Correct Metadata for
Abstract
The spread of fake news can have devastating ramifications, and recent advancements to neural fake news generators have made it challenging to understand how misinformation generated by these models may best be confronted. We conduct a feature-based study to gain an interpretative understanding of the linguistic attributes that neural fake news generators may most successfully exploit. When comparing models trained on subsets of our features and confronting the models with increasingly advanced neural fake news, we find that stylistic features may be the most robust. We discuss our findings, subsequent analyses, and broader implications in the pages within.- Anthology ID:
- 2022.coling-1.573
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 6586–6599
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.573/
- DOI:
- Bibkey:
- Cite (ACL):
- Ankit Aich, Souvik Bhattacharya, and Natalie Parde. 2022. Demystifying Neural Fake News via Linguistic Feature-Based Interpretation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 6586–6599, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Demystifying Neural Fake News via Linguistic Feature-Based Interpretation (Aich et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.573.pdf
- Data
- RealNews
Export citation
@inproceedings{aich-etal-2022-demystifying, title = "Demystifying Neural Fake News via Linguistic Feature-Based Interpretation", author = "Aich, Ankit and Bhattacharya, Souvik and Parde, Natalie", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.573/", pages = "6586--6599", abstract = "The spread of fake news can have devastating ramifications, and recent advancements to neural fake news generators have made it challenging to understand how misinformation generated by these models may best be confronted. We conduct a feature-based study to gain an interpretative understanding of the linguistic attributes that neural fake news generators may most successfully exploit. When comparing models trained on subsets of our features and confronting the models with increasingly advanced neural fake news, we find that stylistic features may be the most robust. We discuss our findings, subsequent analyses, and broader implications in the pages within." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="aich-etal-2022-demystifying"> <titleInfo> <title>Demystifying Neural Fake News via Linguistic Feature-Based Interpretation</title> </titleInfo> <name type="personal"> <namePart type="given">Ankit</namePart> <namePart type="family">Aich</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Souvik</namePart> <namePart type="family">Bhattacharya</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Natalie</namePart> <namePart type="family">Parde</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>The spread of fake news can have devastating ramifications, and recent advancements to neural fake news generators have made it challenging to understand how misinformation generated by these models may best be confronted. We conduct a feature-based study to gain an interpretative understanding of the linguistic attributes that neural fake news generators may most successfully exploit. When comparing models trained on subsets of our features and confronting the models with increasingly advanced neural fake news, we find that stylistic features may be the most robust. We discuss our findings, subsequent analyses, and broader implications in the pages within.</abstract> <identifier type="citekey">aich-etal-2022-demystifying</identifier> <location> <url>https://aclanthology.org/2022.coling-1.573/</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>6586</start> <end>6599</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Demystifying Neural Fake News via Linguistic Feature-Based Interpretation %A Aich, Ankit %A Bhattacharya, Souvik %A Parde, Natalie %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F aich-etal-2022-demystifying %X The spread of fake news can have devastating ramifications, and recent advancements to neural fake news generators have made it challenging to understand how misinformation generated by these models may best be confronted. We conduct a feature-based study to gain an interpretative understanding of the linguistic attributes that neural fake news generators may most successfully exploit. When comparing models trained on subsets of our features and confronting the models with increasingly advanced neural fake news, we find that stylistic features may be the most robust. We discuss our findings, subsequent analyses, and broader implications in the pages within. %U https://aclanthology.org/2022.coling-1.573/ %P 6586-6599
Markdown (Informal)
[Demystifying Neural Fake News via Linguistic Feature-Based Interpretation](https://aclanthology.org/2022.coling-1.573/) (Aich et al., COLING 2022)
- Demystifying Neural Fake News via Linguistic Feature-Based Interpretation (Aich et al., COLING 2022)
ACL
- Ankit Aich, Souvik Bhattacharya, and Natalie Parde. 2022. Demystifying Neural Fake News via Linguistic Feature-Based Interpretation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 6586–6599, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.