@inproceedings{michon-etal-2020-integrating,
title = "Integrating Domain Terminology into Neural Machine Translation",
author = "Michon, Elise and
Crego, Josep and
Senellart, Jean",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.348/",
doi = "10.18653/v1/2020.coling-main.348",
pages = "3925--3937",
abstract = "This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain. Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques. We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance. Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="michon-etal-2020-integrating">
<titleInfo>
<title>Integrating Domain Terminology into Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elise</namePart>
<namePart type="family">Michon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josep</namePart>
<namePart type="family">Crego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Senellart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain. Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques. We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance. Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only.</abstract>
<identifier type="citekey">michon-etal-2020-integrating</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.348</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.348/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3925</start>
<end>3937</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Domain Terminology into Neural Machine Translation
%A Michon, Elise
%A Crego, Josep
%A Senellart, Jean
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F michon-etal-2020-integrating
%X This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain. Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques. We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance. Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only.
%R 10.18653/v1/2020.coling-main.348
%U https://aclanthology.org/2020.coling-main.348/
%U https://doi.org/10.18653/v1/2020.coling-main.348
%P 3925-3937
Markdown (Informal)
[Integrating Domain Terminology into Neural Machine Translation](https://aclanthology.org/2020.coling-main.348/) (Michon et al., COLING 2020)
ACL