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ABSTRACT
Data analysts often need to characterize a data stream as a first
step to its further processing. Some of the initial insights to be
gained include, e.g., the cardinality of the data set and its frequency
distribution. Such information is typically extracted by using sketch
algorithms, now widely employed to process very large data sets in
manageable space and in a single pass over the data. Often, analysts
need more than one parameter to characterize the stream. However,
computing multiple sketches becomes expensive even when using
high-end CPUs. Exploiting the increasing adoption of hardware
accelerators, this paper proposes SKT, an FPGA-based accelerator
that can compute several sketches along with basic statistics (av-
erage, max, min, etc.) in a single pass over the data. SKT has been
designed to characterize a data set by calculating its cardinality,
its second frequency moment, and its frequency distribution. The
design processes data streams coming either from PCIe or TCP/IP,
and it is built to fit emerging cloud service architectures, such as
Microsoft’s Catapult or Amazon’s AQUA. The paper explores the
trade-offs of designing sketch algorithms on a spatial architecture
and how to combine several sketch algorithms into a single design.
The empirical evaluation shows how SKT on an FPGA offers a
significant performance gain over high-end, server-class CPUs.
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1 INTRODUCTION

Many tasks in data processing, both in streaming scenarios as
well as in conventional databases, start with the need to summarize
and characterize data sets by computing basic metrics: the cardi-
nality (number of their distinct elements), the overall frequency
distribution, the heavy-hitters (their high-frequency elements), as
well as basic statistics such as average, maximum and minimum val-
ues, or histogram distributions of the data. Except for the most basic
statistics, there is often a trade-off between computing a given quan-
tity with a certain accuracy and the efficiency of the algorithm used
both in time and space. This has given rise to the widespread adop-
tion of sketch algorithms [8, 10, 16] as the canonical approach to
compute such metrics over streams and large data sets. For instance,
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HyperLogLog (HLL) is widely used in systems such as Google’s
BigQuery to compute the cardinality of data sets with several bil-
lion distinct items [25]. Other sketch algorithms are used to, e.g.,
estimate results for queries of the type COUNT (DISTINCT _ , . . . )
to predict the size of joins [1] or to compute join orders [34].

When used for data characterization, efficient and useful as they
are, sketch algorithms become expensive. First, they require to
perform a pass over the entire data set or data stream. Second,
summarizing a data stream often involves computing several of its
characteristics and not just one. As an example, if a data set has a
rather uniform distribution, knowing the frequency of each one of
its items is not very informative. Conversely, for a skewed data set,
we may want to identify the most common items. Since the data
has not been processed before, its characteristics are unknown and,
hence, the first step is to compute several such metrics to then de-
cide which ones are useful and provide the most information about
the data. In fact, if several metrics are computed, some metrics can
be used as quality indicators for the approximations produced by
others, an important aspect when using sketches as they produce
only approximate results. For this purpose, it would often be ben-
eficial to be able to characterize the data as much as possible in a
single pass, for instance, as the data is read from storage.

Unfortunately, computing several sketches over a data set us-
ing CPUs is expensive and requires significant CPU capacity. For
streams, CPUs are unable to match the bandwidth of a 100 Gbps net-
work, which leads to additional inefficiencies and bottlenecks. This
presents a problem for the ever growing amount of data that must
be processed under stricter and stricter throughput and latency
constraints. The issue is not unique to the use case we present.
There is a trend towards hardware specialization that is largely
driven by related issues: the complex performance/cost/energy con-
sumption equation in large-scale deployments [24] as well as the
need to make data movement more efficient as it is one of the
biggest sources of energy consumption in computing infrastruc-
tures [14, 15, 27, 45, 48]. Such a trend is now very visible in many
deployed and available systems, especially for FPGAs. Microsoft
Azure, for example, uses FPGAs embedded on the network data
path to off-load network management functionality [18] but also
to accelerate a wide range of applications ranging from machine
learning [7, 20] to key-value stores [35]. As another example, Ama-
zon’s AQUA employs FPGAs together with SSDs to offload parts
of SQL to a network-attached caching layer for large-scale data
analytics [3], a design also explored in research [28, 49].

To address the problem of efficient data characterization, we
take advantage of the growing availability of FPGA accelerators
and explore their inherent spatial parallelism to efficiently compute
several sketches and statistics over a data set in a single pass. The
resulting system, SKT, provides important insights into the design
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of algorithms for spatial architectures and the use of accelerators for
data processing. SKT can be run on a PCIe-attached FPGA card but
also on a smart NIC (Network Interface Card) where it processes the
data as it arrives from (or departs to) the network. This makes SKT
amenable to deployments such as those in Microsoft’s Catapult,
where the smart NIC approach would allow to add SKT onto any
computing node, or in Amazon’s AQUA, where SKT could be used
to compute key statistics (or even parts of queries) over relational
data while it is being sent to the query processing nodes. In this
paper, we focus on three complementary sketch algorithms com-
monly used for characterizing data sets and streams, as well as for
cost-based query optimization. These sketches are (a) HyperLogLog
(HLL), estimating the cardinality or number of distinct elements in
a data set, (b) Count-Min, which estimates item frequencies, and (c)
Fast-AGMS, which estimates the second frequency moment of a
distribution. AGMS has been shown to predict the accuracy of a
Count-Min sketch when computed over the same data [43]. We will
show that the cardinality estimate by HLL also provides another
valuable accuracy indication and the three sketches together can
be used to obtain a rather accurate picture of the distribution, size,
and nature of the data set or stream. Wile these sketches have been
been shown to benefit from hardware acceleration [32, 33], SKT is
the first system to combine them into a single design and to study
the resulting non-trivial resource-accuracy-performance trade-offs.

SKT makes several novel and timely contributions: (1) it explores
how to merge several sketches into a single design both on CPUs
and FPGAs (Section 3.1), (2) it analyzes in depth the interplay be-
tween resource utilization and accuracy of the algorithms (Section
3.4), (3) it addresses several important aspects of algorithm design
on spatial architectures (Section 4), (4) it shows how the inherent
parallelism of FPGAs can be used to implement combined versions
of several sketch algorithms without any of them interfering with
each other in terms of performance (Section 5.3), and (5) exten-
sively explores the resulting performance with comparisons against
CPUs with different processing capacities (Section 5.2). Our results
demonstrate performance gains over CPU deployments: 1.75× over
a high-end server with 2× Intel®Xeon®Gold 6248 Processors, and
3.5× over a smaller, more conventional Intel Xeon Gold 6234 Proces-
sor. Overall, one FPGA is able to match the performance of 70 cores
with the additional advantage that it can process data at line rates
as high as 100 Gbps, thereby greatly exceeding what can be done
with CPU designs today and significantly contributing to making
data processing more energy efficient.

2 BACKGROUND
This section introduces the sketch algorithms used in the paper.
An in-depth review of sketches can be found in Cormode et al. [10].

2.1 Sketch Algorithms
Sketch algorithms compute summaries over data streams typically
in sub-linear space. Basic scalar summaries include the minimum
and maximum values, the stream’s size, and its total sum. These
four numbers can already characterize the value range, and the
average across the whole data stream. More elaborated summaries
estimate parameters such as the cardinality or the skew of the data

Table 1: Symbols Used for Defining the Frequency Moments

𝑆 Set of data items contained in the stream
𝑓𝑖 Occurrence count (frequency) of data item 𝑖 in the stream
𝐹𝑞 𝑞-th frequency moment

set. There are also sketches that can be queried for item-related
estimates, such as individual occurrence counts or item frequencies.

Table 1 lists the symbols used for defining the 𝑞-th frequency
moments, 𝐹𝑞 , of a data stream, a more formal definition of what
sketches calculate. They are computed as:

𝐹𝑞 =
∑︂
𝑖∈𝑆

𝑓
𝑞

𝑖
(using 00 = 0 for 𝑞 = 0) (1)

The zeroth frequencymoment, 𝐹0, is the number of distinct elements
in the stream, i.e., its cardinality. The first frequency moment, 𝐹1,
is the total number of elements in the stream or item count. The
frequency moments 𝐹𝑞 with 𝑞 ≥ 2 represent degrees of skew in the
distribution of the data [2]. The second frequency moment, 𝐹2, is
particularly relevant in query optimization as it is used to estimate
self join sizes [1].

2.2 HyperLogLog (HLL)
The HyperLogLog (HLL) sketch estimates the number of distinct
data items in a data stream (its zeroth frequency moment) [19]. Car-
dinality estimation is commonly used in databases, e.g., for approxi-
mate query processing [6], query optimization (DBMS) [38, 53], and
data mining [37]. HLL has become the standard algorithm to esti-
mate cardinalities in very large data sets. It is used byGoogle [25, 26]
in BigQuery for data analytics, by Facebook [4] to estimate their
graph’s degrees of separation for social network analysis, and in
systems such as Amazon’s Redshift [39] or Databricks [44].

HLL is a hash-based algorithm. It maps each item of the data
stream to a hash value and monitors the maximum number of lead-
ing zeros observed among the binary representations of these hash
values. HLL exploits that a randomized hash with 𝑖 leading zeros is
expected to be seen only once across 2𝑖 distinct elements. Thus, one
needs to process around 2𝑖 elements to observe a hash containing 𝑖
leading zeros. For the same reason, if a maximum of 𝑖 leading zeros
have been seen, one has probably processed 2𝑖 distinct elements.
The approach can lead to large errors overestimating the cardinality,
for instance, through encountering a value with many leading zeros
in a short data stream. To mitigate such anomalies, adjustments
are made such as using parallel sub-sketches and correcting the
estimated value for particularly small cardinalities.

HLL maintains a one-dimensional, zero-initialized array as its
underlying data structure. For an item insertion, part of its hash
value indexes into this array to identify an update location. The
remaining hash is subjected to a leading-zero count. The result-
ing number plus one is called the rank, 𝜚 (·). The identified update
location is then set to the maximum of its current value and the
computed rank. Ultimately, each array element stores the cardinal-
ity estimate for the input substream whose hash values produced
the corresponding array index. The overall stream cardinality is
estimated as the harmonic mean across all these partial estimates
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Figure 1: The HLL Update Process

normalized by the number of differentiated indexes. Statistic low-
cardinality corrections are applied if some array elements remain
untouched at a value of zero. Figure 1 depicts the HLL update pro-
cess using a very small sketch array that differentiates eight array
indexes (aka. buckets) by using three hash bits as index and the rest
for leading zero detection.

Hyperloglog has an expected relative error of ± 1.04√
2𝑃

[19], where
2𝑃 represents the number of array elements (𝑃 is the precision, see
Table 2). This means that a stream’s cardinality can be estimated
within an error margin of 1-2% with a memory footprint of only
a few KBytes [8]. An analysis by Databricks on Spark’s HLL per-
formance shows that the error margin can be reduced to values
below 1% at the expense of memory usage and speed [44]. When
keeping the estimation error below 1%, Spark’s HLL algorithm is
slower than the actual count of distinct elements [44], proving the
significant overhead of computing HLL on conventional CPUs.

2.3 Count-Min
Count-Min [11] computes the approximated occurrence of data
items in a data stream. It can be queried for item counts, heavy
hitters, or the most popular items in a data stream [52]. It is also
used to find the optimal join order for multiple joins [34].

Count-Min is similar to Bloom filters [5]. It differs from them by
offering an estimate of the item frequency rather than just a binary
set membership. Count-Min is closely related to Counting Bloom
Filters as used to maintain a cache summary of a Web proxy [17].
Both algorithms maintain a set of zero-initialized counters. The
update locations associated with a data item are identified by a fixed
number of hash functions. All counters at the identified locations
are incremented for an item insertion and decremented for an item
deletion. While a Counting Bloom Filter uses a one dimensional
array, Count-Min uses a two-dimensional counter matrix with a
fixed association of each row with one of the hash functions. Count-
Min has, thus, a structural benefit by performing parallel updates
into independent memory regions. We will exploit this feature in
the FPGA implementation of Count-Min.

Figure 2 illustrates the insertion of an item into a Count-Min
sketch. This small sketch example maintains 𝑅 = 3 rows with
16 (2𝑃 with 𝑃 = 4) counters each. For each inserted data item,
independent hash functions 𝐻𝑖 derive 4-bit addresses that identify
the counters to be incremented in each of the rows. Count-Min
supports deletions. The corresponding sketch update process is
identical, except for the identified counters being decremented
rather than incremented. To find out the frequency of an item, a
query follows the same procedure to access the counters. However,
it only reads the counter values in order to report the minimum
of all values read as the estimated item’s frequency. Observe that

𝐻0

𝐻1

𝐻2

Item

+1

+1

+1

Input Hashing Counter Updates

Figure 2: Item Insertion into a Count-Min Sketch

this result will never underestimate the actual item frequency as
every counter included in this minimum has been incremented for
every occurrence of the queried item. However, overestimation is
possible in the presence of hash collisions with other items. This
effect is mitigated by taking the minimum across the 𝑅 rows. In this
way, only the smallest contribution produced by collisions under
independent hash functions may affect the reported estimate. The
effect of collisions is also significantly reduced since two items
would need to collide in all hash functions in order to affect the
count of each other.

Count-Min estimates an item’s frequencywith an error of at most
𝜀𝐶 with a probabilistic confidence (1 − 𝛿) [10] where 𝜀 = 2

2𝑃 with
2𝑃 being the number of counters, 𝛿 = 1

2𝑅 with R being the number
of rows, and𝐶 representing the expected number of colliding items.
The value of 𝐶 can be assessed by correlating the input stream
cardinality with the number of counters. We will take advantage of
this feature and use HLL to calibrate Count-Min.

2.4 AGMS
AGMS estimates the second frequency moment [2], also known as
the repeat rate or Gini’s index of homogeneity. The sketch itself was
first introduced for relational databases in order to estimate the
size of joins in the context of limited storage [1]. Traffic validation
systems [51] also employ AGMS to identify anomalies between the
incoming and outgoing traffic.

Like the Count-Min sketch, AGMS maintains a two-dimensional
array of counters where each row has its own independent hash
function. When inserting a data item, however, all counters in
the sketch are updated. Each hash function produces one bit for
each column in the row. This bit decides whether each individual
update is an increment or a decrement. Deletions can be supported
by reversing the sign of these updates. The result is obtained by
extracting the median from the arithmetic means of the squared
counter values computed for each row.

Cormode and Garofalakis [9] identify the parallel update of the
whole AGMS counter matrix as a major performance bottleneck.
They propose a modified algorithm. Instead of using the hash to
choose between incrementing or decrementing each and every
counter, they limit the update to a single counter in a row. Both the
counter’s index and the direction of its update are determined by
the hash value of the data item. This modification makes the AGMS
update procedure similar to that of Count-Min. The only difference
is that the row hash needs one additional bit to select between an
increment or decrement for the performed counter update.
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Figure 3: SKT architecture dataflow-Each pipeline consumes 32-bit of data that is hashed (Hashing); the hash value is dis-
tributed to each partial sketch and used to update the data structure behind it (Hash Slicing and Sketching). After consuming
all the input values, SKT triggers the merging of all partial sketches (Associative Reduce) and generates the output results for
each sketch (Evaluation).

Cormode and Garofalakis prove that this modified sketch, Fast-
AGMS, achieves the same error bounds and confidence as the sig-
nificantly more expensive original AGMS sketch. The evaluation of
the sketch is only changed in that the per-row averages of squared
counter values are replaced by per-row sums of squared counter
values. Computationally, this even saves a division operation at the
end. In SKT, we implement Fast-AGMS.

Fast-AGMS and AGMS offer the same trade-off between space
and accuracy. They estimate the second frequency moment of a
stream with an error of at most 𝜀 with the probabilistic confidence
(1−𝛿) [9], where 𝜀 = 1

2𝑃 with 2𝑃 being the number of counters, and
𝛿 = 1

2𝑅 with R being the number of rows. Note the similarities with
Count-Min, although we will show that the error characteristics of
these two sketches are different depending on the data set analyzed.

3 SKT DESIGN
In this section, we discuss SKT’s design and its implementation on
an FPGA. For the exploration of the design space and as a baseline
reference, we use an equally parallelizable SW-SKT targeting high-
endmulti-core CPUs.We consider configurations that operate (a) on
data residing in the CPU memory and (b) on data arriving from
the network. We also discuss the system trade-offs between sketch
accuracy and the choice of the hash function and sketch sizes.

3.1 System Overview
SKT’s objective is to compute the three sketches described above in
a single pass over the data so as to be able to characterize a stream or
data set. For this purpose, we explore a composite algorithm combin-
ing the initial hashing of the input data with three parallel sketching
backends, one for each targeted metric, i.e. HLL, Count-Min and

Fast-AGMS. As the update operations of these three sketches are all
associative, parallel partial sketches can be computed over arbitrar-
ily distributed sub-streams (data pipelines) before their results are
merged in the output path. SKT’s general architecture is shown in
Figure 3. It details the architecture of one data pipeline, the merging
of the computed 𝑁 parallel partial sketches and the generation of
the output results. The current implementation processes all the
values in a data set before emitting the results computed for each
sketch. While Count-Min just streams the computed sketch ver-
bosely, HLL and Fast-AGMS perform additional computations to
reduce their sketches to their final scalar estimates.

The slicing of a well randomized hash by each of the sketches
can be arbitrary. We opted for an approach that results in a simple
homogeneous sequence of masking extractions and constant right
shifts for the software implementations of the matrix sketches. HLL
is implemented according to its customary formulation relying on
the count-leading-zeros operation after slicing off the index. This
can leverage an x86 instruction in the software implementation.

The degree of parallelism and the size of the data structures is
controlled by the parameters listed in Table 2. The counter matri-
ces computed by Count-Min and Fast-AGMS are 𝑅∗ rows times
2𝑃∗ columns. HLL uses a linear array with 2𝑃𝐻𝐿𝐿 buckets. The bit

Table 2: Design Parameters of the SKT Kernel

𝑁 Input parallelism: threads / data pipelines (partial sketches)
𝑃HLL|CM|FAGMS Precision: hash bits used for indexing

buckets (HLL) or columns (Count-Min, Fast-AGMS)
𝑅CM|FAGMS Rows: parallel rows in the matrix sketches
𝑊CM|FAGMS Bit Width of Count-Min and Fast-AGMS counters
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width of the counters is universally chosen to be𝑊∗ = 32. Com-
pared to a smaller size of𝑊∗ = 16, this enables all sketches to cope
with heavy hitters even in large data streams of a few billion items
without an overflow.

The choices for the other key parameters are explored below.
Larger sketches can generally be expected to produce more accurate
estimates. However, they also incur higher costs both in terms of
sketch storage capacity and in terms of hash computation effort.

3.2 Hash Function and Hash Size
Sketch algorithms typically seek to isolate themselves from the
concrete encoding of the input by means of a randomizing hash.
After hashing, they can then assume that each unique data item is
assigned a fixed but seemingly random encoding drawn from the
range of the chosen hash function. The statistic input randomization
is the main purpose of hashing and dictates what hash function
should be used.

Randomization is a stricter requirement than hash uniformity.
The latter is commonly used as a hash fitness metric for implemen-
tations of hashing data containers. For example, inexpensive, and
hence popular, 𝐻3 hashes can be perfectly uniform. They map an
𝑛-bit key 𝑎 from the domain 𝐴 = Z𝑛2 to an𝑚-bit hash value 𝑏 of the
range 𝐵 = Z𝑚2 by:

ℎ : 𝐴 → 𝐵

𝑎 ↦→ 𝑀 · 𝑎

𝑀 is the defining random 𝑚 × 𝑛-matrix over Z2 = 𝐺𝐹 (2). The
computation uses AND (·) as the multiplicative and XOR (⊕) as the ad-
ditive boolean operators. As soon as the number of needed random
hash bits𝑚 exceeds the number of key bits 𝑛, linear dependencies
between the matrix rows become unavoidable. When that hap-
pens, hash bits become mutually dependent and patterns among
input encodings reemerge in the computed hashes. The critical
randomization assumption is violated.

Richter et al. [40] concluded that Murmur hashing delivers the
best trade-off between performance and robustness among four
hash functions (multiply-shift, multiply-add-shift, tabulation, and
Murmur hashing). Kaan et al. [29] evaluate hash functions and
show that simple tabulation hashing is 6.6× faster on FPGA than
in software, and Murmur hashing is 1.7× faster, respectively. They
also show how expensive hashing can be used in data partitioning
on FPGAs without loss of performance [30]. Murmur hashing has
gained a lot of popularity, with Murmur3 being widely used in
practice, e.g., in Google’s BigTable [25] and in research [21].

SKT uses Murmur3 as the hash. We use a software SKT imple-
mentation to validate the suitability of this choice and to determine
acceptable lower bounds for the sketch sizes (Section 3.4). The num-
ber of required hash bits is determined by the maximum across all
sketches implemented in SKT. Allocating no less than 64 bits to
HLL [25], which leaves 64 − 𝑃𝐻𝐿𝐿 for the leading-zero detection,
we derive a formula that determines the number of bits to be used
for hashing for all sketches:

𝐻 = max {64, 𝑅CM × 𝑃CM, 𝑅FAGMS × (1 + 𝑃FAGMS)} (2)

3.3 Implementation Targets
Besides the SKT design for FPGA acceleration, we have imple-
mented SW-SKT targeting multi-core CPUs. Both versions are im-
plemented in C++ (conventional C++ for SW-SKT on the CPU, and
High Level Synthesis [31] – HLS C++ for SKT on the FPGA). The
code bases are distinct so as to optimize for each target platform.
Parallelism and data reuse are thoroughly exploited in both cases.
Each algorithm is parallelized over cores and threads (SW-SKT) or
unfolded spatially (SKT). The hashes of incoming data items are
re-used to drive the update of all three algorithms.

We use SW-SKT as a baseline, for validating the choice of hash
function and hash size, and for exploring the trade-off between
accuracy and sketch size. For the sake of a sound design evaluation
and platform comparison, we first determine the minimum, and
hence most effective, sketch size that supports one billion stream
cardinality. Note that SW-SKT is a contribution on its own as it can
be used in conventional systems without hardware accelerators for
achieving performance gains over running each sketch separately.

3.4 The Accuracy vs. Size Trade-off
The sketch sizes are determined by the parameters 𝑅∗ and 𝑃∗. In
all cases (HLL, Count-Min and Fast-AGMS), the precision 𝑃∗ deter-
mines the number of sketch columns (or buckets). An increase in
the value of 𝑃∗ reduces the chance of hash collisions and, hence,
improves accuracy but also requires more space. Count-Min and
Fast-AGMS take extra measures to mitigate individual hash colli-
sions by maintaining several parallel rows with independent hash
functions. Mutual collisions in one row are unlikely to reproduce
in another. As a result, increasing 𝑅∗ improves the accuracy of the
overall sketch at the price of requiring more space, more memory
accesses, and the computation of more hash bits. Since the final
goal is to have the three sketches deployed together in a spatial
architecture, it is important to understand the implications of the
choices for 𝑃∗ and 𝑅∗ for the sketch accuracies.

To evaluate the accuracy vs. performance trade-off, we compute
sketches of various dimensions over data sets with known item
frequencies and pre-computed frequency moments. We create two
classes of data sets of 32-bit integer elements:

• CLS1: This class comprises 9 data sets with uniform data dis-
tributions. Each data set is defined by a frequency 𝑓 ∈{1, 20}
where 𝑓 is the number of times every item occurs. The max-
imum cardinality in this class is 1 billion and the maximum
stream length is 20 billions (20 B).

• CLS2: This class comprises 21 data sets with Zipfian distribu-
tions with a skew 𝑠∈{1.5, 2.0, 3.0}. The maximum cardinality
of this class is 1.4 millions and the maximum stream length
is 1 billion (1 B).

Realistic data is frequently highly skewed [12, 36]. Intuitively, in
highly skewed data, a relatively small number of distinct items ap-
pear very frequently; whereas in low-skew data, item occurrences
are more uniformly distributed. Relating skew and cardinality, ob-
serve that a high skew implies a smaller cardinality in relation
to a stream’s length and that a high cardinality on the order of
the stream length implies a low skew. The converse statements,
however, do not necessarily hold true.
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Figure 4: HLL-Relative error vs. Stream cardinality for dif-
ferent values of PHLL. Maximum stream length is 20B.

We study the impact on the sketch accuracy of: (1) the sketch
size; (2) the input stream length; (3) the input stream cardinality.
The accuracy is reported in terms of the observed relative error. We
report the maximum relative error encountered across our class
data sets, unless otherwise specified.

HLL. Figure 4 shows the relative error of HLL as a function of
the stream cardinality: HLL is a very robust algorithm scaling well
to large input cardinalities and sizes. A choice of 𝑃𝐻𝐿𝐿 ≥ 14 results
in an error band of 1-2% across all input stream cardinalities. This
value is aligned with other implementations and available systems
as well as results reported in the literature.

Fast-AGMS. We evaluate the relative error in Fast-AGMS in
different configurations. One fixes 𝑃𝐹𝐴𝐺𝑀𝑆 to 13 and varies the
cardinality and 𝑅𝐹𝐴𝐺𝑀𝑆 (Figure 5a) and another fixes 𝑅𝐹𝐴𝐺𝑀𝑆

and varies the cardinality and 𝑃𝐹𝐴𝐺𝑀𝑆 (Figure 5b). Fast-AGMS is
very robust to input length and cardinality scaling. All observed
estimates remain within a 2% error band for 𝑅𝐹𝐴𝐺𝑀𝑆 ≥ 6 and
𝑃𝐹𝐴𝐺𝑀𝑆 ≥ 13. Nonetheless, the results show that accuracy im-
proves by increasing row count or precision bits.

For both HLL and Fast-AGMS, the individual upper and lower
peaks observed at different cardinalities (e.g., 1M or 10M) are an
artifact of the interaction between the data and the concrete choice
of hash. Changing the seed of the chosen Murmur-3 hash function
displaces the jitter observed in the error graphs.

Count-Min. Unlike HLL and Fast-AGMS, Count-Min does not
produce a single scalar estimate. Rather, the sketch is queried for
individual item frequencies. We track the maximum query error
to characterize query quality as well as the average error for a
comprehensive accuracy assessment of Count-Min. Since Count-
Min can be queried for items that have not appeared in the input
stream, we report: (1) the relative error exclusively for items that
appear in the input (Figure 6), and (2) the absolute error for all
members of the 32-bit input domain (Figure 7).

Figure 6 shows that the maximum relative error increases rapidly
for cardinalities larger than 1,500, whereas the average relative er-
ror increases at a slower and steadier pace. This demonstrates that
Count-Min can fail individual queries badly. As collisions accumu-
late, there will eventually be an item that is affected across all rows.
The overestimation even of a single low-frequency item quickly
pushes the observed maximum relative error beyond any sensible
scale. However, the average, and hence expected, error of sketch
queries remains within acceptable bounds for larger stream cardi-
nalities. Increasing the number of rows 𝑅𝐶𝑀 or precision bits 𝑃𝐶𝑀 ,
indeed, makes the sketch suitable for larger stream cardinalities, but
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Figure 5: Fast-AGMS-Relative error vs. Stream cardinality
for maximum stream length of 20B.
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Figure 6: Count-Min-Relative error vs. Stream cardinality
for fixed PCM=13 & different values of RCM. RCM.a lines rep-
resent themaximum relative error, whereas RCM.b lines rep-
resent the average of all relative errors with respect to the
number of queried items.

it still remains fragile. Even computing 128 hash bits to maintain
a sketch of 𝑅𝐶𝑀 × 𝑃𝐶𝑀 = 8 × 16, this is 2MiBytes, has an average
relative query error of 14.22% for a cardinality of 100,000.

A common metric to evaluate Count-Min is the average absolute
query error as shown by Figure 7. Under this metric, the sketch
appears to scale significantly better to larger input cardinalities.
It is important to understand that the averaging hides that error
contributions stem from rather few but significant overestimations.
This underlines, once more, the accuracy compromise inherent
to Count-Min. It tolerates individual significant estimation errors,
which appear particularly huge on a relative scale, for an other-
wise concise item frequency representation. It must be decided at
application level whether or not this compromise is acceptable.

All of the quality metrics discussed indicate that the quality
of Count-Min degrades as the cardinality increases. This can be
explained by the growing number of distinct data items and, hence,
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Figure 7: Count-Min-Average absolute error vs. Stream car-
dinality for fixed PCM=13 & different values of RCM. The
average is computed with respect to the number of queried
items.

column index signatures across the sketch rows, which eventually
encounter mutual overlaps in all rows. Observe that stream length
alone does not pose a challenge. The fewer index signatures in a long
stream with a low cardinality are more likely to avoid a collision in,
at least, one of the rows. This is in line with results reported in the
literature, which show that high data skew (i.e., reduced cardinality)
is beneficial for the accuracy of Count-Min [12].

3.5 Practical Implications
Accuracy requirements depend on the application and the required
minimum size of each sketch might differ accordingly. For our
specific goal — the characterization of data streams of several billion
items — we choose the sketch sizes as follows. We set 𝑃HLL = 16
aiming at cardinality (HLL) estimation errors below 0.5%. We set
𝑅FAGMS = 6 and 𝑃FAGMS = 13, which yields Fast-AGMS errors below
2% for stream lengths in the order of billions. Scaling Count-Min
to support large cardinalities requires too many resources on the
order of this cardinality regardless of where it is implemented. Thus,
we opt to match the Count-Min sketch dimension to that of Fast-
AGMS. We then use HLL and Fast-AGMS to assess the accuracy
of the results from Count-Min frequency. The intuition is that for
large cardinalities and more uniform distributions, Count-Min will
produce more errors and be less useful. The results of HLL and
Fast-AGSM allow us to identify such situations and discard the
results of Count-Min or, at least, indicate the potential for large
individual query errors.

4 SKT FPGA IMPLEMENTATION
SKT is implemented as a customizable Vitis1 HLS kernel [13] us-
ing a streaming architecture operating at an initiation interval of
one. This means that the design consumes and processes inputs
with every single clock cycle. SKT is completely implemented in
C++. Functions and classes are templated in terms of I/O types
and behavioral functors to facilitate code reuse among structurally
similar modules. The kernel is customized by the parameters iden-
tified by Table 2. The parameter 𝑁 is decisive for tuning the design
throughput as it defines the number of inputs that are consumed
in parallel in each clock cycle by the 𝑁 structurally unfolded pro-
cessing pipelines, each consuming one input per cycle.

1Xilinx’ High-Level Synthesis Unified Platform Software

1 / / I n s t a n t i a t e Custom Key Spac e and S t o r a g e Type
2 s t a t i c Co l l e c t < ap_u in t <P_HLL> , T_RANK> c o l l e c t o r [N ] ;
3 #pragma HLS a r r a y _ p a r t i t i o n v a r i a b l e = c o l l e c t o r dim=1

5 / / Un r o l l e d , i . e . P a r a l l e l , O p e r a t i o n
6 for ( in t i = 0 ; i < N ; i ++) {
7 #pragma HLS un r o l l
8 c o l l e c t o r [ i ] . c o l l e c t ( ranked [ i ] , s k e t ch [ i ] ,
9 / / Lambda− ba s ed Update Cu s t om i z a t i o n
10 [ ] ( T_RANK a , T_RANK b ) {
11 return s t d : : max ( a , b ) ;
12 }
13 ) ;
14 }

Figure 8: HLL Usage Example of the Collect Class

Note that the underlying high-level synthesis (HLS) technology
is itself a compromise. It enables the generation of hardware accel-
erators from algorithmic descriptions on the abstraction level of
systems software. This results in improved productivity over de-
signs using register transfer level (RTL) languages. Unlike the C++
code for the CPU which abstracts away the processor architecture,
the HLS code written in C++ still reflects the spatial architecture
of the FPGA through the pragma directives that need to be used.
These pragma directives ensure that HLS compilers produce effi-
cient parallel designs. Figure 8 illustrates the use of pragmas to
spatially unroll a loop.

4.1 Overall Design
SKT’s architecture (Figure 3) implements a unidirectional data flow
across a number of modules that are connected via FIFO queues,
modeled as hls::stream objects. Throughout the design, the data
is augmented with a last flag to mark the end of a particular stream
and, thus, a job. The last flag traverses the processing pipeline to-
gether with the data both through Hashing and Hash Slicing. Its
arrival at the Sketching memories triggers the switch from con-
suming sketch updates to outputting their accumulated content
and resetting their state. On the output path, the 𝑁 parallel, par-
tial sketch computations are merged by Associative Reduction. The
resulting complete sketches are further processed in Evaluation so
as to compute the final results for HLL and Fast-AGMS. Finally,
the results of all sketches are concatenated into a single output
stream that is written to a data structure in the memory of the host
CPU. The sketch results are complemented by a few trivial metrics
maintained during the processing: minimum, maximum, sum, sum
of squares, and count of all processed inputs.

The design consumes a customizable number of𝑁 parallel inputs
in a single clock cycle. This requires that every sketch memory is
able to process𝑁 updates. However, memory ports are an expensive
and scarce resource. The on-chip block RAMs (BRAM) have two
such ports. Considering that each update comprises both a read and
awrite operation, a single BRAM can only sustain the rate of a single
update per clock cycle. Consequently, the parallel pipelines must
construct partial sketches in independent memories that are merged
for the final sketch output. For the same reason, SKT ensures to
update the rows of the matrix sketches, Count-Min and Fast-AGMS,
in parallel and assigns to each row its own independent memory.
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Recall that in Figure 3 for each pipeline the forking of the input
path to all the partial parallel sketches occurs after hashing the input.
In software, this re-use of computed intermediates has a runtime
benefit. In SKT, on the FPGA, parallel identical computations do not
improve accelerator performance but increase its resource usage
and power consumption footprint.

4.2 Hashing & Hash Slicing
Strong hashes, such as Murmur3, involve a series of structurally
complex operations like multiplications. In RTL, the design of a
such hash function would have required manual algorithm decom-
position and pipelining in order to meet the throughput goals. By
using Vitis HLS tool, the purely functional description of the hash
computation is mapped and pipelined automatically to meet the
targeted clock frequency and throughput goals. As the hashing is
an acyclic, stateless computation, there are no systematic limits to
the pipelining granularity.

After distributing the same wide hash to the individual sketches,
they slice it up in different ways to derive appropriate state up-
dates. All elementary state updates are ultimately represented as
key-value pairs comprising the address of the memory location
to update and an update value. In the case of HLL, the address is
simply a prefix slice of the hash and the update value is its ranked
tail. The update function applied to the sketch memory is the max-
imum with its current content. The matrix sketches, Count-Min
and Fast-AGMS, feed non-overlapping parallel hash slices to the
individual sketch rows. For Count-Min, a single row slice directly
identifies the sketch memory location to increment. In the case of
Fast-AGMS, the hash slice provides both a counter address and an
extra bit determining the sign of the update step.

4.3 Sketching
The maintenance of the sketch memories is the most involved part
of the design as it must explicitly account for the structural con-
straints on the FPGA to maximize performance. In addition to the
memory port limitation, there is a state-carried data dependency
that conflicts with the memory update latency of two cycles. The
Vitis HLS tool needs manual assistance to circumvent these depen-
dencies that would otherwise result in a higher initiation interval.
The sketch memories, therefore, maintain a history of the most
recently issued sketch updates in a shift register. If another update
to an address within this history is encountered, it is based on the
buffered write-back value rather than a stale read from memory.
With this bypass in place, read-after-write hazards are masked and
the initiation interval of a single clock cycle can be maintained. A
dependence pragma explicitly allows Vitis HLS to disregard the
data dependency carried through the memory state. These design
details are not exposed to the sketch user, they are encapsulated in-
side a generic Collect class that is re-used among all SKT sketches.

Figure 8 illustrates how the Collect class is used by the HLL
sketch inside SKT. The specialization of this class and its behavior
are achieved through template parameters. They define (a) the di-
mension and type of the backing memory array (line 2), and (b) the
state update function, i.e. maximum operation for HLL, which is
specified through a lambda expression (lines 10-12). Note the cus-
tom key space, ap_uint<P_HLL>, and storage type, T_RANK. Using

the HLS integral type 𝑎𝑝_𝑢𝑖𝑛𝑡<𝑛>, the bit width of signals and, in
this case, the address space can be controlled precisely. This code in-
stantiates 𝑁 parallel memories to serve the corresponding number
of data inputs (line 2). Vitis HLS must be prevented from flattening
this added outer dimension by a pragma (line 3) so that designated
memory ports remain available for each instance. The operational
behavior is wrapped into the class member function collect , which
is invokedwithin an unrolled and, hence, parallel loop (line 6) across
all memory instances. Each instance consumes and processes up-
dates from an hls :: stream ranked[i ] until encountering an update
carrying an asserted last flag. It then streams the accumulated par-
tial sketch to the hls :: stream sketch[ i ].

5 EXPERIMENTAL EVALUATION
5.1 Setup
SKT has been prototyped and tested on a Xilinx Adaptive Compute
Cluster (XACC) [50], a research platform for adaptive compute
acceleration. SKT is evaluated on all of the cluster’s heterogeneous
compute resources comprising high-end servers (one with 2 Intel
Xeon Gold 6248 with 376GB RAM and two others with 4 Intel Xeon
Gold 6234 with 376GB RAM) as well as Xilinx Alveo accelerator
cards (Alveo U250 and Alveo U280). We conduct RAM-to-RAM
experiments for establishing performance baselines on both server
platforms and for evaluating the SKT hardware acceleration. Fi-
nally, we also evaluate the direct sketching of data received over
a 100Gbps network link both in software and on the accelerator.
In all experiments, the final sketch results are written back to the
CPU main memory.

All measurements are conducted over data streams of 32-bit
integers subjected to a randomizing 128-bit Murmur3 hash. This
datatype is big enough to accommodate large cardinalities that
escape their straightforward and concise characterization by his-
tograms. It is compact enough to prevent a squashing dominance of
the data IO bounds over the actual sketching performance. Larger
data types make the hash computation iterate over longer input
stretches and, thus, yield fewer sketch updates per input volume. A
similar reductive effect occurs for extracting fields of interest from
structured data. Making this field extraction runtime-programmable
is trivial and would add the capability to adjust the processing to
changing data schemas. While a software implementation would
have to pay for this flexibility with compute time, the accelera-
tor would be able to accommodate this functionality in a pipeline
extension while impacting neither throughput nor critical sketch
memory resources.

We evaluate the individual performance of each sketch algorithm
(HLL, Count-Min and Fast-AGMS) using the same 𝑃∗ = 13 in or-
der to observe individual throughput performances. The reference
dimensions for SW-SKT are 𝑃HLL = 16 and 𝑅∗ × 𝑃∗ = 6 × 13 for
Count-Min and Fast-AGMS.

5.2 Software Baseline
In order to assess the FPGA accelerator, it is important to under-
stand the I/O and compute bounds of the XACC platform. First, the
performance of a multi-threaded software baseline is established
on the XACC cluster.
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Figure 9: CPU Baseline on two Host servers [Alveo0, Alveo3b]- Median throughput for HLL, Count-Min (CM), Fast-AGMS
(FAGMS) and SW-SKT. Error bars indicate the 5th and 95th percentile. Stream length of 1 billion samples.
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Each of the three algorithms (HLL, Count-Min and Fast-AGMS)
benefits from thread parallelism, with each thread maintaining a
per-thread data structure (partial sketch) for updates. The partial
sketches from all threads are only merged once all the input data
has been processed. In this multi-threaded CPU implementation,
threads can be equated to the parallel pipelines of the hardware
design. The data flow of the CPU implementation follows the main
idea behind SKT’s architecture in Figure 3: 1) compute the hash
value once for each data input, 2) update the corresponding partial
data structures for each of the three algorithms, and 3) evaluate the
sketches after processing the last stream value.

We analyze the individual performance of each of the algorithms
(HLL, Count-Min and Fast-AGMS) running in isolation as well as
the performance of all three algorithms running jointly (SW-SKT).
The experimental platform setup of two XACCmachines comprises:
(Alveo0) 2× Intel® Xeon® Gold 6248 Processors @2.5GHz with a
combined total of 40 cores and 80 hyper-threads (Figure 9a), and
(Alveo3b) a single Intel Xeon Gold 6234 Processor @3.3GHz with
8 cores and 16 hyper-threads (Figure 9b). The observed sketch
throughput scales with the allocation of CPU threads on each of the
two machines. Figures 9a and 9b show that each algorithm’s per-
formance is correlated with the complexity of its conducted update
operation. HLL performs a single update into a linear data structure.
This results in the best individual performance. Count-Min and Fast-
AGMS each perform 𝑅∗× more elementary counter updates than
HLL. This reduces their individual performances considerably. The
further difference between Count-Min and Fast-AGMS is solely due
to their different update operations. While Count-Min performs

unconditional increments on the counters identified for every row,
Fast-AGMS extracts another hash bit for each counter update to
select the sign of the increment.

When fusing all three algorithms, SW-SKT combines their com-
pute and I/O bounds and attains a peak throughput of 4.56 GBytes/s
for 40 compute threads, i.e., the physical core count of the Alveo0
machine. While all individual sketches and their combination in
SW-SKT compute the same input hash, their throughput are clearly
differentiated by the performed sketch updates. The observed per-
formance decreases with the number of required counter updates
and with the complexity of the increment operations to perform.

5.3 QDMA Integration
For the first evaluation on the FPGA, the SKT kernel is interfaced
directly from the host as a free-running OpenCL kernel within the
Xilinx QDMA shell on an Alveo U250 accelerator card operated
under Vitis 2020.2. The Alveo U250 deployment environment to-
gether with the software framework running on the host server are
illustrated in Figure 10. The kernel is configured to process streams
comprising 32-bit data items, which are hashed by a strong 128-bit
Murmur3 hash. The design operates at the default platform clock of
300MHz. The input parallelism can be scaled up to 16 parallel data
lanes fit in by the 512-bit user kernel interface. This parallelism and
the sketch dimensions are explored and evaluated experimentally.

Throughput Scaling. A single data pipeline processing 32 bit
inputs at 300MHz consumes a bandwidth of 1.2 GByte/s. We aim
at matching the number 𝑁 of parallel pipelines with the maxi-
mum kernel interface bandwidth. The maximum theoretical band-
width for the PCIe Gen3×16 connection on the Alveo U250 card
is 15.62GByte/s. Bus interference and protocol overhead imposed
by both PCIe and the QDMA shell reduce the actually achieved
figure. Starting the exploration with 𝑁 = 16 parallel pipelines en-
sures that we identify the actual limit of the platform rather than a
bottleneck in SKT implementation. Experiments are run from small
stream sizes of 1000 up to streams of 500 million data items. This
is just below the job size limit of 2 GiByte imposed by the QDMA
shell. Currently, the shell driver truncates any larger job silently.
A scalar kernel parameter or a custom streaming protocol layer
could be added to aggregate multiple QDMA transmissions before
evaluating the collected sketches. Then, larger jobs could be par-
titioned and handled by multiple QDMA invocations. Yet another
service management layer would have to ensure the integrity and
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Mean throughput observed from the CPU.

atomicity of these partitioned jobs in contended use contexts. Fig-
ure 11 shows the data throughput achieved for these experiments
as measured in the host application from initiating the streaming
to the accelerator to completing the reception of the concatenated
computed sketches. Hence, this measurement includes the commu-
nication initiation overhead as well as the sketch evaluation and
transmission times, which are all independent of the size of the
input stream. Actual observations experience a variation of ±5%
around the shown means.

Observe that the Count-Min sketch, which is transmitted ver-
bosely, already has a size of 𝑅𝐶𝑀 ×2𝑃𝐶𝑀 32-bit words. Its write back
completely dominates the observed accelerator latency for inputs
up to 105 items. For larger stream sizes, the impact such one-time
costs diminishes. The throughput is observed to saturate around
8GByte/s even for 𝑁 = 16. In conclusion, only a reduction down to
𝑁 = 6 parallel processing pipelines would be expected to establish a
processing bottleneck. However, far more subtle reductions of par-
allelism were causing notable performance degradations until we
were investing on-chip longer-latency UltraRAM resources to im-
plement elastic FIFOs at the interface between the QDMA shell and
the SKT kernel. Apparently, the assertion of backpressure across
this boundary causes disadvantageous interactions with the flow
control of the QDMA infrastructure. While the FIFOs eliminated
this effect completely for most settings, a curious performance dip
remained reproducible for 𝑁 = 8 parallel processing pipelines. The
degradation of the performance for 𝑁 = 6 is, finally, expected. The
throughput of 8GByte/s that is achieved by 9 or more pipelines is
1.75× higher than what the 40 cores of the dual-processor Alveo0
system were able to attain.

SketchOptimization.Table 3 shows the utilization of the FPGA
hardware resources, which are available to the user kernel, by se-
lected SKT configurations. Note that SKT only consumes a small
fraction of the general-purpose combinatorial and sequential fabric
logic, i.e. lookup tables (LUTs) and registers (Regs), respectively.

Table 3: User Budget Resource Utilization on Alveo U250

𝑁 × 𝑅∗ × 𝑃∗ LUT Reg BRAM 𝜆 DSP

6 × 6 × 13 43082 (2.8%) 63279 (2.0%) 624 (25.1%) 0.93 476 (3.9%)
9 × 6 × 13 59614 (3.9%) 86216 (2.7%) 936 (37.7%) 0.93 662 (5.4%)
16 × 6 × 13 91530 (6.0%) 138945 (4.4%) 1664 (67.0%) 0.93 1096 (8.9%)
16 × 8 × 13 115851 (7.7%) 172030 (5.4%) 2144 (86.4%) 0.93 1104 (9.0%)

Also, the utilization of arithmetic DSP slices is moderate (<10%),
with less than 1% being consumed for the sketch evaluations, and
the rest being used by the hash computation. Hence, there is the
stark correlation with the number 𝑁 of input lanes. The critical and
limiting resources type is the on-chip memory provided by Block
RAM (BRAM) tiles. As shown in Table 3, the QDMA integration
of SKT can scale beyond the fixed sketch size of 𝑃HLL = 16 and
𝑅∗ × 𝑃∗ = 6 × 13 even for 𝑁 = 16 parallel pipelines.

To utilize memory resources optimally, a good understanding
of their demand in relation to the kernel parameters is beneficial.
Individual BRAM tiles serve a 10-bit address space with 36-bit data.
Larger address spaces are assembled from multiple memory tiles. In
an RTL design a traditional manual memory allocation would use
one memory location for each of the 32-bit counters for Count-Min
and Fast-AGMS, leading to a higher resource consumption. In HLS,
the memory allocation is done automatically and can be optimized
by the tools. Instead of allocating one memory location for each
counter, the tools avoid memory fragmentation, claiming storage
space more optimally. This is seen especially for the matrix sketches
whose 32-bit counters are dominating the memory resource con-
sumption figure. For the HLL sketch, the memory geometry of each
BRAM tile is reshaped into a 12-bit address space of 9-bit data. This
suffices to accommodate the ranks whose range is bounded by the
bit width of the consumed hash value. This layout transformation is
directly supported by the physical BRAM structures. All these con-
siderations give rise to the BRAM utilization model in Equation 3
for sketch parameter settings with 𝑃HLL ≥ 12 and 𝑃CM, 𝑃AGMS ≥ 10:

𝑈BRAM = 𝜆 · 𝑁 ·
(︂
𝑅𝐴𝐺𝑀𝑆 · 2𝑃𝐴𝐺𝑀𝑆−10 + 𝑅𝐶𝑀 · 2𝑃𝐶𝑀−10 + 2𝑃𝐻𝐿𝐿−12

)︂
(3)

with
𝑊

36 ≤ 𝜆 ≤ 1

The model introduces an extra coefficient 𝜆 that reflects the auto-
mated memory layout optimization of the HLS. An optimal recy-
cling of all 32-bit counters memory fragmentation would, at best,
allow the reduction of the memory footprint to 𝜆min =

32
36 ∼ 0.89.

The 𝜆(s) are tabulated with the designs in Table 3. They demon-
strate that Vitis HLS is able to assemble BRAM resources for the
sketch storage very efficiently, close to the projected optimum.
However, it must also be noted that Vitis was unable to complete
the hardware implementation for any sketch design with a pro-
jected BRAM tile utilization above 90%. This blockade is due to
signal routing challenges inside the FPGA that put the tools into
a boundless optimisation problem. A way out is to resort to the
optimization techniques available in RTL but this would defeat the
purpose of implementing the system as a high-level design.

In summary, a SKT implementation that serves the full 512-bit
kernel interface with sketch dimensions of 𝑃HLL = 16 and 𝑅∗ × 𝑃∗ =
6× 13 is clearly feasible. There is room to increase the row count to
𝑅∗ = 8 directly. Even larger sketches are attainable by reducing the
number of parallel pipelines 𝑁 . There are no observable throughput
penalties as long as 𝑁 ≥ 9. The developed utilization model for the
critical BRAM resources is valid across all modern Xilinx platforms
and also guides the assessment of the network integration.

5.4 Network Integration
For the TCP/IP network experiment, SKT is used as a free-running
OpenCL kernel within the Xilinx XDMA shell on the Alveo U280
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Figure 12: FPGA connected on the TCP/IP network [Alveo
U280]-XDMA Shell instantiation of User Space Kernels

accelerator card. The shell and accelerator card differ from the
ones used for SKT’s stand-alone evaluation above. While the ability
to stream data from the CPU is currently only available in the
QDMA shell on Alveo U250, the 100G TCP/IP network stack [42] is
currently only available under the XDMA shell on the Alveo U280
platform [22, 23]. Hence, for these experiments, we use the XDMA
shell. Feeding the data from the network avoids the job size limit
imposed by the QDMA shell. As the two shells run on different
boards, U250 for QDMA and U280 for XDMA, SKT faces different
operating conditions. First, the kernel clock frequency of 250MHz
is lower within the XDMA shell. Second, there are fewer available
BRAM tiles. In order to fit onto the U280, SKT needs to shrink. To
implement the 16 parallel pipelines needed to sustain the 100Gbps
line rate, we need to reduce the number of rows for the matrix
sketches to 𝑅∗ = 5. We do so for the purposes of the experimental
evaluation here. This limitation will disappear soon as new versions
of the shells become available to support the whole spectrum of
boards alike. For the sake of completeness of the experiments, we
include these results here.

Figure 12 illustrates the chain of kernels used by our system. It
processes the data received from the 100G TCP/IP network and
passes the results to the server through a Gen3×16 PCIe connection.
The 100G TCP/IP Network Kernel instantiates the 100G Ethernet
subsystem, provides TCP/IP functionality, and converts the data
packets to a flat data stream. The Server Kernel listens on the net-
work, accepts TCP/IP connections, and forwards the incoming data
to the SKT kernel. When all data has arrived, the server kernel
asserts the last signal communicating the completion of a job so
as to trigger the result generation. The SKT Kernel consumes the
received data stream and generates a sketch stream upon job com-
pletion. The output is sent to the host CPU memory by the Stream
to Memory Kernel, fromwhere the results are read by the host server
via the OpenCL API. This last kernel is needed as an adapter to the
XDMA shell, which does not support streaming natively. Except
for the free-running SKT kernel, all the other three kernels are
explicitly controlled by the application running on the host server.

Our network experiments are summarized in Figure 13. They
show that SKT needs 16 pipelines in order to support the 100Gbps
network line-rate. Whenever fewer pipelines are allocated, e.g.,
14 or 10, the sustained line-rates drop sharply to 3.35GB/s and
2.77GB/s, respectively. This drop is caused by the way the 100G
TCP/IP network kernel expects its output to be consumed. More
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Figure 13: Mean TCP/IP throughput for remote communi-
cation (COM) and remote sketching over 1 billion samples
by SW-SKT (Alveo0) and by SKT inside XDMA shell (Alveo
U280 FPGA connected to Alveo3b)

specifically, the network kernel expects the following kernel to
consume 512-bit data, irrespective of the line-rate. This amounts to
16 parallel lanes of 32-bit data. If SKT, for example, only implements
14 parallel pipelines, it consumes 448-bit in every cycle, postponing
the remaining 64 bits in a buffer. At 100Gbps, the accumulation
of the buffered data eventually triggers the flow control of the
network kernel. This mechanism relies on external memory whose
throughput within the XDMA shell is much lower than 100Gbps.
We expect this limitation to disappear soon in future systems.

For comparison, SW-SKT is used to sketch the same data re-
ceived over the network on the 40-core Alveo0 machine. So as to
eliminate the TCP/IP stack of the OS as a bottleneck, the traffic
is split across parallel TCP/IP connections. A designated receiver
thread is forked to service each of these connections. Without any
processing of the received data, this setup is able to sustain a data
throughput of almost 10GB/s as shown by the columns labeled
"COM" in Figure 13. The actual sketching is challenging enough
to warrant another level of workload distribution. We show the
highest throughput figures, which are obtained by backing each re-
ceiver thread by four compute threads. The receiver only delegates
data blocks through a job queue and guarantees a steady consump-
tion of data from the TCP/IP socket. As in the FPGA-accelerated
system, a throttling of the data input by backpressure proved to
impact the achievable system performance negatively. An over-
provisioning of TCP/IP connections was not able to mitigate this
effect. In the background, each compute thread maintains its own
partial sketch so as to confine the synchronization overhead to the
conclusive sketch merger. As shown by the SW-SKT in Figure 9,
even the parallelization of the sketch computation across all cores
fall short of attaining a processing throughput of 5GB/s. This is
consistent with the performance observed for the RAM-to-RAM
deployment of SW-SKT but only half of the performance achieved
by the network-facing FPGA accelerator.

6 DISCUSSIONS
6.1 HLS Experience
Finally, we evaluate our experience from using high-level synthesis
with a C++ hardware design entry. This approach comes with clear
productivity benefits, in particular:

• An easier accessibility for software engineers.
• A ready application integration stack.
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• Automated pipelining for high accelerator performance.
• Automated memory layout optimization beyond what would
be reasonably maintainable in a manual RTL design.

The price paid for these gains is best illustrated by the device re-
source utilization figures achieved. Sketch sizes that would demand
more than 90% of the user budget of BRAM tiles failed consis-
tently to implement. Mutually amplifying utilization and timing
challenges are not uncommon in classic hardware design in RTL.
However, the added layers of abstraction in HLS severely limit the
ability to resolve such situations. Engaging in floorplanning (where
each part of the design goes), manual placement, or even manual
signal routing would clearly defeat the purpose of using HLS.

6.2 Related Work
The technological evolution of FPGAs has enabled the integration
of more and more resources on FPGA devices. This has opened
the door for deploying increasingly complex designs, such as SKT,
on FPGA accelerators. SKT is a complete data center solution that
has been evaluated in an integrated end-to-end system context.
There are several other recent works that analyze and evaluate the
performance of sketch algorithms on FPGAs.

Kulkarni et al. [33] implement HLL and use it to process streams
received through a 100Gbps network. They use the entire FPGA for
the HLL design. In contrast, SKT adjusts the design of the Hyper-
LogLog sketch computation to still match the network bandwidth
but leaving space for the computation of other sketches in parallel.
Kulkarni et al. also demonstrate empirically the need to use a 64-bit
Murmur3 hash to improve the cardinality estimation accuracy for
larger data streams. In this paper, we expand the range of configu-
rations considered and provide a far more detailed analysis of the
throughput-accuracy-resources trade-offs.

Scotch [32] is a VHDL-based code generator for sketch imple-
mentations. Like SKT, Scotch [32] also aims at maximizing the use
of the available on-chipmemory. However, it does so to implement a
single custom sketch out of the supported sketch classes. While the
plain scaling of a single sketch faces diminishing returns, the multi-
sketch approach pioneered by SKT uses the resources to deliver
extra value. Scotch and SKT also differ in the chosen design method-
ology. Scotch relies on traditional RTL design. Hand-coded VHDL
code is patched by a generator tool to match a custom sketch speci-
fication. Scotch explores the largest feasible sketch dimension only
during the design implementation, putting the complete synthesis
toolchain into the exploration loop. SKT avoids this huge, often
multi-day effort by providing a utilization model for the critical
BRAM resources. Last but not least, Scotch forgoes an end-to-end
in-system evaluation. Its performance results do not include data
transmission and result extraction overheads although the integra-
tion with the host application pose decisive practical bounds to the
performance that can be extracted from a hardware accelerator. A
further important difference in terms of design and accuracy is that
Scotch uses 𝐻3 hashes while SKT uses Murmur3 hashes.

Tong and Prasanna have proposed an FPGA-based, RTL-designed
sketch accelerator [46] for monitoring and detecting network traffic
anomalies [47]. Theirs is a Count-Min sketch, over which they sup-
port Count-Min and K-ary queries. In contrast to SKT, which par-
ticularly accelerates the sketch constructions, Tong and Prasanna

monitor individual sketch updates to identify anomalies, i.e., heavy
hitters (Count-Min) or heavy change (K-ary), on the fly. They never
communicate the total accumulated sketch itself. Like Scotch, their
implementation is also based on 𝐻3 hashes.

In the same way that we use SKT for characterizing streams,
sketches can also be used for the structural analysis of multidimen-
sional data. Rouhani et al. [41] describe SSketch as a framework for
building streaming analysis accelerators on FPGAs for this purpose.
The design works on a 1Gbps network while SKT targets 100Gbps,
a throughput higher by two orders of magnitude.

6.3 Availability
SKT is open source. Both the implementation of the accelerator ker-
nel and of the software reference are available on GitHub:
https://github.com/fpgasystems/skt.

7 CONCLUSIONS
Characterizing data sets and streams has become a fundamental
operation in a wide range of applications. Developing a better un-
derstanding of the data at hand involves obtaining information
about aspects such as the cardinality or the distribution of the data
set. In the paper, we show that this can be an expensive operation
on conventional CPUs, even when parallelizing across many cores
and processors, both when the data is in the machine or when it
is streamed over the network. Thus, we propose SKT, a one-pass,
multi-sketch accelerator implemented on an FPGA. SKT computes
three widely used sketch algorithms, HyperLogLog, Count-Min and
Fast-AGMS, that complement each other in terms of the informa-
tion they provide and two of which (HyperLogLog and Fast-AGMS)
can be used to identify data distributions where the accuracy of
Count-Min is compromised. The architecture of SKT is based on an
extensive design space exploration to identify the interesting trade-
offs in terms of performance, resource utilization, and accuracy. The
experimental evaluation demonstrates that SKT running on a single
FPGA can match the performance of 70 CPU cores. Moreover, SKT
also been deployed into a smart NIC to show its ability to process
data streams at 100Gbps directly from the network. Finally, the use
of FPGAs is always a question mark due to the complexity added
over software programming. SKT has been programmed entirely
in High Level Synthesis (HLS), using a version of C++ that is acces-
sible to software programmers as many of the details of the FPGA
architecture are hidden behind pragmas and high-level abstractions
provided by the development environment. In the paper, we provide
detailed explanations on when and how to make HLS behave as
needed to match the needs of the design. In addition to an effective
solution to the data characterization problem, we thus also provide
general guidelines for designers interested in taking advantage of
the heterogeneous, special-purpose hardware acceleration that is
defining today’s advances in massive data processing.
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