Where the snails have no name: a molecular phylogeny of Raphitomidae (Neogastropoda: Conoidea) uncovers vast unexplored diversity in the deep seas of temperate southern and eastern Australia

Criscione Francesco^{1,*}, Hallan Anders¹, Puillandre Nicolas², Fedosov Alexander³

¹ Australian Museum, Sydney NSW, Australia

 ² Institut Systématique Évolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. CP, Paris, France
 ³ A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia

* Corresponding author : Francesco Criscione, email address : francesco.criscione@austmus.gov.au

Abstract :

Although raphitomid snails are a dominant component of gastropod communities in deep seas worldwide, their systematics is still largely tentative. We assembled the most complete sampling of Raphitomidae from south-eastern Australia to date. Based on morphological and molecular data from this material, we produced a robust phylogenetic framework and used it to delimit genera. For the focus area, our results show a large proportion of undescribed species- and genus-level taxa, 11 of which are formally described herein. We demonstrate that the examination of purely morphological characters rarely suffices for the purpose of accurate genus delimitation. As a result, some traditionally highly diverse raphitomid genera (such as Gymnobela) turn out to be artificial assemblages of several unrelated, mostly undescribed, genus-level lineages. Our data suggest that comparable configurations of shell and radular features, observed at the genus level, commonly do not reflect true phylogenetic relationships. However, our results are inconclusive as to whether homoplasy or conservatism are the drivers of this phenomenon. Accommodating for the inevitable sampling biases, south-eastern Australia appears as a possible hotspot for both raphitomid diversity and endemism, when compared with adjacent areas.

Keywords : comparative anatomy, convergence, endemic, mtDNA, taxonomy, shell characters

1	
2	
3	
4	
5	
6	
7	
/	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
25	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
υU	

1	Introduction
2	Over a century after the expeditions of the Challenger, Albatross and Siboga (Watson, 1886;
3	Dall, 1908; Schepman, 1913), deep-sea exploration remains one of the major frontiers for
4	the discovery of marine mollusc biodiversity (Bouchet et al., 2016).
5	Over the last 35 years, deep-sea expeditions have been conducted across the Indo-Pacific
6	under the Tropical Deep-Sea Benthos (TDSB) programme, led by the Muséum national
7	d'Histoire naturelle (MNHN) (https://expeditions.mnhn.fr). These expeditions have revealed
8	a significant molluscan diversity, roughly projected to be in the order of 25-30,000 species
9	for the south Pacific (Bouchet et al., 2008). An estimated 5,000 of these comprise the group
10	commonly referred to as turriform conoidean gastropods. Turriform Conoidea, or simply
11	'turrids', is a conventional name used for the heterogenous assemblage including all but two
12	(Conidae and Terebridae) of the 18 currently recognised families in the neogastropod
13	superfamily Conoidea Fleming, 1822 (Bouchet et al., 2009; Abdelkrim et al., 2018a).
14	Turriform Conoidea is the most diverse group of marine molluscs, with current estimates of
15	354 valid Recent genera and 3776 named Recent species (Horton et al., 2019). Maximum
16	species diversity within turrids is found in offshore and deep-sea gastropod assemblages
17	where, however, many species exhibit low abundance (Sysoev, 1997; Kantor et al., 2008;
18	Bouchet et al., 2009). In general, turriform conoideans are characterised by considerable
19	morphological homoplasy, with numerous cases where distantly related taxa exhibit almost
20	identical shell shape and sculpture (Sysoev, 1997; Kantor et al., 2008; Bouchet et al., 2009).
21	Because of their high diversity, low abundance and morphological complexity combined, the
22	systematics of deep-sea turriform conoideans below family level remains tentative. Genera
23	and species are diagnosed primarily based on morphology (e.g. Bouchet & Warén, 1980;
24	Sysoev & Kantor, 1990; Sysoev, 1996a; Sysoev, 1996b; Sysoev, 1997; Bouchet & Sysoev,

2001; Sysoev & Bouchet, 2001) and comparatively few genetic studies are available (e.g. Puillandre et al., 2009; Puillandre et al., 2010; Fedosov & Puillandre, 2012; Kantor et al. 2012; Kantor et al., 2016; Abdelkrim et al., 2018b; Kantor et al., 2018; Fassio et al. 2019; Hallan et al., 2019). However, such studies have challenged current species delimitations and highlighted pervasive genus-level paraphyly (e.g. Bouchet & Warén, 1980; Sysoev & Kantor, 1990; Sysoev, 1996a; Sysoev, 1996b; Sysoev, 1997; Bouchet & Sysoev, 2001; Sysoev & Bouchet, 2001; Puillandre et al., 2010; Kantor et al., 2018). Furthermore, a comparatively large proportion of deep-sea turriform conoideans still await description. For many areas, the number of undescribed species far outnumbers that of described species. For instance, it has been estimated that in New Caledonia, about 80% of deep-sea turriform conoideans are undescribed (Bouchet et al., 2008). The family Raphitomidae Bellardi, 1875 (Bouchet et al., 2011), notably in the deep sea, are among the most poorly studied families of the group (Bouchet et al., 2011). The family comprises a total of 795 Recent accepted species in 65 Recent accepted genera (source WORMS, Horton et al., 2019). Nearly two-thirds of these genera (39), accounting for more than half of the overall raphitomid diversity (418 species), are found below the continental shelf. These figures are based on the notion that bathymetric preferences of turriform conoidean genera are exclusive of either deep- or shallow seas (Bouchet et al., 2009). The type species of almost half of the deep-sea raphitomid genera were described in the 19th century, with only four named after 2000. No molecular data has accompanied these descriptions, with anatomical data provided only occasionally (e.g. Sysoev & Kantor, 1986; Sysoev, 1988; Kantor & Sysoev, 1989; Sysoev & Bouchet, 2001). For the vast majority of these genera, shell features are the only source of taxonomic information accessible from their type species. In addition, descriptions of most deep-sea raphitomids species have been

1	
2	
2	
л Л	
-	
s c	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
∠∪ 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
4J 46	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20	
27	

49	provided in faunistic studies, aiming primarily to present the results of sampling campaigns
50	in a given region and not necessarily to resolve the systematics. Consequently, generic
51	attributions have been almost exclusively based on shell features and are therefore
52	influenced by problems with character interpretation and undetected homoplasies. This
53	issue has resulted in the current situation whereby only three genera contain approximately
54	half of all accepted deep-sea raphitomid species. These genera (Pleurotomella Verril, 1872,
55	100 species; Gymnobela Verril, 1884, 75 and Xanthodaphne Powell, 1942, 33) have
56	subsequently been colloquially addressed as "dumpsters", acting as provisional containers
57	for newly described species of problematic generic attribution. For instance, Sysoev &
58	Bouchet (2001, p. 305) state: "we somewhat arbitrarily include the yoshidai complex of
59	species in <i>Gymnobela</i> ".
60	Among the consequences of such unresolved systematics is a tentative status of the current
61	biogeography of deep-sea raphitomids. A search of the Global Biodiversity Information
62	Facility (GBIF - https://www.gbif.org) for the eight most speciose genera (>10 species),
63	reveals that they all occur outside the marine realm for which their type species was
64	described. Most are found in several of the 30 marine realms (as delimited in Costello et al.,
65	2017): Pleurotomella and Gymnobela occur in 18 and 19 realms respectively,
66	Phymorhynchus Dall, 1908 and Taranis Jeffreys, 1870 occur in 15 realms, Xanthodaphne in
67	11, and Nepotilla Hedley, 1918 in 7.
68	However, without adequate phylogenetic evidence, genus monophyly cannot be assessed,
69	thus preventing appropriate biogeographical investigation. Assumptions of wide
70	distributions at the genus level, as currently accepted, would be upheld only in a scenario
71	where their monophyly is confirmed. However, large distributions of single genera are

72	currently considered rare (Sigwart, Sutton & Bennett, 2017). In the alternative scenario, any
73	notion of wide distributions would be an artefact of genus paraphyly.
74	There has been no recent attempt to revise the systematics and biogeography of any deep-
75	sea raphitomid genus. However, this is now possible for the Raphitomidae of southern and
76	south-eastern Australia, since suitable material has become available as a result of a
77	number of expeditions aiming to quantify slope and abyssal biodiversity of the area (Fig. 1)
78	(MacIntosh et al. 2018; Williams, 2018; O'Hara et al., unpublished data). These surveys have
79	yielded a considerable amount of well-preserved gastropod material from depths ranging
80	between approximately 900 and 5000 metres. Our preliminary identification of this material
81	has revealed a predominant raphitomid component, consisting almost exclusively of
82	undescribed taxa.
83	The present study combines morphological and molecular evidence generated from this
84	newly available material in order to construct a robust phylogenetic framework with the aim
85	to:
86	a) reconstruct phylogeny of Australian deep-sea Raphitomidae, with inclusion of taxa
87	from adjacent regions, whenever possible and appropriate;
88	b) delimit and describe new deep-sea raphitomid genera from southern and eastern
89	Australia, to facilitate subsequent taxonomic revisions;
90	c) explore the biogeographic patterns of the raphitomid fauna in the area and (when
91	possible) compare these with those observed in other adjacent marine regions.

Material and Methods

1	
2	
2	
1	
-+ _	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
∠∠ רי	
∠⊃ 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
<u>⊿</u> ∩	
- 1 0 ∕11	
+1 ⊿⊃	
+∠ ⊿⊃	
45 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
23	
00	

93	
94	Sample processing
95	The study material was collected in a series of voyages along the Australian coast
96	(IN2015_C01, IN2015_C02, IN2017_C01, RE_2017, Great Australian Bight; IN2017_V03,
97	temperate east coast; IN_2018_V06, Tasmanian seamounts) (Fig. 1, Table 1). Additional
98	comparative shallow and deep-sea material of Raphitomidae was studied from other
99	geographic areas obtained through various expeditions: (a) SS10/2005 in southern Western
100	Australia (McEnnulty et al., 2011), (b) several voyages of the MNHN Tropical Deep-Sea
101	Benthos programme (Bouchet et al., 2016) (c) LAMPOS (Arntz & Brey, 2003) and ANDEEP III
102	(Linse et al., 2007) in Antarctica, (d) AFRIDEEP in the south-western Indian Ocean (Türkay &
103	Pätzold, 2009) (Table 1).
104	The material is deposited at the Australian Museum, Sydney, Australia (AMS), the Muséum
105	national d'Histoire naturelle, Paris, France (MNHN), the South Australian Museum, Adelaide,
106	Australia (SAMA), the Tasmanian Museum and Art Gallery, Hobart, Australia (TMAG), the
107	Western Australian Museum, Perth, Australia (WAM) and the Bavarian State Collection of
108	Zoology, Munich, Germany (ZSM).
109	Following collection, specimens were either anaesthetised with an isotonic solution of
110	$MgCl_2$ and fixed in 96% ethanol or directly transferred into 96% ethanol. Shells were
111	subsequently drilled to extract the retracted animal. Alternatively, for MNHN post-2012
112	expeditions, specimens were exposed to microwaves, bodies removed from shells and then
113	fixed in 96% ethanol as described in Galindo et al. (2014). All shells were photographed after
114	fixation and (when not microwaved) prior to extraction of the animal.

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

116 Taxon sampling

As a result of ongoing systematic research on the Conoidea at the AMS, over 200 (mostly 117 118 unpublished) sequences of the mitochondrial gene COI have been obtained, following the 119 protocol described below, from largely undescribed deep-sea raphitomid taxa primarily from southern and eastern Australia. In order to assist with the selection of the study 120 material, the Automatic Barcode Gap Discovery (ABGD) methodology for primary species 121 122 delimitation (Puillandre et al., 2012) was applied to a dataset containing all COI sequences. 123 The web-based version of ABGD (http:// wwwabi.snv.jussieu.fr/public/abgd) was used with 124 a K2P model. The relative gap width (X) was set to 1, with other parameters left to default. 125 Resulting ABGD groups were considered species hypotheses for sample selection. Subsequently, a subset of samples was constructed that incorporated: (a) a selection of non-126 Australian species that represented at best the currently accepted supra-specific deep-sea 127 128 raphitomid taxa (including, when possible, type species), (b) all Australian deep-sea 129 raphitomid species as delimited by ABGD and (c) all Australian deep-sea raphitomid 130 morphospecies for which COI data was not available. For each of the species of (a), (b) and 131 (c), amplification of four additional genes (two mitochondrial - 16S rRNA and 12S rRNA; two nuclear - 28SrRNA and H3) was attempted. When available, additional 12S rRNA, 28SrRNA 132 133 and H3 sequences were sourced from GenBank (Table 1). The ingroup (on which 134 phylogenetic analyses are based) was assembled by selecting one sample per species of (a), 135 (b) and (c), subject to the availability of at least three out of the total five targeted markers. When possible, specimens used for morphological study (see below) were selected among 136 137 molecular vouchers to ensure an objective linkage of morphological and phylogenetic information. 138 139

1 ว		
2 3 4	140	From DNA extraction to sequencing
5 6 7	141	Molecular work was performed in laboratories at two institutions (AMS and MNHN). Unless
8 9	142	otherwise stated, the two laboratories followed the same methodology.
10 11 12	143	DNA was extracted from small pieces of foot muscle by using the Bioline Isolate II Genomic
12 13 14	144	DNA extraction kit for animal tissue, following the standard procedure of the manual (AMS)
15 16	145	or using the Epmotion 5075 robot (Eppendorf), following the recommendations of the
17 18 19	146	manufacturer (MNHN). A fragment of three mitochondrial genes [cytochrome oxidase
20 21	147	subunit I (COI), rRNA 12S (12S) and rRNA 16S (16S)] and of two nuclear genes [rRNA 28S
22 23 24	148	(28S) and histone H3 (H3)] were amplified using the following primer pairs:
25 26	149	LCO1490/HCO2198 for COI (Folmer et al., 1994), 12S-I/12S-III for 12S (Simon et al., 1991),
27 28 29	150	16SH/16LC for 16S (Palumbi, 1996), C1'/D2 for 28S (Dayrat et al., 2001) and H3A/H3B for H3
30 31	151	(Okusu et al., 2003).
32 33 34	152	PCR reactions were performed in volumes of 25 μ l, containing 3 ng DNA, 1X Qiagen
35 36	153	CoralLoad PCR Buffer, 2.5mM MgCl_2, 0.25mM dNTP, 0.5mM of each primer, 0.5 μ g/ μ l of BSA
37 38 20	154	and 0.2 μ l of Bioline MyTaq DNA polymerase. For COI, 12S, 16S and H3, amplification
39 40 41	155	consisted of an initial denaturation step at 94°C for 4 min, followed by 37 cycles of
42 43	156	denaturation at 94°C for 30 s, annealing at respectively 50, 57, 55 and 55°C for 30 s,
44 45 46	157	followed by extension at 72°C for 1 min. The final extension was set to 72°C for 5 min.
47 48	158	Conditions for the 28S fragment were as above, with the exception of 30 denaturation
49 50 51	159	cycles and annealing temperature set to 57°C for 45 s for the latter.
52 53	160	PCR products were purified and sequenced by the Macrogen (AMS) and Eurofins (MNHN)
54 55 56	161	sequencing facilities. Both strands of PCR fragments were purified with ExoSAP (Affymetrix)
57 58 59 60	162	and cycle-sequenced by use of the PCR primers. Chromatograms were manually corrected

1
2
3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
27
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<u>1</u> 2 <u></u> 22
4J A A
44 15
45
40
4/
48
49
50
51
52
53
54
55
56
57
58
59

for misreads, if necessary, and forward and reverse strands were merged into one sequence 163 file using CodonCode Aligner v. 3.6.1 (CodonCode Corporation, Dedham, MA). 164

165

166 Phylogenetic analyses

Sequences were manually (COI and H3) or automatically (12S, 16S and 28S) aligned using 167 MAFFT online (Rozewicki et al., 2017) by applying the automatic selection of the alignment 168 169 strategy. Where necessary, resulting alignments were refined by eye. Sequences were 170 deposited in GenBank and BOLD (Table 1). Turris babylonia (Linnaeus, 1758) (Turridae), Lienardia mighelsi Iredale & Tomlin, 1917 (Clathurellidae) and Citharomangelia 171 172 planilabroides (Tryon, 1884) (Mangeliidae) served as outgroups. Analyses were first 173 performed on each gene separately to check for inconsistency between trees (results not shown). As no supported incongruences were found, all genes were concatenated in a single 174 175 dataset. Phylogenetic trees were reconstructed by implementing maximum likelihood (ML) 176 and Bayesian inference (BI) methods, using RAxML (Stamatakis, 2006) and MrBayes 177 (Ronquist & Huelsenbeck, 2001) respectively. Both analyses were performed on the Cipres 178 Science Gateway (http://www.phylo.org/portal2), using RAxML-HPC2 on XSEDE and MrBayes v. 3.2.2 on XSEDE. In all analyses the 16S, 12S and 28S genes and the three codon 179 180 positions of the COI and H3 genes were treated as independent partitions, with the substitution model set to GTR+G and GTR+G+I for the RAxML and MrBayes analyses, 181 respectively; the parameters of the substitution model were evaluated independently for 182 each partition during the analyses. Robustness of the nodes of the ML trees was assessed 183 using a bootstrapping procedure with 1,000 replicates. Each of the two runs of the BI 184 analysis consisted of six Markov chains and 10,000,000 generations, with five chains, three 185 swaps at each generation, a sampling frequency of one tree per 1,000 generations and a 186 60

1 ว		
2 3 4	187	chain temperature set to 0.02. Convergence of each analysis was evaluated using Tracer v.
5 6 7	188	1.4.1 (Rambaut et al., 2018) to check that all effective sample size values exceeded 200.
, 8 9	189	Consensus trees were calculated after omitting the first 25% trees as burn-in. Nodal support
10 11 12	190	was assessed as posterior probability in the BI analyses.
12 13 14	191	
15 16	192	Morphological examinations
17 18 19	193	Shell morphology and when possible, internal anatomy, including radular morphology, were
20 21	194	studied for at least one specimen for each of the Australian species.
22 23 24	195	We describe shell morphology using the terminology established by Röckel, Korn & Kohn
25 26	196	(1995). Descriptions are based on shells orientated in the traditional way, with the spire
27 28 29	197	uppermost and with the aperture facing the viewer. Protoconchs were measured in
30 31	198	standard position and the number of whorls counted according to Bouchet & Kantor (2004).
32 33 34	199	Maximum shell length (SL) and width (SW) were measured using a digital calliper and
35 36	200	rounded to the nearest 0.1 mm, with the number of whorls counted according to Bouchet &
37 38	201	Kantor (2004).
39 40 41	202	When removed from ethanol, animals were briefly rehydrated in distilled water. Using
42 43	203	standard dissection tools, the foregut organ complex, comprising the proboscis, venom
44 45 46	204	gland, radula and salivary glands, was excised and the radular sac was isolated and placed
47 48	205	on a glass slide. During the dissection process, head-foot, mantle, genital and (non-radula)
49 50 51	206	foregut characters were examined where possible. After dissolution in diluted commercial
52 53	207	bleach, clusters of hypodermic teeth where rinsed repeatedly in distilled water, then
54 55 56	208	separated into individuals and ligament-connected pairs. Subsequently, the glass stub was
57 58 59 60	209	affixed to a carbon adhesive placed on a 12 mm diameter aluminium mount. All samples

2 3 4	210	were imaged at Macquarie University, Sydney, using a Phenom XL Scanning Electron
5 6 7	211	Microscope.
, 8 9	212	
10 11 12	213	Genus delimitation and name application
13 14	214	The genera were delimited according to the following criteria: (1) distinct genera form
15 16 17	215	clades, (2) clades are well-supported (in terms of nodal support), (3) all species in a clade
18 19	216	share a unique combination of morphological characters.
20 21 22	217	When sequences of the type species were not included in the analysis, genus attribution
23 24	218	was guided by the co-occurrence in all sequenced specimens of diagnostic shell and radular
25 26 27	219	(or other anatomical) features. When a combination of shell and radular characters, not
28 29	220	previously observed in any named raphitomid genus, was shared by all species of a given
30 31 32	221	clade, existing names were not considered applicable. For such clades, new genus names
33 34	222	were introduced. When no anatomical data was available and no unequivocally typical shell
35 36 27	223	traits could be observed, we refrained from introducing new genus names.
37 38 39	224	
40 41	225	Abbreviations
42 43 44	226	12S = 12S ribosomal RNA gene; 16S = 16S ribosomal RNA gene; 28S = 28S ribosomal RNA
45 46	227	gene; BI = Bayesian Inference; COI = Cytochrome c oxidase subunit I gene; dry = number of
47 48 49	228	dry shell specimens; CMR = Australian Commonwealth Marine Reserve; GAB = Great
50 51	229	Australian Bight; H3 = Histone H3 gene; Ht = holotype; ML = Maximum Likelihood; NSW =
52 53 54	230	New South Wales; NT = Northern Territory; OD = original designation of type species; PNG =
55 56	231	Papua New Guinea; Pt = paratype; Qld = Queensland; Tas = Tasmania; SL = shell length
57 58	232	(mm); SW = shell width (mm); VIC = Victoria; WA = Western Australia; wet = number of
60	233	ethanol-preserved (wet) specimens.

1		
2 3	224	Deculto
4	234	Results
5 6 7	235	Molecular analysis
, 8 9	236	In the vicinity of the barcode gap (Fig. S1), the ABGD analysis of the complete COI dataset
10 11 12	237	(200+ sequences) consistently returned a partition with 55 groups of sequences (Fig. S2).
12 13 14	238	Sequences of well-established and recognisable species, such as Spergo fusiformis (Habe,
15 16 17	239	1962), Famelica pacifica Sysoev & Kantor, 1987 and Theta lyronuclea (Clarke, 1959) were
17 18 19	240	correctly grouped by ABGD (in red in Fig. S2), indicating that the inferred gap was reliable.
20 21	241	Amplification of at least two additional target genes (among 16S, 12S, 28S and H3) was
22 23 24	242	successful for (at least) one specimen of each of 50 of these species (in bold in Fig. S2). At
25 26	243	least three of the target markers were also amplified for 8 additional morphospecies not
27 28 29	244	included in the ABGD analysis due to missing COI sequences. A five-gene dataset was then
30 31	245	generated that consisted of sequences from these 58 (50 + 8) Australian deep-sea species,
32 33 34	246	with 18 additional species of Raphitomidae from outside Australia and three outgroup
35 36	247	species from other conoidean families (Table 1). Of the total species included, 71 were from
37 38 20	248	deep water and five from shallow water. Most of the Australian species (51) were
40 41	249	undescribed. All except three could be assigned to 23 genera, 12 of which were
42 43	250	undescribed. Formal taxonomic descriptions of the type species of these newly recognised
44 45 46	251	genera are provided below. In the molecular analysis herein, type species of new genera are
47 48	252	represented by sequences of their holotype or of paratype material. Descriptions of
49 50 51	253	additional, non-type species will be presented in subsequent publications. These species are
52 53	254	labelled with a combination of the abbreviation 'sp.' and a number (1-5).
54 55 56	255	For clarity, the following molecular and anatomical comparisons are presented with
57 58	256	reference to existing and newly introduced taxon names. However, the underlying taxon
59 60	257	delimitations resulted from the combined assessment of the molecular and anatomical

Zoological Journal of the Linnean Society

Page 12 of 86

2
2
1
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
∠∪ ⊃1
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
44
40
46
47
48
49
50
51
52
52
22
54
55
56
57
58
59
60
00

1

differentiation (see Discussion) and were not foregone conclusions preceding the analyses
presented in this study.
Phylogenetic analyses were based on a total of 349 sequences (281 newly produced and 68
GenBank-sourced) consisting of: 73 12S sequences (65 new + 8 from GenBank), 77 16S
sequences (65 new + 12 from GenBank), 54 28S sequences (39 new + 15 from GenBank), 69

263 COI sequences (52 new + 17 from GenBank) and 76 H3 sequences (60 new + 16 from

264 GenBank). The final concatenated dataset of aligned sequences had a total length of 2,853

265 bp (12S: 600 bp, 16S: 536 bp, 28S: 731 bp, COI: 658 bp H3: 328 bp).

266 While most inferred clades were well-supported by both BI (Fig. 2) and ML trees (Fig. S3), a

267 few of the deeper nodes remained unstable and (in some cases) lacked support. In addition,

268 the occasional presence of polytomy can be attributed to the relatively limited taxon

269 sampling. The description of the tree topology is presented below, with emphasis given to

270 lineages that are consistently retrieved and supported by both analyses and that are

⁵ 271 relevant to the scope of this study.

All Raphitomidae clustered into three major monophyletic groupings in both BI and ML
 trees. Two of these clades, A and C, contained exclusively deep-sea taxa; the third clade, B,
 comprised shallow-water taxa (of which no Australian representatives were included in this
 analysis).

The smallest of the two deep-sea clades, A, included nine species in three described genera
[Famelica Bouchet & Warén, 1980 (3 species, 2 new), *Rimosodaphnella* Cossmann, 1916 (3
species, 2 new) and *Veprecula* Melvill, 1917 (1 known species)] and one previously
undescribed genus [*Glaciotomella* n. gen n. sp. (2 species, both new)]. The latter genus was
sister to a lineage comprising *Veprecula* cf. *spanionema* plus *Rimosodaphnella* spp. and

3 4	281	Famelica spp. All specimens in this clade were collected in temperate Australia, except for V.
5 6 7	282	cf. spanionema (Philippines) and Rimosodaphnella sp. (New Caledonia).
7 8 9	283	Clade C contained all remaining deep-sea taxa, amounting to 62 species from 22 genera (11
10 11	284	known and 11 new), and 7 species not assigned to any genus. A dichotomy of C separates a
12 13 14	285	small species cluster from a larger clade including the remaining samples.
15 16	286	The former cluster included exclusively unidentified species attributed to Pleurotomella,
17 18 10	287	with two from Antarctica and one from SE Australia comprising one subclade, and with one
20 21	288	from New Caledonia and one from Western Australia forming the other.
22 23	289	The larger clade was characterised by a basal polytomy, with four subclades containing
24 25 26	290	species of more than one genus, two clades including species of a single genus [Gladiobela
27 28	291	n. gen. (5 new species) and Pagodibela (4 new species)] and five species that did not cluster
29 30 31	292	with any other sample (Pueridaphne cirrisulcata n. gen. n. sp., Typhlosyrinx sp. and three
32 33	293	species unassigned to a genus). The first subclade contained 4 species in three new genera:
34 35 36	294	Fusobela n. gen. (possibly 2 new species – see below), Globodaphne pomum n. gen. n. sp.,
30 37 38	295	Trochodaphne cuprosa n. gen. n. sp. and one species unassigned to genus; the second
39 40	296	subclade included 10 species in three known genera: Gymnobela (4 new species),
41 42 43	297	Ponthiothauma E. A. Smith, 1895 (2 new) and Phymorhynchus (4 species, 2 new); the third
44 45	298	subclade comprised 2 unidentified species in 2 genera (Mioawateria Vella, 1954 and Taranis
46 47 48	299	Jeffreys, 1870) and the fourth subclade contained 3 species of uncertain generic attribution
49 50	300	and 23 species in 9 genera [Austrotheta n. gen. (2 new species), Spergo (6 species, 4 new, 1
51 52	301	unidentified), Theta (3 species, 2 new) and Austrobela (7 species, 6 new), Teretiopsis (1
55 54 55	302	unidentified) and Tatcheria (1 species) plus the monotypic Biconitoma n. gen., Aplotoma n.
56 57	303	gen. and <i>Nodothauma</i> n. gen.] and].
58 59 60	304	

3 4	305	Morphological analyses
5 6 7	306	Morphological examinations were conducted on all samples of deep-sea species from
8 9	307	temperate Australia and form the basis for the taxonomic descriptions below. When
10 11 12	308	possible and applicable, anatomical characters were assessed based on the holotype and on
12 13 14	309	conspecific vouchers sequenced for mtDNA.
15 16	310	Shells, foregut (primarily the radula) and head-foot characters of all candidate genera were
17 18 19	311	compared with features of other raphitomids where such characters are available in the
20 21	312	literature, and by the examination of comparative material where necessary.
22 23 24	313	Of the new taxa, the shell morphology ranged from elongate-fusiform to biconical, and with
25 26	314	sculptural elements including cancellate or with axial ribs, tubercles or spiral cords (Figs 3-4).
27 28 20	315	No sculptural elaboration or varix formation/thickening of the aperture, as that seen in
29 30 31	316	some other raphitomid groups such as Hemilienardia O. Boettger, 1895 (Fedosov et al.,
32 33	317	2017) was observed in the deep-sea taxa. Protoconchs, where available, were largely of the
34 35 36	318	typical diagonally cancellate raphitomid type (Bouchet et al., 2011) (Fig. 5), but arcuate
37 38	319	sculpture was also observed in species of Austrobela and Theta (Fig. 5D). Clarke (1959),
39 40 41	320	reported this protoconch type for Theta lyronuclea, which formed part of his rationale to
42 43	321	establish the (then) subgenus <i>Theta</i> .
44 45 46	322	Observed foregut morphologies ranged from the entire foregut complex (i.e. proboscis,
40 47 48	323	salivary glands, venom gland and radula) being absent, to extremely large and occupying the
49 50	324	majority of the rhynchocoel. The radulae, exclusively of the hypodermic type, varied from
52 53	325	simple, awl-shaped without barbs or blades, with a single dorsal blade, to double-barbed
54 55	326	(Fig. 6). Simple, awl-shaped teeth with or without a dorsal blade were more prevalent than
56 57 58	327	double-barbed teeth. The morphology of the base varied from being only slightly broader
59	270	than the basel portion of the shaft (the latter barein defining the teeth length without the

 $_{60}^{59}$ 328 than the basal portion of the shaft (the latter herein defining the tooth length without the

 base), to exhibiting a distinct lateral process, to very broad and angular. The size and shape of the basal opening was generally homogenous; large, subcircular, and unrestricted [compare to, for example, the restricted, lateral and ovate opening of Strictispiridae and Bouchetispiridae (Bouchet et al., 2011; Kantor & Puillandre, 2012; Hallan et al., 2019)]. The external texture of the base ranged from very fine to very coarse (Fig. 6), whereas the length of the adapical opening, and, where present, the dorsal blade, relative to the length of the shaft ranged from short (~0.1 ratio) to extremely long (~0.5). Eyes were absent in only one taxon (Biconitoma cretosa n. gen. n. sp.) and observed in all remaining taxa. The majority of taxa exhibited small to minuscule eyes, whereas some possessed well-developed, large Relievony eyes.

1		
2 3 4	339	Systematics
5 6	340	General remarks
7 8	341	If not stated otherwise, holotypes are dissected ethanol-preserved specimens and form the
9 10 11	342	basis of all systematic descriptions. The number of shell whorls is approximated to one
12 13	343	decimal unit. References to size are intended as relative to general patterns observed in the
14 15 16	344	Raphitomidae (see Bouchet et al., 2011). Shell and head-foot colouration reported in
17 18	345	descriptions are based on observations performed before fixation and may not be fully
19 20 21	346	reflected in the illustrations provided (Figs 3-5). Unless otherwise stated, the authorship of
22 23	347	the taxa described below corresponds to that of the present study.
24 25 26	348	
27 28	349	Superfamily Conoidea Fleming, 1822
29 30 31	350	Family Raphitomidae Bellardi, 1875
32 33	351	
34 35 36	352	Nodothauma n. gen.
37 38	353	Type species: Nodothauma magnifica n. gen. n. sp.: OD, herein.
39 40 41	354	Etymology: Derived from combination of 'nodos' (ancient Greek = toothless, for its lack of
42 43	355	radula) and 'thauma' (for its resemblance to <i>Ponthiothauma</i>).
44 45 46	356	ZooBank registration: urn:lsid:zoobank.org:act:86B1A839-13E6-45B5-8C77-8B8F8870FBBD
40 47 48	357	
49 50	358	Diagnosis
51 52 53	359	Shell (Fig. 3A) large, fusiform, orange-brown. Early teleoconch whorls narrow in profile,
54 55	360	subsequent whorls somewhat broader in appearance, producing weakly concave shell
56 57 58	361	outline; shoulder pronounced. Subsutural ramp wide, bearing spiral cords and weak axial
59 60	362	riblets on its abapical portion. Siphonal canal long, tapering. Aperture large, elongate-

1 ว		
2 3 4	363	pyriform. Columella with elongate burnt-orange stain. Anal sinus wide, u-shaped.
5 6 7	364	Rhynchocoel capacious, inner walls lined with dark red epithelium. Radula and venom
, 8 9	365	apparatus absent.
10 11 12	366	
12 13 14	367	Nodothauma magnifica n. sp.
15 16	368	(Fig. 3A)
17 18 19	369	
20 21	370	Material examined
22 23 24	371	Holotype: Australia, GAB, 1927 m, IN2015_C02_137, (-35.558, 134.083), AMS C.532707.
25 26	372	Paratypes: Australia, GAB, 1570 m, IN2015_C02_435, (-34.072, 130.267), 1 wet (SAMA
27 28 29	373	D44139); 1912 m, IN2015_C01_054, (-35.202, 131.629), 1 wet (SAMA D44255); 1509 m,
30 31	374	IN2015_C02_134, (-35.345, 134.045), 1 wet (AMS C.532689); 1509 m, IN2015_C02_134, (-
32 33 34	375	35.345, 134.045), 1 wet (AMS C.571573); 1 wet (AMS C.571637); 1927 m, IN2015_C02_137,
35 36	376	(-35.558, 134.083), 1 wet (AMS C.571739).
37 38 39	377	
40 41	378	Distribution
42 43	379	Known only from the Great Australian Bight.
44 45 46	380	
47 48	381	Etymology: In reference to its large shell, derived from 'magnificus' (Latin = majestic).
49 50 51	382	
52 53	383	ZooBank registration: urn:lsid:zoobank.org:act:FE4DEFB1-2CB0-49DF-9C6C-9AA1042C2365
54 55 56	384	
57 58	385	Description. Shell (Fig. 3A) large (H=71.6 mm, W=24.9 mm), elongate-fusiform, walls rather
59 60	386	solid, opaque. Protoconch eroded. Teleoconch of about seven orange-brownish whorls;

spire outline slightly concave. Shoulder pronounced, situated slightly adapical to whorl mid-height in early whorls, and indistinct on late teleoconch whorls. Subsutural ramp wide, concave to very lightly convex; suture impressed. Spiral sculpture below subsutural ramp of well-defined cords, about 12 on penultimate whorl and in excess of 40 on last adult whorl; weaker, but distinct spirals of similar spacing present on lower half of subsutural ramp. Axial sculpture of low opisthocline riblets confined largely to penultimate and last adult whorls, unevenly spaced; elsewhere, collabral growth lines only, most prominent on subsutural ramp with slightly raised cordlets at uneven intervals, reflecting shape of anal sinus. Last adult whorl evenly convex below subsutural ramp, weakly demarcated from long, evenly tapering siphonal canal, producing slight concavity in apertural view. Aperture elongate-pyriform, approximately half of shell length; outer lip thin, unsculptured; inner lip with distinct, rather wide whitish callus; innermost part of columella marked by prominent, elongate burnt-orange vertical stain. Anal sinus wide, moderately deep, broadly u-shaped. Cephalic tentacles broad, muscular, cylindrical, of medium length, with well-developed eyes at their outer base. Rhynchostomal lips thick, with thick-walled, moderately long introvert. Rhynchocoel capacious, internal walls lined in tall, dark red epithelium; oesophagus lined with epithelium of similar appearance. Radula and venom apparatus absent.

Remarks

Nodothauma magnifica n. gen. n. sp. exhibits some similarities to Abyssobela atoxica Kantor & Sysoev, 1989, notably in the whorl profile, spiral sculpture, the presence of dark content inside the rhynchocoel, and the absence of a radula and venom apparatus (Kantor & Sysoev, 1989; Y. Kantor, pers comm.) However, A. atoxica does not possess eyes (Y. Kantor, pers. comm.), whereas in *N. magnifica* n. gen. the eyes are well-developed and rather large

1		
2 3 4	411	(see Discussion). Polychaete fragments and foraminiferae have been recovered from the
5 6 7	412	intestine of specimen SAMA D44255.
, 8 9	413	
10 11 12	414	Fusobela n. gen.
12 13 14	415	Type species: Fusobela parvioculata n. gen. n. sp.; OD, herein.
15 16 17	416	Etymology: Derived from combination of 'fusus' (Latin = spindle, for its fusiform shell) and
17 18 19	417	'bela' (indicating resemblance with <i>Gymnobela</i>).
20 21	418	ZooBank registration: urn:lsid:zoobank.org:act:ED9196C5-E7B8-4FA3-933C-E9BBAA914488
22 23 24	419	
25 26	420	Diagnosis
27 28 29	421	Shell (Fig. 3B) biconical-fusiform, reddish. Protoconch multispiral. Teleoconch of at least 4
30 31	422	rather narrow whorls. Suture moderately impressed. Subsutural ramp wide. Scultpure of
32 33 34	423	irregular spiral cords on whorl periphery and collabral growth lines. Aperture elongate,
35 36	424	about half of shell length. Siphonal canal short, not clearly demarcated from shell base. Anal
37 38 39	425	sinus moderately wide, shallowly u-shaped. Rectal gland large, black. Cephalic tentacles
40 41	426	closely set, conical; eyes small. Venom apparatus large. Radula (Fig. 6F) of tightly rolled,
42 43 44	427	slender, rather cylindrical hypodermic teeth with no distinct barbs or blades; base rather
45 46	428	narrow, short. Ligament rather long, broad.
47 48 49	429	
50 51	430	Fusobela parvioculata n. sp.
52 53	431	(Figs 3B, 5F)
54 55 56	432	
57 58 59 60	433	Material examined

2		
3 4	434	Holotype: Australia, Tasmania, Flat area south of Brians, 1414 m, IN2018_V06_169, (-
5 6 7	435	44.239, 147.293), TMAG E59231.
8 9	436	
10 11 12	437	Distribution
13 14	438	Known only from the type locality.
15 16 17	439	
18 19	440	Etymology: In reference to the reduced size of its eyes, derived from 'parvus' (Latin = small)
20 21 22	441	and 'oculatus' (Latin = bearing eyes), adjective of feminine gender.
23 24 25	442	
25 26 27	443	ZooBank registration: urn:lsid:zoobank.org:act:54C64B09-3287-4A66-AA3E-AAB0F84BEFF1
28 29	444	
30 31 32	445	Description. Shell (Fig. 3B) (SL=18.2, SW=8.8) biconical-fusiform, rather thin-walled, semi-
33 34	446	translucent. Protoconch multispiral, broadly conical, of 2.7 convex whorls, eroded.
35 36 37	447	Protoconch-teleoconch transition clearly defined, broadly sinuate. Teleoconch of about 4.3
37 38 39	448	whorls with reddish colouration; columellar area dark reddish; suture moderately
40 41 42	449	impressed. Whorls with moderately wide subsutural ramp, straight to slightly convex
42 43 44	450	throughout teleoconch. Lower portion of whorl evenly convex. Teleoconch sculpture of
45 46	451	dense collabral growth lines, extending from subsutural ramp to lower portion of whorl;
47 48 49	452	spiral sculpture of cords, more prominent on periphery and with few weaker cords on
50 51	453	subsutural ramp. Last adult whorl weakly convex below subsutural ramp, gently tapering
52 53 54	454	into short siphonal canal. Aperture elongate, approximately half of shell length; outer lip
55 56	455	very thin, inner lip straight. Anal sinus moderately wide, shallow, u-shaped.
57 58 59 60	456	

1 2		
2 3 4	457	Anatomy (based on female). Osphradium very large; distinct, large, black rectal gland.
5 6 7	458	Cephalic tentacles closely set, thick, conical; eyes small, black. Muscular bulb very large,
7 8 9	459	venom gland long, convoluted, the majority situated ventral to oesophagus. Proboscis long,
10 11	460	with folded walls. Radular sac rather large.
12 13 14	461	Radula (Fig. 6F) of hypodermic type, straight to gently curved, tightly rolled, slender, rather
15 16	462	cylindrical, attaining 285 μm in length; no distinct barb or blade; adapical opening elongate,
17 18 19	463	approaching 1/10 of shaft length; base narrow, comparatively short; external texture
20 21	464	medium coarse. Ligament rather long, broad.
22 23 24	465	
24 25 26	466	Remarks
27 28 20	467	Fusobela parvioculata n. gen. n. sp. can be differentiated from other raphitomids by the
29 30 31	468	following combination of characters: a biconical-fusiform, reddish shell with short siphonal
32 33	469	canal not clearly demarcated from the shell base; conical, broad cephalic tentacles, and
34 35 36 37 38	470	long, cylindrical hypodermic teeth with no distinct barbs or blades.
	471	An additional juvenile specimen (AMS C.571736) is here treated as <i>Fusobela</i> cf.
39 40 41	472	parvioculata, due to the identical sculpture of the teleoconch to that of the holotype, and
42 43	473	the close genetic relationship. Further study is required to determine whether they ought to
44 45 46	474	be considered truly conspecific, or if they represent a species complex.
47 48	475	
49 50	476	<i>Aplotoma</i> n. gen.
52 53	477	Type species: Aplotoma braevitentaculata n. gen. n. sp.; OD, herein.
54 55	478	Etymology: Derived from combination of 'aplous' (ancient Greek = simple, for its featureless
56 57 58	479	shell) and 'toma' (in reference to the family type genus Raphitoma).
59 60	480	ZooBank registration: urn:lsid:zoobank.org:act:B4E3D8B2-912B-4654-B425-7FF464EC2E2E

1 2		
2 3 4	481	
5 6	482	Diagnosis
/ 8 9	483	Shell (Fig. 3C) broadly fusiform, opaque. Teleoconch of at least 5 whitish whorls. Suture
10 11	484	impressed. Spire whorls broad, with well-defined shoulder. Subsutural ramp wide, acclivous,
12 13 14	485	with sculpture of thickened u-shaped riblets marking position of anal sinus. Whorl periphery
15 16	486	with low, indistinct, widely set folds, intersected by closely spaced, rounded cords. Siphonal
17 18 19	487	canal moderately short. Aperture about half of shell length. Anal sinus wide, u-shaped.
20 21	488	Radular teeth (Fig. 6A) of hypodermic type, straight, somewhat loosely rolled, with long
22 23 24	489	dorsal blade; adapical opening subtriangular to ovate, rather short. Base barely wider than
24 25 26	490	basal portion of shaft. Ligament broad.
27 28 20	491	
29 30 31	492	Aplotoma braevitentaculata n. sp.
32 33	493	(Figs 3C, 6A)
34 35 36	494	
37 38	495	Material examined
39 40 41	496	Holotype: Australia, VIC, East Gippsland CMR, 2338 m, IN2017_V03_035, (-37.792, 150.382),
42 43	497	AMS C.571635.
44 45 46	498	
40 47 48	499	Distribution
49 50	500	Known from a single locality off East Gippsland, Victoria.
51 52 53	501	
54 55	502	Etymology: In reference to the comparatively short cephalic tentacles, derived from
56 57 58	503	'braevis' (Latin = short) and 'tentaculatus' (Latin = bearing tentacles), adjective of feminine
59 60	504	gender.

505 ZooBank registration:

506 urn:lsid:zoobank.org:act:119007B3-5F12-451E-BF86-C864AEFFB467

Shell (Fig. 3C) (SL=20.5, SW=10.9) broadly fusiform, rather thin-walled, opaque. Protoconch of at least 2 whorls, eroded. Protoconch-teleoconch transition clearly defined, broadly sinuate. Teleoconch of about 5.3 uniformly whitish whorls, suture impressed. Whorls rather broad, with wide subsutural ramp, straight in early teleoconch whorls and slightly concave on later ones; well-pronounced shoulder situated at approximately mid-height of whorl; lower portion of whorl subcylindrical to cylindrical. Subsutural ramp sculpture of obsolete, low and rounded cords, and evenly spaced, raised arcuate riblets. Supra-peripheral two last cords stronger and more narrowly spaced. Teleoconch axial sculpture of 20 or more rounded opisthocline ribs below subsutural ramp, roughly half to third of interspaces, becoming indistinct toward suture and obsolete toward base of last whorl. Spiral sculpture of regularly spaced cords, about eight densely placed on penultimate whorl, over 30 on last whorl alternate strong and weak, latter becoming indistinct towards whorl base. Microsculpture of indistinct collabral growth lines. Last adult whorl evenly convex below subsutural ramp, clearly demarcated from straight, moderately short siphonal canal. Aperture elongate, approximately half of shell length; outer lip thin; inner lip whitish, with thin callus, straight. Anal sinus moderately wide, shallow, u-shaped. Cephalic tentacles very short, conical, very small eyes situated at their outer base. Oesophagus very wide; proboscis short, conical; venom gland rather short. Radular teeth (Fig. 6A) of hypodermic type, attaining approximately 115 μm in length, straight, somewhat loosely rolled. Ventral barb absent, dorsal blade approaching 1/3 of shaft length. Adapical opening subtriangular to elongate-ovate, about 1/5-1/6 of shaft

2 3	529	length. Base not swollen, barely wider than widest part of shaft, with medium coarse
4 5		
6 7	530	texture; lateral process present, more or less perpendicular to orientation of shaft. Basal
8 9	531	opening large, circular. Ligament rather broad.
10 11 12	532	
13 14	533	Remarks
15 16 17	534	See Remarks below for comparison with <i>Biconitoma cretosa</i> . Polychaete fragments were
18 19	535	recovered from the intestine.
20 21 22	536	
23 24	537	Biconitoma n. gen.
25 26 27	538	Type species: <i>Biconitoma cretosa</i> n. gen. n. sp.; OD, herein.
27 28 29	539	Etymology: Derived from combination of 'biconicus' (Latin = biconical, for its shell general
30 31	540	shape) and 'toma' (in reference to the family type genus <i>Raphitoma</i> Bellardi, 1847).
32 33 34	541	ZooBank registration: urn:lsid:zoobank.org:act:8D2E3C5F-173F-40AB-95A1-BFBA222BEB04
35 36	542	
37 38 39	543	Diagnosis
40 41	544	Shell (Fig. 3D) fusiform-biconical, opaque. Teleoconch of about 5 whitish whorls. Spire
42 43	545	whorls broad, with wide subsutural ramp and rounded whorl periphery. Subsutural ramp
44 45 46	546	with 3-4 equally distanced spiral threads, whorl periphery with rounded opisthocline folds
47 48	547	and prominent spiral cords throughout height of whorl. Siphonal canal straight, tapering.
49 50 51	548	Aperture elongate, >50% of shell length. Anal sinus wide, deeply u-shaped. Cephalic
52 53	549	tentacles slightly tapering; eyes absent. Radula (Fig. 6G) of tightly rolled hypodermic teeth
54 55 56	550	with sharp, relatively short blade and triangular adapical opening. Tooth base broad, with
57 58	551	weak lateral process and coarse texture. Ligament large, broad.
59 60	552	

1		
2 3 4	553	Biconitoma cretosa n. sp.
5		
6 7	554	(Figs 3D, 6G)
8 9	555	
10 11 12	556	Material examined
13 14	557	Holotype: Australia, NSW, off Byron Bay, 2587 m, IN2017_V03_090, (-28.677, 154.203), AMS
15 16 17	558	C.482313.
18 19	559	Paratype: Australia, NSW, off Byron Bay, 3825 m, IN2017_V03_099, (-28.371, 154.649), 1
20 21 22	560	wet (AMS C.482288).
22 23 24	561	
25 26	562	Distribution
27 28 29	563	Known from two adjacent localities off Byron Bay, northern New South Wales.
30 31	564	
32 33 34	565	Etymology: In reference to the somewhat chalky appearance of the shell, derived from
35 36	566	'cretosus' (Latin = chalky), adjective of feminine gender.
37 38 20	567	ZooBank registration: urn:lsid:zoobank.org:act:49AFD1E4-21AD-473C-A983-1504F5AAA623
40 41	568	Description. Shell (Fig. 3D) (SL= 24.6, SW= 12.9) fusiform-biconical, opaque. Protoconch
42 43	569	eroded. Teleoconch of about 5 uniformly whitish, chalky whorls; suture impressed. Whorls
44 45 46	570	broad, with wide, flat to lightly concave subsutural ramp and rounded to sub-cylindrical
47 48	571	periphery. Shoulder situated slightly below half-height of whorl, severely eroded in early
49 50 51	572	teleoconch whorls. Axial sculpture of 15 or more rounded opisthocline folds below
52 53	573	subsutural ramp, roughly half to third width of their interspaces, becoming indistinct toward
54 55 56	574	suture and obsolete toward base of last whorl. Spiral sculpture of fine but distinct threads
57 58	575	on subsutural ramp, and rather prominent cords subsequently (totalling about ten on
59 60	576	penultimate whorl, >30 on last whorl). Microsculpture of indistinct collabral growth lines.

2 3	577	Last adult whorl evenly convex below subsutural ramp, constricted towards stout, tapering
4 5	-	
6 7	578	siphonal canal. Aperture elongate, a little over half of shell length; outer lip thin,
8 9	579	unsculptured. Inner lip whitish, rather straight, gently recurved, with distinct callus. Anal
10 11 12	580	sinus wide, deep, u-shaped.
13 14	581	Animal uniform cream. Head broad, blunt. Cephalic tentacles of moderate length, slightly
15 16 17	582	tapering toward blunt tip. Eyes absent. Penis long, slender, cylindrical, with small seminal
18 19	583	papilla situated distally; anterior vas deferens long, undulating, visible through epidermis.
20 21	584	Introvert rather short; rhynchostomal sphincter thick, muscular. Proboscis very long,
22 23 24	585	narrow, pointed, coiled counterclockwise; venom gland of medium length; muscular bulb
25 26	586	elongate, lustrous.
27 28 29	587	Radula (Fig. 6G) of straight, tightly rolled hypodermic teeth attaining 135 μm in length; no
30 31	588	ventral barb; dorsal blade sharp, approximately 1/6 of length of shaft; adapical opening
32 33	589	elongate-triangular, about 1/10 of length of shaft. Base moderately broad, with weak lateral
34 35 36	590	process; exterior of base with coarse texture; basal opening large. Ligament large, broad.
37 38	591	
39 40 41	592	Remarks
42 43	593	This new taxon can be differentiated from other known raphitomids by its biconical shell
44 45 46	594	with distinct spiral cords; the absence of eyes; a long penis with small distal seminal papilla,
47 48	595	and comparatively short, tightly rolled, hypodermic teeth with subtriangular adapical
49 50	596	openings.
52 53	597	In terms of shell morphology, this species can be difficult to differentiate from Aplotoma
54 55	598	braevitentaculata (Fig. 3C), despite their difference in radular features (Fig. 6A and 6F) and
56 57 58 59 60	599	their demonstrated genetic distinctiveness. However, the latter possesses a distinctly more

1		
2 3	<u> </u>	convey shall become neuro coutoly should and wharl profile with parrower substitutal ramp
4	600	convex shell base, a more acutely shouldered whori profile with harrower substitural ramp,
5 6 7	601	and its axial sculpture consists of considerably narrower ribs.
, 8 9	602	
10 11 12	603	<i>Pagodibela</i> n. gen.
13 14	604	Type species: <i>Pagodibela maia</i> n. gen. n. sp.; OD, herein.
15 16 17	605	Etymology: Derived from combination of 'pagoda' (for its pagodiform shell) and 'bela'
17 18 19	606	(indicating resemblance with Gymnobela).
20 21 22	607	ZooBank registration: urn:lsid:zoobank.org:act:94C0A331-C79B-4D25-982A-BE73432D347D
22 23 24	608	
25 26	609	Diagnosis
27 28 29	610	Shell (Fig. 3E) fusiform-biconical, semi-translucent, with high spire. Protoconch (Fig. 5C)
30 31	611	multispiral, cyrthoconoid, with diagonally cancellate sculpture. Teleoconch with at least 6
32 33 34	612	strongly angulated whorls; suture deep. Whorl profile pagodiform, with wide subsutural
35 36	613	ramp terminating in prominent carina, below subsutural ramp with raised arcuate riblets
37 38 39	614	and rounded spiral cords. Siphonal canal straight, tapering. Aperture elongate, almost half
40 41	615	of shell length. Anal sinus narrow. Cephalic centacles cylindrical; eyes small. Radula (Fig. 6E)
42 43	616	of tightly rolled hypodermic teeth with very long dorsal blade and long, narrow adapical
44 45 46	617	opening. Base rather broad, with coarse external texture. Ligament small, short.
47 48	618	
49 50 51	619	Pagodibela maia n. sp. Criscione
52 53	620	(Figs 3E, 5C, 6E)
54 55 56	621	
57 58 59 60	622	Material examined

1 2		
3 4 5 6 7	623	Holotype: Australia, Coral Sea CMR, 1013 m, IN2017_V03_121, (-23.587, 154.194), AMS
	624	C.571678.
7 8 9	625	
10 11	626	Distribution
12 13 14	627	Known only from the type locality.
15 16	628	ZooBank registration: urn:lsid:zoobank.org:act:30D02181-94B6-45D7-9275-CEA1845F3DE6
17 18 19	629	
20 21	630	Etymology: In honour of my adorable little explorer Maia Criscione, in recognition of the
22 23 24	631	love she has always expressed for the natural world, noun in apposition.
25 26 27	632	
27 28 29	633	Description. Shell (Fig. 3E) (SL=19.9, SW=9.5) fusiform-biconical, thin-walled, semi-
30 31	634	translucent. Protoconch (Fig. 5C) orange, multispiral, broadly conical, of 2.5 gently convex to
32 33 34 35 36 37 38	635	indistinctly shouldered diagonally cancellate whorls. Protoconch-teleoconch transition
	636	clearly defined, broadly sinuate. Teleoconch of 6.2 white, strongly angulated whorls; suture
	637	deeply impressed. First teleoconch whorl convex to indistinctly shouldered, succeeding
39 40 41	638	whorls pagodiform, with wide, straight or slightly concave subsutural ramp concluded by
42 43	639	gemmate carina situated about mid-height of whorl. Whorl base narrowing clearly towards
44 45 46	640	lower suture. Subsutural ramp sculpture of low and rounded cords, and evenly spaced,
47 48	641	raised arcuate riblets producing somewhat reticulate pattern. Supra-peripheral two last
49 50 51	642	cords stronger and more narrowly spaced. At whorl base, regularly spaced, alternate strong
51 52 53 54 55	643	and weak cords, somewhat gemmate due to weak nodules at intersections of cords with
	644	dense collabral riblets. Last adult whorl with almost triangular base, shortly constricted to
57 58 59 60	645	and clearly demarcated from straight, tapering siphonal canal. Aperture elongate, nearly

1		
2 3 4	646	half of shell length; outer lip thin; inner lip whitish, with thin callus, straight. Anal sinus
5 6 7	647	narrow.
, 8 9	648	Head wide, cephalic tentacles cylindrical; small black eyes situated at their bases. Penis
10 11 12	649	small, simple. Proboscis elongate, conical, not large; venom gland short; muscular bulb
12 13 14	650	large.
15 16	651	Radular teeth (Fig. 6E) of hypodermic type, attaining about 175 μm in length, relatively
17 18 19	652	straight to slightly curved, tightly rolled; barbs absent; dorsal blade extremely long,
20 21	653	approaching half of shaft length; adapical opening very narrow and elongate, approximately
22 23 24	654	1/3 of shaft length; base rather broad, external texture coarse, consisting of dense network
25 26	655	of diagonal ridges, becoming obsolete toward lateral margins; lateral process very weak;
27 28 29	656	basal opening large, subcircular. Ligament small, short.
30 31	657	
32 33 34	658	Remarks
35 36	659	This taxon can be differentiated from other raphitomids by its pagodiform shell with a
37 38 20	660	gemmate carina, sculpture of equally spaced fine spiral cords and a radula with hypodermic
40 41	661	teeth bearing extremely long dorsal blade and adapical openings.
42 43	662	
44 45 46	663	Austrobela n. gen.
47 48	664	Type species: Austrobela rufa n. gen. n. sp.; OD, herein.
49 50 51	665	Etymology: Derived from combination of 'auster' (Latin = south; for its discovery in the
52 53	666	Southern Hemisphere) and 'bela' (indicating resemblance with Gymnobela).
54 55 56	667	ZooBank registration: urn:lsid:zoobank.org:act:C0AFB30C-6D3C-42EB-98F1-624BF9E75CC3
57 58	668	
59 60	669	Diagnosis

2		
3 4	670	Shell (Fig. 3F) fusiform. Protoconch (Fig. 5E) multispiral, orange. Teleoconch whorls clearly
5 6 7	671	shouldered, with subcylindrical lower portion. Scultpure of axial riblets below subsutural
7 8 9	672	ramp; spiral sculpture of fine, sometimes flattened cords or shallow grooves; misrosculpture
10 11	673	of growth lines. Aperture elongate, large, about half of shell length. Siphonal canal long,
12 13 14	674	straight; columella straight. Sinus wide, L-shaped. Cephalic tentacles muscular,
15 16	675	subcylindrical; eyes large. Rhynchodeal introvert rather thin-walled, densely folded. Venom
17 18 19	676	apparatus extremely large, occupying majority of rhynchocoel. Radula (Fig. 6D) of
20 21	677	hypodermic teeth with two large, sharp distal barbs; lower portion of shaft somewhat
22 23	678	inflated; base broad; ligament thick.
24 25 26	679	
27 28	680	Austrobela rufa n. sp.
29 30 31	681	(Figs 3F, 5E, 6D)
32 33	682	
34 35 36	683	Material examined
37 38	684	Holotype: Australia, GAB, 965 m, IN2015_C02_131, (-35.153, 134.109), AMS C.571709.
39 40 41	685	Paratypes:
42 43	686	Australia, GAB, 978 m, IN2015_C02_382, (-33.516, 130.265), 1 wet (AMS C.571680); 1029 m,
44 45	687	IN2015_C01_110, (-34.629, 132.356), 1 wet (AMS C.483817); 1016 m, IN2015_C01_117, (-
46 47 48	688	34.674, 132.479), 1 wet (AMS C.571681); 994 m, IN2015_C01_114, (-34.705, 132.531), 1 wet
49 50	689	(AMS C.571679); 1350 m, IN2015_C01_108, (-34.738, 131.841), 2 wet (SAMA D44253); 2
51 52 53	690	wet (AMS C.483801); 1 wet (AMS C.483802); 2 wet (AMS C.571668); 1015 m,
54 55	691	IN2015_C02_167, (-34.823, 132.692), 1 wet (AMS C.532677); 1509 m, IN2015_C02_134, (-
56 57 58	692	35.345, 134.045), 1 wet (AMS C.532691); 1 wet (AMS C.571699). Australia, Tasmania, St
59 60		

1 2		
- 3 4	693	Helens flat, 1127 m, IN2018_V06_184, (-41.209, 148.797), 1 wet (AMS C.574588); 1 wet
5 6 7	694	(AMS C.271201).
, 8 9	695	
10 11 12	696	Distribution
12 13 14	697	Known from the Great Australian Bight, northern Tasmania and the southern coast of New
15 16	698	South Wales.
17 18 19	699	
20 21	700	Etymology: In reference to the colouration of its shell, derived from 'rufus' (Latin = red),
22 23 24	701	adjective of feminine gender.
25 26	702	
27 28 20	703	ZooBank registration: urn:lsid:zoobank.org:act:9212F7D7-D734-49A7-94AB-B24011C9BFF9
30 31	704	
32 33	705	Description. Shell (Fig. 3F) (SL=35.4, SW=14.6) thin-walled, fusiform, semi-translucent to
34 35 36	706	opaque. Protoconch (Fig. 5E) (based on paratype AMS C.571681) orange, cyrthoconoid,
37 38	707	multispiral, with 4.5 whorls, first whorl with punctate sculpture (Fig. 5E), remaining whorls
39 40 41	708	with fine, evenly distanced arcuate riblets (about 35 on last whorl). Protoconch-teleoconch
42 43	709	transition sharply delineated, broadly sinuate. Teleoconch of about six whorls with broad,
44 45 46	710	slightly concave subsutural ramp. Whorl lower portion with axial sculpture of strong, rather
40 47 48	711	sharp opisthocline ribs, well-pronounced at shoulder of two earliest and last teleoconch
49 50	712	whorls; whorls subcylindrical below shoulder. Third and penultimate whorls without
51 52 53	713	pronounced axials. Microsculpture of dense growth lines on subsutural ramp and very fine
54 55	714	spiral cords on whorl lower portion. Last adult whorl with about 16 axials, vanishing shortly
56 57 58	715	below shoulder. Shell base evenly convex, clearly demarcated from long, slender tapering
59 60	716	siphonal canal. Aperture elongate, about half of length of shell, rounded below shoulder and

Zoological Journal of the Linnean Society

narrowing toward siphonal canal. Outer lip thin, inner lip smooth, with narrow callus on long, rather straight columella bearing vertical orange stain. Sinus wide, moderately deep, L-shaped. Shell surface glossy, early teleoconch whorls pale orange or cream, subsequent whorls of orange colour. Anatomy (based on AMS C.27120, female, except penial characters based on AMS C.571679, male). Animal uniform whitish/cream. Cephalic tentacles large, muscular, long, subcylindrical; large eyes on outer lower base of tentacles. Rhynchostome subcircular, lined with numerous epithelial cells; very large, thin-walled introvert with numerous longitudinal folds. Oviduct large; intestine lightly curved along length of oviduct, posterior to it. Penis rather large, coiling clockwise, simple. Rectal gland greenish, filamentous/bristly in appearance, parallel to anterior intestine. Rhynchocoel with dark red content. Venom apparatus extremely large, occupying most of rhynchoocoel; proboscis large, elongate; radular sac extremely large; venom gland very large, thick, whitish, very long and convoluted; muscular bulb lustrous, yellow, extremely large, elongate, with indentation posteriorly where pressed against oesophagus. Radula (Fig. 6D) (based on AMS C.571679; AMS C.571709; AMS C.574588) of straight to gently curved, somewhat loosely rolled hypodermic teeth of up to 350 µm in length; lower half of shaft rather cylindrical, somewhat inflated, distal half weakly tapering toward prominent dorsal and ventral distal barbs, of which ventral barb more distal from tip; dorsal barb sharper than ventral barb. Adapical opening elongate, narrow, boundaries not clearly defined due to loosely overlapping tooth margins, up to 1/5 of shaft length. Basal third of shaft with weakly rugose texture. Base rather broad, with medium coarse texture on exterior. Basal opening large. Ligament about half width of base, solid, thick.

1 2		
2 3 4	741	Remarks
5 6 7	742	This species can be differentiated from other raphitomids by the following combination of
, 8 9	743	characters: a glossy shell with weakly developed sculpture, clearly pronounced, but rounded
10 11 12	744	shoulder, and yellowish orange to reddish brown colouration; a hypodermic radula with two
12 13 14	745	large, sharply hooked barbs; an extremely large venom apparatus occupying almost the
15 16 17	746	entire rhynchocoel; a thin-walled, strongly folded introvert and the presence of well-
17 18 19	747	developed, large eyes.
20 21	748	Although DNA sequence data for the holotype was not included in the analysis of Figure 2, a
22 23 24	749	COI sequence was generated and is available on Genbank (AN MN983272).
25 26	750	This is a quite variable taxon based on shell morphology, with some specimens examined
27 28 29	751	exhibiting shells with little to no distinct sculpture.
30 31	752	Based on its shell morphology, this new taxon bears considerable similarity to the north-
32 33 34 35 36	753	east Atlantic <i>Gymnobela fulvotincta</i> (Dautzenberg & Fischer, 1996). However, when
	754	compared to the holotype of the latter, the following characters observed in G. fulvocincta
37 38 30	755	distinguishes this species from A. rufa n. gen. n. sp.: more prominent axial ribs, producing a
40 41	756	more angulate whorl profile; a shoulder situated lower on adult whorls; a less cylindrical
42 43	757	whorl periphery, and a columella that is distinctly curved when observed in apertural view
44 45 46	758	as opposed to the straight columella in <i>A. rufa</i> n. gen. n. sp. In terms of radular morphology,
47 48	759	the hypodermic tooth figured in Bouchet & Warén (1980, fig. 24) shows barbs that appear
49 50 51	760	distinctly less prominent in G. fulvotincta, and a shaft that tapers gradually as opposed to
52 53	761	the somewhat inflated lower half of the shaft in <i>A. rufa</i> n. gen. n. sp. (Fig. 6D). When
54 55 56	762	compared to the superficially similar Gymnobela yoshidai (Kuroda & Habe, 1961), A. rufa n.
57 58	763	gen. n. sp. bears a significantly broader shell and a more sharply inclined subsutural ramp
59 60	764	(Sysoev & Bouchet, 2001, figs 134-144).

1 ว		
2 3	705	
4	765	
5 6 7	766	Glaciotomella n. gen.
8 9	767	Type species: Glaciotomella investigator n. gen. n. sp.; OD, herein.
10 11 12	768	Etymology: Derived from combination of 'glacius' (Latin = ice, for the glossy, icy-like surface
13 14	769	of its shell) and 'tomella' (indicating resemblance with Pleurotomella).
15 16 17	770	ZooBank registration: urn:lsid:zoobank.org:act:6FE3648B-B095-4996-B90E-C4DF4640961A
18 19	771	
20 21 22	772	Diagnosis
22 23 24	773	Shell (Fig. 3G) with cyrtoconoid spire, chalky, semi-translucent to opaque. Teleoconch of
25 26 27	774	about 5 whitish whorls; whorl profile with weakly pronounced subsutural ramp, broadly
27 28 29	775	convex below. Suture deep. Scultpure below subsutural ramp of orthicline axial ribs and
30 31 32	776	spiral sculpture of intermittent weak and strong cords (most prominent on immature
32 33 34	777	whorls). Siphonal canal long, clearly differentiated from last adult whorl. Aperture broadly
35 36	778	pyriform, about half of shell length. Anal sinus moderately deep, J-shaped. Cephalic
37 38 39	779	tentacles small; eyes minute. Rhynchostome and rhynchostomal sphincter extremely large;
40 41	780	rhynchocoel short. Radula of long, straight, cylindrical hypodermic teeth with no distinct
42 43 44	781	barbs or blades.
45 46	782	
47 48 49	783	Glaciotomella investigator n. gen. n. sp.
50 51	784	(Fig. 3G)
52 53 54	785	
55 56	786	Material examined
57 58	787	Holotype: Australia, New South Wales, Hunter CMR, 2595 m, IN2017_V03_070, (-32.575,
59 60	788	153.162), AMS C.571621.

1		
2 3		
4	789	
5 6 7	790	Distribution
7 8 9	791	Known only from the type locality.
10 11 12	792	
12 13 14	793	Etymology. In reference to the Australian Government's RV Investigator, on which the
15 16 17	794	expedition was conducted that allowed for this species (and many other species described
18 19	795	herein) to be collected, noun in apposition.
20 21 22	796	
22 23 24	797	ZooBank registration: urn:lsid:zoobank.org:act:0B100DF6-9DEB-402B-A382-2964754D285B
25 26 27	798	
27 28 29	799	Description. Shell (Fig. 3G) (SL=20.8, SW=10) with cyrthoconoid spire, relatively thin-walled,
30 31	800	chalky, semi-translucent to opaque. Protoconch largely eroded. Teleoconch of 5 whitish
32 33 34	801	whorls with slightly concave subsutural ramp, evenly and broadly convex below. Suture
35 36	802	deep. Subsutural ramp sculpture of fine, rather regularly set axial riblets. Teleoconch
37 38 39	803	sculpture below subsutural ramp of orthocline axial ribs, extending from subsutural ramp to
40 41	804	suture, rather prominent on early teleoconch whorls, progressively weakening toward last
42 43 44	805	whorl (about 18 on penultimate whorl, >20 on last whorl); numerous weak, densely set,
45 46	806	collabral growth lines between axial ribs; spiral sculpture of regularly spaced cords with finer
47 48 40	807	cordlets in their interspaces, more differentiable on early teleoconch whorls, resulting in
49 50 51	808	distinctly cancellate early- to mid teleoconch whorls, and with a finer meshwork of axial and
52 53	809	spiral elements on last adult whorl. Last adult whorl broadly convex below subsutural ramp,
54 55 56	810	abruptly constricted to long siphonal canal. Boundary between last whorl and siphonal canal
57 58	811	on left side (in apertural view) deeply concave, with siphonal canal distinctly convex.
59 60	812	Aperture broadly pyriform, about half of shell length; outer lip very thin; inner lip with thin
1 2		
----------------	---	
2 3 4	8	
5 6	8	
/ 8 9	8	
10 11	8	
12 13 14	8	
15 16	8	
17 18 10	8	
20 21	8	
22 23	8	
24 25 26	8	
27 28	8	
29 30 31	8	
32 33	8	
34 35 36	8	
37 38	8	
39 40 41	8	
42 43	8	
44 45 46	8	
40 47 48	8	
49 50	8	
51 52 53	8	
54 55	8	
56 57 58	8	
59 60	8	

813	glossy whitish callus. Columella rather straight in apertural view, distinctly convex in lateral
814	view. Anal sinus moderately deep, J-shaped.
815	Mantle of single studied specimen stained with crimson, originating from distinct, well-
816	developed rectal gland (although this staining is certainly a post-mortem feature, it may be
817	useful to differentiate the species from conchologically similar species in other lineages).
818	Head with small cephalic tentacles situated on either side of rhynchostome, with extremely
819	small eyes situated at their outer base. Rhynchostome and rhynchostomal sphincter
820	extremely large; rhynchocoel short, with proboscis occupying most of its length. Proboscis
821	with strongly folded walls; venom gland long, convoluted; muscular bulb large.
822	Radula of hypodermic teeth attaining 310 μm in length, rather straight, cylindrical. No
823	distinct barb or blade.
824	
825	Remarks
825 826	Remarks This new taxon can be differentiated from other raphitomids by the following combination
825 826 827	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate
825 826 827 828	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved
825 826 827 828 829	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather
825 826 827 828 829 830	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather straight and cylindrical hypodermic teeth with no distinct barb or blade.
825 826 827 828 829 830 831	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather straight and cylindrical hypodermic teeth with no distinct barb or blade.
825 826 827 828 829 830 831 831	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather straight and cylindrical hypodermic teeth with no distinct barb or blade. <i>Glaciotomella investigator</i> n. sp. is similar to <i>Pleurotomella</i> (specifically, compared here to type species <i>P. packardii</i> , Verrill, 1872, and not to <i>Pleurotomella</i> in the broad sense), in that
825 826 827 828 829 830 831 831 832 833	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather straight and cylindrical hypodermic teeth with no distinct barb or blade. Glaciotomella investigator n. sp. is similar to Pleurotomella (specifically, compared here to type species P. packardii, Verrill, 1872, and not to Pleurotomella in the broad sense), in that both taxa possess a shell with prominent sculpture, strongly convex whorls with an
825 826 827 828 829 830 831 832 833 833	Remarks This new taxon can be differentiated from other raphitomids by the following combination of characters: a broadly fusiform shell, with strongly convex whorl profile, cancellate sculpture on early- to mid- teleoconch whorls, and a long, straight columella with a curved siphonal canal in lateral view (Fig. 3G); an extremely large rhynchostome, and long, rather straight and cylindrical hypodermic teeth with no distinct barb or blade. <i>Glaciotomella investigator</i> n. sp. is similar to <i>Pleurotomella</i> (specifically, compared here to type species <i>P. packardii</i> , Verrill, 1872, and not to <i>Pleurotomella</i> in the broad sense), in that both taxa possess a shell with prominent sculpture, strongly convex whorls with an impressed suture, and a rather long siphonal canal. However, <i>G. investigator</i> differs from

836 a comparatively straight columella (which in *P. packardii* exhibits a prominent left-turning

1 2		
3 4	837	curve toward the anterior of the siphonal canal). Furthermore, our molecular results suggest
5 6 7	838	that Glaciotomella and Pleurotomella are in fact not closely related within the Raphitomidae
, 8 9	839	(Fig. 2). The radula of this species is not figured due to poor preservation state.
10 11 12	840	
12 13 14	841	Austrotheta n. gen.
15 16 17	842	Type species: Austrotheta crassidentata n. gen. n. sp.; OD, herein.
17 18 19	843	Etymology: Derived from combination of 'auster' (Latin = south; for its discovery in the
20 21 22	844	Southern Hemisphere) and 'theta' (indicating resemblance with Theta).
22 23 24	845	ZooBank registration:
25 26 27	846	urn:lsid:zoobank.org:act:1FCE9160-3FA0-44F9-89DE-46A6FA46ACA7
27 28 29	847	
30 31	848	Diagnosis
32 33 34	849	Shell (Fig. 3H) fusiform, semi-translucent to opaque. Protoconch multispiral; sculpture of
35 36	850	arcuate cordlets on upper portion of whorls and diagonally cancellate below. Teleoconch
37 38 39	851	with distinctly shouldered to rounded whorls, bearing sharp opisthocline axial ribs in early
40 41	852	to median whorls; last whorl evenly convex below narrow subsutural ramp, with undulating
42 43 44	853	striae throughout its height. Siphonal canal long and straight. Aperture wide, pyriform,
44 45 46	854	about half of shell length. Anal sinus rather shallow, u-shaped. Eyes minute. Radula (Fig. 6H)
47 48	855	of very thick, cylindrical hypodermic teeth, bearing two weak distal barbs and with very
49 50 51	856	short adapical opening. Base very broad, with extremely coarse external sculpture. Ligament
52 53	857	very large.
54 55 56	858	
57 58	859	Austrotheta crassidentata n. gen. n. sp.
59 60	860	(Figs 3H, 6H)

1		
2 3	861	
4	001	
5 6 7	862	Material examined
8 9	863	Holotype: Australia, Tasmania, Freycinet Commonwealth Marine Reserve, 2820 m,
10 11 12	864	IN2017_V03_004, (-41.731, 149.12), AMS C.519302.
13 14	865	
15 16	866	Distribution
17 18 19	867	Known only from the type locality.
20 21	868	Etymology: In reference to its thick hypodermic tooth, derived from 'crassus' (Latin = thick)
22 23 24	869	and 'dentatus' (Latin = bearing theet), adjective of feminine gender.
25 26	870	ZooBank registration:
27 28 29	871	urn:lsid:zoobank.org:act:4EF95055-B0D2-4151-89B1-762BD62DF8DE
30 31	872	
32 33 34	873	Description. Shell (Fig. 3H) (SL=20.9, SW=9.6) fusiform, rather thin-walled, semi-translucent
35 36	874	to opaque. Protoconch orange, multispiral (at least 2.5 whorls), with arcuate cordlets on
37 38 39	875	adapical half to two-thirds of whorl, with diagonally cancellate sculpture below. Teleoconch
40 41	876	of 4.4 whorls; subsutural ramp distinctly concave in early whorls, in more mature whorls less
42 43 44	877	distinct and with less marked concavity. Whorl profile with prominent shoulder on early
45 46	878	teleoconch whorls, situated at adapical third of whorl; in penultimate whorl more rounded,
47 48 40	879	in last adult whorl indistinct; whorl periphery nearly cylindrical in early teleconch, more
49 50 51	880	convex in mature whorls. Early teleoconch whorls with about 12 sharp, weakly opisthocline
52 53	881	axials, vanishing well above suture, indistinct in later whorls. Spiral sculpture of dense,
54 55 56	882	slightly undulating striae pronounced throughout last whorl. Microsculpture of collabral
57 58	883	growth lines, forming distinct, raised cordlets on subsutural ramp in early whorls, weaker in
59 60	884	more mature whorls. Last adult whorl evenly convex below subsutural ramp, with long,

2	
3	885
4	000
5	000
6	886
7	
8	887
9	
10	888
11	
12	000
14	889
15	
16	890
17	
18	891
19	001
20	
21	892
22	
23	893
24	
25	801
26	0,74
27	
28	895
29	
30	896
31	
32	807
33	057
34	
35	898
36	
3/	899
38	
<u>40</u>	٥٥٥
40 //1	900
47	
43	901
44	
45	902
46	
47	003
48	505
49	
50	904
51	
52	905
53	
54	006
55	900
56	
57	907
58	
59	908
60	

slender siphonal canal. Aperture wide, pyriform, about half of shell length. Inner lip with
whitish callus, rather straight. Outer lip thin, unsculptured. Anal sinus rather shallow, weakly
u-shaped.

888 Head wide, eyes very small. Muscular bulb extremely large; proboscis short, wide; radular 889 sac thin, bearing few teeth.

Radula (Fig. 6H) of very thick, straight cylindrical hypodermic teeth exceeding 175 μm in
length; two weak distal, lateral barbs; adapical opening very short, lateral (i.e., orientation
of barbs and adapical opening offset to point of overlap between margins near base); base
very broad, inflated, with extremely coarse external sculpture (Fig. 6H); ligament very large.

895 Remarks

Austrotheta crassidentata n. gen. n. sp. differs from other raphitomids in the following
 combined characters: a fusiform shell with sharp, weakly opisthocline axials on early
 teleoconch whorls and weakly sculptured late teleoconch whorls; slender siphonal canal;
 very thick hypodermic teeth with two weak laterally orientated barbs and a short laterally
 orientated adapical opening, as well as a broad base with extremely coarse external
 sculpture.

Based on its shell morphology, *A. crassidentata* n. gen. n. sp. resembles *Gymnobela yoshidai*(Kuroda & Habe, 1961), in which strongly shouldered subcylindrical early teleoconch whorls
with sharp ribs are succeeded by evenly convex and finely striate whorls. However, the
latter species has a narrower shell with a pointed spire, and a less convex, more elongated
shell base, as well as a yellowish staining of the shell. A similar change in the whorl outline
and sculptural pattern can be observed in *Spergo fusiformis* (based on the type series
illustrated by Sysoev & Bouchet, 2001), although the latter can be readily differentiated

3 4	909	from A. crassidentata n. gen. n. sp. by its larger size and narrower, rather lanceolate
5 6 7	910	aperture. A.crassidentata n. gen. n. sp. also shows some resemblance to Austrobela rufa n.
7 8 9	911	gen. n. sp., but can be readily differentiated by its diagonally cancellate protoconch, sharp
10 11	912	axial ribs, a more convex shell base, and its whitish shell. When compared to T. lyronuclea, it
12 13 14	913	differs in its more elongate shell and in its diagonally cancellate protoconch (which is
15 16	914	arcuate in both A. rufa and T. lyronuclea).
17 18 19	915	
20 21	916	
22 23 24	917	Gladiobela n. gen.
25 26	918	Type species: <i>Gladiobela angulata</i> n. gen. n. sp.; OD, herein.
27 28 20	919	
29 30 31	920	Etymology: Derived from combination of 'gladius' (Latin = sword; for the long blade of its
32 33	921	hypodermic tooth) and 'bela' (indicating resemblance with Gymnobela).
34 35 36	922	
37 38	923	Diagnosis
39 40 41	924	Shell (Fig. 4A) fusiform-biconical, semi-translucent. Protoconch multispiral, lower whorl
42 43	925	portion diagonally cancellate, upper portion with arcuate sculpture only. Teleoconch with
44 45	926	broad whorls with shoulder situated at mid-height of whorl. Anal sinus very wide, u-shaped.
40 47 48	927	Animal with long, cylindrical tentacles; eyes very small. Radula (Fig. 6B) of hypodermic type,
49 50	928	awl-shaped, with very long adapical opening; dorsal blade extremely long; base broad,
51 52 53	929	angular.
54 55	930	
56 57 58	931	ZooBank registration:
59 60	932	urn:lsid:zoobank.org:act:1FD74C2F-24EC-4FA6-B62F-02C380F9CAC9

1		
2 3		
4	933	
5 6 7	934	Gladiobela angulata n. gen. n. sp.
8 9	935	(Figs 4A, 6B)
10 11 12	936	
12 13 14	937	Material examined:
15 16 17	938	Holotype: Australia, New South Wales, Hunter CMR, 2595 m, IN2017_V03_070, (-32.575,
17 18 19	939	153.162), 1 wet (AMS C.571651).
20 21 22	940	Paratypes: Australia, GAB, 3350 m, IN2017_C01_197, (-34.452, 129.492), 1 wet (AMS
22 23 24	941	C.571737); 1 wet (AMS C.571735); 1 wet (AMS C.571738); 1 wet (AMS C.572166); 1 wet
25 26 27	942	(AMS C.572167); 1 wet (AMS C.572168); 1 wet (SAMA D49343); 3540 m, IN2017_C01_198,
27 28 29	943	(-34.574, 129.572), 1 wet (SAMA D49341); 1 wet (SAMA D67750); 1 wet (SAMA D67751);
30 31 22	944	3807 m, IN2017_C01_192, (-34.589, 129.418).
32 33 34	945	
35 36 27	946	Distribution
37 38 39	947	Known from the Great Australian Bight and one locality off the Hunter Commonwealth
40 41 42	948	Marine Reserve, New South Wales.
42 43	949	
44 45 46	950	Etymology: In reference to the distinct angulation at its whorl periphery, derived from
47 48 40	951	'angulata' (Latin = with angles), adjective of feminine gender.
49 50 51	952	
52 53	953	ZooBank registration: urn:lsid:zoobank.org:act:F40216C9-F620-49A9-B91E-A91F118F7DF8
54 55 56	954	Description. Shell (Fig. 4A) (SL=18.8, SW=10.2) broadly fusiform-biconical, rather thin-
57 58	955	walled, semi-translucent. Protoconch (based on SAMA D49341) orange, first whorl(s)
59 60	956	strongly eroded, subsequent 1.5 whorls with diagonally cancellate sculpture on abapical

3 4	957	third, above with arcuate sculpture only. Clear protoconch-teleoconch boundary marked by
5 6 7	958	deep sinus. Teleoconch of about 4.5 uniformly honey-coloured whorls, suture impressed.
, 8 9	959	Whorls broad, with very wide, slightly concave subsutural ramp; well-defined, prominent
10 11	960	shoulder situated at approximately mid-height to just below mid-height of whorl. Axial
12 13 14	961	sculpture of growth lines only, on early whorls forming slightly raised, densely set riblets.
15 16	962	Spiral sculpture of densely set, evenly spaced sub-peripheral cords (about 8 on penultimate
17 18 10	963	whorl, >30 on last whorl), few very weak cords present immediately above shoulder. Last
20 21	964	adult whorl with slight concavity immediately below subsutural ramp, below - evenly
22 23	965	convex, clearly demarcated from slightly tapering, long siphonal canal. Aperture elongate,
24 25 26	966	approximately half of shell length; outer lip thin, unsculptured. Inner lip whitish, gently
27 28	967	recurved. No distinct callus. Anal sinus very wide, moderately deep, u-shaped.
29 30 31	968	Anatomy (based on AMS C.571737 and AMS C.571651): Animal semi-translucent whitish.
32 33	969	Cephalic tentacles very long, narrow, cylindrical, with extremely small eyes situated at their
34 35 36	970	lower outer base. Penis rather long, narrow. Muscular bulb very long, colourless; proboscis
37 38	971	long.
39 40	972	Radula (Fig. 6B) of straight to gently curved hypodermic teeth exceeding 175 μm in length;
41 42 43	973	no ventral barb; dorsal blade sharp, extremely long, approximately half of shaft length;
44 45	974	adapical opening very elongate, rather narrow, ranging between 1/4-1/2 of shaft length.
46 47 48	975	Base rather broad, with distinct crescentic, slightly excavated shelf more or less
49 50	976	perpendicular to orientation of shaft (Fig. 6B); large dorsal platform extending posteriorly,
51 52 53	977	with numerous, densely arranged folds on inner surface; exterior of base with
53 54 55	978	comparatively fine texture; basal opening large. Ligament broad.
56 57	979	
58 59 60	980	Remarks

1 2		
2 3 4	981	This new taxon can be differentiated from other raphitomids by its rather broad shell with a
5 6 7	982	well-defined carina and a cylindrical whorl periphery with regularly spaced spiral cords, and
, 8 9	983	by its hypodermic radular teeth with a very long dorsal blade extending approximately half
10 11	984	the length of the shaft, and a prominent base forming a crescent-shaped, indented
12 13 14	985	platform.
15 16	986	
17 18 19	987	Pueridaphne n. gen.
20 21	988	Type species: Pueridaphne cirrisulcata n. gen. n. sp.; OD, herein.
22 23 24	989	Etymology: Derived from combination of 'puer' (Latin = child; for the similarity of its
25 26	990	teleoconch to that of the larval shell sculpture) and 'daphne' (indicating resemblance with
27 28 20	991	some species of <i>Daphnella</i> Hinds, 1844).
29 30 31	992	ZooBank: urn:lsid:zoobank.org:act:00258E64-8241-4207-9744-65B4BFE2C68C
32 33	993	
34 35 36	994	Diagnosis
37 38	995	Shell (Fig. 4B) fusiform, opaque. Protoconch (Fig. 5D) multispiral, of 4.5 whorls of which first
39 40 41	996	whorl exhibits punctate sculpture; subsequent whorls diagonally cancellate. Teleoconch of
42 43	997	at least 4.5 uniformly white whorls. Suture impressed. Teleoconch whorls with wide
44 45 46	998	subsutural ramp and well-defined shoulder in immature whorls, lower whorl portion and
47 48	999	shell base with fine cancellate sculpture. Siphonal canal long, straight. Anal sinus wide,
49 50 51	1000	deeply u-shaped. Animal reddish brown. Cephalic tentacles (Fig. S4A) very long, cylindrical,
52 53	1001	exhibiting longitudinal groove throughout; eyes very small. Venom apparatus (Fig. S4B)
54 55	1002	large. Radula (Fig. 6C) of straight, tightly rolled hypodermic teeth with sharp, very long blade
50 57 58	1003	and long adapical opening. Base broad, with lateral process and extremely coarse external
59 60	1004	texture. Ligament broad.

1005	
1006	Pueridaphne cirrisulcata n. gen. n. sp.
1007	(Figs 4B, 5D, 6C, 9)
1008	
1009	Material examined:
1010	Holotype: Australia, GAB, 3350 m, IN2017_C01_197, (-34.452, 129.492), AMS C.572165.
1011	Paratypes: Australia, New South Wales, Hunter CMR, 4031 m, IN2017_V03_079, (-32.131,
1012	152.527), 1 wet (AMS C.563160); Jervis CMR, 2667 m, IN2017_V03_055, (-35.335, 151.259),
1013	1 wet (AMS C.563103); VIC, East Gippsland CMR, 3850 m, IN2017_V03_032, (-38.479,
1014	150.185), 1 wet (AMS C.571609); GAB, 3350 m, IN2017_C01_197, (-34.452, 129.492), 1 wet
1015	(AMS C.571631); 3540 m, IN2017_C01_198, (-34.574, 129.572), 1 wet (SAMA D49340a).
1016	
1017	Distribution
1018	Known to occur from the Great Australian Bight, via East Gippsland, Victoria, northward
1019	along the southeast Australian coast to the Hunter Commonwealth Marine Reserve, New
1020	South Wales.
1021	
1022	Etymology: In reference to the groove present along the cephalic tentacles, derived from
1023	'cirrus' (Latin = tentacle) and 'sulcatus' (Latin = bearing a groove), adjective of feminine
1024	gender.
1025	
1026	ZooBank registration: urn:lsid:zoobank.org:act:0F0DD864-FF79-4C78-8A06-F99431B19039
1027	
	1005 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1017 1018 1017 1020 1021 1022 1023 1024 1025 1025

3 4	1028	Description. Shell (Fig. 4B) (SL=15, SW=7.4) fusiform, rather thin-walled, opaque. Protoconch
5 6 7	1029	(based on paratype AMS C.563103) orange, broadly conical, multispiral, with 4.5 whorls,
, 8 9	1030	first whorl with punctate sculpture, subsequent whorls diagonally cancellate (Fig. 5D).
10 11	1031	Protoconch-teleoconch transition clearly defined, broadly sinuate. Teleoconch of 4.6
12 13 14	1032	uniformly whitish whorls, suture impressed. Whorls rather broad, with wide subsutural
15 16	1033	ramp, steep in early teleoconch whorls and progressively more concave in later whorls;
17 18	1034	well-pronounced shoulder situated at approximately mid-height of whorl. Subsutural ramp
19 20 21	1035	sculpture of raised, dense growth lines. Lower whorl portion with axial sculpture of
22 23	1036	numerous (> 100 on last whorl), dense, raised growth lines, intersecting rounded, evenly
24 25 26	1037	spaced (>20 on last whorl) spiral cords to form distinctly diagonally cancellate pattern;
27 28	1038	sculpture weaker on last whorl. Last adult whorl evenly convex below subsutural ramp;
29 30 31	1039	siphonal canal slender, moderately long, slightly curved. Aperture elongate, approximately
32 33	1040	half of shell length; outer lip thin, unsculptured. Inner lip whitish, gently recurved toward
34 35 26	1041	left with spiral sculpture extending uninterrupted from base, with very thin callus. Anal sinus
30 37 38	1042	wide, deep, u-shaped.
39 40	1043	Anatomy (based on SAMA D49340a; AMS C.572165; AMS C.571609). Animal reddish brown,
41 42 43	1044	with epidermis of very fine textile-like appearance; head short, rather blunt. Penis large,
44 45	1045	very long, coiled clockwise, subcylindrical, tip blunt (Fig. S4A). Cephalic tentacles very long,
46 47 48	1046	cylindrical, bearing densely set latitudinal folds; distinct longitudinal groove present along
49 50	1047	their full length (Fig. S4A). Eyes very small, situated at outer lower base of cephalic
51 52	1048	tentacles. Prostate (Fig. S4A) gland large, yellowish, clearly visible beneath thin epidermis;
55 55	1049	anterior vas deferens undulating.
56 57	1050	Introvert large, thick-walled, cup-shaped with expanding rim, whitish; rhynchostomal
58 59 60	1051	sphincter bluish grey, encircling introvert periphery, surrounded on both sides by dense

~		
3 4	1052	white epithelial cells. Proboscis reddish brown, extremely large, long, pointed, coiled
5 6 7	1053	clockwise in rhyncocoel, outer walls bearing dense, very strong latitudinal folds (Fig. S4B);
8 9	1054	radular sac large; venom gland long and convoluted, colourless, situated posterior right of
10 11 12	1055	proboscis; muscular bulb ovate, lustrous pink, with micro-fibrous surface (Fig. S4B).
13 14	1056	Radula (Fig. 6C) (based on SAMA D49340a; AMS C.572165; AMS C.571609) of hypodermic
15 16 17	1057	teeth, straight, tightly rolled, attaining 150 μm in length, rather broad; slight constriction at
17 18 19	1058	approximately lower-third mark of shaft; no ventral barb; dorsal blade sharp, extending
20 21	1059	about 1/3 of shaft length; adapical opening elongate-ovate, approximately 1/5 to 1/6 shaft
22 23 24	1060	length, seen as marked indentation in lateral profile; base broad, angular, with distinct
25 26	1061	lateral process; basal texture extremely coarse, with dense network of weakly triangular to
27 28 29	1062	subcircular tubercles, larger on base proper than (immediate) basal portion of shaft; basal
30 31	1063	opening broad. Ligament broad.
22		
32 33 34	1064	
33 34 35 36	1064 1065	Remarks
32 33 34 35 36 37 38	1064 1065 1066	Remarks This new taxon can readily be distinguished from other raphitomids by the following
32 33 34 35 36 37 38 39 40 41	1064 1065 1066 1067	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the
52 33 34 35 36 37 38 39 40 41 42 43	1064 1065 1066 1067 1068	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1064 1065 1066 1067 1068 1069	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or furrow extending across their full length; an extremely long, strongly folded proboscis;
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	1064 1065 1066 1067 1068 1069	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or furrow extending across their full length; an extremely long, strongly folded proboscis; radular teeth with a long blade, a slight constriction of the shaft at its abapical third, and an
52 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	1064 1065 1066 1067 1068 1069 1070	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or furrow extending across their full length; an extremely long, strongly folded proboscis; radular teeth with a long blade, a slight constriction of the shaft at its abapical third, and an extremely coarse texture on the base exterior.
52 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53	1064 1065 1066 1067 1068 1069 1070 1071	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or furrow extending across their full length; an extremely long, strongly folded proboscis; radular teeth with a long blade, a slight constriction of the shaft at its abapical third, and an extremely coarse texture on the base exterior.
52 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55	1064 1065 1066 1067 1068 1069 1070 1071 1072 1073	Remarks This new taxon can readily be distinguished from other raphitomids by the following combination of characters: a densely cancellate teleoconch; dark red pigmentation of the external animal; very long, strongly folded cephalic tentacles with a longitudinal groove or furrow extending across their full length; an extremely long, strongly folded proboscis; radular teeth with a long blade, a slight constriction of the shaft at its abapical third, and an extremely coarse texture on the base exterior. Globodaphne n. gen.

1 2			
3	1075	Etymology: Derived from combination of 'globus' (Latin = globe, for its sub-globose shell)	
5 6 7	1076	and 'daphne' (indicating resemblance to Xanthodaphne).	
, 8 9	1077	ZooBank registration: urn:lsid:zoobank.org:act:369D1B2A-EDCA-48E2-83AD-C6215BD46D28	
10 11	1078		
12 13 14	1079	Diagnosis	
15 16	1080	Shell (Fig. 4C) sub-globose, thin-walled, semi-translucent. Protoconch (Fig. 5B) multispiral,	
17 18 19	1081	with dense diagonally cancellate sculpture. Teleoconch of few, pale whorls. Suture	
20 21	1082	impressed. Whorl profile very broad, strongly convex. Sculpture throughout whorl of dense,	
22 23 24	1083	weakly arcuate riblets and dense, irregularly set spiral cordlets. Siphonal canal straight,	
 25 1084 short. Aperture wide, ovate, about 2/3 of shell length. Anal sinus very shallow. 			
27 28 29	1085	tentacles long, cylindrical; eyes extremely small. Venom apparatus and radula absent.	
30 31	1086		
32 33 34	1087	Globodaphne pomum n. gen. n. sp.	
35 36	1088	(Figs 4C, 5B)	
37 38 20	1089		
40 41	1090	Material examined	
42 43	1091	Holotype: Australia, New South Wales, Hunter CMR, 2595 m, IN2017_V03_070, (-32.575,	
44 45 46	1092	153.162), AMS C.482283.	
47 48 40	1093		
49 50 51	1094	Distribution	
52 53	1095	Known only from the type locality.	
54 55 56	1096		
57 58	1097	Etymology: In reference to the somewhat globose shape of its shell, derived from 'pomum'	
59 60	1098	(Latin = apple), noun in apposition.	

Page 48 of 86

ZooBank registration: urn:lsid:zoobank.org:act:F590311C-2E22-41BA-B3E1-558F746AA2BD Description. Shell (Fig. 4C) (SL=14.1, SW=10) sub-globose, rather thin-walled, semi-translucent. Protoconch (Fig. 5B) multispiral, broadly cyrthoconoid, orange, of about 3 convex whorls; protoconch sculpture of numerous (about 60 on last whorl) thin opisthocline riblets, about half width of interspaces, and (9 on last whorl) weak spiral cordlets, becoming more conspicuous toward transition to teleoconch. Protoconch-teleoconch transition rather gradual, demarcated by colour transition. Teleoconch of about 2.7 pale orange whorls, suture impressed. Whorls very broad, with wide, poorly defined subsutural ramp. Lower portion of whorl evenly convex. Teleoconch sculpture of dense, thin, regularly spaced, moderately arcuate riblets (50 on last whorl) and dense, low, irregularly spaced cordlets (about 90 on last whorl). Riblets extending to suture on first 2 whorls and becoming somewhat inconspicuous towards base of last adult whorl. Microsculpture of very dense, barely detectable collabral growth lines. Last adult whorl evenly convex below subsutural ramp, clearly demarcated from straight, short siphonal canal. Aperture wide, ovate, approximately two-thirds of shell length; outer lip very thin, inner lip cream-orange, with thin callus, straight. Anal sinus very shallow. Cephalic tentacles long, cylindrical; eyes extremely small. Very large introvert, occupying most of rynchocoel volume. Venom apparatus and radula absent. Remarks This taxon exhibits some superficial resemblance in shell morphology to *T. cuprosa* n. gen. n. sp., described below, which also possesses a sub-globose shell. In terms of differences in shell morphology, G. pomum n. gen. n. sp. can be distinguished from the latter by its less

2		
3 4	1123	steep subsutural whorl portion, deeper suture, and more delicate spiral sculpture. When
5 6 7	1124	compared to Lusitanops F. Nordsieck, 1968 [type species L. lusitanicus (Sykes, 1906)] and
8 9	1125	Xanthodaphne (type species X. membranacea), G. pomum exhibits a distinctly more globose
10 11 12	1126	shell. Additionally, it can readily be differentiated from Lusitanops by its clearly delineated
13 14	1127	siphonal canal, and from Xanthodaphne by its comparatively shallow anal sinus.
15 16 17	1128	
18 19	1129	<i>Trochodaphne</i> n. gen.
20 21 22	1130	Type species: Trochodaphne cuprosa n. gen. n. sp.; OD, herein.
22 23 24	1131	Etymology: Derived from a combination of 'trochus' (Latin = spinning top, for its shell shape)
25 26	1132	and 'daphne' (indicating resemblance with Xanthodaphne).
27 28 29	1133	GenBank registration: urn:lsid:zoobank.org:act:7C58D631-5865-4B7A-913C-0CBAFC72522A
30 31	1134	
32 33 34	1135	Diagnosis
35 36	1136	Shell (Fig. 4D) sub-globose, semi-translucent. Protoconch (Fig. 5A) multispiral, with
37 38 20	1137	diagonally cancellate sculpture. Teleoconch of few copper-hued whorls. Suture moderately
39 40 41	1138	impressed. Whorl profile broad, convex, no distinct subsutural ramp. Teleoconch sculpture
42 43	1139	of alternating strong and weak spiral cords. Aperture wide, ovate, >2/3 of shell length. Anal
44 45 46	1140	sinus indistinct.
47 48	1141	
49 50 51	1142	<i>Trochodaphne cuprosa</i> n. gen. n. sp.
52 53	1143	(Figs 4D, 5A)
54 55	1144	
50 57 58 59 60	1145	Material examined

1 2		
2 3 4	1146	Holotype: Australia, New South Wales, Jervis CMR, 2650 m, IN2017_V03_056, (-35.333,
5 6 7	1147	151.258), 1 wet (AMS C.571611).
8 9	1148	
10 11 12	1149	Distribution
13 14	1150	Known only from the type locality.
15 16 17	1151	
18 19	1152	Etymology: In reference to the colouration of its shell, derived from 'cuprosus' (Latin =
20 21 22	1153	coppery), adjective of feminine gender.
23 24	1154	
25 26 27	1155	ZooBank registration: urn:lsid:zoobank.org:act:169E6E79-B8C7-4169-A321-2EF87AE84C71
28 29	1156	
30 31 32	1157	Description. Shell (Fig. 4D) (SL=12.6, SW=9) sub-globose, thin-walled, semi-translucent.
33 34	1158	Protoconch (Fig. 5A) multispiral, broadly conical, orange, of about 3 evenly convex whorls;
35 36 37	1159	protoconch sculpture diagonally cancellate. Protoconch-teleoconch transition clearly
38 39	1160	defined, weakly sinuate. Teleoconch of about 2.7 copper-hued whorls, suture moderately
40 41 42	1161	impressed. Teleoconch whoris broad, strongly convex in outline, with no clearly defined
43 44	1162	subsultural ramp. Teleoconch sculpture of dense, low, regularly spaced cords alternate
45 46 47	1105	last adult whorl. Microsculpture of very dense, harely detectable collabral growth lines
48 49 50	1165	Siphonal canal clearly demarcated from shell base, straight, sculptured with low longitudinal
50 51 52	1166	cords. Aperture wide, ovate, more than two thirds of shell length; outer lip very thin. Anal
53 54 55	1167	sinus indistinct.
56 57	1168	Anatomy unknown.
58 59 60	1169	

Remarks

1	
2	
5 4	1170
5 6	1171
7	
8 9	1172
10	1170
11 12	11/5
13 14	1174
15	1175
16 17	11/0
18 19	1176
20	1177
21 22	11//
23	1178
24 25	1179
26 27	11/5
28	1180
29 30	1101
31	1101
32 33	1182
34 25	4400
35 36	1183
37 38	1184
39	
40 41	1185
42 42	1186
43 44	
45 46	1187
40 47	1188
48 49	
50	1189
51 52	1100
53	1190
54 55	1191
56	
57 58	1192
59	

1171	See below for comparison with <i>G. pomum</i> n. gen. n. sp.
1172	Trochodaphne cuprosa n. gen. n. sp., in terms of its shell morphology, bears some similarity
1173	to the genus Lusitanops in its overall convex whorl outline, sculpture dominated by spiral
1174	elements, and shallow anal sinus, particularly when compared to Lusitanops dictyota
1175	Sysoev, 1997. The latter, however, has notably broader whorls than the type species. We
1176	are, however, reluctant to consider this new taxon as Lusitanops, as neither the type species
1177	L. lusitanicus nor L. dictyota possess such a distinctly globose shell as that of T. cuprosa n.
1178	gen. n. sp., which in that regard more resembles <i>G. pomum</i> n. gen. n. sp. described herein
1179	than Lusitanops. Sysoev (1997) noted that L. dictyota does not possess a radula, however,
1180	no anatomical data is available for <i>T. cuprosa</i> . Furthermore, with the exception of <i>L. dictyota</i>
1181	(whose placement in the genus is based solely on shell characters), species of Lusitanops
1182	bear a weak and short siphonal canal (Bouchet & Warén, 1980), whereas in <i>T. cuprosa</i> n.
1183	gen. n. sp. the canal is of moderate length, and very clearly demarcated from the last adult
1184	whorl as seen on its left side (when observed in apertural view, see Fig. 4D). <i>T. cuprosa</i> n.
1185	gen. n. sp. is also similar to some species of <i>Teretiopsis</i> (e.g. <i>T. abyssalis</i> Kantor & Sysoev,
1186	1989), however, the latter has a narrower shell with clearly angulated whorls. Some species
1187	in the genus Phymorhynchus (for example, P. major Bouchet & Warén, 2001 or P. ovatus
1188	Bouchet & Warén, 2001) also possess (sub)globose shells, with strongly convex whorls and
1189	closely set rounded cords, but both of these species are notably larger, with thick, chalky
1190	white shells. T. cuprosa n. gen. n. sp. may also superficially resemble Xanthodaphne Powell,
1191	1942 in that the latter also exhibits somewhat inflated whorls with distinct spiral elements;
1192	however, the type species X. membranacea has a well-developed anal sinus, a more

1 ว		
2 3 4	1193	distinctly shouldered, less convex whorl profile, less prominent spiral sculpture, and is also
5 6	1194	far less globose than Trochodaphne n. gen.
6 7 8 9 10 11 21 34 56 7 8 9 0 12 23 24 52 27 28 9 0 13 23 34 56 7 8 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 52 27 28 9 0 12 23 24 5 26 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 55 55 55 55 55 55 55 55 55 55 55 55	1194	

1 2		
2 3 4 5 6 7 8 9 10 11 12	1196	Discussion
	1197	Genus-level systematics
	1198	In order to apply genus names to the study material, the integrative approach described
	1199	above was followed. The evidence forming the basis for our genus-level attributions is
12 13 14	1200	provided below.
15 16	1201	The examination of shell features was deemed sufficient to enable genus placement for four
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1202	clades, namely Teretiopsis Kantor & Sysoev, 1989, Mioawateria, Famelica and
	1203	Rimosodaphnella. Although the radula is absent in Teretiopsis (Kantor & Sysoev, 1989) and
	1204	has not been studied in the latter three genera, each of these genera is characterised by a
	1205	distinctive combination of shell features not reported for any other raphitomid genus
	1206	(Bouchet & Warén, 1980; Sysoev & Kantor, 1987 for Famelica; Morassi & Bonfitto, 2010 for
	1207	Mioawateria; Bonfitto & Morassi, 2013 for Rimosodaphnella).
32 33 34	1208	The attribution to <i>Phymorhynchus</i> of one clade (retrieved in the BI analysis only) was also
35 36	1209	supported by shell features. Although there is no published account on the radula of the
37 38	1210	type species, <i>P. castaneus</i> (Dall, 1895), species of <i>Phymorhynchus</i> possess large shells with
39 40 41	1211	strongly convex whorls bearing prominent spiral sculpture and with a very wide aperture
42 43	1212	lacking a subsutural sinus (Warén & Bouchet, 2009). This unique combination of features
44 45 46	1213	was shared by all studied Australian samples in the clade.
47 48	1214	However, most clades retrieved by our analysis could only be preliminarily associated with
49 50 51	1215	genera that are not well-defined conchologically. In such cases, an assessment of combined
52 53	1216	morpho-anatomical features formed the basis for our genus attribution.
54 55 56	1217	Species of three clades (forming the 'Bathybela-like' group in Fig. 7) exhibited large shells
57 58	1218	with a shallow anal sinus and comparatively weak sculpture. This combination of characters
59 60	1219	is found in at least three genera, namely Bathybela, Spergo and Pontiothauma. Given this

non-exclusive character combination, the need of taxonomic revision has been invoked for all three (Bouchet & Warén, 1980; Sysoev & Bouchet, 2001). Radular details have been published for type material of the type species of Spergo (Dall, 1895, pl. 24, fig 1h) and Ponthiotauma (Page, 1903, pl. 42, figs 5-9, 14), while the radula of the type species of Bathybela, B. nudator (Locard, 1897), is figured by Bouchet & Warén (1980 p. 10, fig. 16). Nodothauma magnifica n. gen. n. sp. lacks venom apparatus and radula, and could therefore not convincingly be assigned to any of the above genera. While neither of the remaining two clades showed a radula referable to Bathybela, these did exhibit radulae typical of Spergo and Pontiothauma respectively, leading to the attribution to these two genera. Samples of five clades (corresponding to Gymnobela s.l. of Fig. 7) exhibited shells that, according to the current taxonomic treatment (see Sysoev & Ivanov, 1985; Sysoev, 1990; Sysoev, 1996b; Sysoev & Bouchet, 2001), were attributable to the genus Gymnobela. The description of the type species G. engonia Verril, 1884 contains no account of the radula, but the hypodermic tooth is illustrated in Bouchet & Warén (1980, p. 12, fig. 31). All clades in the Gymnobela s.l. group varied considerably in the radula of their constituent samples, with only one containing specimens with radular features resembling those of *G. engonia*. Consequently, this latter clade is attributed to Gymnobela s.s., and new generic names, Fusobela, Gladiobela, Pagodibela and Austrobela are here introduced for the taxa represented by the remaining four clades. Similarly, samples of two clades (corresponding to Pleurotomella s.l., Fig. 7) had shell features corresponding to those of Pleurotomella (see Bouchet & Warén, 1980). The radula of the type species *P. packardii* is known only from an illustration in Bouchet & Warén (1980, p. 11, fig. 26). Species of the two clades possessed different radulae, but only one

Page 55 of 86

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

60

genus, Austrotheta n. gen.

1

clade exhibited a radular morphology similar to that of P. packardii. From this clade, we

examined the radula of *Pleurotomella* sp. 1 and for a further specimen (AMS C.487456),

conspecific with *Pleurotomella* sp. 2 (WAM S32236) (Fig S2). Both radulae appear very

similar to that figured in Bouchet & Warén (1980) for *P. packardii*, hence this clade is

attributed to Pleurotomella. A new genus name, Glaciotomella n. gen., is proposed for

species of the other clade, exhibiting a *Pleurotomella*-like shell albeit with a rather divergent

radula from that of P. packardii. In our molecular analysis (Fig. 2), species of Pleurotomella

show a degree of divergence comparable to that of the nodes separating different genera in

the same analysis. This indication of comparatively distant relationships suggests the need

for further taxonomic investigation, which cannot be conducted based on our limited data.

One clade contained a specimen (AMS C.482290) exhibiting a nearly identical shell to the

holotype of *Theta lyronuclea* (type species of *Theta*), both in its teleoconch and protoconch

Bouchet & Warén (1980, p. 9, fig. 13). In spite of the considerable geographic distance of its

morphology. Furthermore, its radula was very similar to that figured for that species by

collecting site (off E Australia) from the type locality of *T. lyronuclea* (off Bermuda), AMS

C.482290 was considered as belonging to this species. Consequently, the clade in which it

transoceanic distributions are rare. However, the phenomenon has been reported for the

One clade contained two species sharing a fusiform shell with cylindrical whorl periphery, as

character combinaton is unique within the Raphitomidae, the clade was assigned to a new

well as very thick, double-barbed hypodermic teeth with a large, coarse base. As this

forms a part was assigned to Theta. Known examples of conoidean species with global,

turrid Cryptogemma benthima (Dall, 1908) (Zaharias et al., 2020).

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
2/
28
29
30
31
32
33
34
35
26
20
3/
38
39
40
41
42
43
13
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

One sample (AMS C.519335) not clustering with any other sample could be readily assigned
to *Typhlosyrinx* due to its large, very elongate shell with an ovate last adult whorl and a very
short siphonal canal, and in its large, double-barbed hypodermic teeth (Bouchet & Sysoev,
2001)

Two unrelated species (AMS C.482283 and AMS C.571611) shared a nearly globose shell,
 with a high whorl expansion rate (sensu Raup, 1961) and sculpture of densely set, weak
 cordlets. Not observed in any known genus of the Raphitomidae, these combined characters
 here prompted the establishment of two new genera; *Globodaphne* n. gen. and

1275 Trochodaphne n. gen.

Two additional unrelated samples, that did not cluster with any of the other clades within 1276 1277 this analysis (AMS C.519362 and AMS C.571734), shared a relatively large, subglobose, thinwalled shell with weakly developed sculpture. These combined features are referable to 1278 1279 Xanthodaphne. These two unrelated taxa, however, exhibit rather different hypodermic 1280 teeth (not shown). The type species of Xanthodaphne, X. membranacea (Watson, 1886), 1281 was described for the deep sea of New Zealand based on an empty shell, and for which no 1282 radular data is available. Bouchet & Warén (1980; p. 8, fig. 9) figured the radula (but not the shell) of a specimen from "the bathyal of New Zealand", albeit with no repository detail 1283 1284 provided. The radula figured therein exhibits a single-bladed tooth, which differs from the 1285 tooth of both AMS C.519362 (with two weak barbs, one serrated) and AMS C.571734 (with 1286 two distinct barbs). Pending thorough taxonomic definition of *Xanthodaphne*, we therefore refrain from attributing these two clades to this or any other genus. 1287 1288 An additional specimen that did not cluster within any of the other clades (AMS C.571643)

1289 exhibited a conical, unsculptured shell resembling that of Abyssothauma Sysoev, 1996 and

1	
2 3 4	1290
5 6 7	1291
7 8 9	1292
10 11	1293
12 13 14	1294
15 16	1295
17 18 19	1296
20 21	1297
22 23 24	1298
24 25 26	1299
27 28	1300
29 30 31	1301
32 33	1302
34 35 36	1303
37 38	1304
39 40 41	1305
42 43	1306
44 45 46	1307
40 47 48	1308
49 50	1309
51 52 53	1310
54 55	1311
56 57 58	1312

some species of *Eubela* Dall, 1889. Unfortunately, the radula preparation was unsuccessful and genus attribution was therefore not attempted.

Deep-sea raphitomid species have been assigned to genera based on morphology only (Bouchet & Warén, 1980; Sysoev & Ivanov, 1985; Sysoev & Kantor, 1987; Sysoev, 1996a; Sysoev, 1996b; Sysoev, 1997; Sysoev & Bouchet, 2001; Figueeira & Absalao, 2012). These attributions appear as largely driven by shell morphology, despite, in some cases, substantial differentiation in radular morphology can be observed in these taxonomic groups. The present work confirms that (arguably) homogenous shell characters in deep-sea raphitomids are of limited taxonomic utility as conchologically similar clusters vary considerably in their radular anatomy. Within the Conoidea, there are numerous examples of taxa with very similar shells differing significantly in their radular morphology (Kantor et al., 2008), such as for the two deep-sea raphitomid genera Typhlosyrinx and Leiosyrinx Bouchet & Sysoev, 2001 (Bouchet & Sysoev, 2001). The suitability of the radula as a diagnostic character compared to that of the shell was molecularly tested for some turriform conoideans (Kantor et al., 2018). There, the variation in radular morphology and considerable genetic differentiation between highly convergent shell morphotypes was regarded as an indication of shell-wise cryptic genus-level diversity. Our study demonstrates that, to some extent, this applies also to several deep-sea genera of the Raphitomidae. Conversely, two species of the shallow-water raphitomid genus Hemilienardia possess a remarkably divergent radula from that of their congeners and other raphitomids (Fedosov et al., 2017). We therefore emphasise the importance of an integrative approach, combining morphological and molecular data, when studying the taxonomy of turriform conoideans. Our results also suggest that maintaining the integrity of some of the traditionally highly 59 speciose genus concepts (such as Gymnobela s.l. or Pleurotomella s.l.) is untenable unless a 1313 60

number of well-established and morphologically highly distinct genera are synonymised. Such a decision is in accordance with studies on other conoidean groups (Puillandre et al., 2015; Fedosov et al., 2020). Therefore, twelve new genera are introduced herein in order to avoid synonymising well-established genus names. Patterns in morphological characters Shell Three broad shell morphological 'types' can be recognised: (a) large fusiform, with relatively weak sculpture, (b) a fusiform-biconical, and (c), with comparatively prominent sculpture, convex whorls with deeply impressed suture, and a sharply delineated siphonal canal. These types are rather conserved morphologies distributed in non-related lineages across the phylogenetic tree (Fig. 7). Other, less prevalent types (e.g. the globose Trochodaphne n. gen./Globodaphne n. gen. and biconical Biconitoma n. gen./Aplotoma n. gen.) also occur in unrelated lineages (Fig. 7). Such a non-monophyletic distribution of similar shell morphologies is not unexpected; shell convergence within the Conoidea is widely acknowledged, and reported for several families (e.g. Bouchet et al., 2011; Kantor et al., 2018; Hallan et al., 2019). Several shallow-water raphitomids, such as Hemilienardia and Kermia Oliver, 1915 (Fedosov & Puillandre, 2012) possess thick, elaborate sculpture, commonly with reinforcement of the aperture. Very few such shell-strengthening strategies have been encountered in the deep-sea taxa studied herein (Figs 3, 6). While sculptural elements are generally seen, reinforcement by means of thickening or sculptural elaboration of the aperture is absent in all deep-sea taxa studied here.

1 2		
3 4	1338	Radula
5 6 7	1339	Three configurations of the hypodermic tooth were encountered: double-barbed, awl-
, 8 9	1340	shaped with dorsal blade, and awl-shaped with no distinct blade. These are distributed
10 11	1341	across the tree irrespective of supra-specific phylogenetic relationships. For instance, the
12 13 14	1342	unrelated Austrobela, Pontiothauma and Typhlosyrinx all have double-barbed teeth (Fig. 7).
15 16	1343	However, genus-level synapomorphies can be identified in most genera by considering a
17 18 19	1344	combination of characters, such as morphology and size of barbs and blades, the relative
20 21	1345	length of the adapical opening, and base morphology and texture. Whether such conserved
22 23 24	1346	morphology reflects true phylogenetic signal and/or identical prey type, or both, remains to
24 25 26	1347	be established. While polychaete fragments have been encountered in some taxa (see
27 28	1348	Systematics), the identification of such fragments is inadequate in order to infer dietary
29 30 31	1349	patterns among these taxa.
32 33	1350	A number of examined species have lost the venom apparatus (Fig. 7), the loss of which is
34 35 36	1351	known to occur in distantly related clades in the Raphitomidae and in Conoidea more
37 38	1352	broadly (Kantor & Sysoev, 1986; Kantor & Sysoev, 1989; Taylor, 1990; Kantor & Taylor, 2002;
39 40 41	1353	Medinskaya & Sysoev, 2003; Castelin et al., 2012). Kantor and Sysoev (1989) argued that in
42 43	1354	conoideans where rhynchostomal lips and the rhynchodeal introvert develop and become
44 45	1355	more significant for prey capture, the necessity of the radula decreases, potentially resulting
40 47 48	1356	in the subsequent loss of the radula and venom apparatus. Members of another conoidean
49 50	1357	family, Terebridae, where radula, venom gland and proboscis have been repeatedly lost also
51 52 53	1358	typically possess a rhynchodeal introvert (Castelin et al., 2012; Fedosov et al., 2020). Ball et
54 55	1359	al. (1997) suggested that the reduction or absence of the proboscis in raphitomids were
56 57 58	1360	indicative of paedomorphic states (see Ponder & Lindberg, 1997 for discussion on potential
59 60	1361	heterochrony in gastropods) and Kantor & Taylor (2002) proposed that the loss of radula

1 ว		
2 3 4	1362	and venom apparatus may also be linked to paedomorphosis. Ball (pers. comm. as provided
5 6 7	1363	in Kantor & Taylor, 2002) reported that the venom gland is among the last of the major
, 8 9	1364	foregut organs to develop during ontogeny. Many of the new taxa herein possess thick
10 11 12	1365	rhynchostomes and well-developed introverts, such as Glaciotomella investigator n. gen. n.
12 13 14	1366	sp., Nodothauma magnifica n. gen. n. sp., B. cretosa n. gen. n. sp., G. pomum n. gen. n. sp.
15 16	1367	and <i>P. cirricsulcata</i> n. gen. n. sp. Nevertheless, there is no clear correlation between the
17 18 19	1368	presence of a rhynchodeal introvert and the reduction or loss of radula and venom
20 21	1369	apparatus – the venom apparatus and radula are lost in <i>G. pomum</i> n. gen. n. sp. and <i>N.</i>
22 23 24	1370	magnifica n. gen. n. sp., but are well-developed in P. cirrisulcata n. gen. n. sp. and B. cretosa,
25 26	1371	n. gen. n. sp. and all four taxa possess a a well-developed introvert.
27 28 29	1372	
30 31	1373	Eyes
32 33 34	1374	Bouchet & Warén (1980) noted an unexpectedly high proportion of abyssal turriform
35 36	1375	conoidean species that possess eyes in their study of the North Atlantic fauna, which is
37 38	1376	consistent with our results. Some taxa, such as Austrobela and Spergo have comparatively
39 40 41	1377	large and well-developed eyes in all species studied here, suggesting that this feature may
42 43	1378	be diagnostic for these genera. In the majority of lineages, such as Gymnobela,
44 45 46	1379	Pontiothauma, Gladiobela n. gen., Pueridaphne n. gen., Rimosodaphnella and Glaciotomella
47 48	1380	n. gen., the eyes are very small to minuscule. For only one taxon, Biconitoma n. gen., no
49 50 51	1381	eyes were observed. Juvenile specimens of <i>N. magnifica</i> n. gen. n. sp. possess large eyes
52 53	1382	whereas in adults the eyes are in part covered by epidermis. Juveniles with eyes and blind
54 55 56	1383	conspecific adults have been reported for deep-sea species of turriform conoideans by
57 58	1384	Bouchet & Warén (1994).
59 60	1385	

2		
3 4	1386	Bath
5 6 7	1387	Our
7 8 9	1388	οςςι
10 11	1389	deliı
12 13 14	1390	typi
15 16	1391	400
17 18 19	1392	abys
20 21	1393	abys
22 23	1394	fron
24 25 26	1395	Phyi
27 28	1396	bath
29 30 31	1397	Anta
32 33	1398	
34 35 36	1399	Faur
37 38	1400	Patt
39 40	1401	Dee
41 42 43	1402	logis
44 45	1403	num
46 47 48	1404	ben
49 50	1405	taxo
51 52 53	1406	in SI
54 55	1407	colle
56 57	1408	port
59 60	1409	our

1386Bathymetric distribution1387Our data (Fig. 8) show that, in the deep waters of SE Australia, genera of Raphitomidae1388occur on a bathymetrical range spanning from the mid-bathyal to the lower abyssal (as1389delimited in Lalli & Parsons, 1997). While most genera exhibit a distribution that is either1390typically bathyal or abyssal, some occur in both zones. With a bathymetrical range of about13914000 m, *Theta, Spergo* and *Gladiobela* n. gen. are present from the mid-bathyal to the lower1392abyssal. The range of *Famelica* (3000 m) extends from the upper bathyal to the upper1393abyssal, while the occurrence of *Austrobela* n. gen. and *Fusobela* n. gen. (2000 m) stretch1394from the bathyal to lower abyssal. A similar wide range is observed for *Gymnobela* and1395*Phymorhynchus*, which are, however, restricted to abyssal depths. Comparably wide1396bathymetrical distributions have been reported for several conoidean genera in the1397Antarctic region (Kantor et al., 2016).1398Faunal and biogeographical implications

, 1400 Patterns of diversity

1401 Deep-sea expeditions retain their pioneering nature, due to their high cost and challenging
1402 logistics. Often, due to great distances and technical difficulties, only a relatively limited
1403 number of samples can be obtained in a single voyage. Even when characterisation of the
1404 benthic fauna is the primary aim, adapting the sampling methodology to target a specific
1405 taxonomic group is often impractical. Such limitations have affected deep-sea surveys also
1406 in SE Australia, that are the main source of material for this study. In the gastropod material
1407 collected, in particular, there was a bias towards large forms. As small snails are a significant
1408 portion of the overall turriform conoidean diversity (Bouchet et al., 2009), it is possible that
1409 our study material represents a taxonomically impoverished portion of the total raphitomid

Zoological Journal of the Linnean Society

Page 62 of 86

1	
2 3 4	1410
5 6 7	1411
, 8 9	1412
10 11 12	1413
12 13 14	1414
15 16 17	1415
17 18 19	1416
20 21	1417
22 23 24	1418
25 26	1419
27 28 29	1420
30 31	1421
32 33 34	1422
35 36	1423
37 38	1424
39 40 41	1425
42 43	1426
44 45 46	1427
47 48	1428
49 50 51	1429
52 53	1430
54 55 56	1431
57 58	1432
59 60	1433

fauna. As a consequence, the taxonomical and geographical coverage discussed below 1410 1411 cannot be exhaustive.

3 9	1412	Prior to this study, the distribution of deep-sea raphitomid genera in Australia was primarily
10 11 12	1413	known from museum specimen data. Only scattered records for eight genera were
12 13 14	1414	available: Gymnobela (Torres Strait to S Tas), Nepotilla Hedley, 1918 (Central Qld to SW
15 16	1415	WA), Pleurotomella (Torres Strait to GAB), Taranis (NT to Eyre Peninsula), Thatcheria Angas,
17 18 19	1416	1877 (N WA), Veprecula (Central WA to N Tas), Xanthodaphne (S NSW) and Spergo (WA)
20 21	1417	(source ALA, http://www.ala.org.au). However, many of these records occur outside our
22 23 24	1418	target area (southern and eastern coast) and/or are based on material not examined in this
25 26	1419	study. Furthermore, this material was identified based on shell morphology and is therefore
27 28 29	1420	possibly of unreliable identification, given issues with shell homoplasy raised previously. For
30 31	1421	these reasons, these records are here ignored, with the discussion of diversity and
32 33	1422	distribution of SE Australian deep-sea raphitomids below based exclusively on our study
35 36	1423	material.
37 38	1424	One of the most apparent outcomes of this study is the high level of previously
39 40 41	1425	unrecognised diversity in the deep-sea raphitomid fauna of SE Australia. More than half of
42 43	1426	the genera and most of the species (87%) present in the area are undescribed, which is
44 45 46	1427	consistent with reported estimates of unnamed turriform conoideans of the tropical Indo-
47 48	1428	Pacific (Bouchet et al., 2008).
49 50 51	1429	Our data further indicate that the raphitomid fauna of the study area includes 58 species
52 53	1430	from at least 24 genera. These figures, amounting to over one-third of the overall accepted
54 55	1431	raphitomid genera and more than 7% of the named species, indicate that the diversity of
57 58	1432	Raphitomidae in temperate SE Australia is significantly greater than previously understood.

2		
2 3 4	1434	Biogeographic overlap with adjacent basins
5 6 7	1435	Assessing the extent and composition of raphitomid diversity in the study area compared
, 8 9	1436	with those of other deep-sea regions is challenging, due to geographical and methodological
10 11 12	1437	biases. Firstly, the faunistic coverage on Raphitomidae in the deep sea is incomplete, with
12 13 14	1438	comparable data available only for some regions of the tropical SW Pacific (Bouchet et al.,
15 16 17	1439	2009), Atlantic (Bouchet & Warén, 1980; Figueeira & Absalao, 2012) and Antarctica (Kantor
18 19	1440	et al., 2016). Secondly, these reports refer to areas of varying geographic extent and with
20 21 22	1441	different bathymetrical ranges (e.g. Barnard, 1963; Sysoev & Ivanov, 1985; Sysoev, 1988;
22 23 24	1442	Sysoev, 1990; Sysoev, 1996b) and are thus of problematic comparison. Lastly, in most
25 26 27	1443	available studies, taxonomic treatments rest exclusively on morphological evidence and
27 28 29	1444	with no supporting molecular data. The comparisons below are therefore: (a) limited to the
30 31	1445	deep sea of relatively well-studied neighbouring basins, (b) restricted to genus-level and (c)
32 33 34	1446	exploratory in nature, pending further collecting as well as taxonomic investigations.
35 36	1447	Our findings show minimal overlap with the raphitomid fauna of one directly adjacent basin,
37 38 39	1448	the Southern Ocean. Only one genus (<i>Pleurotomella</i>) and none of the 17 raphitomid species
40 41	1449	occurring in Antarctica (reviewed in Kantor et al., 2016) have been recorded in SE Australia.
42 43	1450	Interpretation of published data on shells and radulae of deep-sea raphitomids from the
44 45 46	1451	Cape Point region in South Africa (Barnard, 1963; Sysoev, 1996b), suggests that these areas
47 48	1452	share four genera with SE Australia (Famelica n. gen., Gymnobela, Pontiothauma and
49 50 51	1453	Theta). A similar comparison is more difficult with the fauna of the Nasca and Sala-y-Gomez
52 53	1454	ridges (SE Pacific; Sysoev & Ivanov, 1985; Sysoev, 1990) for which only shell data is available.
54 55 56	1455	However, the evidence suggests that this area shares Pleurotomella and possibly Gymnobela
57 58	1456	and Austrobela n. gen. with SE Australia, although these conclusions remain untested,
59 60	1457	pending the availability of material suitable for molecular study from the relevant areas.

2		
3 4	1458	Nevertheless, where preliminary molecular data do exist (this, and other studies in
5 6 7	1459	preparation), they suggest, in combination with morphology, that some of the newly
7 8 9	1460	recognised genera (Austrobela n. gen., Pagodibela and Gladiobela n. gen.), as well as some
10 11	1461	other genera (e.g. Famelica, Spergo and Theta), have ranges extending well into the tropical
12 13 14	1462	Indo-Pacific. No evidence is available to date for <i>Glaciotomella</i> n. gen., Austrotheta n. gen.
15 16	1463	or any of the monotypic genera described herein to suggest that these may occur outside
17 18 10	1464	the study area.
20 21	1465	
22 23	1466	Range size and endemism
24 25 26	1467	The number (seven) and proportion (one third) of putative endemic genera found in this
27 28	1468	study are greater than those recorded for other realms. Five genera are endemic to the
29 30 31	1469	south Australian realm and two are unique to the Coral Sea realm (sensu Costello et al.,
32 33	1470	2017). To date, only seven deep-sea raphitomid genera are known to be endemic to one
34 35 36	1471	single marine realm, namely Buccinaria Kittl, 1887, Rocroithys Sysoev & Bouchet, 2001,
37 38	1472	<i>Leiosyrinx</i> (Bouchet & Sysoev, 2001) for the Indo-Pacific realm; <i>Abyssobela</i> (Sysoev &
39 40 41	1473	Kantor, 1986) and Vitjazinella for the Offshore W Pacific; Tuskaroia (Sysoev, 1988) for the N
41 42 43	1474	Pacific and Abyssothauma Sysoev, 1996 for South Africa. No endemic genera are found in
44 45	1475	the SE Pacific ridges mentioned above (Sysoev & Ivanov, 1985; Sysoev, 1990) or in
46 47 48	1476	Antarctica (Kantor et al., 2016).
49 50	1477	The extension of the distribution range of deep-sea turriform conoideans is thought to
51 52 53	1478	depend on two alternative larval developmental strategies. Taxa with planktotrophic larvae
54 55	1479	are usually considered more effective dispersers than direct developers (with lecitotrophic
56 57	1480	larvae) and have greater ranges (Bouchet & Warén, 1994). Planktotrophy can be assessed
59 60	1481	by the presence of a multispiral protoconch, while lecitotrophy is associated with a

2		
- 3 4	1482	p
5 6 7	1483	v
7 8 9	1484	F
10 11	1485	n
12 13 14	1486	h
15 16	1487	g
17 18 10	1488	r
20 21	1489	t
22 23	1490	B
24 25 26	1491	iı
27 28	1492	g
29 30 31	1493	а
32 33	1494	F
34 35 26	1495	F
30 37 38	1496	С
39 40	1497	g
41 42 43	1498	f
44 45	1499	K
46 47	1500	s
48 49 50	1501	t
51 52	1502	С
53 54 55	1503	C
56 57	1504	g
58 59		J

baucispiral protoconch (Thorson, 1950). Species, for which examination of the protoconch vas possible in this study, exhibited a multispiral protoconch, except those attributed to *Pontiothauma*. This is in accordance with the notion that planktotrophy is the dominant node of development in deep-sea turriform conoideans (Bouchet & Warén, 1994). While igher dispersal potential could in theory explain the wide ranges observed here for some enera, it does not provide sufficient justification for the potentially much more restricted anges reported for other genera. It has been speculated that the larvae of many deep-sea urriform conoideans may undergo (total or partial) demersal development (Shimek, 1986; Bouchet & Warén, 1994), known to purportedly reduce dispersal ability of some deep-sea nvertebrates (Young et al., 2017). There is no evidence of demersal larval life in any of the enera studied here, and further ecological investigation is required to assess whether such strategy can be linked to more restricted distribution ranges. The purported wide range of Ponthiothauma despite its lecitotrophic larva is also in disagreement with the general rule. lowever, it has been suggested that lecitotrophic larvae of some deep-sea gastropods are apable of spending longer periods as demersal, drifting, nonfeeding larvae and thus have a reater dispersal ability than commonly thought (Bouchet & Warén, 1994). Environmental actors may also influence distribution patterns of raphitomid genera. Species of Buccinaria Kittl, 1887 are endemic to the Indo/Indo-Pacific realm, where they occur on reducing ediment at bathyal depths. It has been hypothesised that the absence of this genus from he neighbouring deep waters off NW Australia and the Arabian Sea may be due to the lack of such preferential substrate (Bouchet & Sysoev, 1997). Our preliminary observations suggest that distribution patterns of deep-sea raphitomid enera can be highly heterogenous. While some genera seem to possess very wide ranges,

1505 others appear strictly endemic. However, further molecular and ecological data on 60

1 2		
2 3 4	1506	Raphitomidae worldwide are required to assess the real taxonomic diversity, and observed
5 6 7	1507	distribution patterns presented herein, as well as to further elucidate their underlying
7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 27 28 9 31 23 34 5 6 7 8 9 0 12 23 24 25 27 28 9 31 23 34 5 6 7 8 9 0 12 23 24 25 27 28 9 31 23 34 5 6 7 8 9 0 12 23 24 25 26 7 8 9 31 23 34 5 6 7 8 9 0 12 23 24 25 26 7 8 9 31 23 34 5 6 7 8 9 0 11 22 23 24 25 26 7 8 9 31 23 34 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 31 23 34 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 5 5 6 7 8 9 0 12 23 24 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1508	nechanisms.

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

Acknowledgments

This work has been made possible through financial support from the Australian Government (ABRS grant RF217-57, principal investigator FC). The participation of AF was also supported by the Russian Science Foundation (grant 16-14-10118 to Yuri Kantor). Voyages in the GAB were part of: (a) the GAB Research Program [GABRP – a collaboration between BP, CSIRO, the South Australian Research and Development Institute (SARDI), the University of Adelaide, and Flinders University] and (b) the GAB Deepwater Marine Program (GABDMP – a CSIRO led research program sponsored by Chevron Australia]. Funding for the 'Eastern Abyss' voyage (IN2017 V03) was provided by the Marine Biodiversity Hub (MBH), supported through the Australian Government's National Environmental Science Program (NESP). The 'Tasmanian seamounts' voyage (IN2018 V06) was sponsored by the CSIRO Marine National Facility (MNF), the NESP MBH and Parks Australia. The authors wish to thank the CSIRO MNF for its support in the form of sea time onboard, support personnel, scientific equipment and data management. We also thank the scientific staff and crew who participated in all voyages generating the samples studied herein. The MNHN samples used in this study originates from shore-based expeditions (PANGLAO 2004, PAPUA NIUGINI) and deep-sea cruises (AURORA 2007, BOA1, EBISCO, SALOMON 2) conducted by MNHN, Pro-Natura International (PNI) and Institut de Recherche pour le Développement as part of the Our Planet Reviewed and the Tropical Deep-Sea Benthos programs. Scientific partners included the University of Papua New Guinea (UPNG), the University of San Carlos, Cebu City, and the Philippines Bureau of Fisheries and Aquatic Research; funders and sponsors included the Total Foundation, Prince Albert II of Monaco Foundation, Stavros Niarchos Foundation, and Richard Lounsbery Foundation. All 59 expeditions operated under the regulations then in force in the countries in question and 1532 60

2		
3 4	1533	satisfy the conditions set by the Nagoya Protocol for access to genetic resources.
5 6 7	1534	We would also like to thank the scientific team of the BICOSE cruise (P.I. M. Cambon-
, 8 9	1535	Bonavita, Ifremer), especially the team of the ROV 'Victor 6000'.
10 11	1536	We would like to express our gratitude to Mandy Reid, Alison Miller and Jennifer Caiza
12 13 14	1537	(AMS) for assistance with registration and databasing of material, to Barbara Buge (MNHN
15 16	1538	for the sample preparation, and to Andrea Crowther (SAMA, Adelaide), Simon Grove and
17 18 19	1539	Kirrily Moore (TMAG, Hobart), Bastian Brenzinger (ZSM, Munich), Lisa Kirkendale and Corey
20 21	1540	Whisson (WAM, Perth) for smoothly and promptly handling our loan requests. Special
22 23 24	1541	thanks are due to Sue Lindsay and Chao Shen (Macquarie University, Sydney) for assisting
25 26	1542	with SEM work.
27 28 20	1543	We are indebted to several people providing photos of types and other relevant specimens:
29 30 31	1544	Andreia Salvador (NHMUK, London), Ellen Strong (NMNH, Washington), Alexander Sysoev
32 33	1545	(ZMMU, Moscow), Giorgio Teruzzi and Anna Alessandrello (MSNM, Milan), Kazunori
34 35 36	1546	Hasegawa (NSMT, Tokyo) and Bram van der Bijl (NMNL, Leiden).
37 38	1547	We also thank Yuri Kantor for assistance with the interpretation of radular characters and
39 40 41	1548	Winston Ponder (AMS) for useful discussions about general neogastropod anatomy. Finally,
42 43	1549	two anonymous reviewers are thanked for their helpful suggestions which served to
44 45 46	1550	improve the manuscript.
40 47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		

1 2		
3	1551	References
4 5		
6 7	1552	
8	1553	Abdelkrim J, Aznar-Cormano L, Fedosov AE, Kantor YI, Lozouet P, Phuong MA, Zaharias P,
10	1554	Puillandre N. 2018a. Exon-Capture-Based Phylogeny and Diversification of the
12	1555	Venomous Gastropods (Neogastropoda, Conoidea). Molecular Biology and Evolution
13 14	1556	35: 2355-2374.
15 16	1557	Abdelkrim J, Aznar-Cormano L, Buge B, Fedosov A, Kantor Y, Zaharias P, Puillandre N.
17 18	1558	2018b. Delimiting species of marine gastropods (Turridae, Conoidea) using RAD-
19 20	1559	sequencing in an integrative taxonomy framework. Molecular Ecology 27(22):4591-
20	1560	4611.
22 23	1561	Arntz W, Brey T. 2003. The Expedition ANTARKTIS XIX/5 (LAMPOS) of RV "Polarstern" in
24 25	1562	2002. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research.
26 27	1563	Ball AD, Andrews EB, Taylor JD. 1997. The ontogeny of the pleurembolic proboscis in
28 29	1564	Nucella lapillus (Gastropoda: Muricidae). Journal of Molluscan Studies 63: 87-99.
30 31	1565	Barnard KH. 1963. Deep sea Mollusca from West of Cape Point, South Africa. Annals of the
32	1566	South African Museum 46: 407-453.
33 34	1567	Bonfitto A, Morassi M. 2013. New Indo-Pacific species of Rimosodaphnella Cossmann, 1916
35 36	1568	(Gastropoda: Conoidea): a genus of probable Tethyan origin. Molluscan Research 33:
37 38	1569	230-236.
39 40	1570	Bouchet P, Bary S, Heros V, Marani G. 2016. How many species of molluscs are there in the
41	1571	world's oceans, and who is going to describe them? Memoires du Museum National
42	1572	d'Histoire Naturelle 208: 9-24.
44 45	1573	Bouchet P, Heros V, Lozouet P, Maestrati P. 2008. A quarter - century of deep-sea
46 47	1574	malacological exploration in the South and West Pacific: where do we stand? How far
48 49	1575	to go?
50 51	1576	Bouchet P, Kantor YI. 2004. New Caledonia: The major centre of biodiversity for
52	1577	volutomitrid molluscs (Mollusca: Neogastropoda: Volutomitridae). Systematics and
55 54	1578	Biodiversity 1: 467-502.
55 56	1579	Bouchet P, Kantor YI, Sysoev A, Puillandre N. 2011. A new operational classification of the
57 58	1580	Conoidea (Gastropoda). Journal of Molluscan Studies 77: 273-308.
59 60		

1 2		
3 4	1581	Bouchet P, Lozouet P, Sysoev A. 2009. An inordinate fondness for turrids. Deep-Sea
5	1582	Research Part II Topical Studies in Oceanography 56: 1724-1731.
7	1583	Bouchet P, Sysoev A. 1997. Revision of the Recent species of Buccinaria (Gastropoda:
8 9	1584	Conoidea), a genus of deep-water turrids of Tethyan origin. Venus (Tokyo) 56: 93-
10 11	1585	119.
12 13	1586	Bouchet P, Sysoev A. 2001. Typhlosyrinx-like tropical deep-water turriform gastropods
14 15	1587	(Mollusca, Gastropoda, Conoidea). Journal of Natural History 35: 1693-1715.
16 17	1588	Bouchet P, Warén A. 1980. Revision of the north east Atlantic bathyal and abyssal Turridae
17	1589	(Mollusca, Gastropoda). Journal of Molluscan Studies Supplement 8: 1-119.
19 20	1590	Bouchet P, Warén A. 1994. Ontogenetic migration and dispersal of deep-sea gastropod
21 22	1591	larvae. Reproduction, larval biology, and recruitment of the deep-sea benthos.:
23 24	1592	Columbia University Press. 98-117.
25 26	1593	Castelin M, Puillandre N, Kantor Y, Modica MV, Terryn Y, Cruaud C, Bouchet P, Holford M.
27 28	1594	2012. Macroevolution of venom apparatus innovations in auger snails (Gastropoda;
20 29 30	1595	Conoidea; Terebridae). Molecular Phylogenetics and Evolution 64: 21-44.
30 31	1596	Clarke AH. 1959. New abyssal mollusks from off Bermuda collected by the Lamont
32 33	1597	geological Observatory Research vessels. Proceedings of the Malacological Society of
34 35	1598	London 38: 231-238.
35 36 37 38 39	1599	Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C. 2017. Marine
	1600	biogeographic realms and species endemicity. Nature Communications 8: 1057.
40	1601	Dall WH. 1895. Report on the Mollusca and Brachiopoda dredged in deep water, chiefly
41	1602	near the Hawaiian Islands, with illustrations of hitherto unfigured species from
43 44	1603	Northwest America. Proceedings of the United States National Museum. 17: 675-
45 46	1604	733.
47 48	1605	Dall WH. 1908. The Mollusca and the Brachiopoda. (Reports on. the dredging operations off
49 50	1606	the west coast of Central America to the Galapagos, to the west coast of Mexico, and
51 52	1607	in the Gulf of California, in charge of Alexander Agassiz, carried on by the U. S. fish
53	1608	commission steamer "Albatross," during 1891, Lieut. Commander Z. L. Tanner, U. S.
54 55	1609	N., commanding. 37. Reports on the scientific results of the expedition to the eastern
56 57	1610	tropical Pacific, in charge of Alexander Agassiz, by the U, S. fish commission steamer
58 59 60	1611	"Albatross," from October. 1904, to March, 1906, Lieut Commander L. M. Garrett, U.

2 3	1612	C. N. commonding 14) Combridge Mass Bull Mus Comm Zool Hamunud Coll 42: (202								
4 5 6	1612	S. N., commanding. 14). Cambridge. <i>Mass Bull Mus Comp 2001 Harvara Coll</i> 43: (203-								
	1613	487 + 222 I).								
7 8	1614	Dayrat B, Tillier A, Lecointre G, Tillier S. 2001. New clades of euthyneuran gastropods								
9 10	1615	(Mollusca) from 28S rRNA sequences. <i>Molecular Phylogenetics and Evolution</i> 19:								
11	1616	225-235.								
12 13	1617	Fedosov AE, Malcolm G, Terryn Y, Gorson J, Modica MV, Holford M, Puillandre N. 2020.								
14 15	1618	Phylogenetic classification of the family Terebridae (Neogastropoda: Conoidea).								
16 17	1619	Journal of Molluscan Studies.								
18	1620	Fedosov AE, Puillandre N. 2012. Phylogeny and taxonomy of the Kermia-Pseudodaphnella								
19 20 21	1621	(Mollusca: Gastropoda: Raphitomidae) genus complex: a remarkable radiation via								
21 22	1622	diversification of larval development. Systematics and Biodiversity 10: 447-477.								
23 24	1623	Fedosov AE, Stahlschmidt P, Puillandre N, Aznar-Cormano L, Bouchet P. 2017. Not all								
24 25 26 27 28 29 30 31	1624	spotted cats are leopards: evidence for a Hemilienardia ocellata species complex								
	1625	(Gastropoda: Conoidea: Raphitomidae). European Journal of Taxonomy 268: 1-20.								
	1626	Figueeira RMA, Absalao RS. 2012. Deep-water Raphitomidae (Mollusca, Gastropoda,								
	1627	Conoidea) from the Campos Basin, southeast Brazil. Zootaxa 3527: 1-27.								
32 33	1628	Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of								
34 35 36 37 38	1629	mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.								
	1630	Molecular Marine Biology and Biotechnology 3: 294-299.								
	1631	Galindo LA, Puillandre N, Strong EE, Bouchet P. 2014. Using microwaves to prepare								
39 40	1632	gastropods for DNA barcoding. Mol Ecol Resour 14: 700-705.								
41 42	1633	Hallan A, Criscione F, Fedosov AE, Puillandre N. 2019. Bouchetispira ponderi n. sp.								
43 44	1634	(Conoidea: Bouchetispiridae), a new deep-sea gastropod from temperate Australia.								
45 46	1635	Molluscan Research: 1-7.								
46 47	1636	Horton T, Kroh A, Ahyong S, Bailly N, Boyko CB, Brandão SN, Costello MJ, Gofas S,								
40 49	1637	Hernandez F, Holovachov O, Mees J, Paulay G, Rosenberg G, Decock W, Dekeyzer S,								
50 51 52 53	1638	Lanssens T, Vandepitte L, Vanhoorne B, Verfaille K, Adlard R, Adriaens P, Agatha S,								
	1639	Ahn KJ, Akkari N, Alvarez B, Anderson G, Angel MV, Arango C, Artois T, Atkinson S,								
54 55	1640	Bank R, Barber A, Barbosa JP, Bartsch I, Bellan-Santini D, Bernot J, Berta A, Bezerra								
56 57	1641	TN, Bieler R, Blanco S, Blasco-Costa I, Blazewicz M, Bock P, Böttger-Schnack R,								
58	1642	Bouchet P, Boury-Esnault N, Boxshall G, Bray R, Breure B, Bruce NL, Cairns S,								
60	1643	Cárdenas P, Carstens E, Chan BK, Chan TY, Cheng L, Churchill M, Coleman CO,								
1 2										
----------------------------	------	--	--	--	--	--	--	--	--	--
3 4	1644	Collins AG, Corbari L, Cordeiro R, Cornils A, Coste M, Crandall KA, Cremonte F,								
5	1645	Cribb T, Cutmore S, Dahdouh-Guebas F, Daly M, Daneliya M, Dauvin JC, Davie P, De								
7	1646	Broyer C, De Grave S, de Mazancourt V, de Voogd NJ, Decker P, Decraemer W,								
8 9	1647	Defaye D, d'Hondt JL, Dohrmann M, Dolan J, Domning D, Downey R, Drapun I,								
10 11	1648	Ector L, Eisendle-Flöckner U, Eitel M, Encarnação SCd, Enghoff H, Epler J, Ewers-								
12 13	1649	Saucedo C, Faber M, Feist S, Figueroa D, Finn J, Fišer C, Fordyce E, Foster W, Frank								
14 15	1650	JH, et al. 2019. World Register of Marine Species (WoRMS): WoRMS Editorial Board.								
16 17	1651	Jovelin R, Justine J-L. 2001. Phylogenetic relationships within the polyopisthocotylean								
18	1652	monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences.								
20	1653	International Journal for Parasitology 31: 393-401.								
21 22	1654	Kantor YI, Fedosov AE, Puillandre N. 2018. New and unusual deep-water Conoidea revised								
23 24	1655	with shell, radula and DNA characters. Ruthenica 28: 47-82.								
25 26	1656	Kantor YI, Harasewych MG, Puillandre N. 2016. A critical review of Antarctic Conoidea								
27 28	1657	(Neogastropoda). Molluscan Research 36: 153-206.								
29	1658	Kantor YI, Puillandre N. 2012. Evolution of the radular apparatus in Conoidea (Gastropoda:								
30 31	1659	Neogastropoda) as inferred from a molecular phylogeny. <i>Malacologia</i> 55: 55-90.								
32 33	1660	Kantor YI, Puillandre N, Olivera BM, Bouchet P. 2008. Morphological proxies for taxonomic								
34 35	1661	decision in turrids (Mollusca, Neogastropoda): a test of the value of shell and radula								
36 37	1662	characters using molecular data. Zoological Science (Tokyo) 25: 1156-1170.								
38 39	1663	Kantor YI, Strong EE, Puillandre N. 2012. A new lineage of Conoidea (Gastropoda:								
40	1664	Neogastropoda) revealed by morphological and molecular data. Journal of Molluscan								
41	1665	Studies 78: 246-255.								
43 44	1666	Kantor YI, Sysoev A. 1986. A new genus and new species from the family Turridae								
45 46	1667	(Gastropoda, Toxoglossa) in the northern part of the Pacific Ocean. Zoologicheskii								
47 48	1668	Zhurnal 65: 485-498.								
49 50	1669	Kantor YI, Sysoev A. 1989. The morphology of toxoglossan gastropods lacking a radula, with								
50 51 52	1670	a description of new species and genus of Turridae. Journal of Molluscan Studies 55:								
52 53	1671	537-549.								
54 55	1672	Kantor YI, Taylor JD. 2002. Foregut anatomy and relationships of raphitomine gastropods								
56 57 58 59 60	1673	(Gastropoda: Conoidea: Raphitominae). <i>Bollettino Malacologico</i> 38: 83-110.								

1 2										
2 3 4	1674	Lalli CM, Parsons TR. 1997. CHAPTER 7 - BENTHOS. In: Lalli CM and Parsons TR, eds.								
5	1675	Biological Oceanography: An Introduction (Second Edition). Oxford: Butterworth-								
7	1676	Heinemann. 177-195.								
8 9	1677	Linse K, Brandt A, Bohn JM, Danis B, De Broyer C, Ebbe B, Heterier V, Janussen D, Lopez								
10 11	1678	Gonzalez PJ, Schueller M, Schwabe E, Thomson MRA. 2007. Macro- and								
12 13	1679	megabenthic assemblages in the bathyal and abyssal Weddell Sea (Southern Ocean).								
14 15	1680	Deep-Sea Research Part II Topical Studies in Oceanography 54: 1848-1863.								
16	1681	MacIntosh H, Althaus F, Williams A, Tanner JE, Alderslade P, Ahyong ST, Bax N, Criscione								
17	1682	Crowther AL, Farrelly CA, Finn JK, Goudie L, Gowlett-Holmes K, Hosie AM,								
19 20	1683	Kupriyanova E, Mah C, McCallum AW, Merrin KL, Miskelly A, Mitchell ML,								
21 22	1684	Molodtsova T, Murray A, O'Hara TD, O'Loughlin PM, Paxton H, Reid AL, Sorokin SJ,								
23 24	1685	Staples D, Walker-Smith G, Whitfield E, Wilson RS. 2018. Invertebrate diversity in								
25 26	1686	the deep Great Australian Bight (200–5000 m). Marine Biodiversity Records 11: 23.								
27	1687	McEnnulty FR, Gowlett-Holmes KL, Williams A, Althaus F, Fromont J, Poore GCB, O'Hara								
20 29	1688	TD, Marsh L, Kott P, Slack-Smith S, Alderslade P, Kitahara MV. 2011. The deepwater								
30 31	1689	megabenthic invertebrates on the western continental margin of Australia (100-1100								
32 33	1690	m depths): composition, distribution and novelty. Records of the Western Australian								
34 35	1691	Museum Supplement 80: 1-191.								
36 37	1692	Medinskaya A, Sysoev A. 2003. The anatomy of Zemacies excelsa, with a description of a								
38	1693	new subfamily of Turridae (Gastropoda, Conoidea). Ruthenica 13: 81-87.								
40	1694	Morassi M, Bonfitto A. 2010. New raphitomine gastropods (Gastropoda: Conidae:								
41 42	1695	Raphitominae) from the South-West Pacific. Zootaxa 2526: 54-68.								
43 44	1696	Okusu A, Schwabe E, Eernisse DJ, Giribet G. 2003. Towards a phylogeny of chitons								
45 46	1697	(Mollusca, Polyplacophora) based on combined analysis of five molecular loci.								
47 48	1698	Organisms Diversity & Evolution 3: 281-302.								
49	1699	Page S. 1903. On the Anatomy of the Prosobranch genus Pontiothauma E. A. Smith. Journal								
51	1700	of the Linnean Society Zoology xxviii: pp. 455-462.								
52 53	1701	Palumbi SR. 1996. Nucleic acids 2: the polymerase chain reaction. Sinauer Associates, Inc.								
54 55	1702	Ponder WF, Lindberg DR. 1997. Towards a phylogeny of gastropod molluscs: an analysis								
56 57	1703	using morphological characters. Zoological Journal of the Linnean Society 119: 83-								
58 59 60	1704	265.								

1 2										
3	1705	Puillandre N, Baylac M, Boisselier MC, Cruaud C, Samadi S. 2009. An integrative approa								
5	1706	to species delimitation in Benthomangelia (Mollusca: Conoidea). Biological Journal of								
7	1707	the Linnean Society 96: 696-708.								
8 9	1708	Puillandre N, Duda TF, Meyer C, Olivera BM, Bouchet P. 2015. One, four or 100 genera? A								
10 11	1709	new classification of the cone snails. The Journal of molluscan studies 81: 1-23.								
12 13	1710	Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap								
14 15	1711	Discovery for primary species delimitation. <i>Molecular Ecology</i> 21 : 1864-1877.								
16 17	1712	Puillandre N, Sysoev A, Olivera BM, Couloux A, Bouchet P. 2010. Loss of planktotrophy ar								
18	1713	speciation: geographical fragmentation in the deep-water gastropod genus								
19 20	1714	Bathytoma (Gastropoda, Conoidea) in the western Pacific. Systematics and								
21 22	1715	Biodiversity 8: 371-394.								
23 24	1716	Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior Summarization in								
25 26	1717	Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67: 901-904.								
27 28	1718	Raup DM. 1961. The geometry of coiling in gastropods. Proceedings of the National								
29	1719	Academy of Sciences of the United States of America 47: 602-609.								
30 31	1720	Röckel D, Korn W, Kohn AJ. 1995. Manual of the living Conidae, volume 1: Indo-pacific								
32 33	1721	region. Verlag Christa Hemmen.								
34 35	1722	Ronquist F, Huelsenbeck JP. 2001. MRBAYES: Bayesian inference of phylogenetic trees.								
36 37	1723	Bioinformatics 17: 754-755.								
38 39	1724	Rozewicki J, Yamada KD, Katoh K. 2017. MAFFT online service: multiple sequence								
40 41	1725	alignment, interactive sequence choice and visualization.								
41	1726	Schepman MM. 1913. The Prosobranchia of the Siboga Expedition. Part V. Toxoglossa.								
43 44	1727	Uitkomsten op zool., botan., oceanogr. en geol. gebied verzameld in Ned. Oost-Indie								
45 46	1728	1899-1900 a-b H.M. Siboga onder commando van Lt. t-z le kl. G. F. Tydeman, uitge-								
47 48	1729	geven door Max Weber. Resultats des explorations zool., botan., oceanogr. et geol.								
49 50	1730	entreprises aux Indes Neerlandaises Orientales en 1899-1900 a bord du Siboga sous								
50 51 52	1731	le commandement de G. F. Tydeman publies par Max Weber. Leiden (E J Brill) 1913								
53	1732	Livr 64: (365-452).								
54 55 56 57 58 59 60	1733	Shimek RL. 1986. The biology of the northeastern Pacific Turridae. 5. Demersal								
	1734	development, synchronous settlement and other aspects of the larval biology of								
	1735	Oenopota levidensis. International Journal of Invertebrate Reproduction and								
	1736	Development 10: 313-333.								

1 2												
2 3 4	1737	Simon C, Franke A, Martin A. 1991. The polymerase chain reaction: DNA extraction and										
5	1738	amplification. NATO ASI Series Series H Cell Biology 57: 329-355.										
0 7	1739	Sigwart JD, Sutton MD, Bennett KD. 2017. How big is a genus? Towards a nomothetic										
8 9	1740	systematics. Zoological Journal of the Linnean Society 183: 237-252.										
10 11	1741	Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with										
12 13	1742	thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.										
14 15	1743	Sysoev A, Bouchet P. 2001. New and uncommon turriform gastropods (Gastropoda:										
16	1744	Conoidea) from the South-West Pacific. Memoires du Museum National d'Histoire										
18	1745	Naturelle 185: 271-320.										
19 20	1746	Sysoev A, Ivanov DL. 1985. New taxa of the family Turridae (Gastropoda, Toxoglossa) from										
21 22	1747	the Naska Ridge (south east Pacific). Zoologicheskii Zhurnal 64: 194-205.										
23 24	1748	Sysoev A, Kantor YI. 1986. New and rare abyssal species of the family Turridae (Gastropoda,										
25 26	1749	Toxoglossa) in the northern part of the Pacific Ocean. Zoologicheskii Zhurnal 65:										
27	1750	1457-1469.										
20 29	1751	Sysoev A, Kantor YI. 1987. Three new species of the deep-sea mollusc genus Famelica										
30 31	1752	(Gastropoda, Toxoglossa, Turridae). Zoologicheskii Zhurnal 66: 1255-1258.										
32 33	1753	Sysoev A, Kantor YI. 1990. A new genus and species of 'Cochlespira-like' turrids										
34 35	1754	(Gastropoda, Toxoglossa, Turridae). Apex (Brussels) 5: 1-6.										
36 37	1755	Sysoev A. 1988. Ultra-abyssal findings of the family Turridae (Gastropoda, Toxoglossa) in the										
38	1756	Pacific Ocean. Zoologicheskii Zhurnal 67: 965-973.										
39 40	1757	Sysoev A. 1990. Gastropods of the family Turridae (Gastropoda: Toxoglossa) of the Nasca										
41 42	1758	and Sala-y-Gomez underwater ridges. Trudy Instituta Okeanologii Akademii Nauk										
43 44	1759	SSSR 124: 245-260.										
45 46	1760	Sysoev A. 1996a. Deep-sea conoidean gastropods collected by the John Murray Expedition,										
47 48	1761	1933-34. Bulletin of the Natural History Museum Zoology Series 62: 1-30.										
40 49	1762	Sysoev A. 1996b. Taxonomic notes on South African deep-sea conoidean gastropods										
50 51	1763	(Gastropoda: Conoidea) described by K.H. Barnard, 1963. Nautilus 110: 22-29.										
52 53	1764	Sysoev A. 1997. Mollusca Gastropoda: new deep-water turrid gastropods (Conoidea) from										
54 55	1765	eastern Indonesia. Memoires du Museum National d'Histoire Naturelle 172: 325-355.										
56 57	1766	Taylor JD. 1990. The anatomy of the foregut and relationships in the Terebridae.										
58 59 60	1767	Malacologia 32: 19-34.										

1 2									
- 3 4	1768	Thorson G. 1950. Reproductive and larval ecology of marine bottom invertebrates.							
5	1769	Biological Reviews Cambridge 25: pp. 1-45.							
7	1770	Türkay M, Pätzold J. 2009. Southwestern Indian Ocean - Eastern Atlantic Ocean, Cruise No.							
8 9	1771	63, January 24 - March 30, 2005, Cape Town (South Africa) - Mindelo (Cabo Verde)							
10 11	1772	METEOR-Berichte. Hamburg. 100.							
12 13	1773	Warén A, Bouchet P. 2009. New gastropods from deep-sea hydrocarbon seeps off West							
14 15	1774	Africa. Deep-Sea Research Part II Topical Studies in Oceanography 56: 2326-2349.							
16	1775	Watson RB. 1886. Report on the Scaphopoda and Gastropoda collected by H.M.S.							
17 18	1776	'Challenger' during the Years 1873-76. Zoology Challenger Expedition xv: v + 756 p							
19 20	1777	Williams A. 2018. IN2018_V06. Status and recovery of deep-sea coral communities on							
21 22	1778	seamounts in iconic Australian marine reserves. RV Investigator Voyage Summary.							
23 24	1779	Hobart. 42.							
25 26	1780	Young CM, Arellano SM, Hamel J-F, Mercier A. 2017. Ecology and Evolution of Larval							
27	1781	Dispersal in the Deep Sea. Evolutionary Ecology of Marine Invertebrate Larvae.							
28 29	1782	Oxford: Oxford University Press.							
30 31	1783	Zaharias P, Kantor YI, Fedosov AE, Criscione F, Hallan A, Kano Y, Bardin J, Puillandre N.							
32 33	1784	2020. Just the once will not hurt: DNA suggests species lumping over two oceans in							
34 35	1785	deep-sea snails (Cryptogemma). Zoological Journal of the Linnean Society.							
36 37	1786								
38	1780								
39 40	1787								
41 42									
43 44									
45									
46 47									
48									
49 50									
51									
52									
53 54									
55									
56									
57 58									
59									
60									

Figure 1. Distribution of deep-sea Raphitomidae in southern and eastern Australia. Numbers in circles mark type localities of species described herein, namely (1) Aplotoma braevitentaculata n. gen. n. sp. (2), Austrobela rufa n. gen. n. sp. (3); Austrotheta crassidentata n. gen. n. sp.; (4) Biconitoma cretosa n. gen. n. sp. (5), Fusobela parvioculata n. gen. n. sp. (6), Glaciotomella investigator n. gen. n. sp. (7), Gladiobela

angulata n. gen. n. sp. (8), Globodaphne pomum n. gen. n. sp. (9), Nodothauma magnifica n. gen. n. sp. (10), Pagodibela maia n. gen. n. sp. (11), Pueridaphne cirrisulcata n. gen. n. sp. (12), Trochodaphne cuprosa n. gen. n. sp. Shades correspond to areas targeted by sampling: A. the GAB, B. the east coast, C. Tasmanian seamounts (see text). Dashed lines mark limits among marine realms (numbered as in Costello et al., 2017).

28x23mm (600 x 600 DPI)

Figure 3. Shells of species described herein. A, Notothauma magnifica n. gen. n. sp., holotype AMS
C.532707; B, Fusobela parvioculata n. gen. n. sp., holotype TMAG E59231; C, Aplotoma braevitentaculata n. gen. n. sp., holotype AMS C.571635; D, Biconitoma cretosa n. gen. n. sp., holotype AMS C.482313. E, Pagodibela maia n. gen. n. sp., holotype AMS C.571678; F, Austrobela rufa n. gen. n. sp., holotype AMS C.571709; G, Glaciotomella investigator n. gen. n. sp., holotype AMS C.571621; H, Austrotheta crassidentata n. gen. n. sp., holotype AMS C.519302. Scale bar 20 mm (A), 10 mm (B-H).

168x175mm (600 x 600 DPI)

Figure 4. Shells of species described herein. A, Gladiobela angulata n. gen. n. sp., holotype AMS C.571651; B, Pueridaphne cirrisulcata n. gen. n. sp., holotype AMS C.572165; C, Globodaphne pomum n. gen. n. sp., holotype AMS C.482283; D, Trochodaphne cuprosa n. gen. n. sp., holotype AMS C.571611. Scale bar 10 mm.

167x156mm (600 x 600 DPI)

Figure 5. Larval shells of species described herein. A, Trochodaphne cuprosa n. gen. n. sp., holotype AMS
 C.571611; B, Globodaphne pomum n. gen. n. sp., holotype AMS C.482283; C, Pagodibela maia n. gen. n. sp., holotype AMS C.571678; D, Pueridaphne cirrisulcata n. gen. n. sp., paratype AMS C.563103; E, Austrobela rufa n. gen. n. sp., paratype AMS C. 571681. Scale bar = 500 μm.

83x72mm (600 x 600 DPI)

Figure 6. Hypodermic teeth of species described herein. A, Aplotoma braevitentaculata n. gen. n. sp., holotype AMS C.571635; C, Pueridaphne cirrisulcata n. gen. n. sp., paratype AMS C.571609; D: Austrobela rufa n. gen. n. sp.: holotype AMS C.571709 (left), paratype AMS C.571679 (right); B, Gladiobela angulata n. gen. n. sp., paratype AMS C.571737; E, Pagodibela maia n. gen. n. sp., holotype AMS C.571678; F,
Fusobela parvioculata n. gen. n. sp., holotype TMAG E59231; G, Biconitoma cretosa n. gen. n. sp., holotype AMS C.482313; H, Austrotheta crassidentata n. gen. n. sp., holotype AMS C.519302. Scale bar = 50 μm.

168x150mm (600 x 600 DPI)

. Globodaphne Fusobela

Trochodaphne Ω

Famelica

shallow-sea taxa

Pagodibela

Mioawateria

Gymnobela s.s

Phymorhynchus Pueridaph

Pleurotomella' s.l

Gymnobela' s.l

Bathybela'-like

 Typhlosyrinx Spergo

Figure 7. Shell (scalebar = 10 mm) and radula (not in scale) of deep-sea raphitomids mapped on genuslevel clades (black boxes) of the strict consensus cladogram for the ML and BI analyses. For most clades attributed to newly described genera, images of the genus type specimen are shown (see Systematics). The radula of Glaciotomella n. gen. sp. 1 (SAMA D44120) is shown instead of that of the type species. For clades assigned to named genera, shell and radula are shown from specimens present in the analysis of Fig. 2 or from congeneric vouchers of the following species: Pleurotomella sp. 2 (WAM S32236, shell; AMS C.487456, radula); Famelica sp. 1 (AMS C.482253); Rimosodaphnella sp. 1 (AMS C.571613); Pontiothauma sp. 2 (AMS

C.571641, shell; AMS C.519398, radula); Phymorhynchus cingulatus (Dall, 1890) (AMS C.571764, shell; AMS C.571665, radula); Gymnobela n. sp. 4 (AMS C.571666, shell; AMS C.482314, radula); Typhlosyrinx sp. (AMS C.519335); Mioawateria sp. (MNHN IM-2013-68769); Teretiopsis sp. (AMS C.571622); Austrotheta crassidentata n. gen n. sp. (AMS C.519302); Spergo sp. 1 (AMS C.519290); Theta lyronuclea (Clarke, 1959)

(AMS C572169, shell; AMS C.571733, radula). Note that two separate clades are attributed to Phymorhynchus (see Discussion). Images are not shown for clades of uncertain generic attribution and not containing Australian samples. Shell images of conchologically cryptic genera groups (see Discussions) are

grouped in boxes. Dashes represent radula absence for the genus and zeros indicate missing data.

167x224mm (600 x 600 DPI)

Figure 8. Bathymetric ranges of genera of Raphitomidae in SE temperate Australian waters. A, Continental shelf; B, upper continental slope; C, lower continental slope; D, continental rise; E, abyssal plain; F, hadal depths. Asterisks mark genera known from one sample only.

78x77mm (300 x 300 DPI)

Family	Taxon	Museum	Registration no.	voucher	Locality/Expedition	BOLD id	COI	16S	125	H3	285
Turridae	Turris babylonia (Linnaeus, 1758)	MNHN	IM-2007-17754		Philippines, (9.618, 123.877), 8-22 m, Panglao 2004, R42.	CONO226-08	EU015677	HQ401715	HQ401652	EU015786	EU015562
Mangeliidae	Citharomangelia planilabroides (Tryon, 1884)	MNHN	IM-2007-17896		Philippines, (9.56, 123.725), 0-3 m, Panglao 2004, D5.	CONO219-08	EU015670	MN320420	MN322387	EU015779	EU015555
	Lienardia cf. mighelsi Iredale & Tomlin, 1917	MNHN	IM-2007-17897		Philippines, (9.618, 123.768), 3 m, Panglao 2004, B8.	CONO220-08	EU015671	MN942688	MN942694	EU015780	EU015556
Raphitomidae	Aplotoma braevitentaculata n. gen. n. sp.	AMS	C.571635	Ht	Australia, VIC, East Gippsland CMR, (-37.792, 150.382), 2338 m, IN2017_V03.	-	MN983163	MN985714	MN985653	MN971739	-
	Austrobela n. gen. sp.	AMS	C.519275		Australia, NSW, Coral Sea CMR, (-23.587, 154.194), 1013 m, IN2017_V03	-	MN983164	MN985715	MN985654	MN971740	MN985775
	Austrobela n. gen. sp. 1	AMS	C.519400		Australia, Qld, Coral Sea CMR, (-23.631, 154.66), 1770 m, IN2017_V03.	-	-	MN985716	MN985655	MN971741	MN985776
	Austrobela n. gen. sp. 2	AMS	C.571693		Australia, GAB, (-34.074, 129.182), 2649 m, IN2015_C01.	-	MN983165	MN985717	MN985656	MN971742	MN985777
	Austrobela n. gen. sp. 3	AMS	C.571670		Australia, GAB, (-34.823, 132.692), 1015 m, IN2015_C02.	-	MN983166	MN985718	MN985657	MN971743	MN985778
	Austrobela n. gen. sp. 4	AMS	C.571644		Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983167	MN985719	MN985658	MN971744	-
	Austrobela n. gen. sp. 5	AMS	C.571682		Australia, NSW, off Byron Bay, (-28.677, 154.203), 2587 m, IN2017_V03.	-	-	MN985720	MN985659	MN971745	-
	Austrobela rufa n. gen. n. sp.	AMS	C.571699	Pt	Australia, GAB, (-35.345, 134.045), 1509 m, IN2015_C02.	-	MN983168	MN985721	MN985660	MN971746	MN985779
	Austrotheta crassidentata n. gen n. sp.	AMS	C.519302	Ht	Australia, TAS, Freycinet CMR, (-41.731, 149.12), 2820 m, IN2017_V03.	-	MT260886	MN985768	MN985707	MN971792	MN985812
	Austrotheta n. gen. sp. 1	AMS	C.572174		Australia, GAB, (-34.574, 129.572), 3540 m, IN2015_C01.	-	MN983208	MN985765	MN985704	MN971789	MN985809
	Biconitoma cretosa n. sp.	AMS	C.482313	Ht	Australia, NSW, off Byron Bay, (-28.677, 154.203), 2587 m, IN2017_V03.	-	MN983169	MN985722	MN985661	MN971747	MN985780
	Eucyclotoma cymatodes (Hervier, 1897)	MNHN	IM-2007-17903		Philippines, (9.49, 123.933), 6-8 m, Panglao 2004, S12.	CONO227-08	EU015678	HQ401676	HQ401610	EU015787	EU015563
	Famelica sp. 1	AMS	C.482253		Australia, Qld, off Moreton Bay, (-26.946, 153.945), 2520 m, IN2017_V03.	-	MN983170	MN985723	MN985662	MN971748	-
	Famelica sp. 2	SAMA	D49339		Australia, GAB, (-34.768, 130.713), 1873 m, IN2015_C01.	-	MN983171	MN985724	MN985663	MN971749	MN985781
	Famelica pacifica Sysoev & Kantor, 1987	AMS	C.571629		Australia, TAS, Flinders CMR, (-40.473, 149.397), 4114 m, IN2017_V03.	-	MN983172	MN985725	MN985664	MN971750	MN985782
	Fusobela cf. parvioculata n. gen. n. sp.	AMS	C.571736	Pt	Australia, GAB, (-34.452, 129.492), 3350 m, IN2015_C01.	-	-	MN985726	MN985665	MN971751	-
	Fusobela parvioculata n. gen. n. sp.	TMAG	E59231	Ht	Australia, Tasmania, Flat area S of Brians, (-44.239, 147.293), 1414 m, IN2018_V06.	-	MN983173	MN985727	MN985666	MN971752	-
	Glaciotomella investigator n. sp.	AMS	C.571621	Ht	Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983178	MN985731	MN985670	-	MN985784
	Glaciotomella sp. 1 n. gen. n. sp.	SAMA	D44120		Australia, GAB, (-34.625, 130.28), 2007 m, IN2015_C02.	-	MN983179	MN985732	MN985671	MN971756	MN985785
	Gladiobela angulata n. gen. n. sp.	AMS	C.571651	Ht	Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983180	MN985733	MN985672	MN971757	-
	Gladiobela n. gen. sp. 1	AMS	C.571697		Australia, VIC, East Gippsland CMR, (-38.479, 150.185), 3850 m, IN2017_V03.	-	MN983181	MN985734	MN985673	MN971758	MN985786
	Gladiobela n. gen. sp. 2	AMS	C.571717		Australia, NSW, off Bermagui, (-36.351, 150.914), 4747 m, IN2017_V03.	-	MN983182	MN985735	MN985674	MN971759	MN985787
	Gladiobela n. gen. sp. 3	AMS	C.571683		Australia, NSW, Hunter CMR, (-32.138, 153.527), 3980 m, IN2017_V03.	-	MN983183	MN985736	MN985675	MN971760	MN985788
	Gladiobela n. gen. sp. 4	AMS	C.482311		Australia, NSW, Hunter CMR, (-32.479, 152.994), 1006 m, IN2017_V03.	-	MN983184	MN985737	MN985676	MN971761	-
	Globodaphne pomum n. gen. n. sp.	AMS	C.482283	Ht	Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983185	MN985738	MN985677	MN971762	MN985789
	Glyphostomoides sp.	MNHN	IM-2007-17892		Philippines, (9.5, 123.833), 100-138 m, Panglao 2004, T39.	CONO281-08	EU015715	HQ401681	-	EU015824	EU015600
	Gymnobela sp. 1	AMS	C.482286		Australia, NSW, Jervis CMR, (-35.114, 151.469), 3952 m, IN2017_V03.	-	-	MN985739	MN985678	MN971763	MN985790
	Gymnobela sp. 2	AMS	C.519355		Australia, NSW, Jervis CMR, (-35.333, 151.258), 2650 m, IN2017_V03.	-	-	MN985740	MN985679	MN971764	-
	Gymnobela sp. 3	AMS	C.571649		Australia, TAS, Bass Strait, (-39.552, 149.553), 4197 m, IN2017_V03.	-	-	MN985741	MN985680	MN971765	MN985791
	Gymnobela sp. 4	AMS	C.571702		Australia, NSW, Jervis CMR, (-35.333, 151.258), 2650 m, IN2017_V03.	-	-	MN985742	MN985681	MN971766	MN985792
	Mioawateria sp. 1	AMS	C.482239		Australia, VIC, East Gippsland CMR, (-37.815, 150.373), 2746 m, IN2017_V03.	-	MN983186	MN985743	MN985682	MN971767	MN985793
	Nodothauma magnifica n. gen. n. sp.	AMS	C.532707	Ht	Australia, GAB, (-35.558, 134.083), 1927 m, IN2015_C01	-	MN983187	MN985744	MN985683	MN971768	-
	Pagodibela maia n. gen. n. sp.	AMS	C.571678	Ht	Australia, Qld, Coral Sea CMR, (-23.587, 154.194), 1013 m, IN2017_V03.	-	MN983188	MN985745	MN985684	MN971769	-
	Pagodibela n. gen. sp. 1	SAMA	D44173		Australia, GAB, (-35.043, 134.079), 367 m, IN2015_C01.	-	MN983189	MN985746	MN985685	MN971770	MN985794
	Pagodibela n. gen. sp. 2	AMS	C.519402		Australia, Qld, Coral Sea CMR, (-23.587, 154.194), 1013 m, IN2017_V03.	-	MN983190	MN985747	MN985686	MN971771	MN985795
	Pagodibela n. gen. sp.	MNHN	IM-2007-17844		New Caledonia, (-20.967, 160.967), 641-652 m, EBISCO, CP2645.	CONO186-08	EU015652	MN942687	MN942693	EU015760	EU015536
	Phymorhynchus cingulatus (Dall, 1890)	AMS	C.571764		Australia, TAS, Bass Strait, (-39.552, 149.553), 4133 m, IN2017_V03.	-	-	MN985748	MN985687	MN971772	MN985796
	Phymorhynchus moskalevi Sysoev & Kantor, 1995	MNHN	IM-2013-41884		North Atlantic Ocean, (23.367, -44.95), 3466 m, BICOSE, PL568 NAS.	CONO2814-19	MN942683	MN942686	MN942692	MN942935	-
	Phymorhynchus sp. 1	AMS	C.571711		Australia, VIC, East Gippsland CMR, (-38.479, 150.185), 3850 m, IN2017 V03.	-	MN983191	MN985749	MN985688	MN971773	MN985797
	Phymorhynchus sp. 2	AMS	C.571627		Australia, NSW, off Bermagui, (-36.351, 150.914), 4851 m, IN2017 V03.	-	MN983192	MN985750	MN985689	MN971774	MN985798
	Pleurotomella sp. 1	SAMA	D63333		Australia, GAB, (-34.738, 131.841), 1350 m, IN2015 C01.	-	MN983193	MN985751	MN985690	MN971775	-
	Pleurotomella sp. 2	WAM	S32236		Australia, WA, Off Houtman Abrolhos Islands, (-29.061, 113.636), 1000 m, SS1005.	-	MN983194	MN985752	MN985691	MN971776	-
	Pleurotomella sp.	MNHN	IM-2007-17848		New Caledonia, (-20.083, 160.333), 627-741 m. EBISCO. DW2625.	CONO191-08	EU015657	HQ401701	HQ401640	EU015765	EU015541
	p				,						

Page 87 of 86

Ponthiothauma sp. 1	AMS	C.482298		Australia, NSW, Central Eastern CMR, (-30.264, 153.87), 4481 m, IN2017_V03.	-	MN983196	MN985753	MN985692	MN971777	MN985799
Ponthiothauma sp. 2	AMS	C.482289		Australia, NSW, Central Eastern CMR, (-30.098, 153.899), 2429 m, IN2017_V03.	-	MN983197	MN985754	MN985693	MN971778	MN985800
Pseudodaphnella aureotincta (Hervier, 1897)	MNHN	IM-2007-17878		Philippines, (9.49, 123.935), 16 m, Panglao 2004, B25.	CONO259-08	EU015700	HQ401688	HQ401624	EU015809	EU015585
Pseudodaphnella crypta Fedosov & Puillandre, 2012	MNHN	IM-2007-17871		Philippines, (9.692, 123.85), 21 m, Panglao 2004, S25.	CONO251-08	EU015693	-	MN942691	EU015802	EU015578
Pueridaphne cirrisulcata n. gen. n. sp.	AMS	C.572165	Ht	Australia, GAB, (-34.452, 129.492), 3350 m, IN2015_C01.	-	MN983198	MN985755	MN985694	MN971779	-
Rimosodaphnella sp. 1	AMS	C.571613		Australia, NSW, Jervis CMR, (-35.333, 151.258), 2650 m, IN2017_V03.	-	MN983199	MN985756	MN985695	MN971780	MN985801
Rimosodaphnella sp. 2	AMS	C.571685		Australia, TAS, Bass Strait, (-39.552, 149.553), 4197 m, IN2017_V03.	-	MN983200	MN985757	MN985696	MN971781	MN985802
Rimosodaphnella sp.	MNHN	IM-2007-17836		Vanuatu, off Epi, (-16.633, 167.950), 618-641m, BOA1, CP 2462.	CONO150-08	EU015645	HQ401704	-	EU015754	EU015529
Spergo fusiformis (Habe, 1962)	AMS	C.482154		Australia, NSW, Coral Sea CMR, (-23.587, 154.194), 1013 m, IN2017_V03.	-	MN983201	MN985758	MN985697	MN971782	MN985803
Spergo sp. 1	AMS	C.519290		Australia, TAS, Freycinet CMR, (-41.731, 149.12), 2820 m, IN2017_V03.	-	MN983202	MN985759	MN985698	MN971783	MN985804
Spergo sp. 2	AMS	C.519331		Australia, TAS, Bass Strait, (-39.552, 149.553), 4197 m, IN2017_V03.	-	MN983203	MN985760	MN985699	MN971784	MN985805
Spergo sp. 3	AMS	C.519392		Australia, TAS, Flinders CMR, (-40.473, 149.397), 4114 m, IN2017_V03.	-	MN983204	MN985761	MN985700	MN971785	MN985806
Spergo sp. 4	AMS	C.571638		Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983205	MN985762	MN985701	MN971786	MN985807
Spergo sp.	MNHN	IM-2007-17841		New Caledonia, (-21.533, 162.5), 458-750 m, EBISCO, CP2648.	CONO184-08	EU015650	HQ401682	-	EU015759	EU015534
Taranis sp.	MNHN	IM-2007-42296		Philippines, Aurora, off Dipaculao, (15.95, 121.833), 473 m, AURORA 2007, CP2749.	CON0561-08	HQ401584	HQ401707	HQ401645	-	MN868947
Teretiopsis sp.	AMS	C.571622		Australia, Qld, Coral Sea CMR, (-23.587, 154.194), 1013 m, IN2017_V03.	-	MN983206	MN985763	MN985702	MN971787	-
Thatcheria mirabilis Angas, 1877	MNHN	IM-2007-17924		Solomon Islands, (-8.283, 160), 464-523 m, SALOMON 2, CP2184.	CONO349-08	EU015736	FJ868138	FJ868124	EU015843	EU015621
Theta lyronuclea (A. H. Clarke, 1959)	AMS	C.482290		Australia, NSW, Jervis CMR, (-35.114, 151.469), 3952 m, IN2017_V03.	-	MN983207	MN985764	MN985703	MN971788	MN985808
Theta sp. 2	AMS	C.532711		Australia, GAB, (-35.818, 134.109), 2852 m, IN2015_C02.	-	MN983209	MN985766	MN985705	MN971790	MN985810
Theta sp. 3	AMS	C.571657		Australia, NSW, Hunter CMR, (-32.575, 153.162), 2595 m, IN2017_V03.	-	MN983210	MN985767	MN985706	MN971791	MN985811
Thetidos tridentata Fedosov & Puillandre, 2012	MNHN	IM-2007-17880		Philippines, (9.515, 123.687), 90-110 m, Panglao 2004, L46.	CONO267-08	EU015702	-	MN942690	EU015811	EU015587
Trochodaphne cuprosa n. gen. n. sp.	AMS	C.571611	Ht	Australia, NSW, Jervis CMR, (-35.333, 151.258), 2650 m, IN2017_V03.	-	MN983211	MN985770	MN985709	MN971794	MN985813
Typhlosyrinx sp.	AMS	C.519335		Australia, NSW, off Byron Bay, (-28.054, 154.083), 999 m, IN2017.	-	MN983212	MN985771	MN985710	MN971795	-
Unassigned genus and species	AMS	C.571643		Australia, VIC, East Gippsland CMR, (-38.479, 150.185), 3850 m, IN2017_V03.	-	MN983175	MN985728	MN985667	MN971796	MN985783
Unassigned genus and species	AMS	C.519362		Australia, NSW, off Bermagui, (-36.355, 150.644), 2821 m, IN2017_V03.	-	MN983174	MN985729	MN985668	MN971755	-
Unassigned genus and species	AMS	C.571734		Australia, GAB, (-34.452, 129.492), 3350 m, IN2015_C01.	-	MN983176	MN985730	MN985669	MN971754	-
Unassigned genus and species	MNHN	IM-2007-17927		Solomon Islands, (-8.067, 156.917), 399-427 m, SALOMON 2, CP2260.	CONO360-08	EU015740	HQ401674	HQ401607	EU015847	EU015625
Unassigned genus and species	MNHN	IM-2013-19998		Papua New Guinea, (-5.5, 146.15), 400 m, PAPUA NIUGINI, CP4020.	CONO2813-19	-	MN942689	-	MN942936	MN868946
Unassigned genus and species	MNHN	IM-2013-52046		Papua New Guinea, (-3.317, 143.45), 422-425 m, PAPUA NIUGINI, CP4049.	MITRI080-15	KR087296	KR088045	KR087382	KR088123	
Unassigned genus and species	ZSM	mol_20021232		Antarctica, (-54.023, -62.022), 272 m, LAMPOS, ANT XIX-5.	-	-	MN985774	MN985713	MN971797	EU015562
Unassigned genus and species	ZSM	mol_20191328		Antarctica, (-54.023, -62.022), 272 m, LAMPOS, ANT XIX-5.	-	MN983177	MN985773	MN985712	MN971753	EU015529
Unassigned genus and species	ZSM	mol_20021548		Antarctica, Drake-Strasse (-54.504, -56.137), 286.3 m, LAMPOS, ANT XIX.	-	MN983195	MN985772	MN985711	-	EU015534
Veprecula cf. spanionema	MNHN	IM-2007-17883		Philippines, (9.515, 123.687), 90-110 m, Panglao 2004, L46.	CONO270-08	EU015705	HQ401717	-	EU015814	EU015590