@inproceedings{eshkol-taravella-etal-2020-chunk,
title = "Chunk Different Kind of Spoken Discourse: Challenges for Machine Learning",
author = "Eshkol-Taravella, Iris and
Maarouf, Mariame and
Badin, Flora and
Skrovec, Marie and
Tellier, Isabelle",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.635/",
pages = "5164--5168",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "This paper describes the development of a chunker for spoken data by supervised machine learning using the CRFs, based on a small reference corpus composed of two kinds of discourse: prepared monologue vs. spontaneous talk in interaction. The methodology considers the specific character of the spoken data. The machine learning uses the results of several available taggers, without correcting the results manually. Experiments show that the discourse type (monologue vs. free talk), the speech nature (spontaneous vs. prepared) and the corpus size can influence the results of the machine learning process and must be considered while interpreting the results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eshkol-taravella-etal-2020-chunk">
<titleInfo>
<title>Chunk Different Kind of Spoken Discourse: Challenges for Machine Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iris</namePart>
<namePart type="family">Eshkol-Taravella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariame</namePart>
<namePart type="family">Maarouf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flora</namePart>
<namePart type="family">Badin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Skrovec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Tellier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>This paper describes the development of a chunker for spoken data by supervised machine learning using the CRFs, based on a small reference corpus composed of two kinds of discourse: prepared monologue vs. spontaneous talk in interaction. The methodology considers the specific character of the spoken data. The machine learning uses the results of several available taggers, without correcting the results manually. Experiments show that the discourse type (monologue vs. free talk), the speech nature (spontaneous vs. prepared) and the corpus size can influence the results of the machine learning process and must be considered while interpreting the results.</abstract>
<identifier type="citekey">eshkol-taravella-etal-2020-chunk</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.635/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>5164</start>
<end>5168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chunk Different Kind of Spoken Discourse: Challenges for Machine Learning
%A Eshkol-Taravella, Iris
%A Maarouf, Mariame
%A Badin, Flora
%A Skrovec, Marie
%A Tellier, Isabelle
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F eshkol-taravella-etal-2020-chunk
%X This paper describes the development of a chunker for spoken data by supervised machine learning using the CRFs, based on a small reference corpus composed of two kinds of discourse: prepared monologue vs. spontaneous talk in interaction. The methodology considers the specific character of the spoken data. The machine learning uses the results of several available taggers, without correcting the results manually. Experiments show that the discourse type (monologue vs. free talk), the speech nature (spontaneous vs. prepared) and the corpus size can influence the results of the machine learning process and must be considered while interpreting the results.
%U https://aclanthology.org/2020.lrec-1.635/
%P 5164-5168
Markdown (Informal)
[Chunk Different Kind of Spoken Discourse: Challenges for Machine Learning](https://aclanthology.org/2020.lrec-1.635/) (Eshkol-Taravella et al., LREC 2020)
ACL