WavLLM: Towards Robust and Adaptive Speech Large Language Model

Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Lingwei Meng, Hongkun Hao, Jing Pan, Xunying Liu, Jinyu Li, Sunit Sivasankaran, Linquan Liu, Furu Wei


Abstract
Recent advancements in large language models (LLMs) have expanded their scope in natural language processing (NLP) to encompass multimodal functions. However, integrating listening capabilities effectively remains a significant challenge for generalization and complex auditory task execution. In this work, we introduce WavLLM, a robust and adaptive speech large language model featuring dual encoders—a Whisper encoder for semantics and a WavLM encoder for speaker characteristics. Within the two-stage curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks and also apply it to specialized speech-question-answer (SQA) dataset, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. The codes, models, audio samples, and SQA evaluation set can be accessed at https://github.com/microsoft/SpeechT5/tree/main/WavLLM.
Anthology ID:
2024.findings-emnlp.263
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2024
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4552–4572
Language:
URL:
https://aclanthology.org/2024.findings-emnlp.263/
DOI:
10.18653/v1/2024.findings-emnlp.263
Bibkey:
Cite (ACL):
Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Lingwei Meng, Hongkun Hao, Jing Pan, Xunying Liu, Jinyu Li, Sunit Sivasankaran, Linquan Liu, and Furu Wei. 2024. WavLLM: Towards Robust and Adaptive Speech Large Language Model. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 4552–4572, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
WavLLM: Towards Robust and Adaptive Speech Large Language Model (Hu et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-emnlp.263.pdf