.

Figure 4 shows the speedup of Par-CC and Par-Mod over Seq-
CC and Seq-Mod respectively. We also compared to Seq-CCcon

and Seq-Modcon; we note that running to convergence generally
increases the running time while improving the objective, although
the improvements are not always significant. However, as we show
later in Section 4.3, the average precision-recall of Seq-CC is signif-
icantly worse than that of Seq-CCcon, while our Par-CC matches
the average precision-recall of Seq-CCcon.

On the graphs amazon, dblp, livejournal, and orkut, and over
varying resolutions, we see 3.19–27.38x speedups of Par-CC over
Seq-CC, and 12.55–110.25x speedups of Par-CC over Seq-CCcon.
Our parallel implementations also achieve between 0.98–1.08x the
CC objective of our serial implementations, demonstrating high

performance while maintaining the CC objective. For Par-Mod, we
see between 3.18–7.76x speedups over Seq-Mod, and 2.64–7.89x
speedups over Seq-Modcon, while achieving 1.00–1.06x the modu-
larity of the serial implementations.

On the large graphs twitter and friendster, and over varying res-
olutions, we see 4.57–17.87x speedups of our Par-CC over Seq-CC,
and up to 7.74x speedups of Par-Mod over Seq-Mod. We achieve
between 0.95–1.00x the CC objective of Seq-CC, and between 0.96–
1.02x the modularity of Seq-Mod. Seq-CC timed out on twitter for
𝜆 = 0.01, 0.1, and 0.25, and on friendster for 𝜆 < 0.75. We observe
lower speedups using Par-Mod on twitter, which we discuss in the
full version of the paper.

Figure 5 shows the multiplicative increase in the total number of
iterations required for Par-CC and Par-Mod over Seq-CC and Seq-
Mod, which approximately displays the inverse of the behavior seen
in the speedups shown in Figure 4 across different resolutions. We
see greater speedups for resolutions where the number of iterations
required in our parallel implementations match or are lower than
the number of iterations required in our serial implementations.
Whenever a greater number of iterations is required in parallel
compared to serial, we observed lower speedups, simply due to the
increased amount of work carried out by the parallel version.
Scalability. Figure 6 demonstrates the scalability of Par-CC over
rMAT graphs of varying sizes, with very sparse graphs (𝑚 = 5𝑛),
sparse graphs (𝑚 = 50𝑛), dense graphs (𝑚 = 𝑛1.5), and very dense
graphs (𝑚 = 𝑛2). We also show similar results for Par-Mod in the
full version of the paper. We see that for both of our algorithms
and across different resolutions (𝜆 = 0.01, 0.85), the running times
of our algorithms scale nearly linearly with the number of edges.
Figure 7 shows the speedups of Par-CC on amazon, orkut, twitter,
and friendster, over different numbers of threads. We also show
the speedups of Par-Mod on the same graphs is given in the full
version of the paper. Overall, we see good parallel scalability, with
5.59–14.97x self-relative speedups on Par-CC, and 1.89–14.51x self-
relative speedups on Par-Mod. Note that using fewer threads for
Par-CC times out on friendster for 𝜆 = 0.01, and we again see
lower speedups for Par-Mod on twitter, where there is increased
contention in using atomic compare-and-swaps due to the very
few clusters produced relative to the size of the graph. Excluding
twitter, we see 5.29–14.51x self-relative speedups on Par-Mod.
Memory Usage. Figure 8 shows the memory usage of Par-CC and
Par-Mod on amazon, orkut, twitter, and friendster. 6 Theoretically,
our memory usage is linear in the size of the input graph. We
incur more memory when usingmulti-level refinement, particularly
if more coarsening rounds are required, since we must store the
coarsened graph from each recursive step. For instance, for Par-
CC on friendster with 𝜆 = 0.01, four coarsening rounds are used,
compared to 𝜆 = 0.85, where only one coarsening round is used,
hence the difference inmemory overhead. Overall, using refinement,
we incur a 1.40–23.68x memory overhead over the size of the input
graph, whereas without refinement, we incur a 1.25–3.24x overhead.
Comparisons to Other Implementations. In the special case of
modularity, we compare against the highly optimized parallel modu-
larity clustering implementation networkit [37]. networkit, like

6The size of the input graph provided in Figure 8 is the total size in CSR format [34],
which uses approximately 8 bytes per undirected edge.
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Figure 9: Average precision and recall compared to ground truth
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Mod, using varying resolutions.
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Par-Mod, implements an asynchronous version of Louvain-based
modularity clustering. We discuss in the full version of the paper
the speedups of Par-Mod over networkit. We see up to 3.50x
speedups (1.89x on average), primarily due to our optimization of
the graph compression step, which we discuss below.We also obtain
between 0.99 – 1.00x the modularity given by networkit’s imple-
mentation, where some variance appears due to the asynchronous
nature of both implementations.

Our speedups overnetworkit are primarily becausenetworkit
does not efficiently parallelize the graph compression step between
rounds of best vertex moves. Our implementations use a work-
efficient algorithm to parallelize this step, where intra-cluster edges
are aggregated in polylogarithmic depth with an efficient parallel
sort, whereas no such guarantee is made in networkit.

Additionally, we compare to the sequential Tectonic implemen-
tation [40], which clusters based on the idea of triangle conductance
and provides good average precision-recall compared to ground
truth communities on SNAP graphs. Like Par-CC, Tectonic uses
a parameter 𝜃 that can be set to achieve a range of clusters with
varying average precision and recall. We discuss in more detail in
Section 4.3 the comparison between the quality of Par-CC’s and
Tectonic’s clusters, but for outputs where Par-CC either outper-
forms or matches Tectonic in terms of average precision and recall
considering 𝜆 ∈ {0.01𝑥 | 𝑥 ∈ [1, 99]} and 𝜃 ∈ {0.01𝑥 | 𝑥 ∈ [1, 299]}
respectively, we see between 2.48–67.62x speedup of Par-CC over
Tectonic on the graphs amazon, dblp, livejournal, and orkut. No-
tably, Par-CC significantly outperforms Tectonic on large graphs,
with between 34.22–67.62x speedups on orkut.

Finally, we compare to SCD [28], a parallel triangle-based com-
munity detection implementation. Par-CC gives up to 2.89x speedups

over SCD for resolutions that give comparable or better quality than
SCD, in terms of average precision and recall. We discuss further
details in the full version of the paper.

4.3 Quality Compared to Ground Truth

Figure 9 shows the average precision-recall curves obtained by
Par-CC and Par-Mod, varying resolutions, compared to the top
5000 ground truth communities on amazon and orkut. For Par-
CC, we set 𝜆 ∈ {0.01𝑥 | 𝑥 ∈ [1, 99]}, and for Par-Mod, we set
𝛾 ∈ {0.02 · (1.2)𝑥 | 𝑥 ∈ [1, 99]}. We compare these curves to those
obtained by Seq-CC and Seq-Mod, running with both the same
number of iterations (𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 = 10) as the parallel implementa-
tions, and to convergence. We only show Seq-Modcon, because the
version limiting the number of iterations displays the same average
precision-recall curve as the version running to convergence.

Overall, the average precision-recall obtained by Par-CC and
Par-Modmatch those obtained by their sequential counterparts for
both amazon and orkut. Note that if we do not run Seq-CC to con-
vergence, we obtain relatively poor precision-recall compared to
Par-CC, suggesting that more progress is made in fewer iterations
in our parallel implementation. This is likely inherent in the behav-
ior in the asynchronous setting of our implementations, where the
consistency guarantees are relaxed in a way such that vertices can
more easily move better clusters. Overall, Par-CC offers a better
precision-recall trade-off compared to Par-Mod, which shows the
benefits of using the CC objective. We also show in the full version
of the paper the same behavior on dblp and livejournal.

Figure 10 shows the average precision-recall curves for Tectonic
[40], considering 𝜃 ∈ {0.01𝑥 | 𝑥 ∈ [1, 299]}, which we compare to
Par-CC on amazon, dblp, livejournal, and orkut. We see that Tec-
tonic achieves similar precision-recall trade-offs on amazon, but
Par-CC obtains much better precision-recall on dblp, livejournal,
and orkut. Notably, Tectonic degrades significantly on the larger
graphs livejournal and orkut compared to Par-CC.

We also conducted quality experiments on weighted graphs, but
we defer the details to the full version of the paper.

5 CONCLUSION

We have designed and evaluated a comprehensive and scalable
parallel clustering framework, which captures both correlation and
modularity clustering. Our framework offers settings with trade-
offs between performance and quality. We obtained significant
speedups over existing state-of-the-art implementations that scale
to large datasets of up to billions of edges. Moreover, we showed
that optimizing for the correlation clustering objective gives higher-
quality clusters with respect to ground truth, compared to other
methods in highly-scalable clustering implementations. This shows
the significance of the correlation clustering objective for commu-
nity detection. Finally, we proved the P-completeness of Louvain-
like algorithms for parallel correlation and modularity clustering.
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