91N1297


https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/

TODAY'S AGENDA

Compare-and-Swap (CAS)
Isolation Levels

MV CC Design Decisions
Project #2

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
M Address  Value
20 | | __sync_bool_compa re_and_swap (&M, 20, 30)
Compare
& & CARNEGIE MELLON Value

g DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
M Address  Value
3@ | | __sync_bool_compa re_and_swap (&M, 20, 30)
Compare
& & CARNEGIE MELLON Value

g DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
M Address Value

3@ | | __sync_bool_compa re_and_swap (&M, 25, 3'5)X

Compare

Q CARNEGIE MELLON Value
w & DATABASE GROUP CMU 15-721 (Spring 2018)



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:
— Dirty Read Anomaly

— Unrepeatable Reads Anomaly

— Phantom Reads Anomaly

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ANSI ISOLATION LEVELS

SERIALIZABLE

— No phantoms, all reads repeatable, no dirty reads.

REPEATABLE READS

— Phantoms may happen.

READ COMMITTED

— Phantoms and unrepeatable reads may happen.

READ UNCOMMITTED
— All of them may happen.

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS

READ COMMITTED

READ UNCOMMITTED
&= 2 CARNEGIE MELLON

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

REAL-WORLD ISOLATION LEVELS

Default Maximum
Actian Ingres SERIALIZABLE SERIALIZABLE
Greenplum READ COMMITTED SERIALIZABLE
IBM DB2 SERIALIZABLE
MySQL REPEATABLE READS SERIALIZABLE
MemSQL READ COMMITTED READ COMMITTED
MS SQL Server READ COMMITTED SERIALIZABLE
Oracle READ COMMITTED
Postgres READ COMMITTED SERIALIZABLE
SAP HANA READ COMMITTED SERIALIZABLE
VoltDB SERIALIZABLE SERIALIZABLE

& & CARNEGIE MELLON
=2 DATABASE GROUP

Source: Peter Bailis
CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

CRITICISM OF ISOLATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
— CURSOR STABILITY
— SNAPSHOT ISOLATION

~ ACRITIQUE OF ANSI SQL ISOLATION LEVELS
| SIGMOD'1995

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

10

CURSOR STABILITY (CS)

The DBMS’s internal cursor maintains a lock on a
item in the database until it moves on to the next
1tem.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

11

LOST UPDATE ANOMALY

Txn #1

60

READ(A)

e o o E\\

WRITE(A)

e o o E\\ e 6 06 o o

-
[
=
=
o
O

WRITE(A)

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

11

LOST UPDATE ANOMALY

Txn #1
>
66 c o o E"
READ(A) WRITE(A)
Txn #2

-
[
=
=
o
O

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

LOST UPDATE ANOMALY

Txn #1

READ(A)

Txn #2

e o o E\\

WRITE(A)

& & CARNEGIE MELLON
=2 DATABASE GROUP

-
[
=
=
o
O

11

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

11

LOST UPDATE ANOMALY

Txn #1
N
o O o E
READ(A) WRITE(A)

Txn #2

e o o @\\ e 6 06 o o

-
[
=
=
o
O

WRITE(A)

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

11

LOST UPDATE ANOMALY

Txn #1

READ(A) WRITE(A)

Txn #2

e o o @\\ e 6 06 o o

WRITE(A)

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

11

LOST UPDATE ANOMALY

Txn #1
Txn #2’s write to A will

E/i be lost even though it

commits after Txn #1.

READ(A) WRITE(A)

Txn #2 A cursor lock on A
would prevent this

2 problem (but not
e o o D e 0o 0 0 o always).

WRITE(A)

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

12

SNAPSHOT ISOLATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at

the time the txn started.

— A txn will commit under SI only if its writes do not
conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

o0
OO

Txn #2

Change black marbles
to white.

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

00

OO
Txn #2 “

Change black marbles
to white.

G._J CARNEGIE MELLON
=2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

00

OO
Txn #2 OO

Change black marbles
to white.

G._J CARNEGIE MELLON
=2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

00 — 90 ™ oo
S OO —/

Txn
Change black marbles
to white.

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

13

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

"7 MY | JRee
00 @0 OO

Change black marbles
to white.

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

14

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS SNAPSHOT ISOLATION

CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED
& & CARNEGIE MELLON

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

14
I S C Strict Serializability (PL-SS) H Y

// Full Serializability (PL-3) I

Snapshot Isolation (PL-SI)

T

Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)

REPEATAE Repeatable Read (PL-2.99)

Consistcm View (PL-2+)
Monotonic Snapshot

Reads (P'L MSR)
\ T
|

CURSOR

Cursor Stablllty (PL- CS} Monotomc View (PL-2L)

B PL 2

T

PL-1

Figure 4-1: A partial order to relate various isolation levels.

Source: Atul Adyﬂ |
&= & CARNEGIE MELLON CMU 15-721 (Spring 2018)
g DATABASE GROUP



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

15

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.

First implementation was InterBase (Firebird).
Used in almost every new DBMS in last 10 years.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

16

MULTI-VERSION CONCURRENCY CONTROL

Main benefits:

— Woriters don't block readers.

— Read-only txns can read a consistent snapshot without
acquiring locks.

— Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

17

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection

Index Management
Txn Id Wraparound (New)

~~ | AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
¥E§§I§ON17CONCURRENCY CONTROL

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf

17

This is the Best Paper Ever on

In-Memory Multi-Version Concurrency Control ) E C I S I O N S

Vingin Al Lo Arileni

Jig
Carnegie M
jiexil@«
s If You Only Read One Empirical Evaluation Paper on
ABSTRACT A «
Ml version concurrend In-Memory Multi-Version Concurrency Control,
NS Ahough e Make It This One!
ooate Maitaining mals
parallelism without sacri
schemes in a multi-core,
there are a large number
nization overhead can outl
‘Tounderstand how MV ;
we conduct an extensive Camegigjlé

dkon: el o iy We Think That You Will Really Enjoy This

and index management.

e ABSTRACT Empirical Evaluation Paper on

fundamental borlenccks Multi-version concumend In-Memory Multi-Version Concurrency Control

popular transaction manaj

1. INTRODUCT agement systems (DBMS
; ) the late 1970, it is used
The evolution of compuy released in the last decad)

core, in-memory DBMS potentially increases par)

workloads, these systems

when processing transact
tocols that maximize pard

w0 and in-memory setling is 1
The most popular protq of threads running in pa i
decade s aki-version ¢ outweigh the benefiis of 1 Carnegie M

of ides of MVCC is thal To understand how MW jiexil@d An Empirical Evaluation of

versions of each logical ] in modern hardware seltis . .
the same tupe 1o proceed Cieme e tonr key destn , In-Memory Multi-Version Concurrency Control
tions to access older versi version swrage. parbage ABSTRACT
uansactions from simultal ““',h,,unm\n,e_“r_,,;_ .
e e Multi-version concurren
s Jﬁ:.;_mﬁ for Iybrid i DBMS and evaluated the popular transaction mana S i
e ehately attos e identifies the fundamental sgement sysiems (DBMS Yingjun Wu Joy Arulraj
““‘\:"‘;'“L: ’m‘l'l‘e’(‘:‘::;_ the late 19705, it is used National University of Singapere Carnegie Mellon University
M b merssing 2 released in the kst decad yingjun@comp.nus.edu.sg jarulraj@cs.cmu.edu
appeared ina 1970 dhuse 1. INTRODUCT] potentially increases para) Jiexi L Ran Xi Andrew Pavl
started in 1981 [21] for th Computer architecture g lransacy JiexiLin - Ran Alan . ndrew Pavlo
o memory DBMS Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
hanisms (o 1 jiexil@cs.cmu.edu rxian@cs.cmu.edu pavio@cs.cmu.edu
serializability. The most f
. ‘To understand how MV . .
in the Last decade is mali- © ubderstand how ABSTRACT ina 1979 disserwtion [38] and the first implementation started in

in modern hardware sett
scheme’s four key desi

basic idea of MVCCis th
versions of each logical ob

1981 [22] for the InterBase DBMS (now open-sourced as Firebird).

Multi-version concurrency control (MVCC) is currently the most - "
MVCC is also used in some of the most widely deployed disk-

the  object 10 Proces version storage, garbage popular transaction management schems modemn database man- o s . Oracle (since IS S

T T 5% implemented state-of-the- agement systems (DBMSs). Although MVCC was discovered in ~ P11ented DBMS: today. including Oracle (since 1984 [3]), Postgres

AN E M P | R I CA ks o0 EelaEe DBMS and evaluated the] the late 19705, it is used in almost every major relational DBMS ince 'I"“s 141 1>|:ml “!f QLS lnoDB exgize fsnca 201 But
identifies the fundamentaf released in the last decade, Maintaining multiple versions of data whike there arc pleaty of contempozarics to these older systems

of version tracking. Multi

VE RS I O N CO o access older versions potel ly increases lelism without sacrificing serializability
transactions from simulta| . . when prnct.ning transactions. But scaling MVCC in a multi-core

VLDB 2017 vyt pinge 1. INTRODUCT] and in-memory setiing is mon-irivial: when there are a lasge number
overwrite a tuple with nes Computer architecture of threads running in paraliel, the synchionization oveihead can

that use a single-version scheme BM DB2. Sybase). almost
w transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial fe.g.. Microsoft Heka-
ton [16]. SAP HANA [40], MemSQL (1]. NuoDB [3]) and academic
te.g.. HYRISE [21], HyPer [36]) systems.

core, in-memory DEMS: E s - MVOC
eement mechanisms o 1 To understand how MVCC perform when processing transactions N D:I‘I’“ all ')":"“ newer *!I‘_:e' using M\LLIS _"‘“T isno “"‘f
&= & CARNEGIE MELLON serializability. The most in modern hardware setings. we conduct an exiensive study of the SR Tmplementsion, There e severdl desian chioiees 1t
10 the tast dende & e scheme’s four key design decisions: concurrency control protocol,  Bave different trade-offs and performance behaviors. Unil now,

L/

- s rave. sarbase . - . there has not been a comprehensive evaluation of MVCC ina mod-
- o DATABASE GROUP hasic den of MVOC is yersion storage. garhage collection, and index mamgemen. We o DBMS operating environment. The last exiensive study was CMU 15-721 (Spring 2018)

e o e nts 0 ¢ h
versions of each logical oby in the 1980s [13]. but it used simulated workloads running in a



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf

MVCC IMPLEMENTATIONS

18

Protocol Version Storage  Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL MV-0CC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-0CC Delta Txn-level Logical

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

19

TUPLE FORMAT

BEGIN-TS END-TS POINTER

Unique Txn Version Next/Prev Additional
Identifier Lifetime Version Metadata

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

20

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering

— Assign txns timestamps that determine serial order.
— Considered to be original MV CC protocol.

Approach #2: Optimistic Concurrency

Control

— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— Txns acquire appropriate lock on physical version before

& 3 CARNEGIE MELLON they can read/write a logical tuple.
g DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

READ(A)

TXN-ID READ-TS BEGIN-TS END-TS

N

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

66 READ-TS BEGIN-TS END-TS

TXN-
T,=10 { =

WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the  version if the lock is unset
timestamp of the last txn and its T, is between
that read it. “begin-ts” and “end-ts”.

G._i CARNEGIE MELLON
=2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
id— N B, | o % 1 00
WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the  version if the lock is unset
timestamp of the last txn and its T, is between
that read it. “begin-ts” and “end-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
id— o
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the lock is unset  if no other txn holds lock
timestamp of the last txn and its T, is between and T\, is greater than
that read it. “begin-ts” and “end-ts”. “read-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
id— o
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the lock is unset  if no other txn holds lock
timestamp of the last txn and its T, is between and T\, is greater than
that read it. “begin-ts” and “end-ts”. “read-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
id— o
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the lock is unset  if no other txn holds lock
timestamp of the last txn and its T, is between and T\, is greater than
that read it. “begin-ts” and “end-ts”. “read-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

L=10 § g
WRITE(B) 0o

Use “read-ts” field in the Txn is allowed to read Txn creates a new version

header to keep track of the  version if the lock is unset  if no other txn holds lock

timestamp of the last txn and its T, is between and T\, is greater than

that read it. “begin-ts” and “end-ts”. “read-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

21

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
id— o
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the  version if the lock is unset  if no other txn holds lock
timestamp of the last txn and its T, is between and T\, is greater than
that read it. “begin-ts” and “end-ts”. “read-ts”.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

22

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a

latch-free version chain per logical tuple.

— This allows the DBMS to find the version that is visible
to a particular txn at runtime.

— Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

23

VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage
— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

24

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a

logical tuple are stored in the
same table space

VALUE  POINTER

KEY
A, Xxx | $111

A, Xxx | $222 @
B, vyvy | %10 @ On every update, append a new

version of the tuple into an
empty space in the table.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

24

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a

logical tuple are stored in the
same table space

KEY

A, XXX | $111
$10 @ On every update, append a new
xxx | $333 ? version of the tuple into an
empty space in the table.

VALUE  POINTER

3

> |
w

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

24

APPEND-ONLY STORAGE

Main Table
All of the physical versions of a

KEY VALUE  POINTER . .
logical tuple are stored in the

A XXX | 111 ) @ .| same table space

A, XXX | 8222 | @

B, vyvy | %10 @ On every update, append a new
A, xxx | £333 o |©  version of the tuple into an

empty space in the table.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

& & CARNEGIE MELLON
=2 DATABASE GROUP

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Just append new version to end of the chain.
— Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Have to update index pointers for every new version.

— Don'’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

25

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

26

TIME-TRAVEL STORAGE

Main Table Time-Travel Table
KEY VALUE POINTER KEY VALUE POINTER
A, xXxx | $222 o A, xxx | $111 1)
B, yyy | $ie

On every update, copy the
current version to the time-
travel table. Update pointers.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table Time-Travel Table
(24 VALUE  POINTER KEY VALUE  POINTER
A, XXX | 8222 | e A, XXX | $111 @
B, yyy | $ie A, XXX | $222 | @—
On every update, copy the Overwrite master version in
current version to the time- the main table. Update
travel table. Update pointers. pointers.

& & CARNEGIE MELLON

26

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TIME-TRAVEL STORAGE

Main Table Time-Travel Table
(24 VALUE  POINTER KEY VALUE  POINTER
A, XXX | $333 | e A, XXX | $111 @
B, yyy | $ie — A, XXX | $222 | @—
On every update, copy the Overwrite master version in
current version to the time- the main table. Update
travel table. Update pointers. pointers.

& & CARNEGIE MELLON

26

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

DELTA STORAGE
Main Table Delta Storage Segment

VALUE  POINTER

KEY

B, 444

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

DELTA STORAGE
Main Table Delta Storage Segment

DELTA POINTER

A, (VALUE-$111) 1]

VALUE  POINTER

KEY

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

DELTA STORAGE
Main Table Delta Storage Segment

DELTA POINTER

A, (VALUE-$111) 1]

VALUE  POINTER

KEY

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

DELTA STORAGE
Main Table Delta Storage Segment

POINTER

DELTA
(VALUE~>$111)
A, |(VALUE-»$222)| e—

VALUE  POINTER

KEY

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

& & CARNEGIE MELLON

27

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

DELTA STORAGE
Main Table Delta Storage Segment

POINTER

DELTA
(VALUE~>$111)
— A, |(VALUE-$222)| @—

VALUE  POINTER

KEY

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

& & CARNEGIE MELLON

27

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

27

DELTA STORAGE
Main Table Delta Storage Segment

DELTA POINTER

KEY VALUE  POINTER

(VALUE-$111)
B, 1444 —| A, [(vALuE-$222)] e—
On every update, copy only Txns can recreate old
the values that were modified versions by applying the delta
to the delta storage and in reverse order.

overwrite the master version.

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY  INT_VAL STR_ VAL —>| MY_LONG_STRING
A, XXX | $100 ®

9 CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

—— MY_LONG_STRING

KEY INT_VAL STR_VAL

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

—— MY_LONG_STRING

—— MY_LONG_STRING

INT VAL STR_VAL

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

NON-INLINE ATTRIBUTES

Main Table

KEY INT_VAL STR_VAL

Variable-Length Data

—— MY_LONG_STRING

—— MY_LONG_STRING

Reuse pointers to variable-
length pool for values that do

not change between versions.

& & CARNEGIE MELLON
=2 DATABASE GROUP

28

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_VAL

Reuse pointers to variable-
length pool for values that do
not change between versions.

?j CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES

Main Table

KEY INT_VAL STR_VAL

Variable-Length Data

4>| Refs=1| MY_LONG_STRING

Reuse pointers to variable-
length pool for values that do

not change between versions.

& & CARNEGIE MELLON
=2 DATABASE GROUP

Requires reference counters
to know when it safe to free
memory. Unable to relocate
memory easily.

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

28

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_VAL

>| Refs=2| MY_LONG_STRING

Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it safe to free
not change between versions. memory. Unable to relocate

memory easily.

Fj CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

29

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

& & CARNEGIE MELLON
=2 DATABASE GROUP

GARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.

30

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #1

Thread #2 ‘

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Vacuum

& & CARNEGIE MELLON
=2 DATABASE GROUP

31

TXN-ID BEGIN-TS END-TS
A, 0 1 9
B, 0 1 9
B, 0 10 20

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

TUPLE-LEVEL GC

Thread #2 ‘
T.-25 = O

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

& & CARNEGIE MELLON
=2 DATABASE GROUP

31

TXN-ID BEGIN-TS END-TS
A, 0 1 9
B, 0 1 9
B, 0 10 20

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

Thread #1
Vacuum BEGIN-TS END-TS

Ti d=12 \
Thread #2 ‘ »
T,~25 =7 O

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

Thread #1
Vacuum TXN-ID BEGIN-TS END-TS

Tid=12 \
Thread #2 ‘ »
T. =25 =¥ O B, 0 10 20

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

Thread #1
Vacuum J/iy37d TXN-ID BEGIN-TS END-TS

Tid=12 \
Thread #2 ‘ »
T. =25 =¥ O B, 0 10 20

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC
Thread #1

T, =12 A, B A P A P oA

2 INDEX

1

Thread #2 —

B, I B, | B, | B,

Background Vacuuming: Cooperative Cleaning:

Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version
versions. Works with any storage. chain. Only works with O2N.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

N w AP A PLA P A

Thread #1

1

Thread #2 s, bl 6. P 5, bl &,
T, =25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version
versions. Works with any storage. chain. Only works with O2N.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

Thread #1
Tid=12 —> AZ —> Al
Thread #2 L6, b 5,
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version
versions. Works with any storage. chain. Only works with O2N.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

31

TUPLE-LEVEL GC

Thread #1
T, =12 A, [ A, P A
Thread #2 s, bl 6. P 5, bl &,
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version
versions. Works with any storage. chain. Only works with O2N.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

32

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

33

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS

Thread #1 A, 0 231_7 | 231_) 00

Tid=1 B, Z 231-1 | 231-2 00

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

33

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS

Thread
T,=1 B, | o | 22-1 | 222 oo

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

33

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS

Thread #1
T,=1 B, | o | 22-1 | 222 oo

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

34

POSTGRES TXN ID WRAPAROUND

Stop accepting new commands when the system
gets close to the max txn id.

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

35

INDEX MANAGEMENT

PKey indexes always point to version chain head.

— How often the DBMS has to update the pkey index
depends on whether the system creates new versions
when a tuple is updated.

— If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated...

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

35

JOIN THE TEAM MEET THE PEOPLE

ARCHITECTURE

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

BY EVAN KLITZKE

Secondary Index | A ‘ B ' C D

Primary Index

A
N

@)
§-N

L

Disk [ | 010 [ ]

76 103 107 21

& & CARNEGIE MELLON ' CMU 15-721 (Spring 2018)
%2 DATABASE GROUP



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

& & CARNEGIE MELLON
=2 DATABASE GROUP

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.

— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.

36

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

INDEX POINTERS

A PRIMARY INDEX A& SECONDARY INDEX

& & CARNEGIE MELLON

37

g DATABASE GROUP CMU 15-721 (Spring 2018


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

A PRIMARY INDEX A& SECONDARY INDEX

Newest-to-Oldest

A, bl A Pl A bl A }Append-()nly

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

GET(A) @
A PRIMARY INDEX A& SECONDARY INDEX
Physical
Address

Append-Only
4" A PLA LA P A }Newest-to-Oldest
& & CARNEGIE MELLON

g DATABASE GROUP CMU 15-721 (Spring 2018


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A& SECONDARY INDEX
Physical
Address

Newest-to-Oldest

"l A, bl A Pl A bl A }Append-()nly

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A& SECONDARY INDEX

A& SECONDARY INDEX
A SECONDARY INDEX

A SECONDARY INDI

A 4
. Append-Only
_’l Qf e A LA }Newest—to-Oldest
& & CARNEGIE MELLON

g DATABASE GROUP CMU 15-721 (Spring 2018)



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A& SECONDARY INDEX

Newest-to-Oldest

A, bl A Pl A bl A }Append-()nly

Q CARNEGIE MELLON
w & DATABASE GROUP CMU 15-721 (Spring 2018


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A& SECONDARY INDEX
Primary
Physical Key
Address

Append-Only
4" A PLA LA P A }Newest-to-Oldest
& & CARNEGIE MELLON

g DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

37

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A& SECONDARY INDEX
Tupleld

% Tupleld—Address

Physical

Address L{
Append-Only
A PLA LA P A }Newest—to-Oldest
& & CARNEGIE MELLON

g DATABASE GROUP CMU 15-721 (Spring 2018



http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

38

MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

-®-Oracle/ MySQL =#=Postgres -+-HYRISE =¢HEKATON
=*¥=MemSQL -0-HANA =+-NuoDB -e-HyPer

~ 100

< 75

|

S 2 —h— —A
=

80

g O I I I I |
=

= 0 8 16 24 32 40

# Threads

& & CARNEGIE MELLON
=2 DATABASE GROUP

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

X
-

CARNEGIE
DATABASE

Robert Haas

VP, Chief Architect, Database Server @ EnterpriseDB, PostgreSQL Major Contributor and Committer

Tuesday, January 30, 2018

DO or UNDO - there is no VACUUM

What if PostgreSQL didn’t need VACUUM at all? This seems hard to imagine. After all,
PostgreSQL uses multi-version concurrency control (MVCC), and if you create multiple versions of
rows, you have to eventually get rid of the row versions somehow. In PostgreSQL, VACUUM is in
charge of making sure that happens, and the autovacuum process is in charge of making sure
that happens soon enough. Yet, other schemes are possible, as shown by the fact that not all
relational databases handie MVCC in the same way, and there are reasons to believe that
PostgreSQL could benefit significantly from adopting a new approach. In fact, many of my
colleagues at EnterpriseDB are busy implementing a new approach, and today I'd like to teli you a
little bit about what we're doing and why we're doing it.

While it's certainly true that VACUUM has significantly improved over the years, there are some
problems that are very difficult to solve in the current system structure. Because old row versions
and new row versions are stored in the same place - the table, also known as the heap - updating
a large number of rows must, at least temporarily, make the heap bigger. Depending on the
pattern of updates, it may be impossible to easily shrink the heap again afterwards. For example,
imagine loading a large number of rows into a table and then updating half of the rows in each
block. The table size must grow by 50% to accommodate the new row versions. When VACUUM
removes the old versions of those rows, the original table blocks are now all 50% full. That space
is available for new row versions, but there is no easy way to move the rows from the new newly-
added blocks back to the old half-full blocks: you can use VACUUM FULL or you can use third-
party tools like pg_repack, but either way you end up rewriting the whole table. Proposals have

! icke hlnatinr the

About Me
@ Robert Haas
G+  Follow 0
View my complete profile
bW
Blog Archive
v 2018 (2)

¥ January (2)
DO or UNDO - there is no VACUUM

The State of VACUUM

2017 ()
2016 (6)
2015 (4)
2014 (1)
2013 (5)
2012 (14)
2011 (41)

2010 (46)

vy ¥y ¥ ¥y Y ¥y V¥ Y

38

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://rhaas.blogspot.com/2018/01/do-or-undo-there-is-no-vacuum.html

39

PARTING THOUGHTS

MVCC is currently the best approach for
supporting txns in mixed workoads

We only discussed MVCC for OLTP.
— Design decisions may be different for HT AP

Interesting MV CC research/project Topics:
— Block compaction

— Version compression

— On-line schema changes

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

40

PROJECT #2

Implement a latch-free Skip List in Peloton.
— Forward / Reverse Iteration
— Garbage Collection

Must be able to support both unique and non-
unique keys.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

& & CARNEGIE MELLON
=2 DATABASE GROUP

PROJECT #2 — DESIGN

We will provide you with a header file with the

index API that you have to implement.
— Data serialization and predicate evaluation will be taken
care of for you.

There are several design decisions that you are

going to have to make.

— There is no right answer.

— Do not expect us to guide you at every step of the
development process.

41

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

& & CARNEGIE MELLON
=2 DATABASE GROUP

PROJECT #2 — TESTING

We are providing you with C++ unit tests for you
to check your implementation.

We also have a BwTree implementation to
compare against.

We strongly encourage you to do your own
additional testing.

42

CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

43

PROJECT #2 — DOCUMENTATION

Y ou must write sufficient documentation and

comments in your code to explain what you are
doing in all different parts.

We will inspect the submissions manually.

& & CARNEGIE MELLON

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

44

PROJECT #2 — GRADING

We will run additional tests beyond what we
provided you for grading.

— Bonus points will be given to the groups with the fastest
implementation.
— We will use Valgrind when testing your code.

All source code must pass ClangFormat syntax

formatting checker.
— See Peloton documentation for formatting guidelines.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/peloton/wiki/Formatting

45

PROJECT #2 — GROUPS

This is a group project.
— Everyone should contribute equally.
— [ will review commit history.

Email me if you do not have a group.

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

46

PROJECT #2

Due Date: March 12 @ 11:59pm

Projects will be turned in using Autolab.

Full description and instructions:

http://15721.courses.cs.cmu.edu/spring2018/proj
ect2.html

& & CARNEGIE MELLON

"2 DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/project2.html

47

NEXT CLASS

Modern MVCC Implementations
— CMU Cicada

— Microsoft Hekaton

— TUM HyPer

— Serializable Snapshot Isolation

Q CARNEGIE MELLON
w o DATABASE GROUP CMU 15-721 (Spring 2018)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

