
Multi-Version
Concurrency Control (Part I)
@Andy_Pavlo // 15-721 // Spring 2018

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

0
5

https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Compare-and-Swap (CAS)

Isolation Levels

MVCC Design Decisions

Project #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

3

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address
New

Value

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

3

M
__sync_bool_compare_and_swap(&M, 20, 30)30

Compare
Value

Address
New

Value

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

3

M
__sync_bool_compare_and_swap(&M, 20, 30)30 X25 35

Compare
Value

Address
New

Value

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ISOL ATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of
exposing txns to uncommitted changes:
→ Dirty Read Anomaly
→ Unrepeatable Reads Anomaly
→ Phantom Reads Anomaly

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ANSI ISOL ATION LEVELS

SERIALIZABLE
→ No phantoms, all reads repeatable, no dirty reads.

REPEATABLE READS
→ Phantoms may happen.

READ COMMITTED
→ Phantoms and unrepeatable reads may happen.

READ UNCOMMITTED
→ All of them may happen.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ISOL ATION LEVEL HIERARCHY

7

REPEATABLE READS

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

REAL-WORLD ISOL ATION LEVELS

8

Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.bailis.org/blog/when-is-acid-acid-rarely/

CMU 15-721 (Spring 2018)

CRITICISM OF ISOL ATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
→ CURSOR STABILITY
→ SNAPSHOT ISOLATION

9

A CRITIQUE OF ANSI SQL ISOLATION LEVELS
SIGMOD 1995

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=223785
http://dl.acm.org/citation.cfm?id=223785

CMU 15-721 (Spring 2018)

CURSOR STABILIT Y (CS)

The DBMS’s internal cursor maintains a lock on a
item in the database until it moves on to the next
item.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

LOST UPDATE ANOMALY

11

Txn #2’s write to A will
be lost even though it
commits after Txn #1.

Txn #2

B
E
G
I
N

C
O
M
M
I
T

WRITE(A)

Txn #1

B
E
G
I
N

C
O
M
M
I
T

READ(A) WRITE(A)

A cursor lock on A
would prevent this
problem (but not
always).

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

SNAPSHOT ISOL ATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at
the time the txn started.
→ A txn will commit under SI only if its writes do not

conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

WRITE SKEW ANOMALY

13

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

WRITE SKEW ANOMALY

13

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

WRITE SKEW ANOMALY

13

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

WRITE SKEW ANOMALY

13

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

WRITE SKEW ANOMALY

13

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ISOL ATION LEVEL HIERARCHY

14

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ISOL ATION LEVEL HIERARCHY

14

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

CMU 15-721 (Spring 2018)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.

First implementation was InterBase (Firebird).
Used in almost every new DBMS in last 10 years.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

CMU 15-721 (Spring 2018)

MULTI-VERSION CONCURRENCY CONTROL

Main benefits:
→ Writers don’t block readers.
→ Read-only txns can read a consistent snapshot without

acquiring locks.
→ Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Txn Id Wraparound (New)

17

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf

CMU 15-721 (Spring 2018)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Txn Id Wraparound (New)

17

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/05-mvcc1/wu-vldb2017.pdf

CMU 15-721 (Spring 2018)

MVCC IMPLEMENTATIONS

18

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TUPLE FORMAT

19

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

Additional
Metadata

TXN-ID DATABEGIN-TS END-TS POINTER ...

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.
→ Considered to be original MVCC protocol.

Approach #2: Optimistic Concurrency
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can read/write a logical tuple.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Tid=10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10
10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10
10

B2 10 0 10 ∞

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10
10

B2 10 0 10 ∞
10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MV TO)

21

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10
B2 10 0 10 ∞

10

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a
latch-free version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

APPEND-ONLY STORAGE

24

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

APPEND-ONLY STORAGE

24

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

A3 XXX $333 Ø

B1 YYY $10 Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

APPEND-ONLY STORAGE

24

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

A3 XXX $333 Ø

B1 YYY $10 Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Just append new version to end of the chain.
→ Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Have to update index pointers for every new version.
→ Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TIME-TRAVEL STORAGE

26

On every update, copy the
current version to the time-
travel table. Update pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TIME-TRAVEL STORAGE

26

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table. Update
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TIME-TRAVEL STORAGE

26

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table. Update
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

A3 $333

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) Ø

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DELTA STORAGE

27

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Main Table

KEY INT_VAL

A1 XXX $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Main Table

KEY INT_VAL

A1 XXX $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Reuse pointers to variable-
length pool for values that do
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Reuse pointers to variable-
length pool for values that do
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Reuse pointers to variable-
length pool for values that do
not change between versions.

Requires reference counters
to know when it safe to free
memory. Unable to relocate
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NON-INLINE AT TRIBUTES

28

Reuse pointers to variable-
length pool for values that do
not change between versions.

Requires reference counters
to know when it safe to free
memory. Unable to relocate
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL Refs=2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Vacuum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Vacuum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Vacuum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Vacuum

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Vacuum Dirty?

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TUPLE-LEVEL GC

31

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1

Tid=12

Thread #2

Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

33

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞

Thread #1

Tid=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

33

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞

Thread #1

Tid=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

33

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞
B2 10 0 10 ∞0

Thread #1

Tid=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

POSTGRES TXN ID WRAPAROUND

Stop accepting new commands when the system
gets close to the max txn id.

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS has to update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS has to update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://eng.uber.com/mysql-migration/

CMU 15-721 (Spring 2018)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Physical
Address

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

Primary
Key

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

INDEX POINTERS

37

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

TupleId

Physical
Address

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MVCC CONFIGURATION EVALUATION

38

0

25

50

75

100

0 8 16 24 32 40T
hr

ou
gh

pu
t (

tx
n

/s
ec

)

Threads

Oracle/MySQL Postgres HYRISE HEKATON

MemSQL HANA NuoDB HyPer

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MVCC CONFIGURATION EVALUATION

38

0

25

50

75

100

0 8 16 24 32 40T
hr

ou
gh

pu
t (

tx
n

/s
ec

)

Threads

Oracle/MySQL Postgres HYRISE HEKATON

MemSQL HANA NuoDB HyPer

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://rhaas.blogspot.com/2018/01/do-or-undo-there-is-no-vacuum.html

CMU 15-721 (Spring 2018)

PARTING THOUGHTS

MVCC is currently the best approach for
supporting txns in mixed workoads

We only discussed MVCC for OLTP.
→ Design decisions may be different for HTAP

Interesting MVCC research/project Topics:
→ Block compaction
→ Version compression
→ On-line schema changes

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2

Implement a latch-free Skip List in Peloton.
→ Forward / Reverse Iteration
→ Garbage Collection

Must be able to support both unique and non-
unique keys.

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2 DESIGN

We will provide you with a header file with the
index API that you have to implement.
→ Data serialization and predicate evaluation will be taken

care of for you.

There are several design decisions that you are
going to have to make.
→ There is no right answer.
→ Do not expect us to guide you at every step of the

development process.

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2 TESTING

We are providing you with C++ unit tests for you
to check your implementation.

We also have a BwTree implementation to
compare against.

We strongly encourage you to do your own
additional testing.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2 DOCUMENTATION

You must write sufficient documentation and
comments in your code to explain what you are
doing in all different parts.

We will inspect the submissions manually.

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2 GRADING

We will run additional tests beyond what we
provided you for grading.
→ Bonus points will be given to the groups with the fastest

implementation.
→ We will use Valgrind when testing your code.

All source code must pass ClangFormat syntax
formatting checker.
→ See Peloton documentation for formatting guidelines.

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://github.com/cmu-db/peloton/wiki/Formatting

CMU 15-721 (Spring 2018)

PROJECT #2 GROUPS

This is a group project.
→ Everyone should contribute equally.
→ I will review commit history.

Email me if you do not have a group.

45

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PROJECT #2

Due Date: March 12th @ 11:59pm

Projects will be turned in using Autolab.

Full description and instructions:

http://15721.courses.cs.cmu.edu/spring2018/proj
ect2.html

46

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2017/project2.html

CMU 15-721 (Spring 2018)

NEXT CL ASS

Modern MVCC Implementations
→ CMU Cicada
→ Microsoft Hekaton
→ TUM HyPer
→ Serializable Snapshot Isolation

47

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

