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Abstract-Fine-grained, record-oriented write-ahead logging, 
as exemplified by systems like ARIES, has been the gold standard 
for relational database recovery. In this paper, we show that 

in modern high-throughput transaction processing systems, this 
is no longer the optimal way to recover a database system. In 
particular, as transaction throughputs get higher, ARIEs-style 
logging starts to represent a non-trivial fraction of the overall 
transaction execution time. 

We propose a lighter weight, coarse-grained command logging 
technique which only records the transactions that were executed 
on the database. It then does recovery by starting from a trans­
actionally consistent checkpoint and replaying the commands 
in the log as if they were new transactions. By avoiding the 
overhead of fine-grained logging of before and after images (both 
CPU complexity as well as substantial associated 110), command 
logging can yield significantly higher throughput at run-time. 
Recovery times for command logging are higher compared to 
an ARIEs-style physiological logging approach, but with the 
advent of high-availability techniques that can mask the outage 
of a recovering node, recovery speeds have become secondary in 
importance to run-time performance for most applications. 

We evaluated our approach on an implementation of TPC­
C in a main memory database system (VoltDB), and found that 
command logging can offer 1.5 x higher throughput than a main­
memory optimized implementation of ARIEs-style physiological 
logging. 

I. INTRODUCTION 

Database systems typically rely on a recovery subsystem to 

ensure the durability of committed transactions. If the database 

crashes while some transactions are in-flight, a recovery phase 

ensures that updates made by transactions that committed 

pre-crash are reflected in the database after recovery, and 

that updates performed by uncommitted transactions are not 

reflected in the database state. 

The gold standard for recovery is write-ahead logging 

during transaction execution, with crash recovery using a com­

bination of logical UNDO and physical REDO, exemplified by 

systems like ARIES [20] . In a conventional logging system like 

ARIES, before a modification to a database page is propagated 

to disk, a log entry containing an image of the modified 

data in the page before and after the operation is logged. 

Additionally, the system ensures that the tail of the log is 

on disk before a commit returns. This makes it possible to 

provide the durability guarantees described above. 

There is an alternative to ARIES-style logging, however. 

Suppose during transaction execution, instead of logging 

modifications, the transaction's logic (such as SQL query 

statements) is written to the log. For transactional applications 

that run the same query templates over and over, it may in fact 

be possible to simply log a transaction identifier (e.g. , a stored 

procedure's name) along with the query parameters; doing so 

also keeps the log entries small. Such a command log captures 

updates performed on the database implicitly in the commands 

(or transactions) themselves, with only one log record entry per 

command. After a crash, if we can bring up the database using 

a pre-crash transactionally-consistent snapshot (which may or 

may not reflect all of the committed transactions from before 

the crash), the database can recover by simply re-executing the 

transactions stored in the command log in serial order instead 

of replaying individual writes as in ARIES-style physiological 

logging. 

Compared to physiological logging, command logging oper­

ates at a much coarser granularity, and this leads to important 

performance differences between the two approaches. Gener­

ally, command logging will write substantially fewer bytes 

per transaction than physiological logging, which needs to 

write the data affected by each update. Command logging 

simply logs the incoming transaction text or name, while 

physiological logging needs to spend many CPU cycles to 

construct before and after images of pages, which may require 

differencing with the existing pages in order to keep log 

records compact. These differences mean that physiological 

logging will impose a significant run-time overhead in a 

high throughput transaction processing (OLTP) system. For 

example, as shown by [7] , a typical transaction processing 

system (Shore) spends 10-20% of the time executing TPC-C 

transactions (at only a few hundred transactions per second) on 

ARIES-style physiological logging. As transaction processing 

systems become faster, and more memory resident, this will 

start to represent an increasingly larger fraction of the total 

query processing time. For example, in high throughput data 

processing systems like H-Store [28] , RAMCloud [21] and 

Redis [27] , the goal is to process many thousands of trans­

actions per second per node. To achieve such performance, 

it is important that logging be done efficiently. Up to this 

point, it has been an open question as to whether disk-based 

logging can even be used in such a system without sacrificing 

throughput. In this paper we show definitively that it is quite 

feasible! 

It is also relevant to look at recovery times for the two 

logging approaches. One would expect physiological logging 

to perform recovery faster than command logging; because in 

command logging, transactions need to be re-executed com­

pletely at recovery time whereas in ARIES-style physiological 

logging, only data updates need to be re-applied. However, 

given that failures are infrequent (once a week or less), 

recovery times are generally much less important than run-time 

978-1-4799-2555-1114/$31.00 © 2014 IEEE 604 ICDE Conference 2014 



performance. Additionally, any production OLTP deployment 

will likely employ some form of high-availability (e.g. , based 

on replication) that will mask single-node failures. Thus, 

failures that require recovery to ensure system availability are 

much less frequent. 

In this paper, our goal is to study these performance trade­

offs between physiological logging and command logging 

in detail. We describe how command logging works, and 

discuss our implementation of both command logging and a 

main-memory optimized version of physiological logging in 

the VoltDB main memory open-source database system [30] 

(VoltDB is based on the design of H-Store [28]). We compare 

the performance of both the logging modes on two transac­

tional benchmarks, Voter and TPC-C. 

Our experimental results show that command logging has 

a much lower run-time overhead compared to physiological 

logging when (a) the transactions are not very complex and 

only a small fraction of all transactions are distributed, so that 

CPU cycles spent constructing the differential physiological 

log record and the disk 110 due to physiological logging 

represent a substantial fraction of transaction execution time; 

and (b) the size of a command log record written for a 

transaction is small and the transaction updates a large number 

of data tuples, because physiological logging does much more 

work in this case. In our experiments, we found that for TPC­

C, which has has short transactions that update a moderate 

number of records, the maximum overall throughput achieved 

by our system when command logging is used is about 1.5 x 
higher than the throughput when physiological logging is 

employed instead, a result in line with the plot's prediction. 

Also for TPC-C, we found that recovery times, as expected, 
are better for physiological logging than command logging, 

by a factor of about l.5. 

Given this high level overview, the rest of this paper is 

organized as follows. We begin with a short discussion of 

VoltDB's system architecture in Section II. We then describe 

our approach to command logging in Section III, followed by a 

detailed description of our main-memory adaptation of ARIES­

style physiological logging in Section IV . Subsequently, we 

report extensive performance experiments in Section V and 

discuss possible approaches to generalize command logging 

in Section V I. Section V II provides an overview of relevant 

past work in this area, and Section V III summarizes the paper. 

II. VOLTDB OVERVIEW 

VoltDB is an open source main memory database system 

whose design is based on that of the H-Store system [28] , 

with some differences. Below, we give a brief overview of 

VoltDB's system architecture. 

A. Partitions and Execution Sites 

VoltDB is a distributed in-memory database which runs on a 

cluster of nodes. In VoltDB, a table is horizontally partitioned 

on keys; each partition resides in the main memory of a 

cluster node and can be replicated across several nodes for 

high availability. All indexes are also kept in main memory 

along with the partition. Every node in the cluster runs multiple 

execution sites (e.g. , one per CPU core), with each partition on 

the node assigned to one such site. Each node has an initiator 

component which sends out transactions to the appropriate 

partitions/replicas. By employing careful, workload-aware par­

titioning, most transactions can be made single-sited (run on 

just a single partition) [24] . 

B. Transactions 

Transactions in VoltDB are issued as stored procedures that 

run inside of the database system. Rather than sending SQL 

commands at run-time, applications register a set of SQL­

based procedures (the workload) with the database system, 

with each transaction being a single stored procedure. This 

scheme requires all transactions to be known in advance, but 

for OLTP applications that back websites and other online 

systems, such an assumption is reasonable. Encapsulating 

all transaction logic in a single stored procedure prevents 

application stalls mid-transaction and also allows VoltDB to 

avoid the overhead of transaction parsing at run-time. At 

run-time, client applications invoke these stored procedures, 

passing in just the procedure names and parameters. 

All transactions in VoltDB are run serially at the appropriate 

execution site(s). Because OLTP transactions are short, typi­

cally touch only a small number of database records, and do 

not experience application or disk stalls, this is actually more 

efficient than using locking or other concurrency control mech­

anisms which themselves introduce significant overhead [11] . 

VoltDB supports distributed and replicated transactions by 

running all transactions in a globally agreed upon order. Since 

only one transaction can run at a time at each execution site, a 

transaction that involves all partitions will be isolated from all 

other transactions. If a transaction operates at a single partition, 

it is isolated from other transactions because the execution 

site owning the partition is single threaded and all replicas 

of the partition/site run transactions in the globally agreed 

upon order. Even if one or more sites do not respond to a 

transaction request (e.g. , because of a crash), the transaction 

will be executed as long as a one replica of each partition 

involved in the transaction is available. 

Below, we briefly explain how transaction ordering works 

in VoltDB. 

1) Global Transaction Ordering and Replication: In 

VoltDB, a database component called an initiator receives 

client requests and dispatches transactions to the appropriate 

execution sites; the pool of initiators consists of one initiator 

for each node. Each initiator generates unique timestamp­

based transaction-ids that are roughly synchronized with those 

generated by other initiators using NTP. At each execution site, 

transactions received from an initiator are placed in a special 

priority queue, which ensures that only tasks that are globally 

ordered and safely replicated are executed. 

For global ordering, this is done by checking if the id 

of a transaction in the queue is the minimum across prior 

transactions received from all initiators. Since initiators uses 
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timestamps to generate monotonically increasing transaction­

ids and messages to the priority queue are TCP ordered, the 

minimum transaction-id can be used to determine when the 

position of a transaction in the global order is known. If a 

transaction is not globally ordered, it is held in the queue 

until its position in the global order is known. 

Replication follows a similar process, but in reverse: ini­

tiators inform the transaction execution sites of the minimum 

safely replicated transaction-id for transactions from that ini­

tiator. If a transaction-id is greater than the safely replicated 

transaction-id for that initiator, the site holds the transaction 

in the queue until it is replicated. 

This global ordering and replication information propagates 

via new transaction requests and their responses and not as 

separate messages. In the event of light transaction load, 

heartbeats (no-op transactions) are used to prevent stalls. 

We note that a recently released version of VoltDB does 

ordering differently, above we have described how global 

transaction ordering works in the system we have used to 

implement our recovery approaches. 

C. Durability 

The VoltDB mechanisms discussed above result in very 

high transaction throughputs (about 4K transactions per second 

per core on TPC-C), but durability is still a problem. In the 

event of a single node failure, replicas ensure availability 

of database contents. Additionally, VoltDB uses command 

logging (described in Section III), along with a non-blocking 

transaction-consistent checkpointing mechanism to avoid loss 

of database contents in the event of power failure or other 

cluster-wide outage. 

To deal with scenarios where a transaction must be rolled 

back mid-execution, VoltDB maintains an in-memory undo log 

of compensating actions for a transaction. Thus, transaction 

savepoints (partial rollback) are also supported; this is possible 

because any partial rollback for a deterministic transaction 

will also be deterministic. The undo log is separate from the 

command log and is never written to disk. It is discarded on 

transaction commit/abort because it can be regenerated when 

the transaction is replayed. 

1) Asynchronous Checkpointing: VoltDB's checkpoint 

mechanism periodically writes all committed database state 

to disk (index updates are not propagated to disk). Before 

starting the snapshot, a distributed transaction is used to start 

the snapshot by putting all of the sites into a copy-on-write 

(COW) mode. The snapshot process then begins scanning 

every row in the table, while queries continue to execute 

on the database. All updates from this point until the end 

of the snapshot are COW if they are performed on a row 

that hasn't been scanned for the snapshot yet. Specifically, 

three bits per row track whether the row was added, deleted, 

or modified since the snapshot began (these bits are not a 

part of the snapshot). Newly added rows are skipped by the 

snapshot. Deleted rows are removed by the snapshot after they 

have been scanned. Updates cause the row to be copied to a 

shadow table before the update is applied, so the snapshot 

can read the shadow version (as with deletes, the shadow 

version is removed after the checkpoint process scans it). A 

background process serializes the snapshot to disk, so there 

is no need to quiesce the system and the checkpoint can be 

written asynchronously. When one such sweep is done, and 

the background process has completed its scan, the executor 

returns to regular mode. 

This checkpointing mechanism, although somewhat VoltDB 

specific, can be easily generalized to any database system that 

uses snapshots for isolation, since the copy-on-write mode is 

very similar to the way transaction isolation is implemented 

in snapshot-isolation based systems. 

Having a transaction-consistent checkpoint is crucial for 

the correctness of the command logging recovery protocol, 

as we shall discuss in the next section which details how our 

implementation of command logging in VoltDB works. 

III. COMMAND LOGGING 

The idea behind command logging is to simply log what 

command was issued to the database before the command 

(a transaction for example) is actually executed. Command 

logging is thus a write-ahead logging approach meant to persist 

database actions and allow a node to recover from a crash. 

Note that command logging is an extreme form of logical 

logging, and is distinct from both physical logging and record­

level logical logging. As noted in Section I, the advantage of 

command logging is that it is extremely lightweight, requiring 

just a single log record to be written per transaction. 

For the rest of this paper, we assume that each command is 

a stored procedure and that the terms command logging and 

transaction logging are equivalent. The commands written to 

the log record in a command logging approach thus consist 

of the name of a stored procedure and the parameters to 

be passed to the procedure. For stored procedures that must 

generate random numbers or call non-deterministic functions 

such as date () /time (), a timestamp based transaction-id 

(see Section II) can be used as the seed for the generator and 

for extracting the date/time. 

Generally speaking, stored procedure names are likely to 

be substantially smaller than entire SQL-queries, so this 

serves to reduce the amount of data logged by command 

logging. Specifically, an entry in the log is of the form 

(transaction-name, parameter-values). 

A. Writing to the Log 

Writing a command log record for a single-partition trans­

action is relatively simple. For a distributed transaction, only 

the coordinator site specific to the transaction writes the 

transaction to its command log; all other sites participating 

in the transaction do not log the transaction. The coordinator 

for a distributed transaction is the site with the lowest id on the 

node where the transaction was initiated. Multiple execution 

sites on the same node write to a shared command log. For 

both single and multi-sited transactions, if replicas are present, 

the transaction is also logged at all replicas of the site. The 
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check-sum LSN record-type xaction-id partition-id xaction-type params I 

Fig. 1 .  Command logging record structure. 

command log for each node also records transaction ordering 

messages sent/received by the node's initiator at runtime. 

Transactions are written to the command log right away 

after they have been received, thus a transaction need not have 

been globally ordered and replicated before it's written to the 

log. This in turn requires that at recovery time, transactions be 

sorted again in a manner that agrees with the global transaction 

ordering at runtime. This is easy to accomplish because the 

logged ordering messages are also replayed at recovery time. 

In our VoltDB implementation of command logging, log 

records written out for each transaction have the structure 

shown in Figure 1. 

1) Optimizations: Command log records can be flushed to 

disk either synchronously or asynchronously. ACID semantics 

can be guaranteed only with synchronous logging, because in 

this case a log record for a transaction is forced to disk before 

the transaction is acknowledged as committed. For this reason, 

even though our implementation permits either mode, we 

report results only for the synchronous mode and throughout 

the rest of this paper, use the term command logging to mean 

synchronous command logging. 

To improve the performance of command logging, we 

employ group-commit: the system batches log records for 

multiple transactions (more than a fixed threshold or few 

milliseconds worth) and flushes them to the disk together. 

After the disk write has successfully completed, a commit 

confirmation is sent for all transactions in the batch. This 

batching of writes to the command log reduces the number 

of writes to the disk and helps improve synchronous com­

mand logging performance, at the cost of a small amount of 

additional latency per-transaction. 

B. Recovery 

Recovery processing for the command logging approach 

works as follows. 

First, using the latest database snapshot on disk, database 

contents are initialized in memory. Because the disk snapshot 

does not contain indexes, all indexes are then rebuilt at start­

up; this can be done in parallel with the snapshot restore 

as index reconstruction for the part of the database that has 

already been restored can begin while the rest of the database 

finishes loading. 

Next, the shared command log for each node is read by a 

dedicated thread which reads the log into memory in chunks. 

Starting from the log record for the first transaction not 

reflected in the database, log entries are processed by the 

node's initiator and the corresponding transaction is dispatched 

to the appropriate sites (which may be on a different node in 

case of a distributed transaction). 

This recovery approach works even if the number of ex­

ecution sites at replay time is different from the number of 

sites at run-time, as long as the number of database partitions 

remains the same. In the event of a site topology change, the 

initiator replaying the log can simply send the transaction to 

the new site for a given partition-id. 

Given that each log record corresponds to a single trans­

action and that the initiator has access to ordering messages 

written to the command log at run-time, global ordering at 

replay time is identical to the pre-crash execution ordering. 

If a command log record for a transaction is written to the 

log but the database system crashes before the transaction 

completes executing (so that the client isn't notified), com­

mand log replay will recover this transaction and bring the 

database to a state as if this transaction had been committed, 

even though the client won't be notified after replay (a similar 

situation can happen in a conventional DBMS as well). 

We further discuss how command logging could be ex­

tended to other database systems in Section V I. 

IV. PHYSIOLOGICAL LOGGING 

Traditional database systems have typically employed 

ARIES [20] or ARIES-like techniques for their recovery sub­

system. ARIES does physiological logging; each operation 

(insert/delete/update) performed by a transaction is written to a 

log record table before the update is actually performed on the 

data. Each such log entry contains the before and after images 

of modified data. Recovery using ARIES happens in several 

passes, which include an analysis pass, a physical REDO pass 

and a logical UNDO pass. 

While the core idea behind ARIES can be used in a main­

memory database, substantial changes are required for the 

technique to work in a main memory context. In addition, the 

main-memory environment can be exploited to make logging 

more efficient. Given the differences, throughout the rest of 

this paper, we simply refer to our main memory optimized 

ARIES-style logging technique as physiological logging. 

Below, we discuss in detail the changes required and opti­

mizations that must be made for main-memory physiological 

logging to work well. 

A. Supporting Main Memory 

In a disk-based database, inserts, updates and deletes to 

tables are reflected on disk as updates to the appropriate disk 

page(s) storing the data. For each modified page, ARIES writes 

a separate log record with a unique logical sequence number 

(LSN) (a write to a page is assumed to be atomic [26] ). These 

log records contain disk specific fields such as the page-id 

of the modified page along with length and offset of change. 

This is stored as a RID, or record ID, of the form (page 
#, slot #). A dirty page table, capturing the earliest log 

record that modified a dirty page in the buffer pool is also 

maintained. In addition, a transaction table keeps track of the 

state of active transactions, including the LSN of the last log 

record written out by each transaction. The dirty page and 

transaction tables are written out to disk along with periodic 

checkpoints. 
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Record-type Insert/Update/ Transaction-id 
Delete 

Modified Column 
List 

Fig. 2. Physiological logging record structure. 

In a main-memory database like VoltDB, a data tuple can be 

accessed directly by probing its main-memory location without 

any indirection through a page-oriented buffer pool. Thus, 

the ARIES logging structures can be simplified when adapted 

to main-memory physiological logging; specifically, all disk 

related fields in the log record structure can be omitted. 

For each modification to a database tuple, our physiological 

logging approach simply writes a unique entry to the log 

with serialized before and after images of the tuple. Instead 

of referencing a tuple through a (page #, slot #) RID, 

the tuple is referenced via a (table-id, primary-key) 
pair that uniquely identifies the modified data tuple. If a table 

does not have a unique primary key and the modification 

operation is not an insert, the entire before-image of a tuple 

must be used to identify the tuple's location in the table either 

via a sequential scan or a non-unique index lookup. For the 

both the Voter and TPC-C benchmarks we use in our study, all 

tables written to have primary keys except the TPC-C History 

table which only has tuples inserted into it (see Section V-A 

for schema details). 

Use of persistent virtual memory addresses instead of 

(table-id, primary-key) for in-memory tuple iden­

tity is also an option [13] [8] , but we believe that it is not a good 

choice as a unique identifier because a database in general 

is not guaranteed to load a table and all its records at the 

same virtual address on restart after a crash unless specifically 

engineered to do so. Moreover, doing so limits potential 

compaction over the table memory layout to minimize data 

fragmentation. 

1) Optimizations: In this section we describe a number of 

optimizations to our physiological logging scheme. 

Differential Logging. For tables with wide rows, a large 

amount of log space can be saved by additionally recording 

which attributes in the tuple were updated by a transaction, 

with before and after images recorded for only those columns 

instead of the entire tuple (this optimization does not apply to 

inserts). The logging scheme is thus physiological - physical 

with respect to the changes for a particular column and logical 

with respect to which columns have been modified (similar to 

the way ARIES records physical changes to logical page slots). 

We found that that this dijferential logging optimization led to 

a significant reduction in a log record's size for the TPC-C 

benchmark (nearly 5x for TPC-C). However, we noticed that 

this reduction came at the cost of increased CPU complexity to 

construct log records, an overhead which becomes significant 

at in-memory OLTP execution throughputs (we discuss the 

implications of this observation in Section V ). 

Dirty Page Tracking. An in-memory database has no concept 

of disk pages and so unlike ARIES, we do not need to 

maintain a dirty page table. One option is to create a dirty 

record table to keep track of all dirty (updated or deleted) 

database records. For a write-heavy workload, though regular 

snapshotting would keep the size of this table bounded, it can 

grow to a fairly large size. Alternatively, we could eliminate 

the separate dirty record table and instead simply associate a 

dirty bit with each database tuple in memory. This dirty bit is 

subsequently unset when the dirty record is written out to disk 

as a part of a snapshot. Not storing the dirty record table results 

in space savings, but depending on the checkpoint mechanism 

in use, doing so can have significant performance impacts, as 

we discuss next. 

Checkpointing. Disk-based ARIES assumes fuzzy checkpoint­

ing [18] to be the database snapshot mechanism. Fuzzy check­

points happen concurrently with regular transaction activity, 

and thus updates made by uncommitted transactions can also 

be written to disk as a part of the checkpoint. In disk-based 

ARIES, both the dirty page and transaction tables are flushed to 

disk along with each checkpoint. The main memory equivalent 

of this would be to write out the dirty record and transaction 

tables with a checkpoint. Not having an explicit dirty record 

table in such a scenario is inefficient, because prior to each 

checkpoint, we would need to scan the in-memory database 

to construct the dirty record table so it could be written along 

with the checkpoint. 

Alternatively, we could use transaction-consistent check­

pointing [25] instead of fuzzy checkpointing. VoltDB already 

uses non-blocking transaction-consistent checkpointing (see 

Section II), so we leveraged it for our implementation. With 

transaction consistent checkpointing, only updates from com­

mitted transactions are made persistent, so that we can simply 

keep track of the oldest LSN whose updates have not yet been 

reflected on disk. Thus, the dirty record table is not needed at 

checkpoint time. 

Moreover, as explained in Section II-Cl, transaction­

consistent checkpointing is also used by our system to ensure 

correctness of command logging. 

Log-per-node. In our VoltDB implementation of physiological 

logging, execution sites on the same node write to a shared log 

with arbitrary interleaving of log records from different sites. 

The ordering of log records per site is still preserved. A field in 

the log record identifies the partition the update corresponds to 

(site-id to partition-id mapping is one-to-many as each site can 

be host to more than one database partition). Having a shared 

log for all sites as opposed to a log per-execution site makes 

recovery much simpler, since the database is not constrained 

to restarting with an identical partition-to-site mapping on a 

given node. This is important, because if a node crash requires 

a reconfiguration, or the database must be recovered on a 

different machine from the one it was previously running 

on, we may have a different number of sites and a different 

partition-to-site mapping. However, the shared nature of the 

log requires that all partitions previously residing together on 

a node must still be on the same node for replay, even though 

the number of sites on the node can be changed. 

Batched writes. Because OLTP transactions are short, the 

amount of log data produced per update in the transaction 
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is not enough to justify an early disk write given that the final 

update's log record must also be flushed before the transaction 

can commit. For this reason, its best to buffer all log records 

for a single transaction and write them all to the log together. 

Similar to ARIES, our physiological logging is synchronous, 

so that log writes of a committed transaction are forced 

to disk before we report back the transaction's status as 

committed. Similar to command logging, our physiological 

logging implementation uses group commit; writes from dif­

ferent transactions are batched together to achieve better disk 

throughput and to reduce the logging overhead per transaction. 

The log record structure for our physiological logging 

implementation in VoltDB is shown in Figure 2. 

B. Recovery 

Recovery using disk-based ARIES happens in three phases: 

an analysis phase, a redo phase and an undo phase. The redo 

pass is physical and the undo pass is logical. 

Our physiological logging scheme for main-memory also 

begins with an analysis phase, the goal of which is to identify 

the LSN from which log replay should start. The redo pass 

then reads every log entry starting from this LSN and reapplies 

updates in the order the log entries appear. For each log entry, 

the data tuple that needs to be updated is identified using the 

(table-name, primary-key) pair and the serialized 

after-image bytes in the log record are used to modify the tuple 

appropriately (this covers insert and delete operations as well). 

For the primary-key lookup identifying a tuple's location to be 

fast, an index on the primary key is used at replay time. In 

VoltDB, index modifications are not logged to disk at run-time, 

so all indexes are reconstructed at recovery time in parallel 

with snapshot reloading prior to log replay (see Section III). 

Because log records corresponding to different partitions of 

the database can be replayed in any order, the redo phase is 

highly parallelizable. This optimization yielded linear scale up 

in recovery speeds with the number of cores used for replay 

(see Section V for performance numbers). Next comes the 

undo pass. For transactions which had not committed at the 

time of the crash, the undo phase simply scans the log in 

reverse order using the transaction table and uses the before 

image of the data record to undo the update (or deletes the 

record in case it was an insert). 

Recovery can be simplified for an in-memory database 

such as VoltDB that uses transaction consistent checkpoint­

ing and only permits serial execution of transactions over 

each database partition. In such a system, no uncommitted 

writes will be present on disk. Also, because transactions 

are executed in serial order by the run-time system, log 

records for a single transaction writing to some partition on 

an execution site S are never interleaved with log records for 

other transactions executed by S. Hence for each partition, 

only the transaction executing at the time of crash will need 

to be rolled back (at most one per partition). Even this single 

rollback can be avoided by simply not replaying the tail of the 

log corresponding to this transaction; doing so necessitates a 

one transaction look-ahead per partition at replay time. Then 

during crash recovery, no rollbacks are required and the undo 

pass can be eliminated altogether (employing this optimization 

reduced log record sizes by nearly a factor of two, as the before 

image in update records could now be omitted). Also, with no 

undo pass, the transaction table can be done away with. 

Note that in databases other than VoltDB which use 

transaction-consistent checkpointing but run multiple concur­

rent transactions per execution site, the idea of simply not 

reapplying the last transaction's updates for each site does not 

work and an undo pass is required. This is because there could 

be a mixture of operations from committed and uncommitted 

transactions in the log. 

V. PERFORMANCE EVALUATION 

We implemented both command logging and ARIES-style 

physiological logging inside VoltDB, with group-commit en­

abled for both techniques. The logging is synchronous in 

each case with both techniques issuing an fsync to ensure 

that a transaction's log records are written to disk before the 

results are returned. All performance optimizations discussed 

in Sections III and IV were implemented and enabled for all 

experiments except where we explicitly study the performance 

impact of turning off a specific optimization. We implemented 

an additional optimization for physiological logging, in which 

all the log records for each transaction are first logged to 

a local buffer, and then at commit time, written to the disk 

in a batch along with records of other already completed 

transactions. For OLTP workloads, this optimization adds a 

small amount of latency but amortizes the cost of synchronous 

log writes and substantially improves throughput. Also, we 

ensured that the physiological logging implementation group­

commits with the same frequency as command logging. 

In this section, we show experimental results comparing 

command logging against physiological logging. We study 

several different performance dimensions to characterize the 

circumstances under which one approach is preferable over the 

other: run-time overhead (throughput and latency), recovery 

time and bytes logged per transaction. 

We also look at the effect of distributed transactions and 

replication on performance of the two techniques. 

In Section V-A, we briefly discuss the benchmarks we used 

in our study. Then we describe our experimental setup in 

Section V-B followed by performance results in Section V-C 

Finally, we summarize our results and discuss their high level 

implications in Section V-D. 

A. Benchmarks 

We use two different OLTP benchmarks in our study, Voter' 

and TPC-C These two benchmarks differ considerably in their 

transaction complexity. The work done by each transaction in 

the Voter benchmark is minimal compared to TPC-C TPC-C 

database tables are also much wider and exhibit more complex 

relationships as compared to Voter. 

The two benchmarks are described below. 

I https:llcommunity.voltdb.com/node/47 
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1) Voter: The Voter benchmark simulates a phone based 

election process. The database schema is extremely simple 

and is as follows: 

contestants (contestant_name STRING, 
contestant_number INTEGER) 

area_code_state (areacode INTEGER, state STRING) 
votes (vote_id INTEGER, phone_number INTEGER, 

state STRING, contestant_number INTEGER) 

Given a fixed set of contestants, each voter can cast multiple 

votes up to a set maximum. During a run of the benchmark, 

votes from valid telephone numbers randomly generated by 

the client are cast and reflected in the votes table. At the 

end of the run, the contestant with the maximum number of 

votes is declared the winner. 

This benchmark is open-loop and has only one kind of trans­

action, the stored procedure vote. This transaction inserts one 

row into the votes table and commits. There are no reads to 

the votes table until the end of the client's run, the other two 

tables in the database are read as a part of the vote transaction 

but not written to. In addition, the width of all the tables is 

very small (less than 20 bytes each). 

The number of contestants as well as the number of votes 

each voter is allowed to cast can be varied. For our experi­

ments, these are set to default values of 6 and 2 respectively. 

2) TP C-C: TPC-C [29] is a standard OLTP system bench­

mark simulating an order-entry environment. 

The TPC-C database consists of nine different tables: Cus­

tomer, District, History, Item, New-Order, Order, Order-Line, 

Stock and Warehouse. These tables are between 3 and 21 

columns wide and are related to each other via foreign key 

relationships. The Item table is read-only. 

The benchmark is a mix of five concurrent transactions of 

varying complexity, namely New-Order, Payment, Delivery, 

Order-Status and Stock-Level. Of these, Order-Status and 

Stock-Level are read-only and do not update the contents of 

the database. The number of New-Order transactions executed 

per minute (tpmC) is the metric used to measure system 

throughput. 

The TPC-C implementation used to report numbers in 

Section V-C differs from the standard benchmark in that (a) it's 

open-loop, (b) New-order transactions do not read items from 

a remote warehouse, so that the transactions are always single­

sited. Performance numbers for multi-sited TPC-C New-order 

transactions however are reported in Section V-C6. 

As TPC-C simulates a real order-entry environment, the 

benchmark description also mimics a human terminal operator 

by adding keying times and think times for each transaction. 

Our implementation of TPC-C does not take these into ac­

count. 

B. Experimental setup 

All our experiments in Sections V-C 1-V-C5 were run on 

a single Intel Xeon dual-socket 2.4 GHz 8-core server with 

24GB of RAM, 12TB of hard disk with a battery backed write 

cache and running Ubuntu Server. To improve disk throughput, 

the disk was mounted with appropriate additional flags while 

ensuring that data durability was not compromised; such a 

careful setup is necessary to optimize either recovery system. 

The client was run on a separate machine with a system 

configuration identical to that of the server. We simulated 

several clients requesting transactions from the server by 

running a single client issuing requests asynchronously at a 

fixed rate. 

For our distributed transactions experiments in Sec­

tion V-C6, we used a cluster of four identical machines, with 

one machine used to run an asynchronous client and the other 

three used as database servers. Each machine was an Intel 

Xeon dual-socket 12-core server box with a processor speed 

of 2.4GHz, 48GB of RAM, 4TB of hard disk space with a 

battery backed cache and running Ubuntu Server. 

Because the VoltDB server process runs on a multi-core ma­

chine, we can partition the database and run several execution 

sites concurrently, with each site accessing its own partition. 

For an 8-core machine, we experimentally determined that 

running six sites works best for the Voter benchmark and 

more sites did not lead to increased throughput. For the TPC­

C benchmark, we found that best performance is achieved by 

using all possible sites (one per core). Each site corresponds 

to one warehouse, so that the results to follow are for a TPC­

C 8-warehouse configuration (except for Section V-C6, where 

12 warehouses are used). While it's possible to fit a much 

larger database (e.g. , 64 warehouses) given the server memory, 

we found that the system throughput for a 64-warehouse 

configuration was nearly the same as for the 8-warehouse 

one (which is expected given that the entire database is in 

memory in both cases). Given that the TPC-C database grows 

in size over time as new transactions are issued, we chose a 

smaller database to facilitate long running experiments without 

running out of memory. 

C. Results 

All the experimental results we present below were obtained 

by running our benchmarks against three different modes of 

VoltDB: (a) command logging on and physiological logging 

turned off, (b) physiological logging turned on and command 

logging turned off, and (c) both command logging and phys­

iological logging turned off. 

For most direct performance comparisons between the 

above three modes, we show plots with the performance metric 

on the y-axis and the client rate on the x-axis. Doing so allows 

us to compare performance of the three logging modes by 

asking a simple question: what throughputllatency/recovery­

rate do each of the logging modes have for a given amount of 

work to be done per unit time (in this case a client attempting 

to execute transactions at a certain rate)? 

For all experiments, we set the system snapshot frequency 

to 180 seconds. Increasing or lowering this value affects 

performance of each logging mode equally as the system does 

extra work in the background at runtime in all cases. The 

rationale for setting the snapshotting frequency to the order of 

a few minutes instead of seconds (or continuous) is that there 

is substantial data on the log that must be replayed, which 
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makes measured recovery rates more reliable and offsets any 

dominating replay startup costs that would affect the measured 

numbers. 

1) Throughput: Figure 3 shows the variation in system 

throughput for the voter benchmark as the client rate is 

varied from 25,000 transactions per second up to 150,000 

transactions per second. All three logging modes (no-logging, 

physiological-logging and command-logging) are able to 

match the client rate until 80K tps at which physiological 

logging tops out while the other two saturate at 95K tps. We 

observe that the overhead of command logging is nearly zero. 

Due to the extra CPU overhead of creating a log record based 

on the insert row's serialized bytes during the transaction, 

physiological logging suffers about 15% drop in maximum 

throughput at run time. For more complex transactions, phys­

iological logging has a higher performance penalty, as we see 

next. 

Figure 6 shows throughput measured in tpmC achieved by 

the three logging modes for the TPC-C benchmark, as the 

client rate varies from lOK up to 60K tps. Similar to the results 

for the voter benchmark, command logging achieves nearly 

the same throughput as the no logging scenario. However, here 

physiological logging caps out at about 66% of the throughput 

achieved by the other two. In other words, command logging 

provides about 1.5 x more throughput than physiological log­

ging for the TPC-C benchmark. This is expected behavior be­

cause TPC-C transactions are much more complex than voter 

transactions, and each one potentially updates many database 

records. Extra CPU overhead is incurred in constructing log 

record for each of these inserts/updates, and the amount of 

logged data also increases (see Section V-C3 for numbers). 

The penalty on Voter is lower because the number of log writes 

for the vote transaction is small (just one). 

Both approaches have short transactions, do better with 

command logging, but TPC-C performs more updates per 

transaction, and is favored more heavily by command logging. 

2) Latency: The variation of transaction latency with client 

rates for the voter benchmark is shown in Figure 4. For 

client rates less than 50K tps, the system runs well under its 

capacity and all logging methods result in a 5-7ms latency. 

Note that this latency is dependent on the group commit 

frequency, which was fixed at 5ms for this experiment (ob­

tained by varying group commit frequencies is an independent 

experiment, elided due to space constraints). The latencies 

for all methods gradually increase as the database server 

approaches saturation load. Command-logging has almost the 

same latency as no-logging whereas physiological-logging has 

a 15% higher latency. The higher transaction latencies for 

client rates greater than the saturation load result from each 

transaction waiting in a queue before it can execute. The 

queue itself only allows a maximum of 5,000 outstanding 

transactions, and the admission control mechanism in VoltDB 

refuses to accept new transactions if the queue is full. 

In Figure 7, we see that TPC-C performs similarly, except 

that physiological logging reaches saturation at about 21K tps, 

so that its latency goes up much earlier. The other two logging 

modes hit saturation latencies at client rates higher than 30K 

tps and both have about the same latency. Due to extra logging 

overhead, physiological logging suffers from latencies that are 

at least 45% higher for all client rates. 

3) Number of Bytes Logged: As noted earlier, the voter 

benchmark only has one transaction (the stored procedure 

vote). For each transaction initiated by the client, command 

logging writes a log record containing the name of this stored 

procedure and necessary parameters (phone number and state) 

along with a log header. We found that the size of this log 

record is always 55 bytes. On the other hand, physiological 

logging directly records a new after-image (insert to the votes 

table) to the log along with a header, and writes 81 bytes 

per invocation of vote. This transaction only inserts data, so 
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that the before-image does not exist. Moreover, as discussed 

in Section IV , before images can be done away with in any 

case. For voter, both the logging techniques only write one 

log record per transaction. 

The TPC-C benchmark has three different transaction types 

which update the database: delivery, neworder and payment. 

The above mentioned three different transaction types for 

TPC-C together modify 8 out of 9 tables in the TPC-C 

database (the item table is read-only). Modifications include 

insert, update as well as delete operations on tables. In many 

cases, only 1 record is modified per transaction for each table, 

but the neworder , orders, order-line and stock tables have 

either 10 or 100 records modified per transaction for certain 

operations. 

For command logging, the three transactions write between 

50 (delivery) and 170 (neworder) bytes per transaction (there is 

only one log record per transaction). The neworder transaction 

logs the highest number of bytes, which is not surprising 

given that neworder is the backbone of the TPC-C workload. 

Depending on the table that is updated, log record sizes 

for physiological logging vary from 70 bytes (New-Order 

table) to 240 bytes (Customer table) per record, with most 

log records less than 115 bytes in size. Overall, for TPC­

C, physiological logging writes about lOx more data per 

transaction in comparison to command logging (averaged over 

the three transaction types). 

4) Log Record Size vs Peiformance: Because physiological 

logging writes so much more data than command logging 

on TPC-C, we wanted to test if the run-time performance 

difference between the two systems on this benchmark was 

completely attributable to I/O time. We ran an experiment 

in which we truncated the size of physiological logging 

records written out per transaction to L OO bytes, which is 

approximately what command logging writes on an average for 

a TPC-C transaction. The resulting recovery log is unrecover­

able/corrupt, but this is not important for the purposes of this 

experiment. We found that physiological logging throughput 

slightly increases by a mere 1 %, and command logging wins 

by nearly the same factor. 

Thus, the performance gap at run-time between command 

logging and physiological logging is a result of not only the 

extra disk I/O that physiological logging needs to do to write 

larger records to disk, but also of the higher CPU overhead 

incurred in logging activities during transaction execution. As 

discussed in Section IV , this overhead incurred by physiologi­

cal logging is due to CPU cycles spent generating I/O efficient 

differential log records. While the CPU complexity of creating 

log records is not a new phenomenon, it becomes significant at 

main-memory OLTP speeds, where the actual work performed 

by each transaction is small and completes in tens to hundreds 

of microseconds. 

5) Recovery Times: After a server node crashes and is 

brought up again, it must recover to its initial state by first 

reading the latest database snapshot into memory with indexes 

rebuilt in parallel and then replaying log records. For both 

voter and TPC-C, snapshot restore and index reconstruction 

take the same amount of time irrespective of the logging mode 

being used. If no logging was done at run-time, all transactions 

executed after the last snapshot was written to disk will be 

permanently lost. Hence, our recovery performance numbers 

are for command logging and physiological logging only. Our 

implementations for both the logging modes are optimized 

to do parallel log replay, each execution site reads from the 

shared recovery log and replays all log records corresponding 

to its site. 

Figure 5 shows the log replay times for the two logging 

modes for voter. During recovery, the system replays the log 

at maximum speed but does not serve new client transactions 

simultaneously, naturally this way recovery rate is not a 

function of previous load. Command logging must actually re­

execute each transaction, and we see that its L OOK tps recovery 

rate is about the same as the maximum throughput it can 

achieve at run-time (seen earlier in Figure 3). On the other 

hand, for voter, physiological logging is able to replay the log 

almost 5 x faster at about 500K tps. This difference is due 

to the fact that physiological logging directly records each 

transaction's modifications to the log at run-time. It does not 

have to repeat its reads or transaction logic during recovery 

and is able to recover much faster. The simplicity of voter 

transactions ensures that the physiological logging overhead 

of parsing each log record and reapplying the relevant updates 

is small. 

In Figure 8, we see that even for the TPC-C benchmark, 

physiological logging also replays at a faster rate compared 

to command logging. Command logging can only recover 

at about 865K tpmC, which is also its maximum run-time 

throughput on an average (Figure 6). However owing to the 

increased complexity of TPC-C transactions, physiological 

logging replay is only about l.5 x faster than command 

logging for TPC-C as opposed to the 5 x speedup for the much 

simpler voter benchmark. 

While command logging has a longer recovery time, it's im­

pact on availability is minimal because all modern production 

OLTP systems are engineered to employ replication for high 

availability, so that the higher throughput of command logging 

at run-time is a good tradeoff for it's slower background 

recovery while the other replica nodes continue to serve live 

traffic. 

Recovery numbers in the two plots just discussed are for 

log replay only and do not include log read times. Once a 

database snapshot has been restored from disk, the log is read 

in chunks by a single execution site and thereafter shared by all 

sites on the node during replay; this applies for both command 

logging and physiological logging. For both Voter and TPC-C, 

the log read in case of command logging added less than 1 % 

extra overhead to the replay time, due to small log records 

and relatively high per-transaction replay times. Log reads in 

physiological logging, in contrast, add a 30% overhead to voter 

replay times and about 8% overhead to TPC-C, due to larger 

log records and faster re-execution times. 

6) Distributed Transactions and Replicated Partitions: As 

we noted in Section I, OLTP transactions have become shorter 
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as processors have gotten faster and RAM sizes of tens of 

gigabytes have become routine . In this section, we increase 

the average transaction length by varying the fraction of 

distributed transactions in the workload and see how run-time 
performance of each of the three logging approaches changes 

as we do so. Our hypothesis is that a longer transaction 

length should make physiological logging look better, because 

logging will represent a small fraction of the total work the 

transaction does. 

For all our experiments in this section, we use a modified 

TPC-C benchmark consisting of 1 00% New-Order transactions 
and vary the fraction of multi-partition New-Order transac­

tions. The methodology behind doing so is as follows. In 

TPC-C New-Order, an order has between 5 to 15 items, 

for an average of 1 0. Each item can come from a remote 

warehouse with x% probability (default is 1 %, we vary this) . 

Our TPC-C New-order table is partitioned on warehouse-id, 
so for a New-order transaction to be multi-partition, at least 

one of the items must come from a remote warehouse, and 

thus the probability that a transaction is distributed can be 

approximated as 1 - ( 1 - 1�0 ) 
1 0

. 

As mentioned in Section V-B, we use a slightly dif­

ferent cluster setup for running our distributed transac­
tionsireplication experiments. As servers we use for these 

experiments have 1 2  cores each, we employ a configuration 

with 1 2  execution sites per server node . Our New-order table 

is partitioned on warehouse id, and we let each warehouse 

partition be owned by an execution site, so that New-order 

transactions with an item from a remote warehouse are always 
multi-partition. 

We start with results for a system setup similar to re­

sults presented previously: an asynchronous client issuing 

transactions at maximum speed to a single server node with 

multiple execution sites with no replication. Figure 9 shows 

throughput numbers for this case as we increase the num­

ber of multi-partition transactions (latency plots are omitted 
due to space constraints, but latency is inversely related to 

throughput as shown in previous results.) Because throughput 

drops dramatically with even a small fraction of distributed 

transactions, both axes on the plot are in log scale with 

the 0% x-label (only single-sited transactions) approximated 
as 0. 1 % on the plot. Here the numbers for no distributed 

transactions (x = 0) are in agreement with those seen in 

earlier sections, with command logging having a throughput of 

2AM tpmC (slightly below that of no-logging at 2.6M tpmC) 

and 1 .5 x that of physiological logging 1 .5 tpmC throughput. 

This 1 . 5  x throughput gap between command logging and 

physiological logging remains even as distributed transactions 
are introduced. This gap slowly drops down, and remains about 

l A x  even at 50% distributed transactions, until at about 1 00% 

distributed transactions, transaction latencies are so high that 

all logging approaches provide identical results. 

Figure 1 0  shows performance numbers for the different 

logging approaches when we have a cluster configuration of 

3 server nodes running 12 execution sites each, with each site 

replicated three-ways. We still have a TPC-C workload with 
1 2  warehouses, with the difference that now each warehouse 

partition is stored by three different execution sites. We see that 

again, at 0%, the performance gap is as expected, command 

logging throughput wins by a factor of almost 2 x , with a 

penalty of less than 5% compared to when no logging is 
done. For this configuration however, the performance offered 

by all three approaches drops quickly as we increase the 

fraction of distributed transactions, with a gap of 1 . 2  x in 

favor of command logging at 5% distributed transactions, 

which closes down to nearly identical throughput for all three 
approaches beyond 1 0%.  These results are in agreement with 

the hypothesis: progressively higher transaction lengths lead 

to smaller run-time performance gaps between the different 

logging approaches. 

Another interesting point to note is that the gap between the 

different logging approaches closes slower with no replication 

and faster with replication (Figures 9 vs. 1 0) : this is expected 

because a 3-way replication setup makes each transaction in 
the workload, distributed or not, multi -sited. 

We do not show recovery rates due to lack of space here, but 

we found that physiological logging is much more efficient at 
recovery compared to command logging if the workload has 

a very high fraction of distributed transactions. 

D. Discussion 

Our results shows that command logging has a much lower 

run-time overhead than physiological logging (nearly zero 

in fact) . This is due to the fact that it does less work at 

run-time to generate log records, and also because it writes 
less data to disk. In the two benchmarks we evaluated, 

command logging was able to achieve as much as a 1 .5 x 
performance improvement over our main-memory optimized 
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implementation of physiological logging on TPC-C, and about 

1.2 x on Voter. This improved performance comes at the cost 

of an increased recovery time for command logging, since 

it has to redo all of the work of a transaction, whereas 

physiological logging only has to re-apply updates to data 

tuples. Recovery times for command logging range from 1.5 x 
slower on TPC-C to 5 x slower on Voter. In reality, system 

failures are infrequent, and can be masked via high-availability 

through replication; this makes recovery speed secondary in 

importance to system performance for most systems. Hence, 

in modern high-throughput settings, command logging, with 

its near-zero overhead at run-time and modest reduction in 

recovery times, is the best choice. 

In our experiments with high fraction of distributed trans­

actions, physiological logging does better, since the overheads 

represent a small fraction of overall run-time, and recovery 

times for physiological logging become much better than 

for command logging. Hence, for applications with complex 

or mostly distributed transactions that update few records 

(which is not true of most OLTP applications), ARIES-style 

physiological logging is probably a better choice. This is also 

the reason why ARIES has traditionally been considered the 

gold-standard method of recovery: in the 1980's when initial 

research on recovery was done, OLTP throughputs were much 

lower, and the relative overheads of ARIES-style logging likely 

represented a much smaller fraction of the total work done per 

transaction. These results are summarized Figure 11. 

Our conclusion is that for modern OLTP database systems 

that need to process many thousands of transactions per 

second, command logging should be the recovery method of 

choice, unless for some reason, recovery times are unusually 

important for the OLTP system. 

V I. GENERALIZING COMMAND LOGGING 

A natural question about the command-logging approach 

described in this paper is how it would generalize to traditional 

disk-based systems and to other main-memory OLTP systems 

that use locking. We believe it should generalize well. To make 

it work, we need to ensure two properties: first, command log­

based recovery needs to start from a transactionally-consistent 

snapshot, and second, replaying transactions in the command 

log in serial order must result in a re-execution that is 

equivalent to the original execution order of the committed 

transactions pre-crash. 

To ensure the first property, if transactions are short-lived, 

there should be no need to write dirty (uncommitted) data to 

disk. However, this alone isn't sufficient to ensure that the state 

of the database on disk when recovery begins is transactionally 

consistent, since a crash may occur while data is being flushed 

back, resulting in only part of a transaction's state being on 

disk at recovery time. We may be able to atomically flush a set 

of pages to disk by relying on batteries in enterprise class disks 

to ensure that a set of flushed writes actually make it to disk 

even in the event of a power outage or crash. Alternatively, the 

same transactionally-consistent snapshotting approach used in 

VoltDB could be employed in a disk-based database by issuing 

a read-only transaction that reads the entire database and 

writes its pages to disk. If the database employs some form of 

snapshot-isolation (which most databases, including Postgres, 

Oracle, and SQL Server do), such read-only transactions will 

not block any other transactions in the system. However, this 

requires two copies of the database to be on disk, which may 

not be feasible. Exploring the best method for transaction ally­

consistent snapshotting of conventional databases, such as 

those in [25] , is an interesting area for future work. 

For the second property, assuming a transaction ally­

consistent checkpoint is available, serial replay from a com­

mand log will result in a correct recovery as long as the 

transactions in the log represent the serial equivalent commit 

order in which transactions were executed pre-crash. This will 

be the case assuming: (a) the use of strict two-phase locking 

(S2PL) for isolation, (b) no writes of dirty pages of uncom­

mitted transactions, obviating the need for undo logging, so 

that correctness is ensured despite potential non-deterministic 

transaction aborts resulting from deadlocks. Other transac­

tional isolation protocols, like serializable snapshot isolation 

(SSI) [1] , unfortunately do not guarantee that commit order 

is the same as the serial equivalent execution order. Further­

more, it's unclear what the semantics of command log-based 

recovery are in the face of non-serializable isolation levels like 

snapshot isolation (which is widely used in practice). Hence, 

another interesting area for future work involves investigating 

this relationship. 

V II. RELATED WORK 

ARIES [20] is considered the gold standard method for 

recovery in traditional databases.Most main memory database 

recovery techniques proposed in the past [8] [9] [4] [ 15] are 

similar in spirit to ARIES; we briefly go over them here, a 

detailed discussion can be found in [5] [6] . 

Dewitt et al [3] suggest compressing the log size by writing 

only new values to disk but require the presence of stable 

memory large enough to hold the write-ahead log for active 

transactions. In absence of such storage, they flush log records 

in batches (group commit). Both logging modes in our system 

(command logging and physiological logging) implement the 

group commit optimization. 

Li et al [17] also suggest run-time optimizations for reduc­

ing log size by using shadow pages for updates but also require 

all shadow updates as well as the log buffer to reside in non­

volatile memory. Lehman and Carey's recovery algorithm [14] 

also requires presence of non-volatile RAM to be able to store 

log tails. We do not make such an assumption in our system, 

which is impractical on commodity machines, the entire main 

memory contents are considered lost after a crash. 

Levy and Silberschatz [16] describe an incremental recovery 

algorithm for main memory databases, which does not require 

recovery to be performed in a quiescent state, allowing trans­

action processing in parallel. This is achieved by recovering 

database pages individually. VoltDB does not have a concept 

of pages; we implement a similar idea by employing parallel 

recovery at a per partition level for physiological logging. 
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Achieving the same is harder with command logging owing to 

uncertainty about what pages a stored procedure would touch. 
Purely logical logging has also been proposed recently [19] . 

Our work in this paper applies the logical logging idea in its 

extreme to an in-memory database similar in spirit to [12] , and 

quantifies via extensive experiments the trade-oft's between a 

highly logical command logging vs. a more traditional ARlES­

style physiological logging approach. 
Recent work by Cao et al describes main-memory check­

point recovery algorithms for frequently consistent applica­

tionsl [2] , we believe their efficient checkpointing techniques 

can be used in combination with our recovery algorithms for 

better system performance. 
Related work such as [lO] [22] [23] has focused on making 

logging more efficient in general by employing ideas such 

as reducing log related lock contention. They emphasize that 

a separation of transactions from detailed knowledge about 

data placement naturally requires logical recovery. Our system 

architecture does not employ locking, so these techniques do 

not apply. 

V III. C ONCLUSION 

In this paper, we compared the run-time and recovery 

performance of command logging to ARIES-style physiolog­

ical logging in high-throughput OLTP settings. Command 

logging recovers by re-running committed transactions from a 

transaction ally-consistent checkpoint, whereas for physiologi­

cal logging, fine-grained updates are recorded at run-time and 

the same updates applied at recovery time. We implemented 

these techniques in the VoltDB main-memory database system 

and found that on a modern machine running two OLTP 

benchmarks at high throughputs (in excess of 4K tps per 

core), physiological logging imposes significantly higher run­

time overheads than command logging, yielding l.2 x to l.5 x 
lower throughput. It does, however, recover more quickly, with 

recovery times ranging from l.5 x to 5 x faster. Our conclusion 

from these experiments is that, since most systems invoke 

recovery infrequently, databases focused on high-throughput 

transaction processing should implement command logging as 

the recovery system of choice. 
We believe that these results should also apply to disk­

resident databases, since logging represents a significant over­

head in these systems as well (hundreds of microseconds per 

transaction, according to prior research [7] ). Hence, generaliz­

ing command logging to a disk-based system is an interesting 

area of future work. Doing so is non-trivial as our current 

implementation of command logging relies on the fact that our 

system recovers from a transactionally-consistent checkpoint 

(which does not include any uncommitted data) and that 

the command log is written in an equivalent serial order of 

execution of the committed transactions in the database. 
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