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PREFACE

In this book I have endeavoured to give a connected account of a series of
investigations in the borderland between relativity theory and quangyjn
theory. It begins where my earlier book, T'he Mathematical Theory of -
Relativity, leaves off—at the point where in our survey of nature we encounter
the phenomenon of atomicity. To our gross senses matter seegs continuous,
and it has becn treated as continuous in the usyal tﬁeor.y of relativity.
Experiment has, however, taught us that it is composed of multitudes of
units, and the theory is here extended to throw light on the existence and
properties of these units.

The central problem is to ascertain the conditions which fix the amount of
mass and electric charge carried by protons and electrons. The present
researches will probably be associated in the minds of many readers with
the number 137; this is one of four numerical constants of nature for which
the theory predicts definite values. Another fundamental constant, found
to be 2.136.2%¢ (approximately 3-150.107%), can be described as the
number of protons and clectrons in the universe; but its practical importance
is thatitssquare root entersinto the ratio of theclectrical to the gravitational
force between a proton and electron. The result of these determinations is
that there are no arbitrary constants left in the scale of relations of natural
phenomena.

Besides giving concrete results of this kind, the theory has, I hope, thrown
light on some of the obscure points in quantum theory and helped to deepen
its foundations. I have sought a harmonisation, rather than a unification,
of relativity and quantum theory. I do hot set out to obtain an all-embracing
formula; but the investigation shows in detail how to combine the con-
ceptions of the two theories in the solution of specific problems, which would
be outside the range of either theory separately.

The theory, as it was being developed, was published from time to time
in the Proceedings of the Royal Society (121, p. 524; 122, p. 358; 126, p. 696;
133, pp. 311, 606; 134, p. 524; 138, p. 17; 143, p. 327; 152, p. 2563) and the
Journal of the London Mathematical Society (7, p. 58; 8, p. 142) between 1928
and 1935. But it has become increasingly difficult to deal with it in frag-
ments. Much of it (including practically the whole of Chapters vi, X1 and
xvI) is now published for the first time. The new results of a practical kind
include the theory of the Stern-Gerlach experiment, the theory of Bond’s
correction 139 to e/m, and the direct calculation of the number of particles
in the universe.



vi Preface

In so extensive a work I cannot expect that serious mistakes have been
entirely avoided. But now that the theory can be viewed as a whole, I think
the reader will be convinced that there is a practicable way of progress along
the lines I have attempted. I hope therefore that he will see in the im-
perfections of this book an opportunity for developing, not an excuse for
dismissing, the subject which it sets forth.

Prof. G. Lemaitre and Prof. G. F. J. Temple have kindly read the book
in proof. Their interest and criticism has encouraged me in the develop-
mont of the theory, and I now owe them a further debt for many helpful

suggestions.
A.S. E.

CAMBRIDGE,
June 1936.
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INTRODUCTION

0-1. In 1928, P. A. M. Dirac made a bridge between quantum theory
and relativity theory by his linear wave equation of the electron.t This
is the §ta,rting point of the development of relativity theory treated in
this book.

Previously there had been three principal stages of progress, namely
Einstein’s special theory (1905), his general theory (1915), and Weyl's
theory of relativity of gauge (1918). Summarising the state of the theory in
1923, I wrote]

We offer no explanation of the occurrence of electrons or of quanta; but in
other respects the theory appears to cover fairly adequately the phenomena of
physics. The excluded domain forms a large part of modern physics, but it is
onc in which all explanation has apparently been bafled hitherto. The domain
here surveyed covers a system of natural laws fairly complete in itself and
detachable from the exeluded phenomena, although at one point difficulties arise
since it comes into close contact with the problem of the nature of the electron.

Relativity theory was in fact as comprehensive and as logically complete
as a purely macroscopic theory had any right to be. The next important step
must be an extension to cover microscopic phenomena, or a unification with
existing microscopic theories.

Microscopic physics was the province of quantum theory; but in 1923 this
was little more than a collection of empirical rules which led to no eoherent
outlook. The “new quantum theory” began with Heisenberg's rescarches
in 1925, and with the aid of many contributors it reached soon afterwards
the current form generally called wave mechanics. The conditions were
becoming ripe for a unification with macroscopic relativity theory.

To say that Dirac’s wave equation was the first connecting link gives only
a partial idea of its importance. It was a challenge to those who specialised in
relativily theory. Dirac’s object was to obtain a form of equation (fulfilling
certain requirements of quantum theory) which should be invariant for
rotations and Lorentz transformations. We had claimed to have in the
tensor calculus an ideal tool for dealing with all forms of invariance and
covariance. But instead of using the orthodox tool Dirac proceeded by a
way of his own, and produced an expression of very unsymmetrical appear-
ance, which he showed to be invariant for the transformations of special
relativity theory. Why had this type of invariance eluded the ordinary
tensor calculus? As C. G. Darwin put it, ‘it is rather disconcerting to find

t Proc. Roy. Soc. A, 117, 610 (Feb. 1928).
1 Mathematical Theory of Relativity, p. 237.
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that apparently something has slipped through the net .1+ It was Darwin’s
insistence on this point in private conversation which led me to take up
these investigations.

The failure of ordinary tensor calculus to include Dirac’s type of invariance
is due to the introduction, at an early stage, of a convention whose arbi-
trariness had already been noticed.f The analytical theory of tensgrs had
been applied to physics by identifying its basic vector with a geometrical
displacement (dx)*. By a change of application, namely by identifying the
basic vector with Dirac’s four-valued quantity ¢, we obtain a new tensor
calculus, here called wave-tensor calculus, in which the invariance of the
wave equation falls into order. Formulae have to be found for expressing
the old tensors (space tensors) in terms of the wave tensors; and this leads
to a chain of new developments which have no counterpart in the tensor
calculus of ordinary relativity theory.

I was soon convinced that this was the extension of relativity theory for
which we had been waiting, and that Dirac’s equation was only the beginning
of a more far-reaching application of the methods and conceptions of
relativity theory to microscopic phenomena. After seven years’ work I find
the possibilities latent in the new departure still far from exhausted.

Naturally others besides myself were attracted to the new opening.
Allowing for divergences in the point of view, my first paper, § dealing with
formal developments including the rudiments of wave-tensor calculus, was
perhaps not materially different from several other investigations published
about the same time.|| But a month or two later I came across a clue to the
origin of the charge of electrons and protons.q The trail has led all round the
universe, 8o that the subject with which I began comes almost at the end of
this book (Chapter xv). Ultimately the problem of the origin of charge was
found to be inseparable from the problem of the origin of mass. I was thus
led into a special field of investigation which, I think, has not been explored
by other writers.

Dirac’s wave equation has led to important advances in quantum theory;
but here we shall be working mainly on the relativity side of the bridge. It is,
of course, impossible to treat protons and electrons without introducing a
considerable amount of quantum theory. But its subordinate position will
be apparent from the fact that the problems treated in Part II of this book
are not touched upon in books on quantum theory; they depend essentially
on developing the consequences of the relativistic conception.

1 Proc. Roy. Soc. A, 118, 6564. This paper was of great assistance in my early work.

t Mathematical Theory of Relativity, p. 49. § Proc. Roy. Soc. A, 121, 524.

[| I think that the most far-reaching, as well as the earliest, paper of this type was by
J. v. Neumann, Zeits. fiir Physik, 48, 868. But I have been more influenced by H. Tetrode,

1bid. 50, 346, whose point of view was less unfamiliar to me.
Y[ “The Charge of an Electron”, Proc. Roy. Soc. A, 122, 3568 (Dec. 1928).
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0-2. Asthe work proceeded, it became focused on one problem, namely
the origin of the four numerical *“ constants of nature”. Seven fundamental
constants are commonly recognised:

m, the mass of an electron,

m,, the mass of a proton,
the charge of an electron,
Planck’s constant,
the velocity of light,
the constant of gravitation,
A the cosmical constant.

A O ™™ 0

Between these we must eliminate our arbitrary units of length, time and
mass; we are then left with four purely numerical ratios. The most familiar
are the mass-ratio m,/m,, and the fine-structure constant hc/2me?; these are
found in Chapters x11 and xv. The value of «, i.e. its ratio to a constant of
similar dimensions furnished by the other constants, is obtained in Chapter
x1v. Also, with the help of the other constants we replace A by a number N,
the ‘“number of particles in the universe’’, whose theoretical value is found
in Chapter xvI. Thus all four constants are obtained by purely theoretical
calculation.}

The number of dimensions of space-time might be regarded as a fifth
natural constant. Even this number is found to be determined unam-
biguously by the epistemological principle that we can only observe
relations between two entities (§ 16-8). At a much earlier stage (Chapter vI)
we prove that a four-dimensional neutral domain necessarily has the
signature 3 4 1.

So far as I can make out, the values of the constants given by this theory
are in full agreement with observation. For three of the four constants the
observations are accurate enough to provide a very stringent test. It would
have been disconcerting if it had turned out otherwise; but the theory does
not rest on these observational tests. It is even more purely epistemological
than macroscopic relativity theory; and I think it contains no physical
hypotheses—certainly no new hypotheses—to be tested. All that we require
from observation is evidence of identification—that the entities denoted by
certain symbols in the mathematics are those which the experimental
physicist recognises under the names ‘‘proton” and “electron”. Being
satisfied on this point, itshould be possible to judge whether the mathematical
treatment and solutions are correct, without turning up the answer in the
book of nature. My task is to show that our theoretical resources are

+ A general account of the principles on which the calculations are based is given in
New Pathways in Science, Chapter xL

1-2
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sufficient and our methods powerful enough to calculate the constants
exactly—so that the observational test will be the same kind of perfunctory
verification that we apply sometimes to theorems in geometry.

The replacement of four empirical natural constants by calculated num-
bers implies a unification of theory. In Maxwell’s unification of electro-
magnetism and optics the ratio of the electromagnetic to the electxostatic
unit of charge was found to be equal to the velocity of light ; similarly in the
unification of macroscopic and microscopic theory the macroscopic con-
stants «, A are found to be expressible in terms of m ,, m,, e. The elimination
of superfluous constants is an outward sign of the unification achieved; and
for this reason I have regarded it as the first goal. But the theory that has
taken shape in these investigations should supply a foundation for the
treatment of other microscopic problems for which current quantum theory
is insufficient. I have not pursued these further developments, partly because
they often require a knowledge of the more technical side of quantum theory
which I do not possess, and partly because the completion of the calculation
of the four natural constants has seemed an appropriate stage at which to
assemble the theory into a connected form. By way of exception, I have
applied the theory to the Stern-Gerlach experiment (§12:-8); the result
agrees with observation.

0-3. The marriage of relativity theory and quantum theory should be a
fruitful union as well as a formal union. In regard to the numerous formal
unified theories that have been suggested, we may recall—

There are nine and sixty ways of constructing tribal lays,
And every single one of them is right!

But I think they have been inspired by a fundamentally different conception
of the problem of unification from that which I shall follow. There is a con-
siderable amount of formal theory in this book; but it has been developed
concurrently with the physical theory in Part IT; and its progress has been
guided as much by the definite applications, in which it was to be used, as
by formal considerations.

A unified theory does not necessarily mean a unified formula. The latter
kind of unification is exemplified by the theory of the ““ Generalised Astro-
nomical Instrument ” which combines in a single equation the theory of the
altazimuth, meridian circle, prime vertical instrument, equatorial and
almucantar.f Such compression appeals more to the mathematician than to
the physicist. We do not aim at producing a formula which shall “include
simultaneously the irregular gravitational fields of general relativity and
the quantised energy of an atom. We seek instead the common meeting
point from which the specialised developments and approximations appro-

t Monthly Notices, R.A.S. 68, 171.
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priate to the gravitational and the atomic problem branch off. The source
of quantum phenomena is a degeneracy, or exceptional integrability, which
isassociated with uniformity and symmetry, and invalidates the assumptions
underlying the ordinary theory of macroscopic averages. It is therefore in
uniform conditions (spherical space) that the linkage of quantum theory to
macroscopic relativity theory must primarily be studied.

For this reason we have not much to do with the formulae of general
relativity, though we have much to do with its principles. We generally treat
space-time of uniform curvature—either the de Sitter form hyperbolic in
the time dimension, or the Einstein form cylindrical in the time dimension,
the space being spherical in either case. Thus, on the relativity side, we halt
at a stage intermediate between the general theory and the special relativity
theory of flat space.

For the same reason, when gauge transformations are employed, the
formulae used are those of Weyl’s theory, not the author's generalisation
of it.t The generalisation would be required if we dealt with space-time of
irregular curvature; it coalesces with Weyl’s theory in the uniform conditions
here considered.

With flat space-time we have nothing to do. The theory of space-time
will here be developed pari passu with the theory of the material systems
which occupy it. In this mode of approach the conception of infinite flat space
never arises; it could not be brought into the theory except as a limit that
might be approached but never attained. But in the same way the concep-
tion of definitely empty space never arises; it could not be brought into the
theory except as a limit that might be approached but never attained.
(By definitely empty we mean that the probability of containing a particle or
photon is zero.) Our rejection of flat space-time does not depend on the view
that definitely empty space has a natural curvature determined by the
cosmical constant.] Space appears in our theory as the domain of the pro-
bability distribution of a particle, so that it is an essential characteristic
of space that it is occupied or has a finite a priori probability of being
occupied; and it is non-controversial that it will have a curvature (or an
expectation-value of the curvature) corresponding to the energy tensor (or
expectation-value of the energy tensor) of its contents.

0-4. I think it will be found that the theory is purely deductive, being
based on epistemological principles and not on physical hypotheses. But
it could not be presented in purely deductive form—which would mean,
I suppose, that it was treated as an investigation in pure mathematics with
a physical dénouement in the last chapter. It has seemed essential to

1t Mathematical Theory of Relativity, Chapter vir, Pt. IL.
1 We are led to reject this view (§ 11-7).
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keep the physical applications in mind throughout; for this purpose
results must sometimes be anticipated which are not reached by deduc-
tion until much later in the book, and interpretations must be employed
which are not definitely established until the whole theory is connected
together.

This method gives rise to certain difficulties. For mathematical seasons
we have to begin with the simplest equations; but these correspond to
highly idealised systems to which the ordinary physical conceptions only
partially apply. It is indeed obvious that a system must attain a consider-
able degree of complexity before anything remotely resembling the ordinary
method of observation is applicable to it. Consequently the physical ideas
can only take shape gradually as we proceed. Space-time of a kind first
appears in Chapter 1v; but it has the wrong signature, and its scale is much
too small. These defects become rectified as the developments in later
chapters take us closer to actuality. So with most of the physical concep-
tions; we have to introduce preliminary notions before the theory is suffi-
ciently advanced for a full treatment. The reader will probably find that
many of the difficulties that occur to him in reading the earlier chapters
arise from the unnatural conditions postulated in the most elementary
equations, and that they resolve themselves automatically when the theory
reaches more realistic problems.

Those who are expert in quantum theory should bear in mind that we are
proceeding from another starting point from that usually adopted. It
would be foreign to my intention of developing the theory as a pure deduction
from relativistic principles to transfer conclusions, however widely accepted,
from the usual quantum theory which contains a large empirical element.
Nevertheless, I make frequent appeals to current quantum theory for three
purposes. Firstly, because it contains the definitions of the quantities with
which I am concerned. It would be impossible to make a theoretical deter-
mination of the constant known as the ‘“mass of an electron’’ without an
examination of the equations by which the quantum physicist has chosen
to define it. Secondly, where the present theory coalesces with current
theory, it is unnecessary to repeat purely analytical investigations which
equally apply to either theory. Thirdly, certain results (especially the
Exclusion Principle), which cannot be treated until late in the book, have
been borrowed from current theory in anticipation.

It may be well to make it clear that although the present theory owes
much to Dirac’s theory of the electron, to the general coordination of quan-
tum theory achieved in his book Quantum Mechanics, and to the many
contributions of himself and others on these lines, it is not *“ Dirac’s Theory ”’;
and indeed it differs fundamentally on most points which concern relativity.
It is definitely opposed to what has commonly been called ‘relativistic
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quantum theory ”’, which, I think, is largely based on a false conception of
the principles of relativity theory.

Atomic nuclei and free neutrons are outside the scope of this book. I see
no reason to fear that they will not fall into place in the theory; but I have
not developed any ideas on this point far enough to be worth recording. In
the main the theory of radiation has also been excluded; but there are three
short references (§§ 9-5, 14-3, 16-3) which show how it might be approached
in the present treatment.

0-5. The division of the book into two parts, the one ostensibly treating
the auxiliary mathematical calculus and the other the physical applications,
is only a rough separation. Physical interpretations are considered as early
as possible; but with the introduction of double wave tensors in Chapter x
the relation of the mathematics to the physics changes considerably.
Instead of starting with the mathematical result and interpreting it as far
as possible physically, we start with the physical problem and formulate it
mathematically. The auxiliary mathematical development still continues;
but it is now guided by the character of the physical problems for which its
aid is required.

The student of relativity theory may well feel a grievance at the turn
which the auxiliary mathematics has taken. The macroscopic theory seemed
to indicate that Differential Geometry was the key to world-structure. After
being at pains to acquire some familiarity with this subject, we find that all
the new advances depend upon modern Algebra. The algebra required in
the present book is developed practically abinitio—by old-fashioned methods
which, I fear, betray my limitations as an algebraist, though they may make
the theory more accessible to those most interested. Let me freely admit that
ability to use the more powerful modern algebraic methods would be an im-
mense advantage in handling these problems. For the kind of algebra chiefly
required I have found most helpful C. C. MacDuffee, T'he T'heory of Matrices.t

A few remarks on terminology, etc. may be useful. I would direct special
attention to the limited use of the summation convention (p. 22), to my
unorthodox use of the term ‘“algebraic’ (p. 20), and to the change in the
order of writing the suffixes of the Riemann-Christoffel tensor (p. 181).
I would emphasise that wave analysis is a method, not a theory, and may be
applied to any physical tensor; therefore statements about the physical
meaning of the various products of wave analysis necessarily refer to some
special application (singled out by custom) and are not of general validity.

The term unsverse is used so often as perhaps to suggest megalomania.
It is really the opposite of megalomania, for it takes the place of infinity in
elementary wave mechanics. Mathematically it is much easier to treat a

1 Ergebnisse der Mathematik und ihrer Grenzgebiete (Julius Springer, 1933).
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whole universe than part of one—the universe being, of course, idealised to
accord with the simple conditions postulated in elementary problems. It is
more elementary to suppose that the uniform conditions continue inde-
finitely than to terminate them by a physical barrier; supernatural barriers
are often misleading, and should be avoided if possible. In the earlier
chapters there is sometimes a difficulty in deciding whether our equations
refer to an electronvr to the universe. Butthefactisthattheelectronstreated
in ordinary elementary quantum theory are very much like the universe—
only bigger. They are said to be “infinite plane waves”. No doubt it is
intended that they shall be replaced by waves of more reasonable dimensions
in practical approximations; but this applies also to our theory. For applica-
tions in which a millimetre is a good enough approximation to infinity, it is
« fortiori a good enough approximation to 100 megaparsecs.

By a particle I mean, not a classical particle, but a conceptual entity
whose probability distribution is specified by a wave function. At different
stages in this book, different applications of wave analysis are made; and the
corresponding particles have different properties. In the earlier chapters
the particles are rudimentary protons and electrons existing in the rudi-
mentary space-time there treated. They gradually develop into recognisable
electrons and protons in macroscopic space-time, when the theory is ex-
tended far enough to introduce the observable relations by which protons
and electrons are known experimentally. The reader should therefore not
be surprised to find that initially the positive and negative particles have
completely symmetrical properties; that is merely another illustration of
the fact that the most elementary equations imply highly idealised con-
ditions to which the ordinary conceptions of physics only partially apply.

0:6. Those who have followed the progressive development of the
theory during the last eight years may desire a comparison of the present
revised theory with earlier versions. The papers are numbered for reference
as follows:t

1. © A Symmetrical Trecatment of the Wave Equation”, B.S8.121,524,1928
II. “The Charge of an Electron’, RB.S. 122, 358, 1928.
ITI. **The Interaction of Electric Charges”, R.S. 126, 696, 1930.
IV. “The Propertics of Wave Tensors”, R.S. 133, 311, 1931.
Y. “The Value of the Cosmical Constant’’, B.S. 133, 605, 1931.
V1. “*The Mass of a Proton”’, R.S. 134, 524, 1931.
VTI. *'Sets of Anticommuting Matrices”, M.S. 7, 58, 1931.
VIII. “Theory of Electric Charge”, R.S. 138, 17, 1932.
IX. ““The Factorisation of £-Numbers’’, M.S. 8, 142, 1933.
X. “The Masses of the Proton and Electron”’, R.S. 143, 327, 1933.
XI. “The Pressure of a Degenerate Gas, and Related Problems ’, R.S. 152,
253, 1935.
1 R.8. refers to Proc. Roy. Soc. and M.8. to Journ. Lond. Math. Soc.
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T will begin with a definite withdrawal. In I it was suggested that the
adjoint tetrads £,, E,, E,, E, and E,5, Ey, Ky, E 5 correspond to electrons
of opposite spin, and this misjudgment persisted in 111. The present view
(§8 4:3, 4-4) of the role of E; was first reached in IV. I think there is no
other point on which I went so completely astray; the other lines of
development begun in this series of papers, though sometimes requiring
substantial amendment, contain advances which in principle have been
retained. The papers fall into three groups:

(a) Auxiliary Mathematics (I, 1V. VII, IX). The E-symbols were at
first defined so that E,}: 1; the present notation, with E,ﬁ: — 1, begins
in TV. In IV the mathematical development remains satisfactory; but
the physical interpretation was confused, because a degenerate wave
tensor was used in a context where the later results substitute a non-
degenerate wave tensor. The proofs of two important theorems in VIIL
and IX, namely the composition of a pentad by three imaginary and two
real matrices, and the standard forms of pure wave tensors, have been
found to be imperfect. Amended proofs are given in §§ 3-5, 5-5.

(b) Electric Charge (11, L11, V11I). Paper IT has been affected less than
most of the early papers by subsequent progress, and can be regarded as
substantially correct so far as it goes. Gaunt's form of the matrix co-
officient of the Coulomb energy, employed in the paper, is now obsolete;
but this scarcely affects the investigation at the stage concerned. The
factor 136 was changed to 137 in subsequent papers; but the difference
is a question of definition (§ 15-9). Paper I11 represents an interim stage
in a complicated investigation, and has the defects of an interim report.
Progress remained unsatisfactory until the interchange energy wasassociated
with the operator P instead of with ;. The theory in V111 is substantially
the same as the second of the two methods given in this book (§ 15-7).

(c) Origin of Mass (V, VI, X, XI). With regard to V and VI, which
were preliminary papers, 1 need only say that the present theory follows
the ideas there suggested. In X the argument now replaced by the
formula B?=RR' was unsatisfactory; otherwise the changes are mainly
of the nature of amplification. Paper Xl is practically up to date; but
a numerical change was made necessary by the discovery of an in-
consistency of a factor 2 in current quantum theory (§ 9-6).

The various lines of investigation were very much interlocked ; a back-
ward state of one prevented progress in the others. Thus the whole work
reached completion as one unit. The cosmical problem treated in XI was
the last item on the main programme; and, after it was solved, there was
not much difficulty in supplying the remaining investigations needed to
fit together all the material. The investigations in the published papers
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are, of course, considerably altered in form now that they are connected
to a homogeneous theory instead of to fragments of current theory
partially modified to suit the growth of ideas.

It was found in III that the theory offers an explanation why one
dimension of the world differs from the other three; but, except for this,
little attention was paid to reality conditions in the series of papers.
This was deliberate; because it seemed premature to try to formulate
reality conditions before the main lines of connection of the analytical
theory with observational phenomena were settled. It was not until after
the last of the published papers that I took up the problem and reached
the reality conditions formulated, and used extensively, in this book.

Strain vectors first appeared in X, but were to some extent anticipated
in VIII. The more extended use of strain vectors, and the systematic
discrimination between internal and external wave functions, is a feature
of the new treatment. Other portions of the theory scarcely touched on
in the published papers are §§ 8:4-9-1, 10-4-11-9, 12-6-12-8, 15-8-16-9.

At one time I laid stress on a suggestion (due to Zanstra) that the
packing ratio in helium is an approximation to 13%. It seemed likely that
the binding of particles in a rigid nucleus might be represented as the
loss of one degree of freedom of the double wave functions, with a
corresponding reduction of the energy required for statistical equilibrium.
Recent atomic weights make the packing ratio less close to 137 than was
at one time supposed; but in any case the theory of a rigid nucleus was
not expected to apply to helium exactly. I still regard the suggestion as
plausible; but as my investigations have not dealt with nuclear structure,
the question remains in suspense.
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CHAPTER I
TENSORS AND MATRICES

1'1. Linear Transformations.

A physical system may be described in many alternative ways. Different
systems of coordinates may be used for specifying its position; different
systems of units may be used for the measurement of mass, length, time;
and so on. Accordingly our attention is directed to the problem of comparing
systems of description in which there is a one-to-one correspondence between
quantities 4, B, C, ... occurring in one description and quantities A’, B’,
(', ... occurring in another description.

The description commonly includes sets of associated quantities which
are regarded as *‘components’’ of a single entity, e.g. the three components
of a force. We then have a correspondence between an array of # quantitics
A, in one description and 4, in another description (u=1, 2, ... n).

We proceed at once to a special case of great importance, viz. when 4 u 18
given by a linear transformation of A4,

A =qndi+ g de+ ...+ g4, L

Ay =qn A1+ dy+ ... + 43, 4,)
etc. Using the summation convention of the tensor calculus, these formulae
are written more compactly A = Qo A# (1-12)

(1-11)

and the transformation, or change of description, is described as 4,->¢,, 4,,.
The array of coefficients g, defincs the change of the system of descrip-
tion, so far as the characteristic 4 u 18 concerned. Linear transformations
possess the Group property; that is to say, the resultant of a succession of
linear transformations is a linear transformation. Thus we can have a set
of systems of description such that, in passing from any one description to
any other, the transformation of A4, is always linear. When for all systems
of description contemplated the transformation of 4 " is linear, A;& is called
a tensor. ‘
By solving equations (1-11) we can find 4;, 4,, ... interms of 4,", 4,, ....
The resulting formulae are linear and may be written
A,=q.,'4, . (1-13)
The array of coefficients ¢, defines the inverse transformation to that defined
by g5,
If B, is another array of n quantities occurring in the description of the
physical system, and in the change of description in which 4,->¢,, 4,
B,-»qq“B“, (1-14)
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ﬁ,,, is said to be a tensor of the same kind as A4, (or to be cogredient with
).
®

If 0# is another array of n quantities occurring in the description, and in

the change of description in which 4,->g,, 4,

Co>9us’ O (1-15)
G, is said to be a tensor of opposite kind to A, (or to be contragredient to 4,),
Note the inversion of the order of the suffixes of ¢’.

From 4, and G, we may form an array of #* quantities 4,C, which

follows the transformation law
4,6 = Qop Ap qv-r' C,= Qou qw’ Ap 0. (1-16)
If 7,, is an array of n? quantities occurring in the description, and in the

change of description in which 4, >g¢,, 4,

Tar*Qopqw’ Tp.v (1-17)
(i.e. if it is transformed in the same way as 4,C,), then T, is said to be a
mized tensor of the second rank of the class 4, .

Tensor properties do not necessarily depend on the physical nature of
the entity that is being described; they depend on the variety of descriptions
which we admit. For example, the statement that B, is a tensor of the same
kind as 4, announces a limitation of the variety of description contemplated ;
for there can be no compulsion to change our description of one physical
feature of the system when the description of another feature is changed.
But unless there is some systematic plan underlying our descriptions it will
be impossible to assert any general laws governing the quantities occurring
in the descriptions.

For example, the strength of the wind is sometimes described by a
number of dynes per square centimetre and sometimes by a number on the
Beaufort scale. We cannot expect to find exact equations (relating our
measures of the strength of the wind to other meteorological characteristics)
applicable to both codes of measurement. By taking the wind strength to be
a tensor of the class of tensors used for describing other meteorological
characteristics we rule out one or other description—not as illegitimate, but
as unsuited to the purpose we have in mind, viz. to express the regularities
underlying natural phenomena by mathematical equations governing the
quantities which occur in our descriptions of the phenomena.

1:2. Space Tensors and Wave Tensors.

When the change of system of description includes & change of coordinates
from (z,, %y, %3, 7,) to (x,", 25 , 23 , '), an infinitesimal coordinate difference
dz, is transformed according to the formula

dae 1,_8:1:‘

oz, axl’ oz, .
a dx1+ a d axs dz3+—a—&:—‘-dx‘ (1 21)
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ete. This may be written in the form (1-15)

dz,' =q,,/dz, (9, =0x, [0z,). (1-22)
Thus every change of description contemplated as admissible corresponds
to a linear transformation of dz,. Accordingly de is a tensor; we call it
a displacement vector.

This is the basic tensor of the class of tensors used in the ordinary tensor
calculus. Displacement vectors and all tensors of the same kind are called
contravariant vectors; tensors of opposite kind are called covariant vectors.
Mixed tensors of the same class are defined as in (1:17); and more generally
tensors of higher rank with 16, 64, 256, ... components are introduced, their
transformation laws being

A,;g.::=qp.a’qvﬁ' ceeQyoqsr -+ A‘;:' (1-23)
We shall call this class of tensors space tensors.

Thus, although the theory of tensors belongs primarily to the algebraic
theory of transformations, it has usually been linked to geometry by
identifying the basic tensor of the algebraic scheme with a geometrical
displacement or coordinate difference dz, . We shall kere discard this special
linkage. We shall introduce another class of tensors called wave tensors,
derived from a basic contravariant wave vector Xp in the same way that the
space tensors are derived from the basic contravariant space vector dz,.

For the moment we leave the basic wave vector unidentified. But at a
certain point in the development of the system of wave tensors, we shall be
able to side-step into a new class of tensors. On examining the properties
of the new tensors we shall find that they can be identified with space
tensors. Thus the wave-tensor calculusleads up to the ordinary space-tensor
calculus and includes it as a side branch; but its greater comprehensiveness
fits it to deal with certain entitics in modern quantum theory which are not
describable by space tensors.

The basic wave vector will be identified in Chapter v. It turns out to be
the four-valued wave symbol introduced into physics by P. A. M. Dirac in
his linear wave equation of the electron. Vectors of this class cannot be
reached from the ordinary calculus of space tensors, which does not begin
far enough back. Our plan accordingly is to begin with these vectors, and
lead up to the ordinary space vectors at a later stage.

1:3. Chain Multiplication.

Let 4,”, B,” be two mixed tensors of the second rank. Having regard to the
summation convention we recognise four different products

AYB, ArBT, ArBp, AB k. (1-31)
The first is the outer product, and the fourth is the inner or scalar product.
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The second and third are called matriz products and are denoted by A B and
BA respectively.

Matrix products are formed by chain multiplication, i.e. the second suffix
of one factor is repeated as the first suffix of the succeeding factor (the
repetition introducing a summation in accordance with the summation con-
vention). The product 4,” B, is of this form. 4, B is not a chain product
as it stands; but it becomes one if it is rewritten as B,*4,”.

On the understanding that chain multiplication is the only kind of
multiplication admitted, no suffixes need appear in the formulae, since the
reader can always supply appropriate suffixes when required. Thus the
product of a number of double-suffixed quantities is written

P=ABCD, (1-321)
which stands for Py=A,2B.PCgD,y. (1-322)

This rule of multiplication is the distinctive feature of the matrix calculus.
The notation is so useful that we cannot afford to do without it. Nevertheless
matrix calculus suffers from being more limited than tensor calculus; and
we often want to introduce outer and scalar products and other combina-
tions for which matrix calculus provides no notation. This necessitates
resorting to various awkward shifts, and occasionally reverting to the full
suffixed expressions.

Chain multiplication does not contemplate quantities with more than two
suffixes. We shall at first limit the term “* matrix”’ to two-suffixed quantities
representing two-dimensional arrays. Technically one-dimensional arrays
are also matrices, but it would probably be confusing to include them. One-
dimensional arrays will here be called vectors, even when no question of
transformation properties arises. The term implies very little restriction so
long as we do not specify the kind of vector.

Chain multiplication cannot be carried beyond a vector, so that vectors
can only occur at the beginning or end of a matrix product. We shall dis-
tinguish initial vectors by an asterisk, final vectors being unmarked. This
notation allows us to reintroduce outer multiplication to a limited extent.
The rule is that, if it is impossible to interpret two symbols in juxtaposition
as a chain product, they are to be interpreted as an outer product. Thus if
$,, is a vector, the expressions

AyB, AYy*B
are interpreted as (Ay)x B, A x(y*B),

where thesymbol x indicates outer multiplication, chain multiplication being
impossible after a final vector or before an initial vector. Or, with suffixes,

AYyB=AY, By, AY*B=A. Y B,
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In particular, we have the following notation which is of great importance

Yx* denotes the outer product ¢, x",l

x* denotes the scalar product xiﬁla,,,.]
The asterisk is a substitute for suffix indications, and is dropped when the
suffixes are inserted.

A feature of matrix multiplication is that it is non-commutative; that is to
say BA+#AB. (1-34)
It is to be remembered that the non-commutation only arises through the
omission of suffixes; when suffixes are inserted in BA, the factors commute

as usual. Thus Body =428, (1-35)

(1-33)

Since the suffixes are often omitted, we can no longer depend on dis-
criminating contravariant from covariant vectors by the upper and lower
positions of the suffixes. There would be little advantage in retaining a
method of diserimination which only worked spasmodically. Accordingly,
we shall in future generally write all wave tensor suffixes in the lower
position.

1'4, Transformation Laws of Wave Tensors.

In §1-1 we introduced three kinds of tensors of the class 4, with trans-
formation laws (1-14), (1-15) and (1-17) respectively. The formulae may be

written as B, = Qop By Cy'=0, Quo » Tor' =9opTpy O -

The products, as here written, are all chain products, so that the suffixes
may be omitted and we have

B'=¢qB, C¥=C*', T =4qT¢. (1-41)
Further by (1-12) and (1-13)
Ay =9 Ay, A=, 4,
Therefore Ay =009y 4, (1-421)
But A =84, (1-422)
where 3, is the substitution opera.tm.', viz.
8;p=1, ifo=7
W=O, ifu#‘r}. (1-43)

Since 4.’ is an arbitrary array of four numbers, it follows from (1-421) and
1:422) that ’ .

( ) tha YopQur =0g;. (1-44)

The left-hand side is a chain product; we can therefore drop the suffixes,

obtaining 97 =5. (1-45)
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In matrix calculus 8 has the algebraic properties of the number 1. For,

if 8 is any matrix 84080 =5s  SuaBar= Sy

so that, dropping suffixes, 89=8, 88=328.

Accordingly 8 is called the unit matrix; and since it is equivalent to the
number 1 in matrix calculus, we shall often denote it by 1, or with suffixes
(1)uy- Then (1-45) becomes gq’ = 1. Thus ¢' nay be called the reciprocal of g,
and it will sometimes be written as ¢~1.

The formulae (1:41) and (1-45) constitute the principal transformation
formulae in wave-tensor calculus. Summarising our results for reference,
and changing to the notation which we shall usually employ, we have the
following classification and nomenclature:

Covariant (final) wave vectors

¢ =qy. (1-461)

Contravariant (initial) wave vectors
x* =x*¢- (1-462)
Mixed wave tensors T =qTq, (1:463)
with aq =1. (1-464)

These would reduce to the transformation laws of the ordinary tensor
calculus if we set o= 02,008, , ' =0, [02,. (1-47)
But, as already explained, the wave tensors are not linked to geometry in
this way, and (1-47) does not apply. For a transformation of wave tensors,
anymatrix which has a reciprocal may be used as ¢; that is to say, the corre-
sponding transformation will give a new description which is included in
the whole group of descriptions contemplated.

A matrix which has no reciprocal is said to be singular. A singular matrix
may be regarded as a generalisation of the algebraic number 0 in much the
same way that the unit matrix is a generalisation of the number 1; but there
are infinitely many different singular matrices. As q approaches a singular
value, one or more elements of its reciprocal ¢’ tend to infinity; singular
matrices ¢ are therefore excluded in the foregoing transformation theory.

1'5. Initial and Final Wave Vectors.

The terms ‘“initial” and “final”, applied to wave vectors, define their
behaviour in regard to chain multiplication, and do not necessarily describe
their actual position in the sequence of factors (cf. (1:33)). As far as
Chapter VI (inclusive) the initial vectors will be contravariant and the final
vectors covariant. But it must not be supposed that this is a general rule, or
that the asterisk is a symbol for contravariance.
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In order to express the covariant transformation law (1-461) in a form
appropriate for an initial covariant vector, we introduce a matrix ¢ which is
the transpose of g, obtained by interchanging rows and columns; thus

Jop=9Ba- (1-51)
Then (1:461) stands for
'ﬁa' = qaﬁ'ﬁﬁ = q-ﬂa'/’ﬂ = '/‘ﬁq-ﬁa. .
Hence, dropping suffixes, y*' =y*g. Treating (1-462) similarly, we have the
transformation laws:
Initial covariant wave vectors

P¥ =y*q, (1-521)
Final contravariant wave vectors
X' =q'x (1-522)

The outer product ip* of two covariant wave vectors i, ¢ is a covariant
wave tensor 8. Using (1-461) and (1-521) we obtain the transformation law:

C'ovariant wave tensors S'=q8q. (1-53)
These formulae will not be required until Chapter vir.



CHAPTER 11
THE SIXTEENFOLD FRAME

2'1. Symbolic Calculus.

For our physical applications the significance of a matrix is embodied, not
so much in its representation as an array of numbers, as in its non-commu-
tative multiplication property (1:34). Most, if not all, of the properties of
matrices which make them suitable for describing the conditions and
activities of the physical universe are also possessed by general symbols
endowed with the same non-commutative properties.

We shall therefore develop a calculus containing a number of symbols
which do not obey the commutative law of multiplication, but obey the
other elementary laws of algebra. The following definitions are adopted:

A symbol which commutes with every symbol in the calculus will be
called an algebraic number.

The number 1 is defined to be a symbol which satisfies

1.E=E.1=4,

where E is any symbol in the calculus. From the definition of 1 the defini-
tions of other algebraic numbers follow in the usual way. In particular s is
defined to be a symbol satisfying

tBE=FEi, wuli=-—E.

The underlying idea is that a symbol has no properties except such as
are manifested by it in the operations of the calculus in connection with
which it is used. Its nature lies in its behaviour; it has no intrinsic nature.
Therefore if a symbol behaves like the number 1 in every possible operation
of the calculus, it 8 the number 1. If our calculus is afterwards extended by
the introduction of additional symbols or operations which give a further
opportunity for discriminating behaviour, some of the symbols originally
counted as algebraic may cease to be algebraic. We may regard “algebraic”
as a relative characteristic depending on the range of symbols which con-
stitutes our calculus.

I have here deviated from the terminology in pure mathematics, where it
is customary to give a much wider meaning to the term ‘‘algebraic”. But
I think that most readers of a physical treatise will naturally understand
‘“‘algebra’’ to mean ‘ordinary algebra’’; and therefore the distinction
between quantities which obey the rules of ordinary algebra (including the
commutative law of multiplication) and those which do not is most in-
telligibly described by the adjectives ‘‘ algebraic’ and ‘ non-algebraic’’.
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2:2. Complete Orthogonal Sets.
Let E,, E,, E;, E, be four symbols which satisfy

E2=-1, E,E,=-EE, (nv=1,2,3,4;pu%v). (221)

That is to say, the symbols are four mutually anticommuting square roots
of — 1. We shall find in § 3-2 that there exist matrices which satisfy (2:21),
so that we need have no qualms as to the legitimacy of postulating such
symbols.

When we are given an even number of anticommuting square roots of —1,
we can always find an additional anticommuting square root, making the

total number odd. Let ":Es — El Ez E:, E4 . (2_22)
We have (¢Eg)*=E\E,E;E,E\E,E,E,
=E\E\E, B, E;E,E, E,,

since the rearrangement of order involves six jumps of a symbol over a
different symbol, and each jump reverses the sign of the expression by (2-21).

Hence  (iBp= B2E2EREE=(~1)(-1)(=1)(=))=1,
so that E;2= — 1. We can verify similarly that £, E;= — E, E,, etc.

Thus we have five symbols satisfying (2-21). Both equations of (2-21)
are included in the form

}(E,E,+E,E,)=-8,, (nv=1,2345), (2:23)
where 3, is the symbol defined in (1-43).

Any product formed by repeated multiplication of E,, E,, E,, £, can be
reduced to the form + E,PE,2E,;Ep#, since in collecting the factors the
alteration of order can at most change the sign of the product. Also, since
Ej*=—1, E? reduces to + K, or + 1. Thus, disregarding sign, the product
reduces to one or other of sixteen forms:

\, E,, E,E,, E,E,E,, E\E,E;E; (u,v,0=1,2,3,4; p#v#o).

wvs
Multiplying (2-22) by K, we have (2-24)

tE\Ey=E>2E,E;E,= — E,E,E,,
so that by using E; the triple products can be reduced to double products.
Disregarding factors + 1, + ¢, the forms (2-24) are equivalent to the sixteen
forms i, B,, B,E, (n,v=1,2,3,4,5; p#v). (2:25)
As here written they are all square roots of — 1; since
(E.E,)*<E,E,E E,=—-E E EE,=—-E?E?=—1.
A linear function of the sixteen expressions (2-25) with algebraic coeffi-
cients (real or complex) will be called an E-number. We see that the opera-

tions of addition, subtraction and multiplication applied to E-numbers
will always yield E-numbers. In virtue of this property the sixteen expres-
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sions are said to constitute a complete set. Similarly in algebra the symbols
1 and ¢ constitute a complete set, since the operations of addition, subtrac-
tion and multiplication applied to complex numbers always yield complex
numbers.t

For reasons which will appear later the sixteenfold complete set here
introduced is called an orthogonal set.

The E-numbers are a particular case (n=4) of Clifford’s numbers,}
which are formed analogously from any even number n of independent
anticommuting square roots of — 1. Since the E-numbers, or their equi-
valent matrices, play a fundamental part in the physical theory which we
shall develop, the theory is dependent on the choice n =4 which we make at
the outset. This choice will ultimately be justified in §16-8, where it is
shown that it is imposed by the epistemological principles involved in the
conception of measurement.

2:3. Notation of the £ -symbols.

We shall write B, =E K, (u,v=1,23,4,5; p#v). (2-31)
For uniformity we also give the original five symbols an alternative double-
suffix notation, viz. EI"= Eo,a= ~E,. (2-32)
Then the sixteen expressions (2:25) which constitute the complete set
become i, B, (u,v=0,1,2,3,4,5; p£v). (2:33)

By (2-31) and (2-32) we have in all cases E,,= — E,,. In making up the
complete set of sixteen symbols it is arbitrary whether we employ E,, or
E,,. It would, of course, be redundant to include both.

By using (2:21) and (2-22) we find the following general rules of multi-

plication: Ey,v E,w =—1, (2-341)
1l»‘-v Elto == ‘EFaEM-v =Lyg, (2-342)
Ew, E, = E,,EI“, =1E),, (2-343)

where u, v, 0, 7, A, p is any even permutation of 0, 1, 2, 3, 4, 5. For an odd
permutation B, K, = —iE),.

The summation convention is not used in the above formulae. Unless
otherwise stated we shall limit the summation convention to the row-and-
column suffixes of matrices and wave vectors.§ In later developments the
symbols E,, will be identified with matrices; they will then have the form

+ Some writers use the term ‘‘complete set” for the group of linear expressions (in this
case the E-numbers). The expressions in (2-25) would then be called ‘‘generators” of the
complete set.

1 Amer. Journ. Math. 1, 350 (1878).

§ The summation convention is also employed when well-known formulae are quoted from
general relativity theory.
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(E,,)o8> Where a and B indicate the element in the ath column and Bth row
of the matrix. In that case the summation convention will apply to « and B,
but not to the suffixes p, » which distinguish one matrix of the set from
another.

By (2:342) and (2-343) the E-symbols commute or anticommute according
as they have no suffix or one suffix in common. We therefore obtain a sub-set
of mutually anticommuting symbols by fixing one of the two suffixes and
letting the other vary, e.g.

ESO! E31 ’ E32 ’ E:u ’ E35 .
We call such a sub-set a pentad. There are six different pentads; and each
symbol is a member of two pentads. Our original symbols #,, B,, E,, K,, E;
constitute the pentad with fixed suffix 0. It will be seen that, if wo start
from any of the other pentads and follow the same treatment, we reach the
same complete set.

There exist also triads, i.e. sets of three mutually anticommuting -
symbols, which do not form parts of pentads, viz.

D s Byos By (n#v+#o0). (2-35)

The maximum number of mutually commuting E-symbols (excluding )
is three; for no two of them can have a suffix in common, and therefore three
symbols exhaust the six possible suffixes. The three commuting symbols

are accordingly

E'IM,, E,., E,\p (4, v, 0,7, A, p, all different). (2-36)
We call such a set an anti-triad. Adding to it the symbol 7, which commutes

with all symbols, we obtain an anti-tetrad.

The two triads E.. Ey, E,; B, By, By, (2-37)
where p, v, 0, 7, A, p are all different, aro called conjugate triads. They have
the property that every member of one triad commutes with every member
of the other (see § 3-8).

We shall often employ an alternative single-suffix notation for the
E-symbols (2:33), viz. B, (=1, 2, ... 16). It is then understood that the
first five symbols form a pentad, and that

Eyj=i, (2:38)
but the order of the others is left unspecified. A general E-number is then
p=16
T= % ,E, (2-39)

p=1

the coefficients £, being algebraic numbers, real or complex. The individual
terms ¢, B, are called components of the E-number. The algebraic com-
ponent ¢4 Eiq; or ityg, will be called the quarterspur (abbreviated as gs). We
have therefore qs T=ityg. (2-395)

If qs =0, T is said to be degenerate.



24 Wave-tensor Calculus [2-4

2:4. Linear Independence of the £-symbols.

(a) If a complete set is multiplied through by any one of its members, we
obtain the same set in a different order, apart from algebraic factors +1 or
+ 4. This follows from (2-34).

(b) If an E-number vanishes, every component is zero. For suppose that

the Z-number taBy+t, By + ...+, B, =0, (2-41)
the coefficients being non-zero. Multiply through by E,,; it follows from ()

that we obtain an expression of the same form and with the same number
of terms as (2-41). The last term is ¢, E,2= —t, (or i, F,s). Accordingly,

m~m —
let the result be taBy+tg Byt ...~ b, =0. (2:42)
Let K, be one of the symbols which anticommute with E,. Multiply (2-42)
firstly by initial £, and secondly by final £, and add. Then

to (B, B+ E E,)+tg(E Eg+ FgE)+...—2¢,E,=0. (2:43)
The first term vanishes, and possibly some of the other terms; but the
equation cannot wholly disappear since the last term does not vanish. If
E, commutes with Eg, (£, Eg+ FgE,)= + 2iE,, where E, is another symbol
of the set, by (2-343). Hence (2-43) reduces to an expression of the same
form as (2-41) but with fewer terms.

By repeating the whole process as often as required we remove all terms
except the last; we are then left with an equation containing just one non-
zero term—which is absurd. Thus an equation of the form (2-41) isimpossible
unless all the coefficients are zero.

This shows that the E-symbols are not connected by any linear algebraic
identity. In other words the set is complete but not redundant.

2'5. Miscellaneous Properties.

The following easily established properties of E-symbols are collected here
for reference:

(@) Each symbol (except E,q) anticommutes with eight symbols, viz. the
remaining members of the two pentads to which it belongs. It commutes
with the remaining eight symbols, which include itself and £,q.

(b) Each symbol (except E,q) anticommutes with at least one member of
any given tetrad. (A tetrad is formed by four members of a pentad.) For if
the tetrad is By, , By, Eos, Eyy, the symbol E,, has one suffix in common with
one of these unless both o and 7 are 5. But ¢ and 7 cannot be the same.

(c) If an E-number commutes with E,, every non-vanishing component
commutes with E,. For the condition that Z¢, £, commutes with E, is

zt(EE,~EE,)=0.
Terms for which E,, E, commute disappear; terms for which E,, E, anti-
commute reduce to the form + 2¢ E_ by (2-342). No two terms reduce to
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the same E,. By §2-4 (b) the coefficients of these surviving terms vanish
separately; that is to say, ¢,=0 for those components E, which do not
commute with E,.

(d) Similarly ifan E-number anticommutes with £, , every non-vanishing
component anticommutes with £, .

(e) If an E-number commutes with each member of a tetrad, it is an
algebraic number. For by (c) its non-vanishing components commute with
each member of a tetrad, and by (b) no E-symbol other than ¢ can do this.
The E-number therefore reduces to Fygtyq, Or it;q.

(f) For any E-number 7' we have

p=106 ,
,4§1 E,TE,=-16qsT. (2:51)
Consider the component ¢, E,. We have
E.EE,=-E, ifE, E, conmute,
=+E,, if E,, E, anticommute.
Hence, if v+ 16, we have by (a)

2,B,E,E,= —8E,+8K,=0.

(™
For v=16, 2. E,EE,=—16E,.
Hence 2, E,TE,=—16E 4t = —16qsT.
(9) The coefficients ¢, of an K-number satisfy
t,=—qs(TE,)=—qs(E,T). (2-52)

Let S=TE,. Each component of § corresponds to a single component of
T by § 2-4 (a). The quarterspur of § corresponds to the component ¢, £, of 7',
and is therefore equal to ¢, B, . £, = —¢,, which proves the theorem.
Combining (2-51) and (2-52) we obtain
16t,= —164s(TE,) =2, E,TE,E, =%, E E,TE,. (2:53)
(k) 1f S and T are E-numbers

qs (ST)= —2,8,t,=qs(T8). (2-54)

2:6. Reciprocals.

Let 8 and 7 bhe E-numbers. Generally there exist two quotients 7'/S,
which are the E-numbers R, R’ defined respectively by

RS=T, SR'=T. (2-61)
Considering the first of these equations, the vanishing of the E-number
RS — T requires that every component of it should vanish. We have there-

fore 16 equations (linear in 7,) to determine the 16 coefficients 7, of the
E-number R. A solution will exist unless the determinant of the coefficients
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of the r, vanishes. Since the coefficients of the 7, are furnished by 8, the
existence or non-existence of a solution depends on 8 but not on 7' (assuming
T +0).

If there is no solution, i.e. if S fails as a divisor, 8 is said to be singular.

In particular, taking 7'=1, an E-number S will have a reciprocal R
(such that RS=1) unless it is singular. A singular E-number has no re-
ciprocal.

If R8=1, SR'=1, (2-62)
we have R=R(SR)=(RS)R'=R', (2-63)
so that the same reciprocal is obtained by either definition. An E-number
commutes with its reciprocal.

Let T be an E-number which commutes with 8. Denoting the reciprocal
of § by 871, we have g1 pg. g-1-8-1.87.8,
whence S-1T=T8-1,

So that an E-number which commutes with § commutes also with its
reciprocal. We can also show that, if two K-numbers commute, their reci-
procals (if any) commute.

If 8 is singular, the vanishing of the determinant of the coefficients makes
it possible to obtain an infinitude of solutions of

RS=0. (2-64)
Any such solution R is called a pseudo-reciprocal of S. A pseudo-reciprocal
is necessarily singular. 1f R is a pseudo-reciprocal of S, X R is also a pseudo-
reciprocal of S, X being any E-number; forif R§=0, XRS=0. A product
of E-numbers is singular if any of its factors are singular.

It is important to notice that, when S and 7' are E-numbers, the equation
8T =0 does not imply that either =0 or 7'=0. There is an alternative,
viz. that S and T are singular. If, however,

SE,T=0 (2-65)
for every symbol E, of the complete set, then either §=0 or 7=0. For
suppose that 8 0. Then by (2-53)

168t,=X% SE, TE,E,
I

=0, by (2-65).
Hence t,=0. Since this applies to every component ¢,, it follows that 7'=0.
If 8 is singular and RS contains no non-algebraic terms, then
RS8=0. ) (2-66)
For if RS were a non-vanishing algebraic quantity «, R/a would be the
reciprocal of §, so that S could not be singular.

Since —E,.E,=1, the symbols E, are not singular. Hence if T#0,
E,T+0.
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2-7. Transformation of Complete Orthogonal Sets.t
Let F.=qE,q, (2-71)
where 9¢ =q'q=1. (2-72)
Then the F, form a complete set having the same structure as the set of E,.

This is proved by showing that the relations (2-34) pass over unchanged
from the £, to the F, . Taking, for example, (2-342)

vaFuo = Epvq’ . qu.aq’
=gk, E,,q by (272)
= qEch' =F,,.
Here g and ¢’ may be E-numbers or they may involve entirely new symbols.
We make no assumption as to their nature.

The converse th(?orem is that if EF , FF are two complete orthogonal sets,
arranged in corresponding order so that F,, ¥, commute or anticommute
according as &, , K, commute or anticommute, there exists a transformation
(2-71) connecting them. We shall prove this under the restriction that

(a) The F, are E-numbers, or
(b) The F, are new symbols which commute with all the E,.

16 16
Let P=«ZF,E,, P'=aXL,F, (2-73)

« being an algebraic number. Consider the expression F,PE,. It has 16
terms of the form o«F,(F,E,)E
v\ ve

IfE, EF anticommute, and therefore ¥, Fn anticommute, this becomes
—oF, F,E E,, which is of the form —a«F,E, by (2-342). If E,, E, and
F,, F, commute, it becomes a¥, F, E, E,, which is of the form a (i£;) (i E,) or
— ol E, by (2:343). Thus F, PE, gives the 16 terms of — P in a different

order; hence F.PE =—P. (2-741)
Similarly E P'F,=-P'. (2-742)
Multiplying by final E, and final F,, respectively, these give

F,P=PE, E,P'=P'F,. (2-75)

Case (a). F, is an E-number.
Multiplying together the two equations in (2-75), we have

E,P'PE,=P'F,F,P=—P'P.
Hence, multiplying initially by — E,,
P'PE,=E,P'P.
Therefore P'P commutes with every E,, i.e. with every symbol in the
calculus. It is therefore an algebraic number. Reserving the singular case

t This transformation was introduced by G. Temple, Proc. Roy. Soc. A, 127, 342 (1930).
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P’P =0, for consideration in § 2-8, we can choose « 50 as to make P'P=1. Tt
follows that PP’ =1; and by (2-75)

PE,P'=PP'F,=F,,
so that P is the required transformation operator ¢ in (2:71).

Case (b). F, commutes with the E,.

Then P=P’'. If P is multiplied by E, F;, we obtain the same 16 terms in
a different order, except that those which commute with E, (and therefore
with F)) acquire a factor 42 by (2:343). Thus 8 terms are reversed in sign. In
the product P x P, each term of P occurs 16 times, 8 times with the original
sign and 8 times with reversed sign, except that E,q F\q occurs 16 times with
reversed sign. Hence ps_ 2 (= 168, F,;) = 16a2.

Taking a =}, we have PP’ = P2=1, Then by (2:75)
PE,P'=PP'F,=F,.
Hence the required transformation operator is
=q'=}%E,F,. (2-76)

2:8. The Singular Case.

In Case (@), but not in Case (b), it may happen that PP’ =0 and the fore-
going method of determining ¢ breaks down. We shall show that never-
theless there is a transformation I’L = qE q'; but instead of ¢= P, we have
. (-

9=FPOWhete  po) o3, B, B,E,, PO=uS, BB, (2:81)
and K, is one of E-symbols. The transformation previously given corre-
sponds to o = 16; if that fails we try another value of o, until we find one such
that POP"@ 0.

Ordinarily the vanishing of PP’ does not imply that either P or P’ is
zero; but in the present case we have, by (2:75),

PE,P'=PP'F,=0
for every E,. Hence by (2-65) either P=0 or P’ =0,

Let E©=(E,) E,(ik;)=—E,E,E,. (2-82)
Since this is a transformation of the form ¢E,q’ with g¢’ =1, the E,© form
a complete set. By (2-82) E,@=E, or —E, according as E, commutes or
anticommutes with £,; thus the tra,nsforma.mon simply reverses the signs
of eight members of the set. We call the set £, a reflection of the set E,.
Including the original set (reproduced when o = 1 6) there are sixteen d.lﬁerent

reflections, which correspond to the sixteen possible combinations of s sign
in an initial tetrad + &,, + E,, + E;, + E,.

By (2-51) 3 E9=16qs E,. (2-83)
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Hence by (2-81)

=, POE,= —160%,F,qs B, = — 16aF g Fyg=16a,  (2:84)

since gs B, = 0 unless .= 16. Hence at least one of the quantities *'E, has
a non-vanishing quarterspur. Therefore at least one of the quantities P
does not vanish.

The quarterspurs of P9, and E, P'® are equal; for they are the quarter-
spurs of —aXF, K, and —aZE/7F,, which are equal by (2-:54). Hence, in
securing that P30, we also secure that P30,

Having found non-vanishing P, P'®, we use these instead of P, P’, and
repeat our previous analysis as far as (2:75), obtaining

F,Po=POE, E, P©@=POF, (2-85)

It will be found that E, remains passive in the middle of the expressions
F, P9E, and does not affect the argument. Proceeding to Case (a), we find
as before that P'(?) P is algebraic. Further, it cannot vanish; for, as shown
for P, P’ at the beginning of this section, its vanishing would require that
either P or P'? ig zero.

It may seem curious that we should be able to choose o arbitrarily in the
transformation £, = P@E, P'®. The explanation is that by changing ¢ we
introduce a purely algebraic factor which is absorbed in «. Evidently the
transformation could be further generalised by substituting an arbitrary
E-number in place of £, .

We notice for future reference that there is at least one reflection £,
which is connected with ¥, by the unmodified transformation ¢=oX#, £,@,
¢ =aZE,“F,. For, choosing o so that P9, P"?#0, we have

o3, F, B, 0= —aSF, B, E,E,= — POE,#0,
o3, B OF, = —«XE,E,E,F,= — E,P'©#0.

2:9. Application to Relativity.

The transformation ¥, =¢E, ¢’ is formally the same as the transformation
(1-463) of a mixed tensor 7" =¢7Tq’. Limiting ourselves for the present to
Case (@), ¢ is now a non-gsingular £-number instead of a non-singular matrix.
We shall find in Chapter 111 that fourfold matrices are a special representa-
tion of E-numbers. Thus it is appropriate to generalise the definitions of
tensors in Chapter 1 by substituting symbolic E-numbers for matrices.

In physical applications we shall call a complete set of E, a symbolic
frame. By the above transformation we obtain a different but equivalent
symbolic frame ¥,. If the E, are taken to be mixed wave tensors, the
change from one symbolic frame to an equivalent frame is a tensor trans-
formation. A change of symbolic frame is then part of a general change of
system of description, and other quantities occurring in the description are
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changed simultaneously according to the wave tensor character assigned
to them in the group of descriptions contemplated.

The present analytical theory is being developed to serve as a tool in
physical investigations, and we cannot pledge ourselves always to use the
tool in one particular way. But the primary application will be that certain
characteristics of a physical system are described by E-numbers which are
invariant for changes of the system of description, and therefore correspond
in conception to an absolute structure transcending our variable description.
Let T'=%t, E, be one of these invariant E-numbers. The invariance requires
that when we transform to a new symbolic frame £,’, the coefficients t, are
changed to ¢, so that T=34,E,=%4/R,. (2:91)
The arrays £,, ¢, are regarded as components of the same physical entity
referred to two different reference frames E.E/

It is convenient to call the transformation K, £, a rotation of the
symbolic frame. Rotation is here given a somewhat gencralised meaning;
the ecmphasis is on the fact that it is a type of change which does not involve
any intrinsic distortion of the frame. The frame E,’ has the same intrinsic
structure as the frame E,, namely that expressed by equations (2-34).

Having defined rotations of the frame we can now definc corresponding
rotations of a physical system described by E-numbers. Consider a system
described by invariant H-numbers T'=Xt, E,, U=3u, K,, etc. Let the

('l
system undergo a change such that 7' 7", U - U’, etc., where

=%, k', U'=XukE,. (2-92)
Then the new physical system is constructed in the frame E,’ according to
the same specification as that by which the original system was constructed
in the frame £,. In other words the system has rotated with the frame.
Clearly the systems (7', U, ...) and (7", U’, ...) have the same kind of
equivalence as the frames. They are intrinsically similar, as the frames are
intrinsically similar.

Normally the rotation of a physical system is described by referring it to
a fixed frame. We therefore require the components of 7" in the original
fi‘la,me E,. Denoting these components by ¢,” (not the same t, as in (2-91))
t. dition is r_y "y .

e condition =%, B, =%, E,. (2:93)
The transformation ¢,—>¢," represents a rotation of the physical system
relative to the fixed frame E,. Since E,"=q&,q’, we have by (2-93)

%t B,=q(%t,E,)q" (2-94)
The nature of the transformations of ¢, determined by (2-94) will be studied
in detail in Chapter 1v.

Any change ¢, ¢, represents some imaginable change of the physical
system described by ¢, . The peculiarity of the transformations which satisfy
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(2-94) is that the new system is intrinsically similar to the old. and the
change is therefore pictured geometrically as a rotation without distortion.
More generally we call such a change a relativity transformation. It can be
detected (if at all) by observing relations to extraneous physical objects
that do not form part of the system to which the relativity transformation
is applied.

The relativity of our orthogonal symbolic frames is precisely analogous
to the relativity of Galilean frames of space and time. Space-time frames
are all alike initially. If we speak of a frame 2, y, 2, ¢, it is impossible to define
in an absolute way which frame, out of an infinite number of equivalent
frames, we refer to. But when once we have selected and labelled an initial
frame A, any other frame B can be defined relatively to it by specifying the
space rotation and Lorentz transformation which would convert 4 into B.
Similarly we cannot define in an absolute way the frame £, which we select
initially. But any other frame E,’ can be defined relatively to E, by speci-
fying the transformation symbol ¢ (which is an E-number of the form
%9, E,) connecting K, and E,’'. We use these symbolic frames as the basis of
a relativity theory which (we shall find) includes, but is somewhat more
comprehensive than, the relativity of (zalilean frames of space and time.

Attention may be called to the perfect adaptation of the mathematical
symbolism to the physical conditions. Owing to relativity we are unable to
define in an absolute way the physical frame initially selected, which we label
E,. 1t is therefore appropriate that we should be equally unable to defino
in an absolute way the label E, which we affix. For the set of symbols £,
is only defined by its structural properties (2:34), and these apply equally
to E,” or to any other complete orthogonal set. The complete physical
eqnivalence is therefore represented by a complete mathematical equi-
valence. We lose this perfect adaptation when we use special kinds of E,,
e.g. matrices.

There is no ahsolute distinction between a rotation of the physical system
and a rotation of the frame in the opposite direction; and in elementary
theory the term ‘“‘relativity rotation” is applied indifferently to rotations
of the physical system and of the frame. But after the first results of this
equivalence have been gleaned, there is seldom anything to be learned by
introducing rotations of the frame. If the frame is rotated, we have to
transform simultaneously the specification of all objects, fields, boundary
conditions (including boundary conditions at ‘infinity’’), normalising
conditions, etc., concerned in the problem. On the other hand, keeping the
frame fixed, we can introduce relativity rotations of a particular object,
leaving the other objects concerned in the system unchanged. In order that
it may possess independent relativity rotations, the object must be con-
ceived as separable from the rest of the system contemplated. A separable
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object will have a structure described by invariant £-numbers 7', U, ..., so
that transformations of the form (2-94) represent displacements of the
object without intrinsic change of its structure.

Thus in later developments we are concerned with independent relativity
rotations of individual objects, which provide much wider scope for the
application of relativistic principles than a rotation of their common frame.¥
For this reason, ‘‘relativity transformation’ will normally mean displace-
ment without intrinsic change of an object referred to a fixed frame, though
it may also be applied to a rotation of the frame if occasion arises.

In practice an object cannot be rigorously separated from its surroundings;
if it could be separated, it would not be accessible to observation. But that
does not do away with the usefulness of the conception of a separable object.
One of the greatest achievements of current quantum theory is that it
has found a rigorous method of avoiding this dilemma. An incompletely
separated object is represented as a probability distribution over completely
separated states. The environment then affects, not the state. hut the
probability attached to the state. We may therefore, with all rigour, apply
relativity transformations to the E-numbers describing the states—pro-
vided, of course, that the states are such as can be specified by invariant
E-numbers. This last reservation is liable to be overlooked; and £-numbers
(or the equivalent Dirac wave functions) have often been applied to states
which obviously do not possess the relativistic properties which £-numbers
are designed to represent.

From one point of view the assumption that there exist in nature equi-
valent 16-fold frames, which can therefore be appropriately represented by
equivalent sets of K-symbols, is a hypothesis—the fundamental hypothesis
of our theory. But actually we appeal to an epistemological principle which
goes deeper than that. We will call it the *‘ Principle of the Blank Sheet ™.

Physics is concerned with the problem of distinguishing and classifying
the distinctions of objects, states, events. Kxact measurement is a process
of determining and classifying minute distinctions. To develop a theory of
the characteristics which can be distinguished and of the measurement of
the distinction, we require a blank sheet to write on—not a sheet already
scribbled over with vaguely recognised distinctions. A group of intrinsically
indistinguishable frames is chosen as the basis of a description of the uni-
verse, in order that the theory of distinguishable or measurable phenomena
to be erected on it may go down to the very origin of their distinction. Tn

+ The above remarks rofer to the more usual problems of quantum theory in which a
number of objects are referred to a single frame. An important intermediate step is the
consideration of the relativity rotations of two objects referred to a double frame E, F,.
In this case any combination of rotations of the two objects is equivalent to a transformation

to an equivalent double frame E,'F,”. This (rather unusual) development is of great
importance in the special problems treated in the present book.
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practice we do distinguish frames of space-time otherwise than by their
transformation relations to one another; we distinguish them as being at
rest relatively to the earth, sun, etc., or as having a special orientation with
respect to the earth’s gravitational field; but we conceive frames of space-
time as initially indistinguishable in order that these distinctions may be
properly inserted in the development of the theory and not hidden in its
initial assumptions. We do not assert that there exist intrinsically indis-
tinguishable 16-fold frames of reference in the physical world; it is only for
an ideally simplified universe that this would be true. Our principle is that
such distinguishability of the frames as occurs must be treated as a positive
characteristic to be represented by appropriate symbols and combined in a
unified theory with the other distinctions studied in physics. To exhibit a
positive characteristic, we have to imagine a frame which initially lacks it.

Our mode of thought requires us to formulate some kind of frame or
background for physical phenomena. Let the background be a white sheet
to show up the phenomena, not a jazz-painted camouflage against which
they may lie undetected.

Case (b), in which the equivalent frames K, , F,, consist of entirely different
symbols, has also an important physical application. Since ¢ is now a
mixture of E-symbols and F-symbols, the relation between the two frames
is not describable by reference to the £-frame only. 1f we have three such
frames B, F, G, the transformations ¢z, ¢z, cannot be compared, and there
is no meaning in saying that the change from E to F is greater or less than
the change from E to G. Equivalent frames of this kind are required when
we deal with the properties of two similar atoms or two electrons, con-
ceived as non-interacting. Two electrons are intrinsically similar (or equi-
valent) but are not the same; we cannot specify different degrees or different
kinds of not-the-sameness, as we do for equivalent space-time frames. If
there is interaction the case is somewhat altered, and the electrons are not
so definitely distinet; but here again the Principle of the Blank Sheet
requires us to start with frames corresponding to non-interaction, into
which interaction is introduced as an explicit perturbation.



CHAPTER III
THE RESOLUTION OF MATRICES

3:1. Four-point Matrices.

We are now going to show that fourfold matrices may be expressed as
E-numbers; so that the theory developed in Chapter 11 has a particular
application to matrices.

First consider the six matrices

8=0 1 0 0 %=0 0 1 0 8§=0 0 0 1
1 0 0 o0 0 0 0 1 0o 0 1 0
0 0 0 1 1 0 0 o0 0o 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0
D=1 0 0 0 Iy=1 0 0 0 D=1 0 0 0
01 0 0 0-1 0 0 0-1 0 0
0 0-1 0 0 0 1 0 0 0-1 0
0 0 0 -1 0 0 0-1 0o 0 0 1

The system of nomenclature is that the suffixes «, 8, y have reference to the
three ways of pairing four numbers, viz. 12, 34; 13, 24; 14, 23.
We also introduce two alternative notations for the unit matrix, viz.

The following results of matrix multiplication are easily verified:
8,8=38,, D,Iy=D,; (3-111)
82=1, D2=1; (3-112)
8,D,=D,8,, 8,Dg=—Dg8,; (3-113)

with similar results obtained by permuting «, 8, y, but not 8.

The commutative properties may besummarised asfollows (@, b = «, B, y,9):

8.8,=8,84, DyDy=D,D,, 8,D,=(ab) D,8,, (3-12)
where (ab)=(ba)=1 ifa=8,orb=3,ora=>b 313
= —1 otherwise ) (3-13)

The product of any number of these matrices in any order can be reduced

to one of the sixteen forms:
+8,D, (a,b=ua,p,v,3).

For we can bring all the 8’s to the beginning and the D’s to the end by
applying (3-12), and then reduce the 8’s to a single S and the D’s to a single
D by applying (3:112) and (3-111). If either the S factor or the D factor
disappears, we insert the unit matrix S5 or Dj to preserve homogeneity.
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Thus the sixteen forms constitute a complete set in the sense explained in
§2:2. If we call a linear function of them with algebraic coefficients an SD-
number, the operations of addition, subtraction and multiplication applied
to SD-numbers will always yield SD-numbers.

3:2. Pentads.
It follows from (3:12) that
(83 Dy) (8, Dy) = (be) (ad) (8, Dy) (8, D). (3-21)
Hence the condition that 8, D, and 8, D; anticommute is
(bc) (ad) = — 1. (3-22)
Let us write down the matrices S,D; which anticommute with S, Dj.

Here b=38, so that (bc)=1. Hence (ad)= —1; and since a=«, we have
d =B or y. The suffix ¢ can have any value. Hence the matrices are

8. Dy, 8305, 8, Dy, 83Dy, 8, D, 4 D,, 8,D,, $D,.  (3-23)

Selecting one of these, S s, we find in a similar way that the following
anticommute with it:

8.D,, 8,Dp, 8,D,, 8, D;, 8,D,, 8,5, 8,D,, 8,D5. (3-24)

Hence the following anticommute both with S, Ds and S Dg:
Sy Dg, 8,D,, 8,Dg, 8,D,. (3-25)
The first of these is the product of 8, Ds and 83 Dg. A symbol which anti-

commutes with two symbols necessarily commutes with their product; thus
no further matrices can anticommute with the triad:

8. Ds, 83 Dy, Sy Dy. (3-26)
It will be found that the remaining three matrices in (3-25) anticommute
with each other, so that

8, D, 83 g, 8,D,, S, Ds, 8,D,
constitute a pentad of mutually anticommuting matrices.

Dropping the superfluous S; and' Ds, and inserting a factor i where
necessary to make the square of the matrix equal to — 1, the pentad is

18y, 11y, 48, D,, 8, D,, 8, Dy. (3-27)
These five matrices accordingly satisfy the same conditions (2-23) as u
pentad of E-symbols, and constitute a particular identification of E,, E,,
E;, E,, E;. Ifidentified in this order they are found to satisfy (2:22). All the
theorems of Chapter 11 then have an application to matrices.
The complete set E, can accordingly be identified with the complete set

% (ab)} 8, D,, the factor i being inserted when (ab) = + 1 in order to make the
sauare eaual to —1.
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The five other pentads can be found from the theory of E-symbols, or
more simply by permuting «, 8, y in (3-27).

A set of four anticommuting four-point matrices was first introduced
into physical theory by P. A. M. Dirac in his wave equation of an electron.
The particular matrices used by Dirac form part of one of the pentads here
found. It was shown by J. v. Neumann that the complete set consisted
of 16 matrices.t The complete set S, D, was first studied in this connection
by the author.} It has been pointed out by P. du Val that a similar analysis
had been developed in connection with the theory of Kummer’s Quartic
Surface.§

3:3. Components of Matrices.

In § 3-2 we have found a representation of the E-symbols, and hence of all
E-numbers, by fourfold matrices. We shall now prove the converse, viz.
that every fourfold matrix will represent an E-number; that is to say, any
fourfold matrix 7' can be expressed in the form

16
T=24,5,, (3:311)

where E,, E,, E,, E,, E; are the matrices (3:27).
The meaning of (3-311) will be clearer if we insert the row-and-column
suffixes a, B of the matrices, viz,

Taﬂ=§tp (Ep_)ap. (3-312)

Considering in succession the 16 combinations of suffixes «, B, we have 16
equations to determine the 16 algebraic coeflicients ¢, . The values of ¢, are
unique; for if there were another set of values ¢,’, we should have by sub-

traction 0=X%(t,—t,/)E,.

Hence by §2-4 (b), t,—t,"=0.

As we shall presently solve these equations for ¢, it is not necessary to
stop to prove here that the condition for the existence of a solution (non-
vanishing of the determinant of the coefficients) is satisfied.

We call ¢, (or E,t,) a component of T, and p a matriz suffiz, as distin-
guished from the elements T,g and the row-and-column suffizes o, B.

The sum of the diagonal elements of a matrix is called the spur, and will
be denoted by {T'}.

The matrices S, D, have no diagonal elements unless @ =3§. Also we see
from the definitions of D,, I, D, in §3-1 that their spurs vanish. Hence

1 Zeits. fiir Physik, 48, 881 (1928).

1 Proc. Roy. Soc. A, 121, 524 (1928).

§ The connection with the Kummer collineation group has been treated fully by
0. Zariski, Amer. Journ. Math. 54, 466 (1932).
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{8y Dp}=0, except {S; D3} ='4. Changing to the E, notation, we have

{EF}=0 fOl‘ ’L= l, 2, .oe ]5, {E16}=4i' (3'32)
Taking the spur of (3-311), we have
{T}=Zt,{E,}=4it,g=4qs T (3-33)
I

by (2-395). Thus the spur of a matrix is (appropriately) four times the
quarterspur. It is to be remembered that for a general symbolic E-number
(not identified with a matrix) the diagonal sum would have no meaning. 1t
is for that reason that we have introduced the quarterspur as a more general
characteristic, not implying matrix representation.

By (2-52) ty=—qs (B, T)= - }{E,T} (3-34)

by (3:33). We have thus an explicit formula for the components t, of a
matrix.

Owing to the great importance of (3-34) it may be desirable to give a
direct proof. Multiply both sides of (3-311) by E,, and take the diagonal

sum; we have {E,T}=%1,{E,E,}.
m

Now E, E, reduces to a single symbol, whose spur vanishes by (3-32) except
when p=». Hence (B,T)=t,{B2=—t,{1}=—4,,
which is equivalent to (3-34).

We can write (3-34) in a form which avoids the use of the symbol { }.
Inserting row-and-column suffixes (and temporarily dropping the matrix
sufﬁx), ET = EaBTﬂys {ET} — EaBTBm .

Divide the symbol T into two portions each carrying a suffix, thus,
Tp="1,T5.

Since the suffixes are explicitly indicated, we may rearrange the order of

the factors, {ET}=EATgTo= F“E,,R’Ip= TET,

the suffixes being omitted after the rearrangement since they follow the
chain rule. Thus (3:34) becomes

t,=—4lE,'T. (3-35)
We call T and I symbolic factors of T.
In particular, if & matrix J is the outer product of two vectors ¥, x*, 80
that
* J =¢x*, (3-36)

the components are Ju=—1x*E,4. (3-37)
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The expeclation value of an operator X with respect to wave vectors
and x* is defined to be} X =x*X¢p+ x*y. (3-38)
It follows from (3:-37) that the expectation value of E, is ij,/jq-

3:4. General Orthogonal Frames.

The SD matrices which constitute the symbolic frame used in § 3-3 are of a
special type, called four-point matrices, since they have only four non-
vanishing elements. By §2:7, Case (a), an equivalent frame E,’ is obtained

by the transformation  p/_ qE.q' (q9'=1) (3-41)
2 2 ’

where ¢ is any non-singular E-number, and therefore in the present applica-
tion any non-singular fourfold matrix.

The matrices £, of the new frame will not generally be four-point matrices.
We have therefore to consider whether the results of §3-3 will apply to
the new frame.

The spur {£,} is invariant for the transformation (3-41). For

{Ep.'} = (Ep’)aa =4qa8 (Ep.)ﬂyqya’ = qya' 9.8 (Ep,)ﬁy
=(9'9E,),,={E,}, (3-42)
since g'g=1. Hence the formulae (3-32) apply equally to the frame E,’".
Except in calculating the spur, no use was made of the special properties of
8D matrices; and therefore all the results in §3-3 apply to E,’.

In particular the formulae (3-35) and (3-37) for the components apply to
any orthogonal frame of matrices.

Up to the end of Chapter vI we shall (unless otherwise stated) take the £,
to be general fourfold matrices which satisfy the conditions for a complete
set. We shall not specify the particular set of matrices used. This is in accord-
ance with the relativity principle in §2-9, that there can he no absolute
description of the reference frame initially chosen; but if other frames are
subsequently introduced they can be defined relatively to the first frame by
stating the components (in the first frame) of the transformation matrix q.
The frame S, D, has served its purpose in enabling us to construct the whole
set of equivalent frames; but it has no special significance in physics, since
the structure of the commutation relations is common to all the frames.
For example, we must not think of S, D, as being physically distinguished
from other legitimate frames in the way that Galilean coordinates are
distinguished from other legitimate coordinates. Its apparent distinctive-
ness (shown in the simplicity of the matrices) is really a misfit between the

1 This is a somewhat generalised definition of expectation value. In current theory the
term is restricted to an expectation value with respect to one wave vector ¢; x is then replaced
in the formula by the complex conjugate of . It must not be assumed that the familiar
properties (e.g. that the expectation value is intermediate between the greatest and least
eigenvalues) hold for the generalised definition.
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physical structure and the mathematical expression of it by matrices. If we
keep to general symbolic E-numbers no such misfit occurs, and in that
respect they give a closer representation of the actualities of physics than
the matrix representation does.

It may be asked, What do we gain by introducing matrices instead of
general E-numbers? Ultimately I think we gain nothing. I do not think that
there is anything in the physical constitution of the systems to which we
apply this calculus that is represented in the matrices and unrepresented
in the general E-numbers. The main justification for using a particular
representation is that it simplifies the algebra in practical problems. Thus in
Einstein’s theory we introduce special coordinates for the discussion of the
phenomena of the solar system, since the analysis of these phenomena would
be intolerably difficult if we retained general coordinates throughout. We
shall sometimes use the frame of four-point matrices in this way to establish
results known to be invariant, which it is therefore sufficient to prove in any
one frame of reference. On the other hand we are liable to lose valuable
insight by premature introduction of special frames or special coordinates.
Temple has shown that, even in so special a problem as the determination
of the energy levels of the hydrogen atom, matrices are not required, and
the work can be carried out with general E-symbols; his determination
appears to me not only more illuminating but actually much simpler as
regards algebraic calculation than the proofs previously given in terms of
matrices (§9-3). In any case the use of matrix representation expressly for
the purpose of facilitating calculation is a very different matter from its use
in the formulation of the fundamental laws of physics.

But, whatever the ideal course, I am here limited by the fact that I do
not propose to reinvestigate the whole quantum theory. I must develop the
present relativity theory up to a point at which it meets the accepted results
of quantum theory which are soundly (if unaesthetically) established.
These results are given in matrix representation by Dirac and others, and
the conventional nomenclature and definitions have reference to the matrix
representation. I must have an eye on the theory that I am steering to meet
before I actually make contact with it; therefore it seems unwise to post-
pone the transition to matrix representation for long. Meanwhile the
knowledge that there is an equivalent theory in terms of general symbols
is reassuring; for I cannot believe that anything so ugly as the multiplication
of matrices is an essential part of the scheme of nature.

In §2:7, Case (b), we may take the E, to be matrices and the F, to be
general symbols, or vice versa; then ¢ will be a mixture of matrices and general
symbols. Thus the use of matrix representation does not entirely cut us off
from general symbols; the gap can be bridged by an ordinary tensor trans-
formation. I shall be talking chiefly about matrix frames; but if you will
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inscribe ¢ on the front cover of the book and ¢’ on the back cover—then I
am talking about general symbolic frames !

There are two kinds of property which at first sight seem to be expressed
more simply in matrix calculus than in general symbolic calculus:

(1) A matrix can or cannot be resolved into two factors. We shall call a
factorisable matrix a pure matrix. Thus we can recognise a distinction
between pure and impure matrices, which is not apparent in the corre-
sponding general symbols; the “factors’ of a general E-number are an
undefined conception. But purity of a matrix is an invariant property for all
wave tensor transformations, since the two factors (vectors) transform
separately. There is therefore some invariant characteristic of an £-number
which corresponds to the factorisability of all its matrix representations.
This characteristic is found to be idempotency (§ 5-6). Purity is expressed
quite as easily by idempotency in symbolic calculus as by factorisability
in matrix calculus.

(2) In the specimen pentad (3:27) three matrices are imaginary and two
are real. This partition persists in all pentads (§ 3-5); and it is of great im-
portance in physics, being the foundation of the distinction between space
and time. To ascribe real or imaginary character to general symbols would
involve something not expressible in terms of their commutability relations.
It is to be remembered that the E'“ are all square roots of — 1, whether they
are represented by real or imaginary matrices. In the case of four-point
matrices the imaginary matrices are symmetrical and the real matrices
antisymmetrical (for interchange of rows and columns), and the distinction
can be equivalently described by reference to symmetry; but the property
of symmetry or antisymmetry is not invariant for tensor transformations.
Matrix representation seems to afford the easiest way of expressing this
distinction; but there would be no great difficulty in working out an alter-
native treatment by general symbolic methods if desired.

From Chapter viI onwards our point of view changes, and we shall gener-
ally restrict the E, to four-point matrices (8D matrices). That is because
we have finished contemplating the ‘“blank sheet’ and are beginning to
write something on it; and the property of symmetry or antisymmetry of
the matrices of a certain frame is one of the first things that we write.

3-5. Real and Imaginary Matrices.
A matrix is said to be real if all its elements are real, and imaginary if all its
elements are imaginary. If any of the elements are complex, or if some are
real and some imaginary, the matrix is said to be complex. We shall show
that, if complex matrices are excluded, three members of a pentad are

imaginary and two are real.
We first prove by a reductio ad absurdum that five imaginary matrices
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cannot form a pentad. Suppose then that F,, F,, F;, F,, F; are imaginary
matrices forming a pentad; this is connected by a tensor transformation
with the known pentad (3-27) containing three imaginary matrices E,, E,,
E; and two real matrices E,, E;. By §2-7 the transformation connecting
complete sets £, , F, is
FF= PE,P', P=oXF,E,, P'=eiE,F,, PP'=1. (351)

The singular case is avoided by using an appropriate reflection of the pentad
(3-27); for, as shown at the end of § 2-8, there is at least one reflection which

gives non-zero /> and P’.

Write P=R+iS, P'=R+:iS8, (3-52)
where R, R', 8, 8’ are real matrices. Then, since P'P=1,
RR-88=1, R'S+8R=0. (3-53)
By (2-75) F,P=PE,, E,P'=P'F,.

Hence, separating the real and imaginary parts,
F,R=RE,, F,S=8SE,, E,R'=RF,, ES=8F,
so that E,R'RE,=R'F\F,R=—-R'R.
Hence E, R'R= R'RE,. Similarly R’ R commutes with E, and E,. Therefore

by §2-5 (c) it consists of components which commute with ¥, £,, E,. This
restricts it to the form RR=a+bE,,. (3-54)

Since Z; is a real matrix, @ and b are real coefficients.
Again, separating the realand imaginary parts of ¥, P = PE,, E, P'=P'F,,
we have
¥,R=i8SE,, F,S=—iRE,, E,R =:i8'F,, E,8'=—iR'F,,
so that E,R'SE,=S'F,F,R=—-8R=R'S
by (3-53). Therefore R’S anticommutes with E;. We can show similarly
that it anticommutes with E,,, H,,, E;,. This restricts it to the form
R'S=cEys=— SR, (3-55)
where c is real.
By (3-54) and (3-55)
R'P=R (R+i8)=a+bE+icKE,

P R=(R' +18') R=a+bE;—icE.
Therefore

R'R=R'PP'R=(a+bE;;)+c*Ey®=a%—b%—c%+ 2abl;. (3-56)
Comparing with (3-54), we have
a=%, a*-b*-cl=a,

so that b2+ c2= — }, which is impossible since b and c are real.
We can show similarly that a pentad of four real matrices F, F,, F,, Fj



42 Wave-tensor Calculus [36

and one imaginary matrix F; leads to a contradiction. For, denoting the real
matrices in the standard pentad by E,;, E, and the imaginary matrices by
E,, E,, E;, we have again two matrices F,, F;, whose character (real or
imaginary) is opposite to that of the corresponding matrices E,, E;, and
the proof applies without alteration. .

No other case arises, since by (2-22) the number of imaginary matrices in
a pentad is necessarily odd. Thus the only possible partition of matrices in
a pentad is three imaginary and two real.

The theorem has been generalised to matrices of m rows and columns by
M. H. A. Newman.} If m=2%, where p is odd, the maximum number of
matrices in an anticommuting set is 2¢ + 1; and of these ¢+ 1 are imaginary
and ¢ real.

A case that might possibly be of physical interest is m = 16. The maximal
anticommuting sets are then nonads with five imaginary and four real
matrices. A nonad can be constructed as follows: The sixteen rows are
designated by double suffixes «f (x, B=1, 2, 3, 4). Then if E, denotes a
4-rowed matrix correlated to the first suffix, and F, the same matrix
correlated to the second suffix, the outer product E,F,isa 16-rowed matrix.f
An example of a nonad is

By by, iEy Fy, 3By, Fy, 1B By, iEsFy, iE By, Fy, Fy, Fy. (3-57)
It is constructed by means of a pair of conjugate triads of E matrices (see
(3-82)).

3:6. Determinant of an E-number.

It is useful to have before us the explicit expression for the matrix which
represents a general £-number 7'=%t, K, with some standard identification
of the matrices &, . The following is the matrix representing 7', when the
matrices E,, E,, Ey, E,, E; are taken to be i3, +y,48,D,, 8, D,, S, D; as
in (3-27). We write 7, for it,.
Tie T T+ Tat Tiy T Tty iy, Tty Ty, Tea iy Hi5 473,
TrtTe—ln —ly, Tigt Ty Ty —Ty, Teptly —f5 — 73, Testl —Tis—ty,
Tz~ las +T1s—ls1s Toa—lp +ls — 7y, Tig—Typ+Ty — Ty, Ty — Tty —1y,
Toe—las =t +73, Taa—lys —Tistly, Ty — Tty +ly , Tig—Tas~Ty +7yy.
(3-61)
The columns correspond to the first suffix and the rows to the second suffix
of Taﬁ .
The determinant formed by (3:61) can be evaluated. It is found to be
det T'=Xt,% + 256,20,2+ 884, b, tyot,, + 858, 0, by tig.  (362)
Here the first two terms on the right are written in single-suffix notation,

t Journ. Lond. Math. Soc. 1, 93, 272 (1932).
1 Matrices of the form E, F, are treated fully in Chapter x.
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and the last two terms in double-suffix notation. In the second term the
sign is positive if £, , E, anticommute and negative if they commute; in the
last term the sign is positive if u, », 0, 7, A, p is an even permutation of the
suffixes 0, 1, 2, 3, 4, 5 and negative for an odd permutation. It is understood
that each component is written in one way only in the double-suffix nota-
tion; e.g. 5, may also be written as —¢,,, but it is not to be included a second
time in the summation on account of the two ways of denoting it.

The determinant of a mixed tensor is unaltered by tensor transformations.
Thus (3-62) will be invariant when the special matrix frame used in (3-61) is
changed to any other frame E,’".

We define the determinant of an E-number to be the function (3-62) of its
sixteen coefficients. With this definition the determinant of an E-number
is the same as the determinant of any matrix representation of it; and
properties of fourfold matrices which involve their determinants can be
extended to general symbolic E-numbers.

It is well known that the condition that a matrix 7' shall be singular is

detT=0. - (3-63)
Also, by a well-known theorem, for any two matrices 8 and 7'
det (ST)=det 8 xdet 7T'. (3-64)
We see by inspection that when B, =8, D,
det B, =det S, x det D,=1; (3-65)

and, since the determinant is invariant for tensor transformations, this
holds for the matrices E, of any complete orthogonal set. (The same result
is also found directly from (3-62).)

By (3:64) and (3-65)  det(E,T)=det 7. (3-66)
And by (3-62) det (a+bE,)=(a2+b2)2 (u#16).
Hence
det (cos 0+ E, sinf)=1 (n#16). (3-671)
We generally write cos 0+ B, sin 6 =es? (see § 4-1); hence by (3-64)
det (Te®ud)=det T (un# 16). (3-672)

We shall later consider transformations of the form 7' Te¥uby
T — e28ulu TetEfu etc. By (3-672) any number of these transformations
leaves det 7' invariant, if the algebraic transformation u=16 is excluded.
Further, if p=16 and 0,4 is real, the transformation does not alter the
modulus |det7'|. A transformation which leaves |det7'| unaltered is
called a unitary transformation. Of the 32 possible transformations euf
(counting real and imaginary 6, as different transformations) the only one
which is not unitary is that given by imaginary 6,4.

These results apply to general E-symbols as well as to matrices, the
determinant being defined bv (3-62).



44 Wave-tensor Calculus (37

3-7. Eigensymbols and Eigenvalues.
If X is any symbol, and ¢ is a symbol (not zero) such that
Xp=uad, (3-71)
where « is an algebraic number, ¢ is said to be an eigensymbol of X and o an
esgenvalue of X. We collect here some of the most important properties of
eigensymbols. The results are given for final eigensymbols; but there are
in all cases corresponding theorems for initial eigensymbols defined by
X =agd.
If f is a polynomial function, repeated application of (3-71) gives
f(X).¢=F().¢. (3:715)

(2) 1f the symbol X satisfies a polynomial equation f(X)=0, the only
possible eigenvalues of X are roots of f () =0. For we have f(X).¢=0, and
therefore f («) .4 =0. Then, since ¢ is not zero, f(«)=0.

In particular if X2 is algebraic and equal to m2, X has only two possible
eigenvalues +m. The eigenvalues of the E, are ti.

(b) A symbol which has an eigenvalue 0 has no reciprocal. For if X¢=0
and X~1X =1, we have 0=X-!(X¢)=¢. But an eigensymbol, by definition,
is not zero.

Hence if an E-number or matrix 7T has a zero eigenvalue, it is singular,
and det 7'=0.

(c) If T' has an eigenvalue A, T'— A has an eigenvalue 0, so that

det (T'—\)=0. (3-72)
Accordingly the eigenvalues A of an E-number or matrix are the roots of
equation (3:72), which is called the characteristic equation. For an E-number
or fourfold matrix the characteristic equation is of the fourth degree in A,
and may be written

JA)=QA=2)A—25) A—A5) A—2,)=0. (3-73)

Tt is known that a matrix satisfies its own characteristic equation (Hamilton-
Cayley theorem), so that we have

J(L)=(T=0) (T =2) (T = 2) (T =2,)=0. (3-74)
Equation (3-74) may be regarded as the converse of the result (a).

The polynomial equation of lowest degree satisfied by a symbol 7 is
called the minimum equation. Since every eigenvalue must be a root of the
minimum equation (by (2)) and every root of the characteristic equation
is an eigenvalue, the minimum equation can only differ from the character-
istic equation if the latter has repeated roots.

(@) To find an eigensymbol of T' corresponding to one of its eigenvalues,
say A, we proceed as follows. Let m (T') =0 be the minimum equation, and
let g (T)=m (T)/(T —A,). Since (T —A,) is a factor of m (T'), g (T is a poly-
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nomial in 7'; it cannot vanish, because g(7')=0 would be a polynomial
equation of degree lower than the minimum equation. Let ¢=g(7).x,
where yx is any symbol. Then

(T=2)é=(T-X1)g(T).x=m(T).x=0.
Hence T'¢ =), ¢; so that ¢ is the required eigensymbol.

(¢) Mutually commuting matrices 8, T, U, ... have a common eigen-
symbol, and in particular a common eigenvector.

We form polynomials g, (S), g»(T'), g5(U) for 8, T', U as in (d), and take
¢=9,(8)g2(T) g3 (U) x. Since g, (8), g5(T), g3(U) commute, it follows as
in (d) that ¢ is an eigensymbol of S and 7' and U. Also g, (8), g2 (7), g5 (U)
are matrices, and their product is a matrix; hence if y is a vector, ¢ will be
a vector.

(f) If X and Y have a common eigensymbol ¢, we have (XY — Y X) =0,
s0 that XY — Y X is either singular or zero.

(9) If E, and E, commute, and ¢ is an eigensymbol of a£, +VE,, where
a+#b? then ¢ is an eigensymbol of £, and K, .
For if (aE,+bE,)) ¢=as,
we have, on multiplying by aE,—bE,,
(b*—a®) p=a(aFl, —bE,)$,
so that ¢ is also an eigensymbol of aE, — bE,. Hence ¢ is an eigensymbol of
(@B, +bE,) + (aE,—bE,),ie.of K, and E,.
(k) If E,, E,, E, mutually commute, and ¢ is an eigensymbol of
«E,+bE, +cE,,
where a?# b2 # c2, then ¢ is an eigensymbol of E,, K, and E,.
By (2-36) and (2-343) E,= +iE E,. Hence, if ¢’ = + ic, the datum is
(@B, +bE,+c'E, E,—a)$=0.
We obtain, on multiplication by E,, E,, £, E,,
(—eE,—c'E,+bE E,—a)$=0,
(-¢'E,—ak,+aE,E,—b)$=0,
(—bE,—aE,—oE,E,+c')$=0.
Hence the determinant
a b ¢ —oa |=0.

- —a a -b

-b —-a —-a ¢
This gives the possible eigenvalues «. Then, by eliminating E, and K B,
from three of the equations, we obtain a result of the form (jE,+k)¢=0.
Hence if j # 0, ¢ is an eigensymbol of E,,.
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The singular case, when j =0 for every combination of three equations,
occurs when the four minors of the fourth column of the above determinant
all vanish. It is easily found that this condition requires that two of the
quantities a2, b%, —c’2 shall be equal. This is excluded by the enunciation

(*) If X, Y, Z are commuting symbols with eigenvalues z;, y;, 2
(t=1, 2, 3, ...), the eigenvalues of any rational function f(X, Y, Z) are
included among the quantities f (x;, y;, 2).1

We can write

f(X’ Y’ Z)"f(xis Yi» zk)={f(X’ Y: Z)_f(xiy Y: Z)}
+{f(xt: Y: Z)'—f(xi: Yi> Z)}+{f(xu yj’ Z) —f(x'is yjs zk)}
= Ay (X —2) + By (Y — 9,) + Ciyp. (Z — %), (3-75)

since the first bracket vanishes when X =2;, the second when Y =y;, the
third when Z=z,. Now form the product
I;Ik{f(X: Y: Z) —f(xir Y zk)}

%7,

for all combinations of values of 4, j, k. By substituting (3-75) in it, we
express it as the sum of a number of terms containing products

(X =2, (X = 2y) oo (Y =) (Y —ya)¥ oo (Z—2))° (Z = 25)" ...

Every term will contain a complete set of eigenvalues of at least one of the
symbols X, Y, Z. For, if not, let there be a term which does not contain the
factors (X —x;), (Y —¥,), (Z—2,). But one of the factors is

Almn (X _xl) + Blmn (Y - ym) + Ulmn (Z - zn)’

so that either (X — ;) or (Y —y,,) or (Z —z,) must appear in every term.

The minimum equation for X is m (X)=I1, (X — ;) =0. Since every term
contains m (X) or m (Y) or m (Z), every term vanishes; and we have

‘ {Ik{f(X: Y’ Z) _f(xi: Yi» zk)}':O' (3'76)

This is a polynomial equation satisfied by the symbol f(X, Y, Z), and its
roots f(%;, ¥;, 2;) accordingly include all possible eigenvalues of the symbol.
Not every root will be an eigenvalue; for example, if X, Y, Z are fourfold
matrices, f (X, Y, Z) will be a fourfold matrix, so that not more than 4 of the
64 roots of (3:76) can be eigenvalues.

Of the above results (a), (b), (d), (¢), (f), (2) apply to all symbols which
satisfy a polynomial equation. A common example of & symbol which does
not satisfy any polynomial equation is 9/0x.

+ Frobenius’s theorem. It holds for any number of commuting symbols; we here take
three as a sufficient illustration.
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3-8. Pauli Matrices.
A notation for the E-symbols based upon the conjugate triads (2:37) is
sometimes useful.t Denote the symbols E,,, E,,, E,,; E,, By, E,,, which
form conjugate triads, by
4,, 4,, Ag; B, B,, B;.
Then the sixteen E, can be written as
A,, B,,i4,B,,i (o,7=1,2,3). (3-81)

agT?
Each A4 is the product of the other two 4’s, and each B is the product of
the other two B’s. The rules of commutation are: an A anticommutes with
an A, and a B with a B; an 4 commutes with a B.

There is one pair of conjugate triads in which all six matrices are real, viz.
Ey, By, Eyy; Eys, —Es, By, (3-82)

E,, E; being the real matrices of the pentad. The other ten matrices of the set
are imaginary. With this identification, the real or imaginary character of
the matrices in (3-81) is explicitly indicated by the absence or presence of i.

This method of constructing a complete set can be exhibited in another
way. We apply the treatment of §2:2 to two symbols instead of four. Let
4,, 4, be any two symbols which satisfy

Ar=-1, A,4,=-4,4,. (3-83)
Then, if A;3=A4,4,, A; is an additional symbol satisfying (3-83). The
symbols 4y, 4y, 4gy 0 (3-84)

form a ‘““minor complete set’. Calling any linear function of them an 4-
number, the operations of addition, subtraction and multiplication applied
to A-numbers always yield 4-numbers.

A minor complete set can be represented by twofold matrices. Let

L=+ 0, =0 1, {3=0 -1
0 -1 1 0 1 0’
These satisfy Lli=-1, L0,=0=-01,, (3-86)
where p, v, Aare in cyclic order. Thus {;, {,, {5, ¢ is a particular representation
of 4,, Ay, Ag, i. The matrices (3-85) are called Pauli matrices.}

We can show, in the same way as for the E-symbols, that with this
identification every 4-number is represented by a twofold matrix and every
twofold matrix can be expressed as an A-number. We find also a transforma-
tion theory for minor complete sets analogous to § 2:7, viz.

t. =P, P,
where P=a(=1+8'l+ 8L+ 06'Gs)-

t This was pointed out by G. Lemasitre.
1 Most writers employ the matrices i, whose squares are +1.

(3-85)
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In Case (b), in which the {,’ are new symbols commuting with the Ly we
have « =}, so that the transformation operator is

P=Pl=4 (=145 + 50"+ 4). (3-87)
To reproduce the sixteen &, we require two minor complete sets 4 and B.
These may be represented by two sets of Pauli matrices Lus 8, provided
that the products {,6, are taken as outer products. The outer product of
two twofold matrices is a fourfold matrix. We are thus led back to the
ordinary representation of the E-symbols by fourfold matrices.

3:9. Left-handed Frames.

The coefficients £, of an E-number are in general complex algebraic numbers,
say 7,+10,. For i we have a choice of two algebraic square roots of —1,
which we shall call 4, i,. We may regard the symbols (1,%) as constituting
an algebraic frame; we have then to distinguish two possible algebraic
frames (1,1,), (1,1,) either of which can be combined with a given symbolic
frame E,.

We have hitherto used ,q and ¢ indiscriminately; but it is now desirable
to define the structure of an orthogonal symbolic frame unambiguously by
eliminating ¢ in the fundamental equations. We therefore replace (2-22)
and (2343) by g ¥ — B, B,K,EK,, B, B, =E4%,, (3-91)
where u, v, 0, 7, A, p is an even permutation of 0, 1, 2, 3, 4, 5.

An E-number 7'=X (1, +1i0,) E, will involve an algebraic square root of
— 1 denoted by E,; which oceurs in the symbolic frame, and also an algebraic
square root of — 1 denoted by ¢ which occurs in the coeflicients. The complete
reference frame for E-numbers thus consists of

(2) A symbolic frame E,,

(b) An algebraic frame (1,4) for the coefficients.

E,gand i may or may not be the same root of — 1. Absolutely it is meaningless
to inquire whether they are the same root. But if we (arbitrarily) regard
them as the same in one complete reference frame, we can define other
complete reference frames in which they are opposite roots.

A complete reference frame in which Eyg=4 will be called right-handed,
and a frame in which E)g= — i will be called left-handed.

Since E\q is invariant for tensor transformations, there is no transforma-
tion of the type F, =qE,q’ between right- and left-handed frames.t Their
relation is like that of right- and left-handed systems of rectangular co-
ordinates, which cannot be changed into one another by rotation.

We usually treat the algebraic frame as unalterable so that a right-
handed frame £, and a left-handed frame F,, are distinguished by Fig= — Ey,.

T The existence of two kinds of complete sets not transformable into one another by
relativity transformation was, I think, first recognised by S. R. Milner.
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The relation of the other matrices can have various forms; we give the three
most important. If the frames are constructed from the same tetrad

we have by (3-91) Ey, By, By, By=F,, By, By, F,,

Fig, Fy, Fig, Fog, Fyg, Fog=—Erg, —E5, —Eyy, — By, — By, — By,
(3-92)
the other ten matrices being the same. Similarly if they have the tetrad
E,;, Ey, By, B, in common,

Fg, Flv F,, By, K, Fy= —~Eyg, —E,, —E,, — By, — E,, — E;, (3-93)
the other ten matrices being the same. Another form, obtained by giving
alternative signs to ¢ in (3-81) is

F;-=Era 11‘1.= _'Ei: (3-94)
where B, denotes the real matrices Eyy, Fy,, By, E,, By, E,5, and E; the
imaginary matrices. In this last case we change from a right- to a left-
handed set by writing —3 for 7 in the elements of the matrices.

We shall find later that the distinction between positive and negative
electric charges corresponds to the distinction between right- and left-

handed frames; so that a positive charge cannot be changed into a negative
charge by a relativity transformation of frame.



CHAPTER IV

SPACE VECTORS

4:'1. Rotations.
When an exponential contains non-algebraic symbols, it is understood to be
defined by the exponential series. Thus

Pl =1+ E,0+1E,20°+3E,20°+ 4 E, 0 +...
=(1-36%+ 404 —...)+ E, (0 - 36 +...),
since £,?= —1. Hence
eFul=cos 0+ B, sin 6. (4-11)

In fact, so long as no opportunity for exhibiting non-commutative pro-
perties arises, /, is indistinguishable from i. The reciprocal of eFu? ig e~ Euf,

The ordinary factorisation of an exponential e*+#=¢*.¢f holds only so
long as « and 8 commute. For example,

elr0+Exd — o1 oFund  oF\O+Erd £ o0 oEr¢, (4-115)
By (4-11)
eFu®E, = (cos 6+ E, sinf) E,

=E,(cos 0+ E,sin0) if E,, E, commute

=E,(cosf—E, sin6) if E,, E, anticommute.
Hence eEu’E,=E,e”l  if B,, E, commute |

=E,e "¢ if E,, B, anticommute| "

We now consider the relativity transformations of the E-numbers

describing a physical system. By (2-94)the change ¢, —~£,’ of the coefficients,
due to a rotation of the physical system relative to a fixed frame E,, is

(412)

given by =t/ E,=q(St,E,)q.
Let q= e‘}Eﬂo, q' = e—*Euo,
which satisfies g¢’ = 1. Then
3t B, =il (T, ) e 4End (4:13)
=21, B, +Zgt, E, e b, (4-14)

by (4-12), where X, denotes summation of the eight terms which commute
with E,,, and Zg summation of the eight terms which anticommute. As an
example of terms anticommuting with E,, and therefore included in Zg,
we take t, E, +t, E,. We have
(ty By + ty By) e F130 = (8, B, +t, Ey) cos 0 — (¢, B, + i, Ey) B,y 5in 0
=(t, By +tyEy) cos 0 — (—t, Ey+t, Ey)sin 0
= (¢, cos @ —ty8in 0) K, + (¢, 8in 0 + ¢, cos 6) K.
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By §2-4 (b) we may equate coefficients of the same matrix on both sides of
(4-14). Henoe ¢, =t cos0—t,8in0, &, =t 8inb+1¢;c080. (4-15)
That is to say, the relativity transformation g = e}®1f rotates (¢, , ¢,) through
an angle 6.

Examining the other terms in Xz we find that three other pairs of com-
ponents are rotated in the same way, viz. t,5, tag; 814, bag; b5 L5 - The remaining
components are unchanged.

Considering the more general relativity transformation g=et#sf, and
taking p=1, 2, ... 15, we obtain 15 independent rotations of this type, each
rotating four pairs of components. We may, if we like, add the K4 rotation,
viz. g=e}f, ¢’ =40, but this does not alter 7.

Two terms which mutually rotate necessarily anticommute with each
other as well as with the transformation matrix. We can always find a
transformation matrix which will rotate two anticommuting terms E,,,
E,,, viz. their product E,;. There is no corresponding mutual rotation of
two commuting terms. Suppose, for example, that we try to rotate £, ¢, and
Eyytyy. Since Eyy= —iE;s E,, we shall require the transformation ¢q= et¥al;
but £, and E,; commute with E,5, and therefore come under X, . Accordingly
t,, ts3 are unchanged by the transformation.

Pairs of components which can rotate with one another will be called
perpendicular; pairs which cannot rotate will be called antiperpendicular.
We have the rule:

Matrices commute: components antiperpendicular;

Matrices anticommute: components perpendicular.

The term orthogonal will be understood to include antiperpendicularity as
well as perpendicularity.

If the components ¢, are represented as coordinates in a space of 16
dimensions, the space contains certain planes in which rotation is possible
and certain planes in which it is forbidden. Actually the 120 coordinate
planes consist of 60 planes of rotation and 60 forbidden planes. More
precisely we should say that rotation in a forbidden plane is a non-relativistic
change; although depicted graphically as a rotation, it is an intrinsic
deformation of the physical system described by £,.

Rotation in a forbidden plane will be called an antiperpendicular rotation.
It is produced by the (non-relativistic) transformation

1" =qTq, (4-16)
or %tE,=q(Zt,E)q.
Taking q = eEs® as before, we have instead of (4-14)

2t B,=3,t,E, e+ 34t B,

abufp
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Hence pairs of terms which are not rotated by the relativity rotation are
rotated by the antiperpendicular rotation, and vice versa. As an example of
terms commuting with E,; and therefore included in Z,, we take
(ta By + tys Bys) €513° = (b3 By + 845 By5) €08 0 + (6 By + ty5 By) By sin 0
= (t3 B3+ ty5 Ey5) cos 0 + (itg Eg5 + 12,5 H3) sin 6
= (tyc08 0 + it 5 8in 0) By — i ( —t38in 0 + 48,5 cos 0) K.
Hence 1y’ =t3co8 0+ it 8in b, ity = —ty8in 0+ it cos 6. (4-17)
The other pairs rotated by the same transformation are
by, tgs; b5, tlag;  Byg, ig.
If alternatively we treat (4-16) as a transformation of the frame, so that
T"=%t, E,’, where E,'=qE,q, (4-18)

the new frame E,’ does not satisfy the conditions (2-23) for a complete
orthogonal set. Its structure is intrinsically different from that of the
standard frame E,; and the physical structure built by ¢, in such a frame is
therefore not equivalent to the structure built by the same ¢, in an orthogonal
frame. Itis tobe noticed that this argument that antiperpendicular rotations
are non-relativistic changes, does not introduce the question whether (4:16)
is a tensor transformation. We shall see later (Chapter viI) that in some cases
(4-16) is a rather simple tensor transformation, though it is not that of a
mixed tensor. I think that confusion of thought has often been caused by
failure to recognise that, although tensor calculus is an almost indispensable
tool in relativity theory, it does not in itself imply any relativistic hypo-
thesis.

4-2. Alternative Treatment.

The rotations of the components ¢, can also be found directly from (3:-35)
or (3-37). Consider first a factorisable matrix J =¢ix*=3j,E,. By (1-461)
and (1-462) the relativity transformation g = e?%ufu gives

P = ebEL0, g, x*= x*e-—he,,a,‘.
Hence, by (3-37),
3= =¥ B = — bx*e HbuE, ebmibuy,
If E,, E, anticommute, this becomes, by (4:12),
3= = 1x*E,eFufu = — }x* (B, cos 0+ E,sin 0) §,
where E,=E,E,. Hence, by (3-37),
Jv' =J,co80+j,8in6. (4-21)
If E,, E, commute, the result is j,' =j,. The components of a general matrix

T are transformed according to the same formula, because the general
matrix can be expressed as the sum of a number of factorisable matrices.
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It is tempting to combine these elementary rotations into a ‘“‘general
rotation” g=e#=Fufu; but we have seen in (4-115) that non-commuting
exponentials cannot be compounded in this way. This prohibition merely
reflects the non-commutability of rotations in ordinary Euclidean geometry,
and is not a peculiarity of the ¢-space. The objection, however, does not
apply to a combination of infinitesimal rotations. The most general in-
finitesimal rotation, corresponding to a general infinitesimal matrix d0, is

q= elde eiw“dl),,, (4-22)

the squares and products of df, being neglected, so that the question of non-
commutation does not arise. Equivalently (4-22) may be written
g=1+1d0=1+42E df,. (4-23)

When the ¢, are represented as coordinates in a 16-dimensional space,
each elementary relativity rotation ¢ =e!®s% appears as a rotation through
an angle §, occurring simultaneously in four different planes. The 15 values
of u (excluding p=16) accordingly give 60 planes of rotation; and there
remain 60 forbidden planes. It is evident that the geometry of this 16-space
is different from that of any type of space ordinarily studied. The novel
features are (1) the occurrence of antiperpendicular pairs of axes, and (2)
the locking together of four rotations. We shall now consider how to repre-
sent the components ¢, in a more familiar type of space.

4:3. Five-dimensional Euclidean Space.

A pentad provides five mutually perpendicular components ¢,, ¢, &5, ¢, t;.
Any pair of these can be rotated. Moreover, the rotation matrix £, com-
mutes with By, E,, E;, so that the mutual rotation of ¢, and ¢, leaves t3, ¢,, t;
unaltered. It is therefore a simple Euclidean rotation so far as these five
components are concerned.

If then we represent (¢,, £3, £3, #4, {5) a8 coordinates (or as components of a
vector) in five-dimensional space, this space has the ordinary relativistic
properties of Euclidean space, namely that simple rotation in any of the
ten coordinate planes is a relativistic transformation. Accordingly the
intrinsic properties of a physical system are not affected by changing its
orientation in this space.

Thus by limiting ourselves to a sub-space of five dimensions we encounter
neither of the complications of the geometry of 16-space. The domain of
(1, 85, 3, U4, t5) has the properties which we attribute to ordinary space; and
(leaving aside the fifth dimension for the present) we may identify physical
space-time with a continuum constructed in this way.

This provides a linkage between wave tensors and space tensors (§ 1-2).
A space vector 18 the pentadic part of a mized wave tensor. Ordinarily we regard
the components of a space vector as an array (t,, t,, {5, #;, {;), whereas in &
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wave tensor they are strung together with symbolic coefficients as a linear
expressiont, E, +t, Ey + t; E; + t, E, + t, Ey; but thelatter mode of representing
space vectors has long been recognised as permissible, e.g. in quaternion
notation, so that the difference of form need not be stressed.

This is not a hypothetical identification. In §1-2 we left the basic wave
vector undefined, and we are therefore free to define it at this stage. We
now define the relation of wave tensors to the ordinary space vectors of
physics to be such as is expressed by this identification. Henceforth our
calculus embraces both wave tensors and space tensors.

The question remains, What is the significance of the eleven remaining
components of the wave tensor? When the 5-vector undergoes a relativity
rotation, e.g. in the plane ¢,¢,, rotations also occur between i3, t53; ¢14, 545
t15 13- The ordinary tensor calculus provides for these locked transformations ;
a transformation consequent on a transformation of the basal space vector is
made automatic by assigning the appropriate space tensor character to the
quantities concerned in it. We shall prove in § 4-5 that the following is the
required specification:

(@) ty, %5, t3, ¢y, L5 is a space vector,

(b) ti9s ti3s -+ tg5 I8 & 10-vector or antisymmetrical space tensor of the
second rank (analogous to a 6-vector in four dimensions),

(¢) t.6is an invariant.

The statement that (@) is a vector and (b) an antisymmetrical tensor of the
second rank secures that the transformations of (b) are locked to those of
(@) in such a way that the rotations of pairs of terms occur in groups of four
as required.

We shall call the group of space tensors (a), (b), (c) a complete space vector,
or (if no ambiguity is likely to arise) simply a space vector. We have therefore
the simple relation

Mixed wave tensor = Complete space vector. (4-31)

In dealing with space vectors we recognise only ten relativity rotations,
viz. the ten rotations of five-dimensional space. The wave tensor had 15
relativity rotations (or 16, if we count the algebraic rotation). The five
extra rotations intermingle the two space tensors (@) and (b); for example,
the E, rotation rotates the component ¢, of (¢) with the component ¢,, of (b).
Ordinarily () and (b) will be recognised in physics under different names, e.g.
velocity and spin, and a transformation which does not keep them distinct
could only be pictured at the cost of abandoning the usual representation
in space and time. We rather miss the point of the interpretation of mixed
wave tensors as space vectors, if we go on to attribute to the space vectors
transformation properties outside those which the name ordinarily suggests.
There is no advantage in introducing space vectors so generalised that we
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can no longer ‘“see’ them in space; for if we are not going to use the space
picture, we have to fall back on their analytical description as mixed wave
tensors, and it is more appropriate to refer to them by that name. We may
therefore agree that the name space vector implies that only the ordinary
relativity rotations of the space are under consideration; and that if it is
desired to include the transformations which transcend space-time repre-
sentation the proper designation is wave tensor.

This question of nomenclature arises because in §7-6 we shall define an
important entity which behaves as a mixed wave tensor for the ten rotations
of 5-space, but not for the other rotations. Thus it may be properly described
as a space vector, but not as a mixed wave tensor. Except in this connection
it is not necessary to emphasise the distinction, and I shall generally use
the two names as equivalent.

4-4. Four-dimensional Spherical Space.

We have now to consider why the actual world is four-dimensional, although
the analytical theory (which we have reason to think is appropriate to the
physical world) seems to provide for five dimensions. The answer is not
difficult to find. Space-time is four-dimensional, but it is not flat (Euclidean);
and if we restrict ourselves to Euclidean geometry, we require at least one
more dimension to represent its curvature.

Our actual space-time with its irregular curvature, due to local gravi-
tational fields, requires a ten-dimensional Euclidean space for its repre-
sentation; but we do not arrive at this complexity until we provide for a
more varied content of the universe than can be represented by a simple
wave tensor. Any problem which is mathematically simple is necessarily
highly idealised; and the simple wave tensor with which we commence our
study can carry us only a little way towards actuality. We have found
that it is capable of rotation, without intrinsic change, in all planes in
five dimensions. This leads immediately to the conception of an entity
distributed over a continuum which is a hypersphere (four-dimensional
manifold) in a Euclidean space of five dimensions. We must start with this
simplified space-time, and watch the more complex characteristics of actual
space-time grow out of it as the theory develops.

We shall first show that it is the hypersphere (and not the five-dimen-
sional space in which it is represented) which constitutes the physical
continnum. This is because the hypersphere is a locus of equivalent
points, whereas the points in five-dimensions are not generally “equivalent”
points.

Let the coordinates of a point P be (¢, , ¢5, 5, ;, £5). Any of the ten rotations
in five dimensions will (if it displaces P) carry P to a new position P’ on

the same hvneranhere about. the origin. Then the nointa P P’ ara eon-
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structed according to the same specification in different but equivalent
frames, and are therefore equivalent points (§ 2-9). None of the relativity
transformations provides any connection between points which are not on the
same hypersphere. If we consider a point P” such that PP" is normal to the
hypersphere, P and P” are not equivalent points. The transformation
(0, 0, 0, 0, £;) > (0, 0, 0, 0, #;") is not a relativity transformation; it is in fact
an antiperpendicular rotation with matrix K,q.

Thus displacement normal to the hypersphere involves, either a different
construction, or the same construction in a frame which differs intrinsically
from the original frame. Taking the latter view, the difference between the
two frames is evidently a difference of scale-constant. Our five-dimensional
picture accordingly represents change of scale-constant or gauge by dis-
placement in a fifth coordinate, normal to the four ordinary coordinates
used to represent position. A similar graphical representation of change of
gauge is used in “Projective Relativity ™.

1t is the essence of the elementary conception of space and time that all
points of it are equivalent. A particle is not intrinsically different because it
is at a different point of space or because it is contemplated at a different
time. lt is true that in later developments regions of space and time are
distinguished from one another by varying curvature; so that the space-time
background is no longer a *‘blank sheet”’. But we have to trace the origin
of these distinctions, and must begin with the blank sheet. This is provided
by the hyperspherical continuum of equivalent points; the curvature is
uniform, and every part of the continuum is precisely similar to every other
part, as the conception of “equivalence” implies.

Thus although the transformation theory introduces the conception of
five dimensions, it is clear from the start that there is an absolute distinction
between the displacements lying in the four-dimensional hypersphere and
displacements in the fifth dimension normal to the hypersphere. Whereas
the former changes of a system are of the type which we conceive as dis-
placement in physical space and time, the latter are only ¢ displacements”’
in the sense in which we regard any change of quality of a system (scale,
temperature, entropy, etc.) as a displacement of the representative point
in a graph of that quality.

Let us now confine attention to a region of the hypersphere small enough
to be treated as flat, and let ¢; be the coordinate normal to this region, the
coordinates in space-time being (¢, , ¢3, {5, t;). We now exclude the rotations
Eis, Ey5, Ey5, By, because they would carry us away from the small region
considered and mix the scale-coordinate ¢; with the coordinates recognised
in our ordinary outlook. There remain the relativity transformations
corresponding to the matrices

By, By, By, By, By, Ey. (4-41)
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These constitute the transformations admitted in special relativity theory,

viz. three rotations in space and three Lorentz transformations. We now

consider how the general mixed wave tensor will appear from this outlook

—the ordinary outlook on which current nomenclature is chiefly based.
The mixed wave tensor is found to break up into ’

(a) a vector ty, ¢y, I3, 1,

(b) another (adjoint) vector ¢y5, fy5, ¢35, t“,] (442
() & 6-vector tys, t3, big, bias taas bas

(d) two invariants ¢;, ¢,,. J

The proof that (a) and (b) undergo the same transformations for any of the
rotations (4-41), and are therefore ‘‘tensors of the same kind ", is obvious.
The proof that (c) is a 6-vector is given in § 4-5.

Thus in four dimensions the complete space vector is composed of two
vectors, a 6-vector, and two invariants. These remain distinet in any of the
six internal rotations of the 4-space—which transform the 4-space into
itself. Naturally the use of the four-dimensional picture presupposes that
we are not interested in the transformations which cannot be represented
in the 4-space; if we have occasion to refer to them we must revert to one
of the other modes of description.

If we are right in our belief that all physical phecnomena are analysable
into ultimate elements described by wave vectors and their combinations,
it follows that an ordinary space vector cannot occur alone; it is part of a
group of allied space tensors (4:42). The other members of the group may,
of course, have zero value, but that is not the same as being non-existent.
This is one of the ways in which the new outlook enriches the earlier theory.

4-5. Proof that (t,;, 1, L2, L, Laa, 134) iS @ 6-vector.

If Ly Yu (=1, 2, 3, 4) are ordinary space vectors X, Y, their vector product

consists of six quantities (z,¥, —,y,). Then any set of six quantities which

transform according to the same law as (z,¥,—%,y,,) is called a 6-vector.
In matrix form the vectors are

X =E\x, + Ey @, + Ey2y+ By,
Y =Eyy,+ Byys + Eyys + By,
Their matrix product X Y is found by direct multiplication (using £,*= — 1,
E.E,=~E,E,) to be XY= —(ay)+8, (4-51)
where (zy) is the scalar product, and
S=Ey3 (23Y3—23Ya) + Egy (T3y1— 21 Y3) + - + By (X394 —7,¥5). (4°52)

Apply a transformation g representing a rotation or Lorentz transforma-
tion in four dimensions. Then (xy) is invariant, and

XY =qXqqYq =qXY¢q'.
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Hence by (4-51) 8 =X'Y+(2y)=9XYq +(zy)

=g{XY +(vy)}q' =98¢ (4-53)

Let U=E23t23+E3]t31+.“ +E34t34. (4'54)
Then, since the constituents (a), (b), (¢), (d) of the complete space vector T

transform separately, we have g7/ _ qUq'. (4-55)

By (4-53) and (4:55) U and S obey the same transformation law for rotations
and Lorentz transformations in four dimensions. It follows that their
components ¢, and (z,y, —,y,) obey the same transformation law. Hence
by (1, v=1,2,3, 4) is a 6-vector.

We can show similarly that £, (u, v=1, 2, 3, 4, 5) is a 10-vector in 5-space.

Tt will be seen that the matrix product XY, used in the present calculus,
is not the same as the ordinary vector product X x Y, but is X x ¥ — (ay).
When two vectors are perpendicular their scalar product (zy) vanishes, and
the matrix product is then the vector product.

The product of two complete space vectors is a complete space vector.
For the product W= UV transforms according to the law

W' =UV'=qUq'qVq'=qUVq =qW¢q'. (4-56)

But, as we have seen above, the matrix product here employed is a type of
combination which has no exact counterpart in the ordinary theory of
vectors.

4:6. Volume Elements.
The expressions E,dz,, E,dx,, E,dxs, E,dz, are the wave tensor notation
for four space vectors (displacements) along the four rectangular axes in
space-time. Their product constitutes a volume element dV,,,. Writing

dr=dz,duydogday, gy, = B, By By E,dr=iEydr, (4-61)
by (2-22). Since the E’s anticommute, dV,,,,. is antisymmetrical in its four

suffixes as in the ordinary tensor calculus.f The factor iE; corresponds to
V' —g. We are restricted to rectangular coordinates (one of them time-like),
and therefore —g is always 1; but we deviate from the usual theory which
assumes that the radical indicates the algebraic square root. We take
instead a matrix square root ¢Ej.

Consequently, notwithstanding that we use rectangular coordinates, the
distinction between vectors and vector densities does not wholly disappear.
In the ordinary calculus we have, corresponding to a vector 4,, a vector
density 4,V —g. Here V' —g=iE;, so that corresponding to a vector

(Eyty + Eyty + Egty + Eyt,)
we have a vector density
o (Bygty + Bggty + Eysty + Eygty).
t Mathematical Theory of Relativity, § 49.
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Of the two adjoint vectors in (4-42) one represents a vector and the other a
vector density. We shall show later (§ 5-8) how it is possible to decide which
is which.

More generally we define the volume element contained by four space
vectors d'z, , d%,, d%,, d*,, which do not coincide with the axes, to be
the permanent

AVigsa=[ E,d'z,, E,d'z,, Esd'z;, E,dx, |. (4-62)
E,d%x,, E,d%,, Eyd*r;, E,d%x,
E d?z,, E,d’,, Ed’r;, E,d%%,
E d'%,, E,d'x,, FEyd'x;, E,d%,

A permanent is expanded like a determinant except that all the terms are
given positive sign. The factors are arranged in the order of the rows from
which they are taken; since the rows correspond to the four vectors, this is
the natural order of the factors when the vectors are multiplied in a given
order. The anticommutation of the four E’s provides an alternation of sign
which converts the permanent into a determinant; and (4-62) reduces to

AWVigay = B, By By B, dot (d%zg) = i By det (d°2g).

In our later developments three-dimensional vector densities are more
important than the foregoing four-dimensional densities. The volume-
element of three-dimensional space, contained by vectors E,dx,, E,dz,,
E,dzx, along the coordinate axes, is

dW,gs = E, E, Eydw=1E;dw, (4-63)
where dw =dz,dx,dx;.
If T is any space vector
where S=iTE,. (4-65)
Then § is the three-dimensional vector density which corresponds to the
vector 7'. We shall later meet with S in another connection, in which it is
called the strain vector associated with the space vector 7'.

By (4:65) we can find the componehnts s, of 8 in terms of the components
t,, of T'. The following is the complete scheme of relation:

8”, 831, 812, 84, 85, 8“= —tl’ —tz, —t3, _‘its, ""it‘, "'itle,
815 835 83, 815, 8255 8355 514> 824> 934> S16
= —taa’ —tsl’ —tl,ﬂ’ it14’ Iitzl’ it34’ —-itl5’ _itﬁs’ _it35’ —tlﬁ' (4.66)

The components of S associated with real matrices are given in the first line
and those with imaginary matrices in the second line. It will be seen that
the latter correspond to the 10-vector part of T'.
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4'7. Wave Functions.

Consider a wave vector  which is a function of a complete space vector 7'.
That is to say, to every one of a continuous set of space vectors 7' there
corresponds a wave vector which we denote by =1 (T'), or by f (£, ,ts, --- 1),
where ¢, , t,, ... are the components of 7'.

It is usual to distinguish certain of the variables ¢, as coordinates, the others
being parameters of the wave function f. Denoting the coordinates by Ty,
and the parameters collectively by a, the notation is changed to Y, =f, (2,)-
Thus the original wave function is treated as a continuous set of wave
functions ¢, distinguished by parameters a, each of which covers the domain
of coordinates z, .

In most practical applications the domain of coordinates is space-time;
and a wave function has the form ¢=f(x,, z,, 23, ,), or f(X), where
X =E,z,+ Eyx,+ Ey23+ E 2. The function then specifies a wave vector
field in space-time.

The function f is necessarily double-valued. To show this, let

p=f (2, x5, T3, )= F (1, 6,4, x,) (4-71)
Le a wave-vector field, r, 8, ¢ being polar coordinates. If we apply a tensor
transformation q=e*”u°‘ to the frame, we refer the vector field to a new
coordinate system. By (4-15) the effect of the transformation on the co-
ordinate system is that the point whose azimuth was ¢ in the old system
has an azimuth ¢+ « in the new system. The new coordinates are therefore

r'=r, 0'=0, ¢'=d+a, z,/=z,. (4:72)

The transformation of  is P = ety (4:73)

Let the vector field in the new coordinate system be

lﬁ’ =fl (xll’ le’ xa', x4l) = FI (rl’ 01, ¢I’x4l)

=F'(r,0,¢+a,z,). (4-74)
Then, by (473), F'(r,0,¢+a,z,)=edEucF (r, 0,4, x,). (4-75)
Now let a = 2. Since ef137= —1,
F'(r,0,¢+2m,2)=—F (r,0,¢,2,), (4-76)
or in rectangular coordinates
S (@1, Ty, T3, )= —f (%1, T3, 24, 2,). (477)

But, since the axes after rotation through 27 are the same as they were
originally, =f (2, 2,, %3, ,) and y=f" (2,, 2,, &3, z,) are both expressions
for the wave-vector field in the original coordinate system. Thus ¢ is a
double-valued function + f of rectangular coordinates.

Since this result is of vital importance, we must try to remove any
doubt as to its meaning. Let ¥ be a particular frame of rectangular
coordinates and time, and let P be a particular point in that frame.
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Suppose first that i is single-valued; so that, referred to the frame X and
at the point P, it has the value i), and no other; in particular % —,.
When we vary the frame or the point considered, i changes; but if after
such variation we return to the frame X and the point P, i must return
to y,. For example, if we rotate the frame in any plane in space, after
a rotation 27 we come back to the frame X again, so that ¢ is again i,.
But if ¢ is a wave vector, the law of transformation of wave vectors
requires that, when the space-time axes are rotated through 2, ¢ shall
change continuously from ¢, to —,. Therefore the single-valued ¢ which
we have been considering cannot satisfy the transformation law of a
wave vector.

The double-valuedness of f becomes of practical importance when (as
usual) the vector field is defined over a region which includes all azimuths ¢.
For then, on following the point P round a circuit back to the initial
azimuth, we may find ourselves on the opposite branch of f from that on
which we started. The return may be either to the opposite branch or the
same branch ; either type of connection satisfies the condition of continuity
of ¢ in the region over which it is defined.

We note accordingly (for future reference) that a symbol ¢, (a =1, 2, 3, 4),
defined to be a single-valued function of rectangular coordinates over a
domain which includes or encircles the origin, cannot be a wave vector. By
‘‘encircles the origin’’ we mean that a circle having the origin as centre
can be drawn in it.



CHAPTER V
THE SIMPLE WAVE EQUATION

5'1. Invariant Equations.

In order that the laws of physics may be independent of the choice of frame
(among the equivalent orthogonal frames) they must be expressible as
tensor equations. In wave-tensor calculus, the simplest non-trivial tensor
equation is of the form Hy=0, (5:11)

where H is a mixed wave tensor and ¢ a covariant wave vector. Then (5:11)
is a vector equation H 8 Yp=0 equivalent to four algebraic equations.

It may be anticipated that the simplest, and presumably the most
fundamental, laws of physics will have this form. Alternatively, regarding
(5-11) as a definition rather than a law, it is an appropriate means of intro-
ducing a wave vector ¢ and relating it to the ordinary space vectors of
physics. For we have seen (§4-4) that a mixed wave tensor H is constituted
of space tensors which will presumably be recognised as such in our practical
observations; but there is no such “projection” of ¢ into a space-time
representation, and its connection with the ordinary space tensors of physics
can only be expressed indirectly by an equation such as (5:11).

It is appropriate to introduce simultaneously a contravariant wave
vector x*, satisfying X*H=0. (5:12)

We may expect that ¢ and x* will occur symmetrically in physical theory.

Thus far our argument has been that if ever nature condescends to
simplicity, equations of the types (5-11) and (5-12) will figure in her scheme.

Before the birth of wave mechanics the systematised part of physics was
wholly described by space vectors and tensors. Wave mechanics introduced
a new kind of entity ¢. It was introduced in the way here proposed by a
“wave equation” in which the coefficients were the ordinary space-tensor
quantities of physics. The original ¢ of Schrodinger did not satisfy the
relativity requirements of atomic physics; but in 1928 Dirac introduced a
¥ with four components, which satisfied an equation invariant for the six
relativity rotations of space-time, although the invariance was not of a kind
contemplated in the usual tensor calculus. Our anticipated fundamental
equation turns out to be a form of Dirac’s equation.t

T The form given by Dirac (Quantum Mechanics, 2nd ed., p. 255, equations (9) and (10))
is the equivalent strain vector equation, which we shall obtain in (7-73). Dirac further
postulates, as a “reality condition”, that the two wave vectors are conjugate complex
quantities. Our reality conditions are determined directly from relativity principles in
Chapter v1, and do not impose this restriction.
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The mixed wave tensor H used in Dirac’s equation is limited to five com-
ponents. One component has dropped out through special choice of axes,
permissible when as usual the region contemplated is small enough to be
treated as flat. Apart from this the truncation is significant, because the
general mixed wave tensor 7' cannot be reduced to Dirac’s special form H
by any choice of axes. We shall account for this limitation in § 5-4.

We shall derive Dirac’s equation according to the principles which we are
developing in § 5-4; but we shall first examine its elementary properties—
looking ahead to see the theory which we are about to meet.

Dirac’s equations are ~ Hy=0, x*H=0, (5-13)
where H=E,p,+Eypy+ E3ps+ Eypyg—m (5:14)

and E,, E,, E,, E, constitute a tetrad. We call H the hamiltonian.t Since
H is required to be a mixed wave tensor, its components form space tensors
in accordance with the specification in (4-42), namely (p;, Py, Pa, Py) 18 &
space vector and the quarterspur —m is an invariant.

Conversely if, following Dirac, we construct a hamiltonian H out of a
“ momentum vector”’ (P, Pa, Py, Ps) and aninvariant mass m by the formula
(5-14), H will be a mixed wave tensor; and therefore the wave equations
Hy=0, x*II =0 will be tensor equations which continue to be satisfied
when any of the six relativity transformations of space-time are applied.

Thus the invariance of Dirac’s equation for relativity transformations,
which was a novel kind of invariance from the point of view of ordinary
tensor calculus, is an elementary consequence of wave-tensor calculus.

5-2. Properties of Dirac’s Equation.

The equation Hi =0 shows that H has an eigenvalue 0, and hence that it is
singular (§ 3-7 (b)). It has a pseudo-reciprocal

H'=E\p,+ Eyps+ Eyps + Eypg+m. (5-21)
For, multiplying by (5:14),
HH' = ~p;*— p,®— ps® —pg* —m?. (6-22)

The product contains no non-algebraic terms, and therefore vanishes by
(2:66).

For a physically real momentum vector (p,, P2, P3, Pa)s P1s Pgs P are real
and p, is imaginary. Let Pa=iPo, (5-23)

+ In classical theory the hamiltonian is the expression for the energy (—ip,) in torms of
the momenta p,, Py, p; and coordinates. If, following the usual relativistio view, time is
treated on the same footing with the other coordinates, the hamiltonian is correspondingly
defined as the expression for the proper energy m in terms of p;, p;, p3s P, 8nd the co-
ordinates. This would make the hamiltonian strictly H +m, but we shall use the term without
regard to an additive constant.
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so that p, is the real time component, i.e. the energy or mass. The vanishing
of (5-22) gives m?=pe* —p1* - gt — ps®. (5-24)
This identifies + m with the proper energy (or proper mass) corresponding
to the momentum vector. Thus m must be real.

By (5:24) Po=(m2+py® + s+ pe)h. (5-251)
Usually p,, p,, ps are small compared with m, and we then have the
“classical” approximation for the energy

Do=m+ (P,* + ps®+ ps®)[2m. (5-252)

The general solution of the wave equations is found as follows. Let ¢, w*
be arbitrary four-valued quantities. Since HH' = H'H =0, we have

H(H'¢)=0, (w*H')H=0.
Thus Yy=H'¢, x*=ow*H’ (5-26)
are solutions of (5-13). Inserting row-and-column suffixes, these hecome

Yo=Hy' b1+ Hyy' $o+ Hyy' $3+ H,,' ¢, ]

’ ’ 4 ’ ) (5.27)
xd=o ' +wy By +wgHy '+ w Hy,' .

Since ¢, ¢3, d3, ¢, are arbitrary coefficients, the general value of ¢, is a
linear combination of four elementary solutions H,,’, H,,', H,', H,,', i.e. the
four rows of the matrix H’. Similarly the four columns of H’ are the elemen-
tary solutions for x,. Since H’ is singular, its determinant vanishes, and
therefore only three of the rows and three of the columns are linearly
independent. There are therefore not more than three independent solutions
in each case.

For example, use the matrix representation (3-61). The special form (5-21)
for H' gives

—iH'= py—im  p,+p, 0 Ps
Pr—Py —Ps—im  —py 0
0 =DPs Pe—im  pi—p,
Ds 0 P1+Py  —Pp—im. (5-28)

Any row gives a solution for ¢ and any column a solution for x*. Itis not
necessary to choose the solutions in a corresponding way.t For example,
we might take

p=(pg—im, p1+Pg; 0, Ps), Xx*=(0, —py, Py—im, P1+Do)
as the pair of wave vectors constituting a solution of the wave equation.

1 Our treatment here differs fundamentally from that of Dirac. See footnote, p. 62;
also § 8:6. .
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5:3. The Stream Vector.
Let ¢, x* be solutions of the equations H)=0, x*H =0; and let
px*=J=2j,E,. (5-31)
Multiply the wave equations by initial x*E,, and final E,,i, respectively;
we obtain x* (Eyp, — By s+ By Eyps + By By py — Eygm) =0,
x* (= Eyp, + Ey\py+ By Eyo s+ Ey By py— Ergm) §=0.
Hence, subtracting, 2y* (Byp, — Eypg) =0,
so that, by (3-37), JoP1—P1j2=0. (6-321)
Again, multiplying by initial x*E,; and final E,5i, and subtracting,
0=x* (Eys H— HEy5)

=2x* (Esp,) Y= —8j5p1, (5-322)
8o that j; = 0. Also multiplying by initial x*¥, and final 4, and adding,
0=x*(E,H+HE,) ¢
=2x*(—p,—Eym)y
= —8(ip1i1e—J1™m)- (5-323)

The results (5-321), (5-322), (5-323) give

Ji_Jda_Js_Ja_Js_Ys (533)
Pr P2 P3 Ps 0 m

The wave equation can therefore be written in the equivalent form
(Eyjy+ Eajo+ Eyja+ Eyja— Erejre) =0. (6-34)

We call (43, js, Js» Ja) the stream vector. The whole set of sixteen j,, is the
complete stream vector. We have here proved that the stream vector is equal
to the momentum vector except for a numerical factor. Multiplying the
complete stream vector by the same factor we obtain the complete momentum
vector.

We regard this correspondence of the stream vector and momentum vector
as a coalescence which occurs in the peculiarly simple system here studied.
In more general physical systems they are not so closely connected. Accord-
ing to the definition of the momentum vector usually adopted in quantum
theory and reached later in this book, the components P, are not necessarily
algebraic quantities; they may be matrices or general symbols. On the
other hand the components j, of the stream vector are necessarily algebraic
quantities.

The result (5-34) leads us to a new view of the wave equation. Consider
a physical system described by a pure (i.e. factorisable) wave tensor J, or
by the equivalent set of space tensors. We are not given the whole set of
space tensors, but only one of the space vectors (jjy, js Js, js) together with
the two invariants j5 (= 0) and j,4. We cannot therefore determine definitely
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the factors of J; but our data are sufficient to limit them to certain possi-
bilities, viz. they must be solutions of (5-34) and of the corresponding
equation for y*.

The wave equation is therefore an equation for determining the possible
factors of a wave tensor, which is only partly known.

At this point we must try to make clear a difference in our attitude towards
wave mechanics from that which appears to be usual among quantum
physicists. It will probably be agreed that wave mechanics is a method of
analysis, not a theory of phenomena. The ¢ waves have no objective exist-
ence; we invent them as required in solving our problems. In the present
treatment we have found that any space vector can be expressed as a wave
tensor. Ordinarily it is not a pure wave tensor; but it can be represented as
a sum of pure wave tensors, which are then resolved into their wave-vector
factors. If the space vector is a function of the coordinates, the wave-vector
factors become ‘““wave functions’. In this way wave functions appear in
connection with any characteristic of a system which is described by space
vectors. It is therefore ambiguous to speak of the wave functions of a
system; we should rather speak of the wave functions associated with some
specified tensor of the system. Reference to the wave function or the wave
equation of a system leaves us in the same state of conjecture as if reference
were madeto ‘“ the tensor of thehydrogenatom” or ““ the equation of the sun .

I am not cavilling at expressions, whose meaning is doubtless made plain
either by the context or by custom. My point is that when wave analysis is
our standard procedure—when the ordinary tensor calculus is replaced by
wave-tensor calculus—we shall introduce new wave functions as casually
as we introduce new tensors. The domain of physics treated in this book is
for the most part different from that which has occupied the attention of
writers on pure quantum theory. Sometimes our wave functions will
coincide with theirs; sometimes they will differ. We find it well to maintain
a certain amount of contact in order to utilise well-known results; but in
principle we do not bind ourselves to use the wave functions that the
quantum physicists have discussed. Remembering that the introduction of
wave functions is merely a factorisation, we must obviously retain freedom
to employ factorisation whenever it is useful.

The reader must therefore be prepared to find here a greater elasticity in
the definition and use of wave functions than he has been accustomed to.

5'4. The Wave Equation as an Identity.

If we represent E,, E,, E,, E,, Ej by the special pentad of matrices (3-27),
it is not difficult to prove by straightforward verification that

-5
“T (B,9)a (Bud)p— (Brgh)o (Brgh)p =0, (541)
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where ¢ is any four-valued quantity. Here, as usual, £, is the four-valued
quantity formed by chain multiplication, and (E,4), is one of its four
components, i.e. (B, ), = (E,).g¥g-

Any other pentad E,’ is obtained by a transformation E,'=gE,g-1. Let
Y’ =qi; then E,'Y’' =qE,, so that

(B )o (B )= (B, ) (9B, ),
=loa (Ey. Pa 2.8 (Ey. '/’)B J
Hence, multiplying (5-41) by ¢,,9,5, we have

B B~ Bl Bl =0 (54)

We can choose ¢’ arbitrarily; because (since g is not singular) the corre-
sponding y=¢~'¢ can be employed in (5-41).

Thus the identity (5-41), verified for a particular pentad, is true for any
pentad of matrices whatsoever.

Let x* be another arbitrary four-valued quantity. Multiply (5-41) by
initial x, (inner multiplication). We have by (3:37)

Xa (Ey‘/’)a = X*Ey.'/’ == 4jp,
where yx*=J =ZXj, E,. The result is therefore

%ju (B, $)g—jus (Ergh)p=0

or (Bygr+ Epjo+ Eyjy+ By jy+ Egjs— Ergjig) Y = 0. (6-43)

We can show similarly that
x* (Byji+ Eyja+ Eyja+ Eyjo+ Egjs— Eygj16) = 0. (5-44)

Except that the term in j; is included, these are the wave equations as given
in (5-34). They are here obtained as an identity satisfied by any two wave
vectors y, x* and their outer product J.

We see that Dirac was right in restricting his hamiltonian to the above
terms, instead of employing the sixteen terms of a complete space vector.
By omitting jg he restricts the equation to stream vectors which have zero
component normal to space-time; otherwise his equation is a perfectly
general one satisfied by the factors of any pure wave tensor. The hamiltonian
H is part of the complete stream vector J, except that the sign of j,4 is
reversed. It must not be supposed that the components of J (other than
Js) which do not appear in H are zero.

On the other hand Dirac’s postulate that ¢ and x* (or rather a quantity
¢* easily derived from x*) are conjugate complex quantities would restrict

£-2
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J to very special forms. The restriction has to do with certain special
applications, and is inappropriate in general theory.
Multiply (5-43) by initial x* and apply (3:37). We obtain

I It it +i + st~ =0. (6-45)
Again, multiply (5-43) by initial x*E; and apply (3-37). We obtain
Jr1s +Jades +Jadss +JIadas=0- (6-46)

These, and the corresponding equations obtained by substituting other
pentads, are relations satisfied identically by the components of a pure
wave tensor. There are, of course, no such relations between the components
of a general wave tensor 7' which is not stated to be factorisable.

p=5

Let P= X jay.an, (=0, 1, 2, 3, 4, 5; p#a). (5-47)
p=0

For fixed a, the matrices K,, form a pentad. We therefore call P, a pentadic

part of J. There are six pentadic parts which overlap, so that
12, Py+qsd =J. (5-48)

The pentad which we have been using corresponds to « =0, and the wave
equation (5-43) can be written

(Py—1j16) ¥=0.
But since the proof holds for any pentad, we have more generally
(Pe—1j16) =0 (5-491)
or equivalently Py=(qsJ)y (5-492)

for all six values of «.

From the present standpoint the use of the wave equation is to determine
the factors of a pure wave tensor J. It seems to be generally true that in
physics we determine a factor i, not because its value is of particular im-
portance to us, but because that happens to be the most convenient way of
ascertaining that a factor exists, i.e. that J is pure. For example, the wave
function ¢ of a hydrogen atom is investigated primarily because the mere
existence of such a function imposes certain conditions on the hamiltonian
(which is part of J), and these conditions determine the energy levels of the
atom. It would probably be difficult to solve the more complex problems
of quantum theory without evaluating i; but since the observables of
physics are always space tensors and therefore derived from wave tensors
of the second (or higher) rank, the wave vector factors must ultimately be
recombined.

In the present case (which is perhaps too elementary to be typical) the
conditions for purity of J are expressed directly by the equations (5-45)

and (5:48) and there is na need tn evalnate tha fantnre
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5'5. Standard Forms of Pure Wave Tensors.
Equation (5-492) asserts:

A factor of J is an eigensymbol of every pentadic part of J, and the eigenvalue
of a pentadic part is qs J. (5-51)

Consider an antitriad E,,, E,,, E,, (2-36). Each pentad contains one and
only one member of an antitriad. Hence, in the expression (&, + E,, + E),)m,
each term is a pentadic part and has eigenvalues + im. Accordingly the form

J=( iEpviEcri E4\p+E16)m (5-52)

will, if the signs are properly chosen, satisfy the condition (5-51) that the
eigenvalue of every pentadic part is equal to the quarterspur. It turns
out that four of the combinations of sign make J factorisable, and four
do not. For example, take,the + sign for the first two terms; then

by (5:462) Eub=ib, Bn=ij. (553)
Hence, if p, v, o, 7, A, p is an even permutation of 0, 1, 2, 3, 4, 5,

1By =E,, B =i},
so that the + sign must also be taken for the third term in order to satisfy
(5-492). It is then easy to verify that J is factorisable by working out the
factors in a particular matrix representation, or by testing it for idempotency

according to the theory given in the next section.
Accordingly our result is that
J=(E,,+ B, + E),+ Eyg)m (5-54)
is a pure matrix if p, v, 0, 7, A, p is an even permutation. Any two of the first
three terms can be given negative sign, since this is equivalent to reversing
the order of their suffixes and the permutation remains even.

Any non-degenerate pure wave tensor can be reduced to the standard
form (5-54) by a relativity transformation J' =gJq'. We first make a trans-
formation so that one of the components, say js, becomes zero. Then, by
(5-45), It i+t i =l Jis®+Jes® +ss® +ias® =Jre-

Since J is non-degenerate, j;4#0. Hence the vectors (j;, j5, j3, 7,) and
(J15> J25> Jss» Jas) have the same non-zero length, and by (5-46) they are at

right angles. We can therefore choose two of the axes in four dimensions to
coincide with them; we then have

h=lis=Je> J2=Js=Js1=J1s=Jss=Jas=J5=0. (6-551)
Applying (5-492) with =0, 5, 3, we now have
Evjip =119 Bosjas¥="15retfs (EarJn+ Esgjag+ By Jaa) ¥ =1j16%.
(5-552)
Thus y is an eigensymbol of the two commuting symbols E,, E,; and there-
fore of their product 1K, . It is therefore an eigensymbol of (Es, ja; + E3pJss);
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and the eigenvalue must be zero because (Ej,J,, + E3yjss) anticommutes
with E,,. Hence the third equation of (5-552) breaks up into

(Enjsi+ Bagjag) ¥ =0, Eyjssth=1j169,
8o that Jai= t s, Jaa= tJse-
Hence j, (E3, + 1E,5) $=0; or, multiplying by Ej,, j, (— 1+ 1E,5)=0. Now

i cannot be an eigensymbol of E,,, because it is an eigensymbol of E; which
anticommutes with F,,. Hence

Jn=0, Js=0.
Similarly we find j,; =0, j;3=0.

The pentad a=1 then gives (£,j; + £,5j12) ¥ =1j,4¢. Hence, by the first
equation of (5-552), j;3=0. All the components are now accounted for, and
J reduces to (£, 4 Eys+ gy + Fyq) j16, Which is of the required standard form.

To obtain a standard form for a degenerate pure wave tensor we proceed
as follows. Let J =yix* be a degenerate pure wave tensor (j,s=0), and let
Jw be a component which does not vanish. Then £, J is a pure wave tensor,
since it has factors £, and x*; and it isnon-degenerate since its quarterspur
i8 By (Byjw)= —ju- Hence E,J can be reduced to the form (5-54) by a
relativity transformation. We take therefore

Ew J = (E‘“, + EO‘T + EAP + Els) m.
E, cannot be EK,,, E,., E), or E\q, since J would then be non-degenerate;
but it can be any other E-symbol. Taking £, =E,,, we obtain

J=(Byy+ B, +iE, +iE;,)m. (5-56)

This is the standard form for a degenerate pure wave tensor.

5:6. Idempotency.

A symbol J is said to be idempotent if J2=J.

To normalise an E-number we multiply it by an algebraic factor so as to
make the quarterspur }. If it is represented as a matrix (so that a spur
exists) we normalise it by making the spur 1. It is, of course, impossible to
normalise a degenerate E-number.

We shall show that a necessary and sufficient condition for a non-
degenerate matrix to be pure is that it shall be idempotent when normalised.

(6-61)
Let J =yx* be a normalised matrix so that
spur J =y*)=1.
Then Jr=gy*x*=i.1.x*=J,

so that the condition is necessary. To prove that it is sufficient, let 7' be a

matrix satisfying =T, spurT=1. (5:62)
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Any matrix can be expressed as the sum of a number of vector products;
therefore let T= 'l’a Xa* + ‘l‘b Xb* + ‘pc Xc* + ... (5'63)

Here the suffixes a, b, ¢, ... distinguish different vectors, the row-and-column
suffixes being omitted as usual. We write 4, for the scalar product x,*y;,
so that the product ¢, x,*, x,* reduces to 4,4, x,*. Then

™-T= (Aaa"' 1) '/’aXa*"'Aab'anb* +Aba¢'bXa*+ e =0. (5:64)

Corresponding to the four suffixes of y this gives four linear equations satis-
fied by the vectors ¢, ¥, i, .... Using any one of these equations to give
the value of ¢, in terms of the other ¢’s, we can eliminate ¢, in (5-63) and
so reduce by one the number of vector products on the right-hand side of
(5-63). Repeating the process, we reduce the number of vector products one
by one.

The procedure fails if the coefficients of i, vanish in all four equations,

ie. if (Aua_ 1) Xa* + ‘4ab Xb* + Aac Xc* + e =0. (5'65)
But we can then use (5-65) to eliminate x,* in (5-63), and the number of
vector products is again reduced by one.

The reduction can be continued so long as there are any non-vanishing
coefficients in (5:64). When all the coefficients vanish so that

Aaa=Abb=A¢'c="'=l’ Anb=‘4ba="‘=0!
no further reduction is possible. We then have, by (5-63),

spur T' =spur i, x,* +spur i, x,* + spur g, x,* +...
=Ay+ App+ A+ ...
=14+1+14....
But spur 7'=1, so that there can be only one term on the right-hand side.
That is to say, T is the product of two vectors.

A pure matrix is necessarily singular. This follows from § 3-7 (b), since the
idempotent condition, J2—J =0, gives eigenvalues 0 and 1. A singular
matrix is not necessarily pure.

If the square of a matrix is — 1, the question sometimes arises whether it
has to fulfil any other condition in order that it may be a member of a com-
plete orthogonal set. The most commonly occurring combinations whose
squares are algebraic are triadic and pentadic expressions; these can serve
as individual members of a new complete set. But it has been pointed out
by D. E. Littlewood} that we can also form combinations of antiperpen-
dicular matrices whose squares are algebraic, and these cannot be members
of a complete set. We find by direct multiplication that the square of

%(Eyv'*'Ear—Ehp'i'Elc) (5-66)

t Journ. Lond. Math. Soc. 9, 41 (1934).
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is — 1. Of the eight possible combinations of sign in an antitetrad, four yield
factorisable matrices, as we have seen; the other four give matrices whose
squares are algebraic.

The quarterspur of (5-66) is }i, whereas the quarterspur of E, is 0 or 3.
Since the quarterspur is invariant for the transformation ¥, =¢E,q’, there
can be no such transformation connecting (5:66) and E,. Therefore (5-66)
cannot be a member of a complete set. We shall call an expression of the
form (5-66), or reducible to it by a relativity transformation, a compact
E-number.

I have not as yet found any physical application for compact £-numbers;
but perhaps others will be more successful. They surely must have an im-
portance of some kind, possibly in the theory of radiation or even in the
theory of the nucleus—subjects which we do not seriously attempt to treat
in this book.

5'7. Spectral Sets.
We suggested in § 5-4 that the wave vector y was investigated in physics, not
for its own sake, but because the existence of factors imposes certain in-
variant conditions on the stream vector and on the hamiltonian which forms
part of it. We may now go a step further, and say that the condition which it
is sought to impose is that of idempotency. Those familiar with the Group
Theory of wave mechanics will recall the fundamental part played by idem-
potent operators in selecting the ‘‘pure” states of a statistical ensemble.
Consider the wave tensors
Ja= —i'l‘ (Epv+EM+E)\p+E16)!
Jy= —ii(_Epv—Eaf'l'E)\p"l'Em):]_ (5-71)
Jc = _ii(—Epv'}-Eof_Eﬂp'i'Els)’J
Ja=—1i (EPV_EOT—‘E)\p+E16)'
We have found in (5-54) that these are pure. Since the quarterspur is
—}iE 4=}, they are normalised. Hence they are idempotent, as can he
verified by direct multiplication. We can also verify that their products are
zero. They accordingly satisfy
Jaz=Ja: Jan=01 Ja+‘]i>+Jc+Jd=l° (5'72)
A set of operators satisfying the conditions (5:72) is called a spectral set.
Here the set consists of four operators only. The more familiar examples of
spectral setsin physics include an infinite number of operators. For example,
let J, denote the operation of selecting light of wave length A from a source
of light represented by ¢; thus the light of wave length A existing in the
source is represented by Jyy. If we repeat the selective operation J) on
Jy¢, it makes no difference; hence Jy2=J). The symbol J.J) denotes the
operation of selecting wave length A" out of light already selected as being
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of wave length A; the result is obviously zero. Further, selecting every wave
length in turn and adding the results, we reproduce the original source of
light; hence X,J; is equal to the ‘“identical operator” 1. The selective
operators of spectral analysis therefore fulfil the equations (5-72), which
ensure that they are idempotent, non-overlapping and exhaustive.

As G. Temple has pointed outt it is equations of the form (5-72) which
directly embody the physical conception of a ‘“‘pure constituent”. The
mathematically convenient criterion of purity, namely factorisability of
the operator in matrix representation, should be regarded as derived from
(5+72) rather than vice versa.

This suggests a new approach to the theory of the representation of
phenomena by E-symbols. We can regard the matrices K, as introduced
by a spectral analysis of entities represented by algebraic numbers (in
particular, probability distributions or densities) into four pure constituents
given by (5-71). This point of view is developed in § 13-6.

5'8. The Complete Stream Vector of a Particle.

Consider a particle in spherical space-time. A classical particle is described
by two 4-vectors, namely a position vector and a velocity vector. In five-
dimensional representation the position vector is the radius of space-time
which passes through the particle; the velocity vector is at right angles to it
and lies in the four-dimensional hypersphere.

If we take axes such that the position vector is in the Ej direction and the
velocity vector is in the E, direction, the two vectors reduce to single com-
ponents j; and j,. Let us treat them as components of a single wave tensor.
There is, of course, no compulsion to combine them; there is no unique
definition of the wave tensor of a particle, any more than in ordinary rela-
tivity theory there is a unique definition of the tensor of a particle; and it
would be legitimate to investigate a tensor representing position only or
velocity only, if desired. But we shall try to find a tensor, called the complete
stream vector, which comprises both.

If the complete stream vector is pure, it must have two more com-
ponents besides j, and j;. We may take it to be

(Byy + Ego+ 1By +1E5) o, (5-81)
which is of the standard form (5-56) with x, v, o, 7=5, 4, 1, 0. The additional
terms define an axis in the three-dimensional space, which is in some way
characteristic of the particle. This axis, which in (5-81) is taken to be in the
E, direction, is called the spin axis.

The question now arises whether in ascribing a complete stream vector /
to the particle we should take (5:81) to be the actual vector J or the vector

f “The Physical Principles of the Quantum Theory”, Proc. Roy. Soc. A, 138, 479.
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density J.iE;. This is answered by the Uncertainty Principle, which asserts
that a particle cannot have exact position and exact velocity simultan-
eously. Thus our combination of a position vector and a velocity vector will
not apply to a discrete particle, but describes an element of its probability
distribution. We must therefore take (5:81) to be a vector density, so that

iJE = (E‘l + Eso + i.E4o + iE15) o, (5'82)
From this we obtain J=(By+ Eg+ Ey5+ Eyy) @, (5-83)

which is of the standard form (5-54) for a non-degenerate pure tensor.

The direction of the spin axis is shown by the term #;, , or equivalently by
the term E,; which gives the plane of the spin. The velocity vector, which by
our choice of axes is in the time direction, is represented by the term Eg;,
this being the matrix of the rotation which would displace the particle in
the time direction. Instead of a position vector, we have an invariant .
The “position” of the particle is therefore invariant for all relativity rota-
tions; this is only possible if we represent the particle as an entity uniformly
distributed throughout the hypersphere of space-time. This is in agreement
with the uncertainty principle; for we have ascribed an exact velocity
vector K4 to the particle, and therefore its position is entirely indeterminate.

The attempt to assign a combination of position vector and velocity
vector to a particle breaks down, as the uncertainty principle foretells. The
position vector Eg, in (5-82) defines, not the position of the particle, but the
position of an element of its probability distribution selected for con-
sideration.

We define an elementary particle to be an entity whose characteristics are
completely specified by a complete stream vector of the type (5-83), so that
it can be represented by simple wave vectors ¥, x*. It has exact momentum
but indeterminate position. This would perhaps more usually be called an
elementary state of an elementary particle; and it is contemplated that a
number of elementary states may be superposed—forming a wave packet
which has approximate position and momentum. It is to be remembered,
however, that the properties of observational significance are relations to
other elementary particles or combinations of particles, and not the primitive
relations to a symbolic frame summed up in (5:83). We must not be in too
great a hurry to identify our formulae with those employed in the practical
applications of quantum theory. )

By (4-65) the three-dimensional vector density or strain vector corre-
sponding to J is 8=4JE,;. For the special wave tensor (5:83), we find

8=—J. (5-84)



CHAPTER VI
REALITY CONDITIONS

6°1. Distinction between Space and Time.
In relativity theory the interval between two point-events is defined by its
square ds®. In Galilean coordinates
ds? =di? — dx,? — dx,? — dag?,

the velocity of light being taken to be unity as usual. By the use of anti-
commuting symbols, the square root can be expressed in rational form; thus
we may write

ds=E,dx, + Eydx, + Eydaxs+ Eydx,. (6-11)
On squaring, the product terms cancel owing to the anticommutation, and
we have (d8)2= —dx,? — dw,? — da,® — dog? = ds?

if z, =1t. The algebraic square root + ds is the eigenvalue of ds. Since (6-11)
is the space vector, or displacement, between the two points, our conclusion
is that the interval is the eigenvalue of the displacement.

It is of fundamental importance that, since a pentad contains three
imaginary and two real matrices, we cannot cover more than three dimen-
sions with matrices of the same real or imaginary character. If then we use
the imaginary matrices E, , K,, K, for the three similar space dimensions, we
have to use a real matrix E, for the fourth dimension of the physical con-
tinuum of equivalent points. Thus the distinctive character of the fourth
dimension (ttme) is already foreshadowed in the constitution of the pentads.

For real phenomena z,, z,, x; are real, and z, (=1t) is imaginary. Since
E,, E,, E, are imaginary and E, is real, the vector interval ds is a wholly
imaginary matrix.

A matrix which is wholly real or wholly imaginary will be called mono-
thetic. Two matrices are homothetic if both are real or both imaginary, and
antithetic if one is real and the other imaginary. The distinction between
space and time is comprised in the statement that ds is a monothetic matrix.

In Schrodinger’s wave mechanics certain “Hermitic conditions” were
imposed in order that the mathematical expressions should correspond to
real physical phenomena. It seems to have been generally assumed that
the reality conditions of Dirac’s wave mechanics must be of the same
Hermitic form, although several writers have pointed out the difficulties
arising from this assumption. In my own developments, I abandoned
Hermitic conditions at the outset; it seemed illogical to retain them in an
analysis which recognises sixteen different square roots of —1. We shall
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determine the reality conditions of the present theory independently. By
relativity considerations it is possible to determine them uniquely.

For a formal treatment, it is best to begin by considering the reality
conditions for rotations. Corresponding to a matrix E,, we can consider
two antithetic rotations, £,6,, E,w, , where 6, and u, are real. Only one
of these will be admissible for physically real phenomena. Now * physical
reality”’ is an invariant property; therefore our reality condition must be
such that it is invariant for all relativity rotations of the frame of reference,
provided that these rotations are themselves physically real and therefore
satisfy the reality condition that is being considered.

For trial suppose that a rotation g=e!*s% is physically real, if E.6, is
imaginary. Then ¢ is in general complex. Consider another rotation
¢, =50 whose matrix E,0, is imaginary and therefore satisfies the pro-
posed reality condition. If now we apply the physically real rotation g to the
frame of reference, E,0,>q (£,0,)q’. If E, anticommutes with E,, ¢ (E,0,) ¢’
is complex, so that ¢, no longer satisfies the reality condition. Thus the
proposed reality condition is non-invariant, and must be rejected.

Accordingly the reality condition for a rotation is that ¢ must be real.
Then the matrix £,0, of the rotation g, is real, and remains real when it is
transformed to ¢F,0,9’ by the real rotation q.

The essential point in the argument is that the matrix of a relativity
rotation can be transformed by applying another relativity rotation; so that
any proposed reality condition is employed twice over and its self-consist-
ency is thereby put to a test. In other words we have to sccure that the
physically real rotations constitute a Group.

Considering the most general rotation in four-dimensional space-timet

q=exp } (Epbys+ Eyy 051 + Eyy01p + By gy + By tgy + Enging,), (6-12)
the condition that g is real requires that 8y, 03, , 0,5, %4, Ugy, Uz, shall all be
real. An K\, rotation gives, as in (4:15),

&) =, C08 (iuy,) — xy8in (uy,), x," =2, sin (1uy,) + x4 c08 (Gu,,),
or, if z,=1t,
%' =z, coshuy, +isinhu,,, ¢'=xsinhu,,+tcoshu,,, (6:13)
50 that the rotation is hyperbolic (Lorentz transformation). Thus the rela-
tivity transformations in four dimensions consist of three circular rotations
6 and three Lorentz transformations «—in agreement with experience.

As a by-product we see that the real quantity concerned in the Lorentz
transformations is ¢ =x,/i, so that x, is imaginary (if z,, z,, 2, are real). We
have thus a deductive proof of the result, already noticed, that (6-11) is a

t We here exhibit the six clementary rotations collected together for reference. As
explained in § 4-2, it would be necessary to restrict them to infinitesimal rotations if it were
intended to apply them simultaneously.
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monothetic matrix. It is a matter of convention that it is imaginary, not
real. By taking z,, x,, x5 real, so that x, is imaginary, we conform to the
convention of ordinary relativity theory which assigns real measure to
time-like intervals. But we might equally have taken x,, x,, x; imaginary
so that z, would be real; ds is then real for space-like intervals. Thus the
compulsory reality conditions are:

For rotations (in four dimensions): ¢ is a real matrix,

} (6-14)

Alternatively we may measure an interval by its vector density

ds=dsV —g=ds.iE;.
Then by (6:11) —ids=E,;dx,+ Ey;dx,+ Eygdxs+ Eygd,. (6-15)
Since Ej is real, ds is antithetic to ds; and with the usual convention ds is
real and ds is imaginary.

At this stage it is well to review the progress of our theory of space and
time. We have shown that, starting with a basal wave vector i, it is possible
to construct a continuum of “equivalent’ points which forms a four-
dimensional hypersphere in five dimensions. In Chapter 1v we showed that
this continuum has the local isotropic quality of ordinary space-time in
that rotations in any of its coordinate planes are relativity rotations; but
we did not there discriminate between circular and hyperbolic rotations. We
have now confirmed the resemblance in greater detail by showing that the
relativity transformations of this theoretical continuum consist of three
ordinary rotations and three Lorentz transformations; or equivalently that
one of the four dimensions is antithetic to the other three.

Further, referred to this continuum, the basal vector ¢ has the trans-
formation properties of Dirac’s i, and in fact satisfies identically an equation
identifiable with Dirac’s wave equation.

We must remind ourselves, however, that this is no more than the embryo
of the actual macroscopic space-time of our experience. In the next section
we shall find a very significant difference which shows the need for intro-
ducing further developments in due course.

For intervals or displacements: ds is a monothetic matrix.

6°2. Translations.
Considering the neighbourhood of a particular point P on the hypersphere,
we take as usual the coordinate z; to be along the radius at P, so that
Z,, &y, &3, ¥, are rectangular coordinates in space-time. This coordinate
system is necessarily local, for it is impossible to construct an extended
system of rectangular coordinates in a curved space. We must therefore
restrict ourselves to an infinitesimal region around P.

The transformation ¢ =e#Zu? gives a rotation of the hypersphere in the
plane z,z; and therefore displaces P in the x, direction. Thus infinitesimal
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translations of a point along the four axes in space-time correspond to
relativity rotations with matrices 5, Ky, Es5, Eys.

The recognised relativity transformations in space-time, viz. four trans-
lations, three rotations in space and three Lorentz transformations, make
up the ten relativity rotations in five dimensions introduced in §4-3. The
customary approximation which treats space-time as flat hides the fact that
translation is a form of rotation, viz. rotation about the centre of curvature
of space-time.

The general translation in space-time is accordingly given by the trans-

formation q=€exp } (E“Ols + E25025 + E35935 + E45045)- (6°21)

If we apply the previous reality condition that g is real, the expression in
real variables is

q=exp } (By51uy5 + Bogttgs + Bystugs + Eiysby5), (6-22)
since E,;, Ey;, E,5 are imaginary, and E,; is real. As in (6:13) the u’s give
hyperbolic rotations, and 6,5 gives a circular rotation. This means that the
continuum is open in three (space) dimensions and closed in one (time)
dimension—the reverse of the conditions in actual space-time.

The root of the trouble is that, when space-time is pictured in five dimen-
sions, these dimensions are four space-like and one time-like; for the radius
of curvature represented in the fifth dimension is space-like. But the matrices
associated with these dimensions are three imaginary and two real. The real
matrix Ej is incongruously associated with a space-like dimension.

Some writers on relativity have mooted the possibility that the world
might have negative curvature. (Negative curvature refers to the Gaussian
curvature which is proportional to 1/ R2. If R?is negative, R is an imaginary
length, or equivalently it is a time-like radius.) But the proposal has been
treated from the point of view of formal mathematics, and can scarcely be
entertained in physical theory.t

We shall find the significance of this incongruity in the next section. But
we shall first consider how it is to be reconciled with the invariance of reality
conditions. To conform to the actual universe it will be necessary to admit
that the exponent of q is real in (6-12) but imaginary in (6-21); that is to
say, the general rotation © is to be resolved into @ =@, + ©,, where

Oy = EgyOps + Hg O3y + Brg0yg + By 1ty + By tthgy + Byt ’} (6-23
Oy = Hiys0:5+ Hgy 025 + Higg 035 + Eyg iveys, )
with the reality condition that @, is real and ©, is imaginary.
What then becomes of the invariance of physical reality? The saving
circumstance is that we have restricted ourselves to an infinitesimal region

t The objection to unclosed space arises from quantum theory rather than from relativity
theory. It will become obvious as our investigation proceeds.
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round a point P; and at the point P the direction denoted by Ej (normal to
space-time) is absolutely distinguished from the other directions (§4-4).
Thus the separation of ® into ®; and @, is defined in an absolute way; and
we can attach different reality conditions to the two parts without coming
into conflict with relativity principles.

Let us now apply a rotation ®,'+®,’ to a rotation @, +®,. Under the
transformation g, =e®’, @, and 0, transform separately. By the above
reality conditions g, is real, and therefore ¢, ©,49,’, ¢, ©,¢,’ remain real and
imaginary respectively, and continue to satisfy the reality conditions.
Under the transformation g,=e#®y', @, and ©, are not kept separate. The
real matrix @, is transformed into a complex matrix ¢,0, ¢,"; but it is easily
verified that the imaginary terms in it are of the form @, so that they
satisfy the reality conditions. Similarly the imaginary matrix ®, becomes
a complex matrix ¢,0,9,’; but the real terms introduced are of the form
0,, and satisfy the reality condition for ®,. Thus the reality conditions
are found to be self-consistent, and the rotations which satisfy them form
a Group.

We have confined ourselves to an infinitesimal (initial) region because it
is only locally that we can pick out a unique direction, absolutely different
from other directions, to distinguish as E;. But is it sufficient to treat an
infinitesimal region? A relativity rotation cannot be real at some points
and unreal at other points of space-time; we ought therefore to show that
the same rotation tested in two different localities fulfils the proposed
reality conditions at both or neither. It turns out that this self-consistency
is assured automatically. If we examine the reality condition at another
point of space-time, we must first make sure that it is a real point; and the
test of its reality is that it is equivalent to the real point first considered—
that it can be transformed into it by a relativity rotation which satisfies the
reality condition. Thus we have to lay down the reality condition for rela-
tivity transformations of a single initial point (given as real) before we can
decide what values of the coordinates represent real points, i.e. points which
have real equivalence to a point known to be real. Thus we have not to show
that our adopted reality condition is self-consistent over a predetermined
real domain; the domain over which it is self-consistent is ipso facto the
domain of real points.

We begin with one real point P—the observer, in fact, for all reality is
relative to him. We determine a group of infinitesimal transformations which
we define as the physically real transformations. These transformations
applied to P give all the neighbouring real points. By a process of continua-
tion (using at each stage the local reality conditions) we reach the more
distant real points. Any of these real points can now be taken as the initial
real point; proceeding from it we shall by the same construction obtain the
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same real domain. This is a consequence of the group property of the
transformations used.

We have shown that the reality conditions (6-23) satisfy relativity re-
quirements; but we have still to explain why these are the conditions pre-
vailing in nature, rather than the simple condition that ®, and ©, should
both be real.

6'3. Neutral Space-time.

We shall find later that the entity represented by a simple wave tensor is an
electric particle (proton or electron). Up to the present we have dealt with
one particle only; we have not yet developed the apparatus of description
for two or more particles. It is therefore rather premature to talk about
space-time, which is a macroscopic conception presupposing vast numbers
of particles. What we have investigated is & preliminary geometrical frame-
work in which the characteristics of a single elementary particle are repre-
sented vectorially. This framework is the genesis of macroscopic space-time;
and it already contains two of the most essential features: (1) four dimen-
sions, of which one is antithetic to the other three, and (2) a radius of
curvature.

For clearness we shall here anticipate some of the changes which will take
place in converting this preliminary conception into the space-time of
macroscopic experience. By introducing great numbers of particles the
radius of curvature will be greatly increased, relatively to the linear scale
characteristic of a single particle (commonly recognised as the wave length
of its Schrédinger waves). The increase of the population will give scope for
irregularity, and the hypersphere of space-time will be distorted by gravi-
tational fields. But the difference that chiefly concerns us now is that there
will be a balancing of positive and negative particles. A universe containing
only one particle, and therefore only one sign of charge, is lop-sided com-
pared with a universe containing equal numbers of positive and negative
charges. It will readily be imagined that if matter consisted of electrons only,
the enormous negative potential would so alter the world that we should
require a different type of space-time to frame the phenomena. It is just
such a world in miniature that our theory of a single charged particle
imitates.

The Riemannian space-time of Einstein’s general relativity theory is
derived from the extensional relations of neuiral matter. The test bodies
whose behaviour determines its characteristics—scales, clocks, moving
particles, light waves—are electrically neutral. Moreover, all macroscopic
matter in our experience is to a very high approximation neutral; if the
proportion of electrons to protons differs from equality by one in a billion,
the electric charge expressed in ordinary units is stupendous.
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The test bodies are used to measure intervals, and hence determine the
tensor g,,, characteristic of neutral space-time. Ideally their use is restricted
to regions where there is no electromagnetic field. In practice this is not a
very important restriction, because the strongest electromagnetic fields
encountered in nature correspond to a very trifling lack of balance of dis-
tribution of positive and negative charges. But in an electromagnetic field
too strong to be neglected, it would be impossible to use the test bodies to
determine g, , because there is no agreed definition as to how g, is related
to the indications of the test-bodies when electromagnetic fields are present.
Each investigator has defined it according to his own fancy. No experi-
menter would undertake to make accurate measurements of length in an
intense electromagnetic field; statements about lengths and distances
within the field are inferences from observations made outside the field, and
depend on the theoretical formulae employed in calculating the inference.
Current scientitic literature abounds in rival formulae (usually embodied in
an *“*action-principle”’) for making such calculations, each corresponding to
a different definition of g,,, in regions where there is no means of determining
it by direct observation.f

We must therefore consider even at this early stage the main difference
between the space-time of a universe whose content is neutral and the
space-time of a universe containing a particle or particles of one sign only.
We shall call the space-time of a universe containing only positive particles
positively saturated; if containing negative particles only, it is negatively
saturated.

In §3-9 we have shown that there exist two kinds of frame, right- and
left-handed, which cannot be transformed into one another by a relativity
rotation. If we take two vectors T = Et,, Ep, T = Ety FF, where E" , F# are
respectively right- and left-handed, these cannot be transformed into one
another by a relativity rotation. Clearly a distinction of this kind is
required to discriminate between positive and negative charged particles.
We shall therefore provisionally identify 7' and 7" with the complete stream
vectors of positive and negative particles—subject, of course, to confirma-
tion by detailed examination of the resulting properties.

Take right- and left-handed frames related as in (3:92), so that

Fie) ¥y, Fisy Fos, By, Fig= — Birg, — B, — Brg, — By, — Hiys, — By

6-31
For the second particle we have T" =Xt F, =2t,"E,, where ( )
tig's b5 bis's bass tas's bas = —lag> — U5y —ty5, —las, —l35, — g5, (6:32)

the other ten components being the same for both particles. Hence, con-
sidering the position vector, the coordinates of the two particles} are

t See § 13-4.

1 More strictly coordinates of elements of their probability distributions (§ 5-8).
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respectively (¢, o, t3, £y, t5) and (£, £y, £, 8y, —15). If we take as usual the Ej
axis normal to the small region that we are considering, so that ¢,, {3, {3, ¢,
are infinitesimal, the particles are in antipodal regions in five dimensions;
but the ordinary four-dimensional point of view is that they are at the same
point of space-time (¢, , ¢a, 3, t,),} and that the centre of curvature of space-
time is in opposite directions along the normal, according to which particle
we are considering.

There is nothing surprising in this. The two particles are contemplated as
alternatives; for our analytical machinery is not yet capable of dealing with
two particles at once. By Einstein’s theory the curvature of space-time
depends on its contents. So, if we start by considering an infinitesimal region,
we do not know how the region will continue until we have decided on the
contents of the region. It will curve away from the tangent plane more or
less strongly according as the density is high or low. We now see further that
it will curve to one side of the plane or the other side of the plane according
as we insert an elementary positive or negative charge (or a probability there-
of ). Thisis not noticed in Einstein’s theory, because that is a theory of macro-
scopic matter, which (even if it is electrically charged) contains equal num-
bers of positive and negative charges to an extremely high approximation.

1t will be seen that the idea first suggested by the five-dimensional picture
—that the positive and negative particles are at antipodal points on a fixed
sphere—is rather misleading. They are not simultaneously present; and the
sphere is not fixed until we have decided which is present.

Our result is that, considering an infinitesimal region of space-time, if it
contains part of the probability distribution of a positively charged particle,
the radius of curvature will be in one direction of the normal, say x;; and if
it contains part of the probability distribution of a negatively charged
particle, the radius of curvature will be in the opposite direction —5; or
briefly, if the region is positively saturated the radius of curvature will be
in the direction x;, and if negatively saturated it will be in the direction
— 5. Suppose now that it is neutral—having equal probability of positive
or negative charge. Two possibilities are open. The curvature may be zero,
or the radius of curvature may be in the direction of the imaginary normal
ix5. These are the only alternatives which have neither a positive nor a
negative bias. We know from ordinary relativity theory that the first
alternative is incorrect; neutral matter does involve a curvature of space-
time. Therefore we must accept the second alternative; the radius of curva-
ture is in the direction iz . That is to say the radius of curvature changes its
character from time-like to space-like when we pass from a positively or
negatively saturated world to a neutral world.

+ We have chosen the relation (3-92) rather than (3-93) or (3:94) in order that our formulae
may refer to particles at the same point of space-time.
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This result will be confirmed in our subsequent investigations. But I
think it is clear, even at this early stage, that it is forced upon us.

We can now understand the origin of the curious reality conditions in § 6-2.
The whole trouble was that the radius of curvature was associated with a
real matrix Fy indicating time-like character. But the radius of curvature is
time-like in the positively or negatively saturated world to which the most
elementary formulae relate. It is in the transition to a neutral world that
the space-like radius of curvature becomes substituted for a time-like
radius. In a positively saturated world the relativity transformations
q=e¢t® satisfy the simple condition that @ is a real matrix. The v/ — 1 never
gets a footing in so simple a world. According to this theory a positively
saturated world is open in its space dimensions and closed in its time
dimension. Saturation is so remote from the conditions of our actual ex-
perience that we certainly cannot bring forward any observational evidence
to the contrary. We can well imagine that the stupendous electrical repul-
sions would be sufficient to burst any closed space.

Since the vector Ezx; towards the centre of curvature has in neutral
space-time a value antithetic to its value in electrically saturated space-
time, it is antithetic to the four-dimensional position vector

X=FEx + Eyxy+ Eyx3+ E,x,.
The rotation about a centre at Eyx;, which produces a displacement dX, is
given by dX/Eyxy. Thus the rotation 0, is antithetic to its value in electric-
ally saturated space-time, and is therefore imaginary. This gives the reality
conditions (6:23). The change from a time-like to a space-like radius of
curvature—from saturated to neutral space-time—is the source of the v — 1
which is such an inescapable feature of quantum formulae.

6'4. Kinematical and Electrical Matrices.

For general developments it is more convenient to take right- and left-
handed sets B, , ¥, connected by (3-93),1 so that

-F:)“, F1°= —Eo“, '—Ele (,L=1,2,3,4,5), (6'411)
the other ten matrices being the same. Let
N> Nyg=1Ey,, tEy,. (6-412)
We shall call N, a neutral set. As a further generalisation we define a macro-
scopic set M, by My, Myg=2Ey,, g, (6-413)

the other ten matrices being the same. Then A is a scale constant which may
be real, imaginary or complex. Real values correspond to electrically
saturated space-time, and imaginary values to neutral space-time. An

t We shall see in § 6-5, that (3-92) gives the association of vector densities and (393) the
association of vectors.
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ordinary field of positive or negative potential could therefore be repre-
sented by a complex value of A, the real part being very small compared
with the imaginary part; this kind of representation is only used when we
are pursuing a unified field theory, involving non-Riemannian geometry.
More usually macroscopic electrical fields are represented as perturbing
influences superposed on Einstein’s neutral space-time.

We may express a complete space vector in terms of macroscopic com-

ponents, namely  p_ iy, M, ~%,m, E,+1E,m,E,, (642)
where X, refers to the ten unchanged matrices and X, to the six changed
matrices in (6-413). We shall call the unchanged matrices the kinematical

matrices, and the matrices whose sign is changed between right- and left-
handed frames the electrical matrices. The electrical matrices are accordingly

E,, E,, E;, E,, E5, K, (6-43)
and the kinematical matrices are those associated with the ten rotations in
five dimensions. We shall adhere to this nomenclature, irrespective of the
physical interpretation.}

The relativity rotations in five dimensions correspond to the ten kine-
matical matrices. We may therefore distinguish them as kinematical
rotations, the other six relativity transformations being electrical rotations.
As shown in §4-3 the kinematical and electrical parts of (6-42) are trans-
formed separately by the kinematical rotations; so that from the ordinary
standpoint they are separate vectors arbitrarily combined into one analy-
tical expression. In combining them we can introduce a scale constant A,
which remains invariant in the transformations. For example, in macro-
scopic spherical space-time we may meet with two distinct but somewhat
analogous vectors, say a velocity and a spin. We think it probable that there
is some significant combination of these into a complete space vector, which
will lead to a more far-reaching theory of the phenomena. But until the
details of that theory are worked out, the combination involves an undeter-
mined scale ratio A. If we regard the components m, of the complete
vector as definite and equal to the components of the two separate vectors
as ordinarily measured, A must be embodied in the frame of our ordinary
measurements which then becomes a macroscopic frame M, .

We have found representations of a complete space vector in five dimen-
sions (§ 4-3) and in four dimensions (§ 4-4). There is also a representation in
six dimensions. The components ¢,, ¢,, ... {;; form a 15-vector, or anti-
symmetrical tensor of the second rank in six dimensions. From a purely
algebraic standpoint this is the most fundamental representation; and the

1 The matrix associated with a particular characteristic depends on whether the

characteristic is expressed as a vector, vector density or strain vector. Thus the ¢ electrical
matrix” E, has not always an electrical significance.
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theory of E-symbols is primarily a study of the group of rotations in space
of six dimensions. But the ordinary vectors of that space (6-vectors)
cannot be expressed in terms of E-symbols. The physical application of this
group is specialised by the fact that space, as defined in physics, is an
abstraction of the extensional relations of neutral matter, and therefore
involves the superposition of a right- and a left-handed frame in the 6-space.
This superposition involves the selection of a pentad (here taken to be K,,)
which, together with E,4, is reversed in sign between right- and left-handed
frames. One suffix (in this case 0) thereby acquires distinctive properties;
and, once chosen, it remains associated with an invariant direction in the
6-space. The remaining five dimensions become the 5-space of § 4-3.

To review the argument:—A right-handed frame can be represented as
having complete symmetry in a 6-space. Such a frame would be appropriate
as a reference system if the universe consisted of particles of one sign
only. Since actual physical systems consist of nearly equal numbers of
positive and negative particles, our actual reference system is based on a
frame which is a superposition of right- and left-handed frames, the one
being, as it were, a reflection of the other. In the composite frame it is
no longer true that all directions in six dimensions are equivalent; one
direction must be chosen as the axis of the reflection, and thereby becomes
distinguished from the others. We have associated the suffix 0 with this
direction. Thus, whilst the elementary right-handed frame exhibits six-
dimensional relativity, the actual composite frame exhibits five-dimensional
relativity. Accordingly the starting point of the theory of actual space-
time is the five-dimensional representation of wave tensors treated in § 4-3.

The kinematical rotations have the same relations to the frames E,, ¥, ,
N,, M, . In each case they rotate separately the two parts into which (6-42)
is divided, and the value of A does not affect the result. But the electrical
rotations have opposite effects on E, and F,, and therefore correspond to
some kind of separation of electric charge, or polarisation. For this reason
they give apparently non-relativistic transformations of neutral or macro-
scopic space vectors. This does not mean that it is unprofitable to investigate
them further; but it is only by dropping the usual representation in Rie-
mannian space-time, and following a unified geometrical representation
of gravitational and electromagnetic fields, such as those of Weyl and the
author, that these electrical transformations become admissible.

6:5. Summary of the Reality Conditions.

Since physical quantities can be expressed as space vectors, vector densities
(four-dimensional), or strain vectors (three-dimensional densities), we have
to state the reality conditions separately for these three forms. The following
conditions refer to vectors, etc., in neutral space-time.
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(1) Space vectors.
The condition is that the electrical part, involving the matrices
Ess, By, By, By, By, K,
is antithetic to the kinematical part; or 7}, is antithetic to T}.

(2) Vector densities.
Since the vector density T =171 Ej, the above condition becomes
(I E;), is antithetic to (X Eg),,
so that the part of ¥, involving the matrices
Esgs Ers, Bys, Bys, Eys, Es,
is antithetic to the rest of the expression.

(3) Strain vectors.
Since the strain vector or three-dimensional density S=:iTE,;, the

condition becomes  (gp ) is antithetic to (SEy)-
By (4-66) the part of S which corresponds to the electrical part of 7' is that
containing Ezas Eals Em: EM ES’ EAM

i.e. the real matrices. Thus the part of S containing real matrices is anti-
thetic to the part containing imaginary matrices. We have therefore the
simple result that the coefficients s, of a strain vector are homothetic.

(4) Kinematical rotations.

These are restricted to ten components and their reality conditions, given
in full in (6-23), secure that the part containing

Elb’ Eﬂ&’ ESS’ E45

is antithetic to the rest. Comparing with the above results, we see that the
matrix of a rotation must be regarded as a vector density.

These conditions are founded on the result obtained in § 63, that for a
position vector Egx is antithetic to E,x, + Eyzy+ Eyzs+ Eyx,. By §58, a
position vector is part of a complete vector density. We have therefore to
choose right- and left-handed frames related in such a way that the reality
condition (2) for a vector density agrees with this. This justifies the choice
made at the beginning of § 64 when we took the connection to be that given
by (3-93).

The foregoing are the natural reality conditions in neutral space. But it
must be understood that, since the only test is the invariance of physical
reality, the conditions become less stringent as we limit the variety of
transformations contemplated. Thus if we have a 5-vector U and a 10-vector
V, forming a complete space vector U+ V which satisfies the foregoing
reality conditions, the combination U + ¥ will violate them. But so long as
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we confine ourselves to the ten kinematical rotations which transform U
and V separately, there is no special reason for preferring the combination
U+7V to U +4V. It may well happen that U +1V is the customary form of
combination. All we can say is that this latitude exists, because the expres-
sion is a mental association rather than a genuine combination. Combination
implies some loss of independence of U and V; so that a more general
transformation is contemplated in which the combination U + V' persists
and the combination U +4V is broken up.

The hamiltonian H = E, p, + E,p, + E;ps + E,p, — m adopted in Chapter v
satisfies the reality conditions for a vector density, since —m is the com-
ponent Ejgim. Accordingly J =iix* is a vector density. If we require the
wave equation for a vector we must identify (p,, p,, 23, p,) With the adjoint
vector (j15, Jas» Jas» Jas), and therefore write the hamiltonian as

H=Esp,+ By + Higspg + Eyspy — m. (6-51)

This satisfies the conditions (1) for a space vector. We need not stop to
decide which of these forms is the most advantageous, because we shall find
later that the form chiefly required in practice is that which corresponds
to a strain vector.

6°6. Charge and Spin.

We have found in (5-83) that the complete stream vector of an elementary
particle is, if the axes are suitably chosen, of the form

Ju=(Ey+ Eps+ Eys + Eyg) im. (6-61)

We have set «=14m in anticipation of the identification found below. We
first notice that, since E,;, K are real and E, , K4 are imaginary, J, satisfies
the reality conditions for a space vector in neutral space-time (§ 6-5 (1)).

1t may seem surprising that the result obtained in § 5-8 is already adapted
to neutral space-time, which was not formally introduced until later. The
reason is that in the course of the derivation we selected the combinations
of suffixes in accordance with experience; and since we have no experience of
electrically saturated space-time it was implicitly excluded. For a pure
wave tensor in electrically saturated space-time the appropriate form is

which is monothetic. It is easily seen that the momentum vector is then in
the space-like direction E,.
The hamiltonian is given by the last two terms of (6-61):
Ha=E45im‘—E1°im=E‘5ipo+m. (6'62)

We thus verify that m is the proper mass. The terms E,; and E,4 in (6-61)
accordingly represent the energy and the proper energy, which, although
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equal in magnitude (owing to our special choice of coordinates), are exhibited
separately in the wave tensor.

To obtain a particle of opposite sign to J, we must reverse the sign of the
electrical matrices, obtaining

Jy=(—Ey+ By + Eys— Eyq) im.

The corresponding hamiltonian is H, = E;ip,—m. It will be seen that if the
standard form of the hamiltonian is taken to be

E 51+ Eyspa+ By py + Eggipy—m,

the identification of m with the proper mass must be qualified by the
proviso that this refers to the magnitude, and that the sign of m is that of
the charge. The identification was based on (5-24) which gives m2, not m.

The terms £, and E,, describe a spin, the one giving the axis of the spin
and the other the plane of the spin. But they play somewhat different parts,
because one is reversed when we change the sign of the charge and the other
is not. Clearly E,;, which is not reversed, represents the mechanical spin;
and F;, which is reversed, represents the magnetic moment.

To obtain a particle of opposite spin we reverse the sign of E,;. In order
that the wave tensor may remain pure, we must also reverse the sign of
another term (§5-5). We cannot reverse F,g, since that would reverse the
charge; we cannot reverse K,;, since that would give negative energy p,,
representing a ‘‘minus-particle’. Hence we must reverse £, . This confirms
our interpretation of E, as a magnetic moment, whose sign depends on the
direction of spin.

Assuming arbitrarily that .J, represents a positive charge with a ““posi-
tive” direction of spin in the plane 2,25, we have the following classification:

Jy=itm (E,+ Ey+ E;+ E,g) positive charge, positive spin,
Jy=1m (—E,+ Ey+ E5— E\g) negative charge, positive spin,
Jo=tm(— E,— Ey+ Eys+ E,g) positive charge, negative spin,
Jg=im (E,—Eyu+ Ey—E)g) negative charge, negative spin.
(6-63)
The three-dimensional densities or strain vectors are also of importance.
They are given by S=1JE,;. We obtain
S,=—im (B,+Ey+ Ei+ Eg) positive charge, positive spin,
Sy=—im (E,—Ey—Ey + E,;) negative charge, positive spin,
S,=—im(—E,— Ey3+ E;5+ E,g) positive charge, negative spin,

Sg= —im(—E,+ Eyp—E;;+ E\g) negative charge, negative spin.
(6-64)
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We notice that in the strain vector the mechanical spin is represented by E,
and the magnetic moment by E,;—opposite to the representation in the
space vector.

Since Sa+8,+ 8, + 83 =4m, (6-65)

the four forms can be regarded as resulting from a spectral analysis (§5-7)
of algebraic numbers. The properties of matter which is neutral as regards
charge and spin can be represented by simple algebraic wave functions of
the type introduced by Schrodinger. To introduce charge and spin Schré-
dinger’s algebraic wave tensors are analysed into components S8;, 8,, S, 8;,
which can then be assigned modified probabilities independently, so that
they no longer balance. This is the simplest way of connecting the theory of
protons and electrons with the ordinary relativistic mechanics of neutral
matter, as will be shown in § 13-6.

An entity represented by }(J,+J,+J,+Jy) or by }(S,+8,+8+Sy)
will be called a neutral particle. The term is not intended to have any con-
nection with the ncutron. A neutral particle is not a combination of four
particles; it is a single particle which (so far as our information goes) has
equal probability of being a proton or electron and equal probability of
either direction of spin. We regard S,, §,, S;, S; as four elementary states
of a particle. In general the probabilities of the four states will be different.
As a particular case (which, however, is the commonest case in practice) the
probability of one of the states, say S,, may be unity; the particle is then
classed definitely as a proton of positive spin.

From the ordinary standpoint a neutral particle is a mathematical fiction,
having no counterpart in experimental physics. Usually, if an experimenter
knows anything at all about a particle, he knows whether it is a proton or
electron. Direction of spin is less easily recognised; and a combination
S, +8,, which gives a particle neutral as regards spin, may often represent
the experimental knowledge available.

The complete stream vector (space vector) of a neutral particle consists
of a single component Fjsts;, and its three-dimensional density (strain
vector) consists of a quarterspur E;qs,4. Thus we have a very simple way of
passing from electrical to neutral particles, namely by taking the quarter-
spur of the strain vector—an operation which corresponds to contraction of
the corresponding wave tensor.

In more general coordinates the term F,; in the strain vector is replaced
by three components Ey;, By, E,;. We have seen that these represent the
magnetic moment. The electric moment (if any) will be represented by
terms E,,, By, E;, since by the usual electromagnetic equations the
magnetic and electric moments form a 6-vector. No such terms occur if the
particle is at rest in the coordinate system; this is what we should expect,
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since an electric moment implies a doublet, and cannot be associated with a
single particle at rest. Electric moment terms are introduced if we set the
particle in motion by applying a Lorentz transformation with matrix Ky,
or E,, to (6-63). The electric moment thus produced is real. Dirac’s theory
seems to differ from ours on this point, since he obtains an imaginary electric
moment for the electron.

6°7. Minus-particles.

The wave tensor —.J, must presumably be regarded as expressing the
absence of a particle of the kind represented by J,, or else an entity which is
observationally equivalent to such absence. We may accept the current
view (due to Dirac) that positrons and negatrons are minus-particles of this
kind equivalent to the absence of electrons and protons. Thus

—Jy=1m (= Ey— Eyy— Ey5— Ey)

represents a negatron. The sign of the last term shows that the charge is
negative.

The sign of the third term should signify that the energy is negative,
according to the somewhat confusing definition of energy in wave mechanics.
But the energy of a negatron or positron, as ordinarily understood, is cer-
tainly positive. It is necessary to clear up this discrepancy of definition.

Energy, momentum and spin are familiar conceptions in classical
mechanics, and a complete energy-momentum-spin vector can be defined
for a macroscopic system. Let us suppose that, by adapting this definition,
we can assign to an elementary particle a complete vector 7' representing
its energy, momentum and spin “as ordinarily understood’. In wave
mechanics we associate with the elementary particle a wave tensor J, = x*,
whose components have at least some analogy with the energy, momentum
and spin of classical mechanics. It is tempting to assume that 7'=.J,. But
J, has the idempotent property that, apart from a numerical factor
depending on the choice of units, J,2=J,. We have therefore just as good
reason to make the identification 7' =J 2.

The proton and negatron which have opposite stream vectors J,, —J,,
have the same vector J, 2 The identification 7' =J,? will accordingly make
the energy of negatrons (and positrons) positive, as it should be.

We therefore regard the primary wave tensor J =yx* of an elementary
particle as a charge-current vector, and J? as the true energy-momentum
vector. We have been considering the vector J for simplicity, but strictly
the relation is between the three-dimensional densities S, 8%; the charge-
current density is represented by S, and the energy-momentum density
by S2.

t Quantum Mechanics, 2nd ed., p. 263.
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Since S2 is an algebraic multiple of S, the two vectors coalesce for an
elementary particle. This has happened by design rather than by accident.
The coalescence of S? with § is virtually the definition of an elementary
particle; for elementary character has been taken to correspond to purity,
and purity to idempotency. This helps us to understand why so much im-
portance is attached in wave mechanics to resolution into pure or idem-
potent constituents. It is for these constituents that we are able to replace
a quadratic dynamical property by a linear property. For impure con-
stituents these would be distinot wave tensors describing different pro-
perties. Broadly speaking S? represents mechanical characteristics and S
electrical characteristics; they become unified only in an elementary particle
whose momentum and current coincide.

This agrees with general relativity, in which the mechanical properties
are specified by an energy tensor of the second rank (a quadratic function
of the individual velocities), and the electrical properties by a charge-
current vector (a linear function of the individual velocities).



CHAPTER VII
STRAIN VECTORS AND PHASE SPACE

7-1. Internal Wave Functions.

In classical mechanics it is usual to resolve the motion of a system of par-
ticles into a motion of the centre of mass, and a motion of the individual
particles relative to the centre of mass. We shall distinguish these as the
external and the internal motions of the system.

Similarly in wave mechanics we resolve the motion of a system into an
external motion specified by external wave functions, and an internal motion
specified by internal wave functions. So far as the external motion is con-
cerned, the system is equivalent to a single particle located at the centre of
mass. It is characterised dynamically by an external momentum vector
(P15 P2> D3, Do) and a proper mass m. If the space-time frame of reference for
the external motion is changed, the momentum vector undergoes rotations
and Lorentz transformations. The theory of the external wave function
coincides with that of a simple particle.

The internal wave function introduces new ideas. Lorentz transformations
are not applicable to the internal motion; for, by definition, the internal
motion is relative to the centre of mass, and, if we applied a Lorentz trans-
formation to it, it would be referred to some other standard of rest. The
time-axis of the frame of reference for internal motions and wave functions
must agree with the direction of the external momentum vector.

Thus we have a uniquely defined space-time frame for internal motions,
and ‘‘simultaneity’’ has a definite meaning—provided that the system is
not so extensive as to make it necessary to take account of curvature of
space-time. It is part of our mental conception of a complex system that
it is a simultaneous aspect of its several parts. Each particle has three
internal (relative) coordinates £, =z, —Z,; and the momenta conjugate to
¢, are the internal momenta of the particles of the system. There is one
time-coordinate 8 common to the whole system. If the same coordinate
system is used for the internal and external motions, the external time will
also be s. But in general different frames will be used, since it would be idle
to consider external motion if the external frame had always to be chosen
so that the system was at rest in it; the external time ¢ will then differ from
the proper time s.

The independent variable for the internal motions and wave functions is
always the proper time s. It should be noticed that if, for special purposes,
separate internal time-coordinates analogous to the internal space co-
ordinates are assigned to the particles, these will be v=¢—Z. To associate ¢
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with z, — %, (as is sometimes attempted) is a hybrid procedure unwarranted
by any theoretical principle.

For internal wave functions Lorentz transformations are definitely ruled
out; but relativity rotations in three-dimensional space are applicable. The
direction of the time-axis is prescribed by the external momentum vector;
but there is no corresponding specification of the orientation of the other
axes.

The use of internal wave functions which, by their very nature, cannot be
subjected to Lorentz transformations is often called ‘“non-relativistic
treatment’>—with the implication that it conflicts with the principle of
relativity. This is a misunderstanding of the nature of the Lorentz trans-
formation and its place in relativity theory. So long as we deal with quan-
tities defined as relations between physical entities—relative coordinates,
relative velocities, relative momenta—we are on safe ground. (By relative
coordinates we do not, of course, mean the difference of coordinates in some
arbitrary frame of reference,t but the coordinates of one particle in the frame
in which the other particle is at rest at the origin.) It is when we introduce
into our formulae analogous quantities relative, not to physical reference
objects, but to abstract frames of space and time, that Lorentz invariance
is demanded. For we are then unable to define which of the equivalent
frames has been selected—to which frame our formulae apply—so that, if
the formulae are to mean anything at all, they must have a form invariant
for all transformations of the frames.

In relativity theory itself there has been no such tendency to let Lorentz
invariance grow into an obsession. One of the best known formulae in
relativity theory is ds?®= —y~'dr?—r2d6?—r?sin®6d¢®+ydi® for the line
element in the gravitational field of a particle. This is not invariant for
Lorentz transformations; but we can scarcely describe the formula which
is the source of the three crucial tests of Einstein’s theory as “non-rela-
tivistic””. If Lorentz invariance is not demanded in the investigation of
the motion of a planet round the sun, it can scarcely be demanded in the
investigation of the motion of an electron round a nucleus.

Hitherto, in developing the analytical theory, we have had in mind the
motion of a particle or the external motion of a system. In the present
chapter we shall introduce the modifications appropriate for treating the
internal configuration and motion of a system. There are two fundamental
differences. Firstly, the time reckoning will now be a proper time, fixed by
the external momentum vector, and therefore invariant for any permissible
transformations of the variables describing the internal configuration.
Secondly, whereas change of the coordinates Z, of the centre of mass is a

+ This possible confusion of meaning does not arise in the case of relative momentum,
which obviously has no connection with difference of momentum.
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relativistic change, all points in the space-time hypersphere being equi-
valent, change of the relative coordinates £, is in general a strain or intrinsic
distortion of the system, and is therefore not to be represented as a relativity
rotation of the vectors describing the internal state.

7-2. Covariant Wave Tensors.
We shall now consider the transformations of a covariant wave tensor of
the second rank §,5. Like the mixed tensor it is a matrix composed of 16
elements; and it may be resolved into matrix components in an orthogonal
frame by the same formula S=2Xs, E,; but s, will not be a space vector.
We shall call s, a strain vector. Thus a strain vector corresponds to a co-
variant wave tensor in the same way that a complete space vector corre-
sponds to a mixed wave tensor.

The transformation formula for a covariant wave tensor has been found

in (1:53), namely 8’ =g94. (7-21)
Let g =et50, First let £, be an antisymmetrical matrix, so that
(Ep)ﬁa == (Ey,)n:ﬁ .

Then (e¥Euf)g, = cos 30.(1)g, +5in 40.(E,)g,
=co8$6.(1),g—sin 6.(H,)g
= (e ¥5uf) q.

That is to say, dg=q

If E, is a symmetrical matrix, we have §=q. Hence (7-21) becomes

} (7-22)

The transformation ¢Sq—1 agrees with that of a mixed wave tensor (1-463).
The transformation ¢Sq has been called an antiperpendicular rotation
(4:16). We have therefore the result:

A strain vector behaves as a space vector when the transformation matriz is
antisymmetrical, but undergoes antiperpendicular rotations instead of the
corresponding ordinary rotations when the transformation matriz is sym-
metrical.

As in the case of space vectors, we shall use the name “strain vector”
indifferently for the array of components s, or for their symbolic combina-
tion S=X%s, E,.

A strain vector may be represented graphically by plotting its com-
ponents 8, in a 16-dimensional space. But it must be remembered that the
line which represents it will be thought of as a space vector. When a tensor

8’ =qSq! for antisymmetrical transformation matrices
=¢Sq for symmetrical transformation matrices.

+ This is the fundamental definition of a strain vector. It will be shown in §7'6 that
three-dimensional vector densities are strain vectors, and they have therefore been called
strain vectors in anticipation (§4-6).
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transformation is applied, all geometrical reference lines in the space rotate
as space vectors; the strain vector follows its own transformation law, and
is displaced relative to this background of space vectors. We shall now
examine this relative displacement.

Let 8 be a strain vector and 7' a space vector, and at first let 7' coincide
with 8. Perform the infinitesimal transformation ¢=e!d®, where dO is a
general infinitesimal matrix. We write d® =d®,+d0®,, where dO,, dO,, are
its symmetrical and antisymmetrical parts. Since d® is infinitesimal, ¢ is
equivalent to the transformations g,=e!% and g,=e}?®s applied succes-
sively. Thus we have

8 =0,0,80,710, T'=9,9.T9% ¢ (7-23)

And, since S="T, S’ =T'ql2="T"ed®, (7-24)
Hence, d©, being infinitesimal,

S -T"=Td0,=8d0O,. (7-25)

We take S to be non-singular. Then Sd®,# 0 for any non-zero value of
d®,. Since the general symmetrical matrix contains ten independent con-
stants, the relative displacements §d®, will occupy a ten-dimensional space.
We call this the phase space of the strain vector.

To exhibit this graphically, let S8 and 7' be represented by the lines 0¢Q),
OP in the 16-space. A tensor transformation of the space vector is repre-
sented by keeping OP fixed and rotating the axes of reference, thereby
altering the components #, referred to the axes; thus P can be regarded as
a fixed origin. At first ¢ coincides with P; but the transformation produces
the relative displacement P@Q=S’—7T"'. The interesting point is that,
although there are 16 independent tensor transformations, @ is limited to
a ten-dimensional locus. Provided that § is non-singular, every direction
in this locus is a possible direction of PQ.

This construction gives only an infinitesimal region of phase space, and
we must extend it by a process of continuation. The problems which arise
in constructing the complete phase space will be considered later.

We have seen that antiperpendicular rotations represent intrinsic
deformations of the physical system considered. The points of phase space
therefore represent in systematic order different intrinsic states or con-
figurationst of a system described by a strain vector. This corresponds to
the usual definition of a phase space in statistical mechanics. In the applica-
tions for which it is intended, phase space is occupied by a probability
distribution.

t I shall generally use the term configuration; it is to be understood in its broadest sense.
State would express the meaning better; but I was anxious to avoid using & term which has

been given a technical significance by Dirac. The term phase is often used in statistical
theory; but I have reserved it for the angular variables occurring in the exponentials.
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7°3. Real Phase Space.

For treating strain vectors and phase space we adopt a frame £, consisting
of four-point matrices. The E, then consist of ten symmetrical and six anti-
symmetrical matrices; the symmetrical matrices are imaginary and the
antisymmetrical matrices real. In §6-1 space-like directions have been
associated with imaginary matrices and time-like directions with real
madtrices; it is convenient to use these descriptions generally—as a nomen-
clature rather than as an anticipation of the physical manifestations of the
vector components associated with them. Having regard to a future
extension to double wave tensors, the definition is best stated in the form:

A space-like matrix is homothetic with its eigenvalue; a time-like matrix is
antithetic to its eigenvalue.

The eigenvalues of the E, are imaginary. Thus, for simple wave tensors,
we have the equivalence:

Space-like =symmetrical = imaginary matrices,
Time-like = antisymmetrical =real matrices.

The ten dimensions of phase space are space-like.

We can no longer represent the £, by general fourfold matrices, since
these are usually neither symmetrical nor antisymmetrical. At first sight
the limitation to a particular frame of matrices seems a serious loss of
“relativity ’. But the application of this chapter is to the internal wave
tensors of a system, which, as we have seen, are not subject to Lorentz
transformations. It is not merely permissible to use a fixed frame; it is
essential that the frame to which these internal tensors are referred should
have some quality which resists Lorentz transformations.}

In treating external space we considered it to be a drawback that in
matrix representation the K, have properties additional to those which
they are defined to have as constituents of a complete orthogonal set. But
the additional properties come in useful in internal space, because we have
to indicate a distinctive direction, viz. that of the external momentum
vector, and the planes of simultaneity orthogonal to it. We do this by giving
to the matrix E,, belonging to the distinctive direction, the property of
antisymmetry; matrices belonging to directions in the plane of simultaneity
are symmetrical; matrices belonging to intermediate directions are neither
symmetrical nor antisymmetrical.

We have seen that one of the difficulties of applying to physics an algebra
comprising complex numbers is that half the mathematical possibilities
have to be set aside as unreal, i.e. not corresponding to actual phenomena.
We approach the problem of determining the reality conditions of phase

t It is the Lorentz transformations of the frame which introduce asymmetry. For spatial
rotations the matrices preserve their symmetry or antisymmetry.
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space somewhat differently from the similar problem in Chapter vi. The
feature of phase space is that it is the seat of a probability distribution. If the
probability distribution does not extend to the unreal configurations—if they
have zero probability—there is no need to stigmatise them further. Accord-
ingly the discrimination of the world of real phenomena from the world of
unreal phenomena is made when we insert the probability distribution. We
shall show that this fixes the reality conditions of phasespace unambiguously.

The method of statistical mechanics contemplates an initial or a priors
probability distributed over phase space so that the probability in any
volume is proportional to the volume. Observational information modifies
thisinitial probability, so that the actual probability concerned in a particular
problem is the product of the initial probability and a modifying factor. 1t
is essential to the method that the phase space over which the probability
is distributed should have finite volume; for if it were infinite, the initial
probability associated with any finite region would be zero, and the method
would break down. This requires that phase space should be a closed space.

It is true that statistical mechanics is often applied to a space closed by
a supernatural barrier instead of by its own re-entrancy. But the barrier is
merely a compression of the curvature required to close the space into a
singularity. If we reverse the motion of the particles by natural fields of
force instead of supernaturally, space must be curved to represent these
fields. No ordinary field is such that an electron has zero probability of
leaking through; to confine it rigorously the curvature must be sufficient to
close the space.

Thus, in order that our phase space may be the seat of a probability dis-
tribution, it must be closed. This means that the matrix d@,:Z,EPdﬁp,
which gives the displacements in phase space, must correspond to circular,
not hyperbolic rotations. This requires that the df, shall be real (cf. (4-15)
and (6-13)). Then, since the symmetrical £, are imaginary, dO, is imaginary.
We have the result:

In order that the displacement in phase space given by the transformation
q=e1?® may represent a real change of configuration, d®, must be an
imaginary matrix. ' (7-:31)

This reality condition may also be expressed by saying that the space is
a phase space in the other sense of the term phase. Instead of a single algebraic
phase 0 indicated by a factor e'®, we have ten phases for which i is replaced
by different matrix roots of — 1. Since the 6, are real, they are real periodic
phase angles in the ordinary sense.

We can see this most easily by taking the initial value of the strain vector
to be unity. This involves no loss of generality. By (7-24) 8’ = T"e?%. Since
S’ and 7" are non-singular, 7" has a reciprocal 7"-1; then

(T28) =T"'1T"e%% = 1%,



98 Wave-tensor Calculus - [7-3

The transformation law of 7'-18 is

(T-'8) =qT-*q*.q8¢=qT~*8,
80 that 7-18 is a strain vector, and its initial value is 1. Thus the phase space
generated by the transformations of an arbitrary non-singular strain vector
8 may equally be regarded as generated by the transformations of a unit
strain vector, viz. (1) =1.ed®, (7-32)

If dO®, does not involve non-commuting components, (7:32) can be in-
tegrated so as to apply to finite displacements. Thus there will be a line of
configurations for which the strain vector is

(1) =eFulu=cos 0, + B, 8in b,.
If 6, is real, the strain vector repeats itself at intervals §, = 2m, so that we
return to the original configuration. In other words phase space is re-entrant
in the 0, direction. If 6, is imaginary, the strain vector is non-periodic and
the phase space is open in that direction. Hence, in order that phase space
may be closed, real configurations must correspond to real phase angles 6, .

Following an arbitrary track in phase space the transformations are in
general non-commutative. Thus the exponentials combine by non-commuta-
tive multiplication, and the increments of the phases combine by non-
commutative addition. The ten-fold phase is therefore non-integrable; this
means that it must be represented in a curved space.

By §3-6 the transformations ¢= e¥Budbs in which dO’, is real, are all
unitary. Thus a strain vector which is non-singular initially remains non-
singular throughout phase space.

By (7-31) and § 6-5 (3) the matrix d®,, which represents displacement in
phase space, satisfies the reality conditions for a strain vector, but not those
for a space vector or vector density. We must therefore take d®, to be a

strain vector.

7-4. Coordinates in Phase Space.
Let g=et3® be the transformation which displaces a point @ to a neigh-
bouring point @’ in phase space, and let

d0,=%,E,0,. (7-41)

Then the ten 6, provide locally a coordinate system for describing points @’
near an origin Q. We call these local orthogonal coordinates or natural
coordinates. A corresponding system of linear coordinates z,=R6, is
introduced by attributing to the phase space a definite scale constant E.
For the present B must be considered arbitrary, since it could only be
defined by introducing relations to an extraneous system.

The volume of a ten-dimensional element of phase space is defined to be

dw =d01d02 “ee dolo. (7‘421)
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Itis ascalar quantity. We can, if we prefer, write it as E,d6, . E;df, ... E,,df,,,
but the product of the ten matrices is found to be + 1. We thus have a
definition of equal volumes at different points of phase space, each volume
being measured in terms of natural angular coordinates at the point where
it lies. By this definition equivalent volumes are equal volumes. As in §2-9
equivalent volumes are formed by making the same construction in
equivalent frames.

For any other system of coordinates z,, , we have in the notation of general

relativity dw=V"—g.dr, (1-422)
Whel'e d‘r = dxl dxg cee dxlo .

In particular for natural linear coordinates
vV —g=R-1, (7-43)

The local orthogonal system is only applicable when the squares of 6, are
neglected. The most important equations of physics are differential equations
of the second order, and in order to investigate them it is necessary to intro-
duce a coordinate system valid at least as far as the squares of the co-
ordinates. This problem will be treated in the next section. We have not
much occasion to employ the properties of phase space as a whole, and our
methods are chiefly adapted for treating an infinitesimal region. But it is
important for our theory to prove that the whole volume of phase space is
finite. Although this seems rather obvious, I have had some difficulty in
proving it formally. We have adopted circular rotations in order to secure
finiteness; but until we examine how they are to be extended beyond an
infinitesimal region we cannot be sure that they will achieve this end. They
secure re-entrancy along geodesic tracks, but we have still to prove that
phase space has no tortuous exit. Although phase space has the same kind of
uniformity as a hypersphere, it is different from a hypersphere; it contains
pairs of antiperpendicular directions. Thus ordinary spherical coordinates
do not apply, and I do not know of any suitable adaptation of them.

There is a fundamental difficulty in specifying finite deformations or
strains of a system, which arises in the following way. Let 4,, 4, denote
two different orientations of the same (unstrained) system, and let A’
denote the system in a strained condition; how are we to decide whether the
strain should be measured by 4’—4, or A’—A4,? There is no absolute
one-to-one correspondence of the orientations of strained and unstrained
systems; but it is necessary to lay down some conventional rule which will
prevent our representing the same deformation twice over as 4’— 4, and
A'—A,.

We have secured a unique representation of infinitesimal strains. The
initial (unstrained) state was represented by 8 or 7'; the strained state S’
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was then compared with 7", which represents the unstrained state in a
different orientation connected with 8’ by tensor rules. This cannot be
extended to finite regions, because the transformations 7'->7T" are not
integrable. To meet this difficulty, consider the transformation
g=1Ig,= MetEudu, (7-44)

the product consisting of ten factors with space-like E, arranged in a fixed
order. The elementary transformations g, are applied successively (in the
reverse order to that in which they are written). The ¢, are not infinitesimal.
Applying this transformation to a strain vector, so that §— §’, we obtain a
strained configuration which will correspond to some point @’ in phase space.
We can adopt cﬁ',. as the coordinates of @'.

Let one of the ¢,, say ¢,, receive an increment dé,. Let the new point
be @”, and the new value of ¢ be ¢". For two matrices ¢, ¢” which differ
infinitesimally we can find a matrix d® such that

q” —_ e}deq'
It is easily seen that dO=XE d¢, X, (7-45)

where X is the part of the product IT which precedes g,. X cannot be singular
(§3:6). In general d® will include time-like matrices. Since edd® i the
transformation which changes @’ to @”, the components of d®, are the
natural coordinates df,, of Q" referred to the origin ¢'.

Similarly, we can express the other displacements d¢, in natural co-
ordinates df, at @'. The jacobian 0 (¢,)/0 (6,) gives the ratio of the volume
element dr =dg¢,d, ... dd,, to the natural volume element dw =df, db, ... db,,
and hence determines V' —g in the usual formula dw=" —gdx.

The half-period of each of the ¢, is 2. After each half-period the values
of g repeat themselves with opposite sign, and the corresponding strain
vectors repeat themselves; so that the half-period represents a circuit of
phase space. Hence for the whole of phase space, or of that part of phase
space covered by the coordinate system ¢,

f dr=(2m)0.

Thus unless V' —g becomes infinite anywhere, or unless there are configura-
tions not obtainable by the transformation (7-44), the volume [dw is finite.

Since X cannot be singular, (7:45) shows that 06 /0, is not infinite, and
hence Vv — g is never infinite. There are, however, locx where V' —g=0. For
example, if the first two factors of II are e*EV"‘ve}‘%% where E,, E, anti-
commute, we have by (7-:45) for a displacement d¢g,

d® = eiﬂ'¢vE0' d¢0 e_iE#' = eEP¢I’E0 d¢0 .

On the locus ¢,=13}=, this becomes E, E,d¢,. The product of two anti-
commuting space-like matrices is a time-like matrix; thus d® is wholly
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time-like, and d©, vanishes.t But this type of singularity, in which a small
natural volume is infinitely magnified in coordinate volume, is harmless for
our purpose.

I have little doubt that a geometer could furnish a more elegant proof.
Probably he could evaluate the volume. But 1 think the above investigation
satisfies us that the volume of phase space is finite.

7:'5. Stereographic Coordinates.

One of the most important practical steps in the theory is to provide the
analytical machinery for investigating differential equations of the second
order. For this purpose we introduce a system of coordinates valid (under
certain restrictions) for finite regions of phase space.

On a hypersphere of radius R, stereographic coordinates are such that the
line element is ;5 _ () | r24 Ro)2 (da2 4 dy + d2?+...), (7-51)
where r2=2x2+y2+22+.... The coordinates are thus locally orthogonal and

isotropic, but not uniform; the actual length ids is A, times the Kuclidean
length (dx®+dy?+dz%+ ... )}, where

A =(1+7%/4R%)"1, (7-52)
The hypersphere is in this way projected into a Euclidean space with a
variable gauge factor A,.

Analogous coordinates z, in phase space are defined as follows. Let
X=X,E,z,, the summation being restricted to the space-like matrices.
Then stereographic coordinates are such that the displacement from the
origin to the point z, corresponds to the transformation

1+X/2R)? )

The right-hand side is to be interpreted by expanding in infinite series. This
formula is limited to a domain containing only perpendicular coordinates
together with its infinitesimal neighbourhood in all directions. That is to
say, X is limited to a pentadic expression or to a single algebraic variable,
but dX is unrestricted. The inclusion of the infinitesimal neighbourhood is
essential, because these coordinates are used principally when we are treating
the complete ten-dimensional volume element of phase space.

Accordingly X2 is algebraic,} and we set

X2= —r2, (7-54)

+ This is illustrated graphically by taking K, E, to correspond to rotations of a sphere
in the planes 2y, yz. Taking an origin on the x axis, a displacement from the origin to any
point on the sphere can be represented by two such rotations in the order given. Different
values of ¢,, ¢, will give different points, unless ¢,=4= or ¢,=0. This example shows
that the singularity of the representation at these two points does not signify a failure of
the coordinate system ¢, to cover the whole of the space.

t It is tempting to describe the domain of X as being limited by the condition that X2 is
algebraic; but we define it more stringently in order to exclude compact E-nnmbers (5-66).
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If displacement from z, to z,+dx, corresponds to the transformation

el4®, we have by (7-53)
Jhas {1+X/2R}*= { }i.
1-X/2R 1-(X+dX)/2R

When X is limited as above, the most general matrix dX can be divided into
two parts, one of which commutes and the other anticommutes with X; for
the limitation secures that a complete set can be formed with X/r as one of
its members; and if dX is resolved in that frame, its components either
commute or anticommute with X /r. The transformations corresponding to
the two parts of X can be treated successively, since they are infinitesimal.

First, let X commute with X. Then, since there are no non-commutative
symbols, (7-55) can be solved like an algebraic equation, giving

1+ X/2R ~

d0=d {log 1—_—7(/-273} —(1-XY4R}dX/R.  (7-56)

Next, let X anticommute with X. Then the differential of any even
power of X is zero. Since

{1 +X/2R}*_ 1+ X2R
1-X/2R] ~ (1-X2/4R3)¥
1+ X[2R|}__ dX|2R__dX( X)-'(1+X]2R)}
{1_—‘-—)-(/—2_1_\’,} T (1-X*4R2)b 273{ zZ’R} {T——Ifm} '

Hence by (7-55)
¢ -1 2 \-1
eid‘°=1+‘—l}-{1+ é} =1+dX{1+ . } {1 X},

1+ (X +dX)/2R (755)

2R| 2R 2R\ Tim® " 2R
r2)-1(dX dX.X

By definition X and dX contain only space-like matrices, and since they
anticommute their product is time-like. Thus (7-56) and (7-57) give the

same value of 0, 30 _ () | 214 p)-14X/R=2.dX/R (7-58)
by (7-52).

Thus the differentials dz, are the natural linear coordinates at the point
considered, but the scale constant R/A, is variable—precisely as in (7-51).

The volume of a ten-dimensional element being

dw=db,db,...d0,=V —gdz,dz, ... dx,,
we have by (7-68)
vV —g=(\/R)0= R-19(1+1%/4R%)1°, (7-59)

The following theorem is required later:

If a transformation X (not infinitesimal, but not containing antiper-
pendicular components) is applied to the strain vectors, the stereographic
coordinates of all points in the infinitesimal neighbourhood of the origin are
changed by the same amount, to the first order.
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Let the stereographic coordinates 0, dz, of the origin and a neighbouring
point be changed by the transformationtoz, , 2, + dx,’; andletdX = ZE, dx,,
etc. We have to show that dX’=dX. The transformation is that given by
(7-53), and we have

{1 +X/2R}‘1'e — {1 + (X+dx')/2.n}i
1-X/2R 1-(X+dX")/2R
where dX" differs (if at all) from dX' by including time-like components.t
By the conditions imposed on X, we can divide dX into two parts which
respectively commute and anticommute with X, and treat them separately.
For the commuting part the left-hand side can be treated algebraically, and
gives immediately the required result dX" =dX. For the anticommuting
part we proceed as in obtaining (7-57) and find that X"’ differs from dX by
time-like components only, so that dX’'=dX.

This result may also be stated in the form: In stereographic co-
ordinates, a finite displacement of the above restricted type commutes
with all infinitesimal displacements.

The results of this section are used extensively in Chapter XiI.

7-6. Associated Strain Vectors and Space Vectors.

We employ four-point matrices, E,, E; being as usual the real members of
a pentad. Let e, be a covariant wave tensor which has the value E, in the
coordinate system initially chosen. Then, after a transformation ¢, we have
e,=qE,9™" or gE,q according as ¢ contains a time-like or a space-like
matrix (7-22).

The wave tensor ¢,; has the remarkable property that it is invariant for the
ten rotations in five dimensions (kinematic rotations). This is easily verified,
remembering that by the above formulae it is unaltered by transformations
with real matrices with which it commutes or imaginary matrices with

which it anticommutes. Thus for all orientations of the axes in five dimen-

S10n8 eys=Eys. (7-61)

No other strain vector has this property. It may be compared with the
metrical tensorg,” = ,” and the contravariant tensor density e,,,,in ordinary
tensor calculus, which are likewise exceptional in having invariant values.

In ordinary tensor calculus we define associated covariant and contra-
variant vectors 4,, A* by the relation Ag=g,34% We shall now define
associated (initial) covariant and contravariant wave vectors ¢*, x*. A
linear relation between them must be of the form

$p=x"Aug,

t The left-side gives the transformation 0 — dz, followed by the transformation 0 —» 2,
By definition this takes us to the pomt 2, +de,’ . We cannot immediately identify it with the
direct transformation 0 - x, +dx,’ smee an mﬁmtosnnal time-like matrix may be included.
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where a3 is a covariant wave tensor. Consider the special case @ =1 (€s5)ag-
Then ¢g=1x* (Ess)aps by (7-61); or, dropping suffixes,

*=ix*Ey. (7-62)
Wave vectors connected by the relation (7:62) will be called associated wave
veclors.

Thus in wave-tensor calculus, (¢£,;) g plays the part of g «gin the operation
of lowering a suffix.t Since (¢E;)%=1, we have also x*=i¢*E,;, which
defines the operation of raising a suffix. Since four-point matrices are used,
raising or lowering a suffix is a rather simple process; for example, in the
standard pentad (3-27),

Eg= 0 0 1 o0
0 0 0 1
-1 0 0 0
0 -1 0 0
Hence b15 B2y B3, Pa=1(x% x* — x4 —x°)- (7-63)
Now multiply (7-62) by a covariant wave vector ¢ by outer multiplication.
We have Yb* =ipx*E,;.
Or, denoting the covariant wave tensor i¢* by S, and the mixed wave
tensor §x* by T, S=iTE,. (7-64)

We have therefore the important result:

If a space vector T' s multiplied by 1E,; we obtain an associated strain vector
S. Reciprocally, if a strain vector S i8 multiplied by 1 E 5 we obtain an associated
space vector T'.

The components of § are obtained by shuffling the components of 7', and
in some cases inserting factors +; the process is thus somewhat analogous
to (7-63). We have already given the precise relation between the s, and #,
in (4-66).

The relation (7-64) is invariant for kinematical rotations, but electrical
rotations (§ 6-4) are excluded. It would be undesirable to exclude electrical
rotations of a strain vector; because a strain vector is used primarily in
connection with phase space, and some of the directions of displacement in
phase space correspond to electrical matrices. But we have suggested that
the term ‘‘space vector’’ implies that only kinematical rotations are con-
templated (§ 4-3). It would appear therefore that the strain vector'is the
more fundamental conception, and that space vectors are a derivative
conception introduced into physics by the formula (7-64). That is to say,
we take S to be a covariant wave tensor for all transformations; then the

1 If we could depend on the suffixes appearing explicitly in the formulae, we should
naturally use the notation x°, x, for the two associated wave vectors; but since suffixes are
generally omitted, we have to distinguish them by different letters y, 4.
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matrix 7' determined from it by (7-64) will behave as a mixed wave tensor
for kinematical rotations but not for electrical rotations; so that it will be
rigorously a space vector, but only imperfectly a mixed wave tensor. 1f all
space vectors in physics originate out of strain vectors in this way, we see
why there is never any occasion to employ in practice the extra relativity
transformations possessed by space vectors derived from mixed wave
tensors. We have previously attributed the absence of these transformations
to the neutrality of space-time. The two explanations are connected; because
a system composed of particles of one sign could have no equilibrium con-
figuration, and give no foothold for statistical mechanics with its attendant
conception of phase space.

Since (7-64) is the same equation as (4:65), S is the three-dimensional
density of 7'; and we reach our earlier definition of a strain vector as the
three-dimensional density of a space vector. The relation is reciprocal, and
T is also the three-dimensional density of S. But the discussion in § 4-6 was
limited to an infinitesimal region round the origin, where the volume element
of the 3-space was dWqey =iEdw. If we move away from the origin, the
matrix of dW, 4, will no longer be the original E;. In addition to the change
of direction of the normal to space-time, we must allow for an arbitrary
rotation of the time direction, since there is no absolute way of defining the
reckoning of simultaneity over an extended area. The general formula for

the volume element is AW, =i (e45) B dw, (7-65)

where (e,5),B is the space vector which has the value Ej; in the original co-
ordinate system at the origin. Hence the three-dimensional density of 7' is
iT (e45).P, whereas the strain vector is ¢ Ey5 =17 (e45)ag-

We see therefore that the elementary definition of a strain vector as the
three-dimensional density of a space vector, and vice versa, does not hold for
an extended curved region. It can, however, be preserved if we represent
the element of volume as a strain vector with matrix (e,5),g instead of in the
more familiar way as a space vector with matrix (e45)sB - To regularise this
we distinguish an internal and an external three-dimensional space. They
consist of the same points; a particle which is in one is in the other; but the
metrical conceptions are different. The internal space is part of phase space,
corresponding to three of its ten dimensions. We have seen (7-421) that the
whole volume element is scalar; the separation of the three and the seven
dimensions is so drawn that each combination is a strain vector with matrix
E,;, constant throughout phase space, and therefore in a sense characteristic
of the whole phase space.

The phase space, including the internal space, is described wholly by
strain vectors. It will be remembered that the matrix d®,, determining
displacement in it, was found to be a strain vector (§7-3). But when the
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three dimensions are separated from the others, the densities or fluxes of
strain vectors with respect to the three-dimensional volumes constitute
space vectors. These require for their representation an external space.

7-7. Normalised Strain Vectors.

We shall now transform the wave equation so that it applies to strain vectors.
The equations giving the factors , x* of a space vector are

Hy=0, y*H=0, (7-71)
where H = Ey;p; + Eg;p; + B ps + Eys pg — m, by (6-51). Let
H,= — EygH = Ey p, + Eyypy+ Egy g+ 0y + Eyggm. (7-72)
Then (7-71) becomes  E zH =0, x*E,H,=0,
so that Hy=0, ¢*H,=0, (7-73)

where ¢* =ix*E,; by (7-62). These are the wave equations for the factorisa-
tion of a strain vector y$*. The hamiltonian H, is part of yd*. If p,=1ip,,

wo have H, =By p; + Eoy s+ By P + Frg Do + Egsm. (7-74)

This satisfies the reality conditions for a strain vector (§6-5 (3)), the coeffi-
cients in (7-74) all being real. The energy p, is associated with the algebraic
matrix F,q; and the coordinate conjugate to it, namely the time ¢, must also
be associated with E,q. Accordingly in phase space the algebraic phase
represents the time.

Since the phase space corresponds to the internal configurations of
a system, the time 0,4 is measured in the direction defined by the external
momentum vector (§ 7-1).

In phase space the algebraic phase may be separated from the other phases,
leaving a nine-dimensional space. This is permissible, because the algebraic
phase commutes with all the others. If dw, is the nine-dimensional volume
element and df,q the algebraic phase, so that

we can treat df,q separately in integrating; so that, if Q is the volume of the
ten-dimensional phase space, and €, the volume of the nine-dimensional
space, Q=0Q,.2. (7-752)
In defining phase space we associated a strain vector S with each point.
We shall now more definitely associate a strain vector X = Sdw,/Q, with a
range of configurations dew,. This strain vector will serve three purposes:
(1) Its algebraic phase indicates the time.
(2) Its symbolic phases describe a particular configuration.

(3) Its amplitude indicates the probability of the system having this
configuration to within a range dw,.
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This interpretation applies differentially to small changes of 2, but it is
not so easy to interpret X itself. For the latter purpose we must introduce
the determinant of =. Since det X is invariant for all non-algebraic displace-
ments in phase space (§ 3-6) it is independent of (2). For a purely algebraic
strain vector, det X =34, If then we take as ‘‘origin the configuration for
which the strain vector is algebraic (regarding this as the standard un-
strained condition), we have

(1) The time is the argument of the complex number (det o)t
(2) The configuration is specified by the matrix Z/(det )t
(3) The probability is the modulus | (det =) |.

It is a most important feature of the symbolic theory that the same
symbol specifies both the configuration and the probability that the system has
that configuration.

The probability distribution which we contemplate initially is uniform
throughout phase space, so that an element dw, contains probability dw,/<2,.
Hence for the initial probability | (det S)} |=1. In particular, at the origin
(standard unstrained configuration) S = 1. This initial or & prior: distribution
is the framework—the “blank sheet”’—into which we insert whatever we
may learn about the system by special observation. If the observational
evidence shows that at a time ¢ certain configurations were more probable
than others, we inscribe on the blank sheet a function f(f,, 6,, ... ) in-
dicating that the actual probability of the configuration (6,, 8,, ...) was f
times the initial probability. We call f the modifying factor. The modified,
i.e. the actual, distribution is therefore represented by a strain vector §
which does not in general satisfy | (det 8)t | = 1. The factor f is necessarily
an algebraic function. In wave analysis it is expressed as the product of two
wave functions, and is therefore formally a wave tensor of the second rank
in which all terms are zero except the quarterspur. This suggests a
generalisation of the modifying factor f. It often happens that in intro-
ducing the modified probability we make at the same time a transformation
of coordinates; that is to say, we compare the modified probability of
a configuration with the initial probability, not of the same configuration,
but of a configuration related to it by a transformation. The trans-
formation and the modification of probability are comprised in a non-
algebraic modifying factor f, which is the product of vector wave functions.

Whether we are treating the initial or the modified distribution, its strain
vector is normalised so that the total probability in the volume Q,is 1. In
this normalisation the time dimension 6,4 is excluded, because the con-
ception of distributing probability over extension in time is rather unusual.
An atom exists continuously in time, so that the association of its pro-
bability with particular time intervals d¢ does not arise in a direct way.
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But consider a clock with one hand moving at a uniform rate. If the clock
is part of the system, we shall, in specifying the configuration of the system,
specify the position angle 6,4 of the hand of the clock; and the elementary
range of configurations dw will include the element df,4 of position angle.
Thus from the internal point of view 6,4 is an ordinary angular coordinate
in the specification of configuration, and is one of the dimensions of the
domain over which the unit probability is distributed. It may be included
in the general normalisation; or (owing to its commutation with all the other
phases) it may be excluded and normalised separately, so that the pro-
bability df,¢/27 of a range df, is stated separately.

It was rather surprising to find time appearing at all in phase space. We
apparently rid ourselves of it when we retained only the displacements
associated with space-like matrices. But it has gained entry in space-like
disguise as the position angle of the hand of a clock. Moreover, it is a periodic
angular coordinate, not an open infinite coordinate like external time.

This may be made clearer by an illustration from celestial mechanics.
The orbit of a planet is specified by six elements, one of which is the epoch
of perihelion passage 7T'. The element 7' corresponds to 6,4. If there are
several planets, we must include the element 7' for each of them in enumer-
ating the possible systems which might be formed. Thus 7' is an essential
coordinate of the configuration space in which we represent the possible
combinations, although it is ordinarily conceived as having a time-like
character.

Since time is measured by a phase angle, instants which differ by multiples
of a period are to be considered identical; and the whole extent of time is
27 R in natural linear coordinates. That is because in the structure assigned
to the system there is no provision for a revolution counter. A more extended
time reckoning can only be given a meaning when we treat more complicated
systems. It is fairly obvious that infinite time will appear automatically
when we introduce systems with incommensurable periods.

7-8. Physical Meaning of Strain Vectors.

By the aid of space vectors we have defined a domain which has the primitive
property of conceptual space-time, namely that all points of it are equiva-
lent. Itis all one whether a given object is at the point 4 or at the point B.
But this is in flagrant contradiction to our experience that somehow it is
possible to find out that the object is at 4, not B. We have to combine two
different conceptions of position—absolute and relative. By absolute I mean
‘‘conceived as absolute”, i.e. pictured in an abstract geometrical frame; by
relative I mean ‘‘relative to observable landmarks’’. In so far as the points
of space-time symbolise absolute positions they are equivalent to one
another; in so far as they symbolise relative positions they can be dis-
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criminated observationally. According to whether the point is being con-
sidered in its absolute réle or its relative role, the position vector defining it
is a space vector or a strain vector.

The same applies to other physical entities. The energy and momentum
constitute a vector. Referred to an abstract geometrical frame, this is a
space vector, but relative to another physical system it is a strain vector.
The difference between space vectors and strain vectors might be defined
by saying that when we treat of space vectors we are contemplating the
‘“blank sheet”; when we treat of strain vectors we are beginning to write
something on the clean page.

It is true that when we contemplate two space vectors we are implicitly
writing something on the clean page, namely the internal relations of a
system consisting of two parts. But the treatment of two vectors, and the
extraction of the internal relations of that which they represent, is slightly
more advanced than the problem we are now handling, and is not suitable
for our first writing lesson. We here treat the internal relations as already
extracted and presented to us in the form of a strain vector.

The conception of relative position or relative momentum arises when,
instead of contemplating the particle as a solitary system in an abstract
frame, we regard it as part of a more comprehensive physical system.
Consider, for example, an electron in an atom. A displacement of the
electron has two aspects. It is a translation of the electron from one point
to another in external space-time; as such it is a change of the space
vector defining the absolute position of the electron. But it is also a
deformation or strain of the atom; as-such it is a change of a strain
vector. The atom is changed to a new configuration, so that there is a
displacement in the phase space in which the configurations of the atom
are represented.

The tensor calculus provides a machinery for locking the changes of one
characteristic to those of another. The changes of strain of the system are
locked to the changes of absolute position of its parts. We should commonly
say that the change of position of the electron is the cause of the change of
strain of the atom. To work out this, connection in an actual system of
several particles is too complex a problem for us at present. We proceed in
the converse way. We consider the simplest form of tensor interlocking, and
construct the ideal “‘system’’ to which it would apply. We cannot find any
more elementary starting point thap the locking of a covariant wave tensor
to a mixed wave tensor; and the former has been called a strain vector in
anticipation of this application.

Accordingly when we wish to pass from the absolute to the relative
aspect of the position of a particle, we treat the particle as an element of an
ideal physical system whose configurations (so far as they are determined by
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this particle) are specified by a simple strain vector, and therefore occupy
a phase space of the kind we have been investigating.

What exactly has been added to the particle to make it part of a physical
system instead of a lone particle—to de-absolutise it? Mathematically it is
the matrix E,;, which transforms its space vector into its strain vector. This
matrix defines a particular three-dimensional section of the world—a plane
of simultaneity. Physically the particle is made part of a system by asso-
ciating with it a plane of simultaneity.

We have seen that when a number of particles are treated as a combined
system, each particle retains its separate space coordinates, but there is only
one time coordinate for the whole system. This replacement of the in-
dividual time coordinates by a common time coordinate is the essence of the
process of combining; it defines the change in our point of view when we
consider the system as a whole instead of its constituent parts. A hydrogen
atom is composed of a proton and electron; but a proton today and an elec-
tron yesterday do not constitute a hydrogen atom. We have seen (§ 7-1) that
the planes of simultaneity which correspond to the common time coordinate
of the system are determined by the direction of its external momentum
vector.

We can now see how the conversion of space vectors into strain vectors
corresponds to our change of attitude when we consider the particle to be
part of a system. Actually to introduce the other particles of the system
would greatly complicate the problem; but, in anticipation of their presence,
we introduce the planes of simultaneity which will be determined by the
external momentum vector of the system when it appears. We construct
these planes in the geometrical space-time which previously contained no
indication of a particular direction of section; we inscribe the matrix E,;,
henceforth to be permanently associated with the planes of simultaneity,
on the sheet which was previously blank. Simultaneity is no longer arbitrary;
we cannot modify the reckoning of it to suit a particular particle of the
system. Suppose that the particle has & momentum in the z-direction; by
(6-51) the space vector representing this is Zyzp,. Formerly the particle
could be “reduced to rest’” by a Lorentz transformation with matrix of the
form E,,1u,,; but we are no longer allowed to rotate the plane of simul-
taneity. The strain of the system (as compared with a system in which the
particle is at rest) is measured by the inhibited rotation £,,iu,,. Apart from
a numerical factor this is the strain vector Eisp,.iE=E,,ip, associated
with the space vector E,;p,.

This example calls attention to another feature of the connection between
internal and external space. The external velocity or momentum vectors
correspond to internal displacement vectors, and vice versa. At present we
can only recognise this in a preliminary way; but another example may be
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of interest. If we apply this principle to the internal energy attached to the
matrix E,q, the corresponding space vector attached to the matrix K,
should be interpretable as an external time displacement. As in the previous
example it will be an inhibited or virtual time displacement. If we change
the scale of the system, we change the light-times between its various parts,
and therefore change the time at which a particle becomes causally effective
at the centroid where the external wave vector is supposed to be located.
But in our internal wave functions the particles are assigned simultaneous
times, not the times at which they are causally effective. T'hus the distance
of a particle from the centroid can be looked upon as an inhibited time displace-
ment. As an isolated particle we should have contemplated it at an ante-
dated instant to allow for the lag of causal efficiency; as part of a system we
can only contemplate it at the same instant as the rest of the system. If it
receives a radial displacement 7, a further lag 8r/c is introduced which (if the
particle were not considered to be part of the system) would be compensated
by giving it a time displacement 8r/c. Since the planes of simultaneity in
the system are fixed, we cannot give an individual time displacement to the
particle; and the inhibited time displacement appears as, and is the measure
of, a strain of the system. We have seen that this strain will be associated
with the matrix E,q and therefore be an internal energy. Thus a system will
in general have an internal energy depending on its linear scale. This is one
aspect of the origin of electrostatic energy.t

Our present point of view is that, instead of starting with an elementary
particle defined to be such that its properties can be represented by a com-
plete space vector, it is rather less abstract to start with an elementary
system defined to be such that its condition or “configuration’ can be
represented by a simple strain vector. Then by introducing the associated
space vector we detach the active principle of the system from the passive
principle represented by planes of simultaneity, and so obtain a still more
abstract entity, namely an elementary particle in free space. It may seem
far-fetched to describe a particle coupled with a plane of simultaneity as a
“physical system”. But that is as much of a physical system as we can
represent by a simple wave tensor. And inasmuch as current quantum
theory has made shift to treat a wide range of problems of observational
importance with simple wave tensors, it is an important stage in the advance
of the theory towards actuality.

If a system A were completely isolated it would be unobservable. There-
fore it enters into observation as part of a more extended system B. As such
it will be represented in the internal space of B. The external momentum

1 Conversely, if we derive the electrostatic energy as in Chapter xv, the foregoing
investigation shows how to connect with it the idea of antedating the particles by the
light-time.
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vector of B determines planes of simultaneity for the internal constituents
of B; and the external momentum vector of 4, which was a space vector so
long as A was considered in isolation, is replaced by the associated strain
vector when A is considered as part of B. But B in its turn would be un-
observable if it were not part of a larger system C; its external momentum
vector must therefore be replaced by a strain vector, representing B as a
constituent of the internal structure of C. And so on.

At each stage there is an external space vector of the system contemplated,
which is converted into a strain vector when we consider a larger system—
until the system has been extended to comprise the whole universe, when
the external vector can be dropped, all phenomena being comprehended in
the internal structure.

From this point of view space vectors make only a temporary appearance
—when we halt for breath in the course of the analysis. As soon as we are
ready to proceed further, we replace them by their associated strain vectors.
There are, however, two reasons why space vectors remain an important
conception in practical investigation. Firstly, it is impracticable to treat
the exact equations of the internal states of highly complex systems;
therefore when we have to deal with'a number of systems with weak inter-
action, we leave them uncombined and treat their mutual influence (which
brings them within reach of observation) by approximate perturbation
methods. Secondly, in dealing with a large number of similar systems, we
combine them statistically, not individually. The external space vectors are
not transformed individually into internal strain vectors of the complex
system; but are first replaced by a probability or average distribution. The
internal state of the complex system is described by a very much simplified
set of strain vectors embodying coefficients of the distribution function.
Thus the internal state of a gas is described by pressure, energy density,
virial, vorticity, etc., representing certain averaged characteristics of the
external space vectors of the molecules. Normally the direct procedure of
replacing space vectors by their associated strain vectors is not extended
to systems greater than a molecule.t

7°9. Singular Phase Space.

The phase space which we have been considering is generated by the trans-
formations of a non-singular strain vector. If we use instead a singular
strain vector §,, the resulting phase space has fewer dimensions, since
8,d0,=0 when dO, is a pseudo-reciprocal of S,. Displacement in such a
direction involves no change of the strain vector and therefore no change of

t The averaging could perhaps equally well be performed on the associated strain
vectors. But since space vectors are more familiar we generally adhere to them as long as
We can.
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configuration; the direction accordingly is not a dimension of the phase
space of S,.

To show the relation between singular and non-singular phase space, we
consider a non-singular strain vector which at some point of phase space has
a purely algebraic value S,. By (6-64) this is analysed into spectral com-

ponents 8+, +8,+ Sy =15,. (7-91)
The components are pure and therefore singular. Consider the component
S,. Since the products S,S,, etc. are zero, the singular directions, which
satisfy 5,d0,=0,ar6 4o _pg, 108, +dS,. (7-92)
Since d®, cannot contain time-like matrices, the ratio b : ¢ : d must be chosen
80 as to eliminate the time-like matrices E,3, Ey;. There is therefore only

one singular direction d0,=c (S, +8;). (7-93)
If, as in (6-64), S,=—}iS,(E,+Ey+ Eyz+ Eyg), (7-941)
the singular direction is d®,=(—E, + Hg)dd. (7-942)

For S, and S; the singular direction is d®, = (X, + E\4) d¢.

Non-singular phase space of ten dimensions can thus be regarded as a
superposition of two singular phase spaces of opposite spin, each of nine
dimensions. The axis of spin, here represented by £, , can be in any direction
in three-dimensional space. When the singular phase space of S, is delineated
in ordinary phase space, the added dimension (direction of ¢) gives a line of
indistinguishable configurations which are really one configuration. The
equation of the singular line (7-942) may be written

Or, since dt = Rd#f,4, df,/dt= —1/R.

The singular line therefore represents an entity spinning with uniform
velocity. We do not distinguish the different orientations corresponding to
the sequence of points along the line, but count the state of spin as one con-
figuration—a constant state of strain of the system. The strain produced by
the rotation is to be compared with the gyrostatic torque of a fly-wheel, not
with the torque of a wound-up spring. A change of the plane of spin would
be a change of configuration.

When we separate non-singular phase space into two singular phase
spaces, we require an additional variable to specify how the probability is
divided between the two phase spaces. This extra variable compensates for
the loss of a dimension in passing to singular phase space. It is to be remem-
bered that S,+ S, does not represent two particles of opposite spin; two
particles would require a double wave tensor. It represents a particle which
has equal probability of having either spin.

ETP 8
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It is perhaps rather surprising that there is no corresponding separation
of phase space for positive and negative charges. The physical reason appears
to be that the conception of phase space is bound up with the conception of
statistical equilibrium, and there can be no equilibrium if the charges (or
the probabilities of positive and negative charges) do not balance. Equi-
valently it is attributable to our result that electrically saturated space
satisfies different reality conditions; and the phase space (if any) associated
with it would require to be reinvestigated from the beginning. Although
there is considerable analogy between opposite sign of charge and opposite
spin, there is the fundamental distinction that opposite charges, unlike
opposite spins, cannot be transformed into one another by relativity
rotations.



CHAPTER VIII
THE DIFFERENTIAL WAVE EQUATION

8'1. Conservation of Probability.

In the terminology introduced by Diract a ““state’’ of a system consists of
a particular distribution of probability over the various possible configura-
tions. The state is supposed to extend over all time. The probability dis-
tribution may vary with ¢, but always so that the integrated probability of
all the configurations for a fixed value of ¢ is unity. In other words pro-
bability is conserved.

We may treat the probability as a fluid occupying the configuration space,
the probability of a given range of configurations being represented by the
mass of fluid in a corresponding volume. The change of distribution of
probability is then represented by a motion of the fluid.

The method of wave mechanics is to analyse the whole probability of the
system, which must be unity, into the probabilities p,, p,, 9, ... of a set of
elementary states a, b, c, .... Then if g, (x,, t) is the probability of the con-
figuration z, at time ¢ in the state @, the whole probability of the configura-
tion z, at time ¢ is

Pa-9a (xp.’ t) +Ps- % (x,‘, t) +pc-qc(wlu t)+ seee (8'11)
A perturbation of the system means a variation of p,, p,, p., ..., subject to
their sum remaining unity.

The object of this device is to separate the mathematics of interaction
from the mathematics of structure; for the influence of extraneous bodies is
described by changes of the factors p, and the functions ¢ which describe
the structures of the various states remain unaffected.

Since the elementary states are introduced for analytical purposes, we
may impose on them such limitations as appear advantageous. 1t would be
possible to contemplate discontinuous flow of probability, whereby pro-
bability is created at one point and disappears at another point in the state,
subject to the total probability remaining constant; but in current quantum
theory the states are assumed to be continuous, that is to say the fluid moves
subject to the equation of continuity.

We introduce a vector j, whose component in the time direction gives the
density of the probability fluid and whose space components give the
density of its flux. The conservation of probability is then secured by the
equation of continuity of the fluid

divj,=0. (8-12)
1 Quantum Mechanics, 18t ed.
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This assumes that the configurations are represented in a space with Eucli-
dean metric. More generally the density of probability and of its flux are
represented by a vector density j,, and the equation of continuity is

divj,=0, (813)
the covariant divergence of a vector density being the same as its ordinary
divergence.

For the general development of the theory it is necessary to use the phase
space and strain vectors treated in Chapter viI; but in order to connect our
treatment with Dirac’s theory, we first consider a simple particle whose
“configurations’’ are determined by its coordinates z, y, z in ordinary space.
The probability distribution in state @ is then a function ¢, (z,y, 2, t).

Since we admit perturbations, we have to recognise an indcpendent
variable s extraneous to the state as an argument for the perturbations, so
that (8-11) becomes 0 Pu (8).44 (2,9, 2,1). (8:14)
The distinction between s and ¢ is often ignored; but it is necessary to attend
to it when we consider Lorentz transformations. We may apply a Lorentz
transformation to z, y, 2, ¢, and thus ohtain a new but equivalent description
of the probability distribution in the state; but the function p, (s) is a factor
applying to the whole domain of z, ¥, z, and the time s which appears in it is
not associated with any particular values of z, y, 2; there is therefore no
possibility of applying a Lorentz transformation to s, and it is invariant
for the internal transformations of the state.

The perturbations are imposed on the system from without, and occur at
times fixed according to an extraneous time reckoning. If we like, we may
choose the time ¢ within the state so as to conform to this reckoning; but we
then lose the possibility of applying Lorentz transformations to the state.
It is undesirable to do this—at any rate at the present stage—since the
study of the Lorentz transformations, initiated by Dirac, has contributed
greatly to our understanding of the theory. To preserve this advance and
exhibit it in its proper relation to the more general developments, we have
to distinguish a relative time ¢ in the state and an invariant time s which
serves as a link with other systems.f

If we wish to make a relativity transformation which includes both the
perturbed and the perturbing system, we must treat them as one combined
gystem and analyse the probability distribution into elementary states of
the combined system. But then, for this combined system, there will be an
invariant time s forming the argument of the perturbations of the combined
system by systems extraneous to it. However many systems we combine
there is always an invariant time left over for the purpose of representing

1 In the nomenclature introduced later in this chapter, ¢ is a geometrical coordinate and
8 a dynamical coordinate.
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the perturbation effects of systems not yet included. It would be idle to
consider a system without making provision for perturbation from outside;
for in that case we could never acquire knowledge of it—unless indeed it
were 80 extensive as to include the brain of an observer.

We note in particular that the time ¢ is reversible, but the time s is irre-
versible. The axes in the state can be rotated so that t— —¢, and there is no
absolute distinction between waves travelling forward and waves travelling
backward in ¢. The latter are oddly said to have negative energy or mass
according to the technical definitions in quantum theory. But the inter-
action with other systems depends on the invariant time s; thus the rotation
of ¢ and the substitution of “negative mass” for positive mass does not
signify an observable change—it would not be a relativity transformation
if it did. Similar considerations apply to more complex systems, until we
reach a system which includes a human brain and is observed from within
instead of from without. Extraneous time s is then no longer needed. But
the inclusion of the observer in the system automatically prevents the
relativity transformation from being pushed so far as to turn ¢ into —¢; at
least it is unusual to include among the admissible systems of description
(§1-1) those of an observer whose consciousness runs backward in the
adopted time reckoning, and who endeavours to predict the past from his
memories of the future.

By (8:14) the probability of a configuration x, is a function of the two
times s, ¢t. The same duality of time occurs, for example, in perturbation
theory in celestial mechanics; at each moment s there is an osculating orbit
of a planet which professes to give the position of the planet for all times ¢
between —oo and + co. These positions are not actually realised. To obtain
the realised positions we have to associate corresponding values of s and ¢.
This means that in the present problem we have to lay down in the state a
series of loci f(z,y,2,t) =8 which give a *‘representation’ of s in the state.
In particular cases it could be arranged that f(r,y,z,1)=t=s; but, as
already stated, this definite choice of ¢ requires that we forgo the applica-
tion of Lorentz transformations.

"The coordinate s, which is primarily an extraneous time-variable but has
also a representation in the state, is a connecting link between the system
which is being described and the rest of the universe. This ideal type of
connection cannot be exactly realised in practice. The approximation lies
in the assumption that, whatever the source of the perturbation, its argu-
ment ¢ is represented by the same series of loci f (z, 9, 2, t) in the state. Prac-
tically this means that the velocity of propagation of all perturbations is
assumed to be infinite. If we require greater accuracy, the only course is to

amalgamate the perturbed and perturbing system and investigate the
states of the combined system.
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To insist on this greater accuracy would be a counsel of despair. It would
be to tell the physicist that, since the whole universe is interrelated, it is no
use his attempting to study anything less than the whole universe. It is
obvious that it is profitable to study portions of the universe as isolated
systems. The method of states provides for this, and at the same time makes
provision for re-attaching these systems to the rest of the universe in an
approximate way, so that they may not be entirely cut off from observation.

It would be possible to choose the set of elementary states a, b, c, ... in
many different ways. In practice therefore certain limitations are imposed.
In particular the states are so chosen that the wave tensor LE, j, corre-
sponding to the probability vector is factorisable. The state is then said to
be pure. Further, the whole set of states must be complete without being
redundant so that, when the probability distribution of the configurations
at time ¢ is given, the coefficients p,, p,, ... are uniquely determined by it.
The conditions of purity, completeness and non-redundancy require that
the states shall correspond to a spectral set of operators. The spectral
set is, of course, much more general than that which we have introduced for
resolving an isolated wave tensor (§ 5:7). We shall not enter into the detailed
treatment of these conditions, since our theory here coalesces with current
quantum theory.

8:2. The Divergence Condition.
For a system describable by simple wave tensors the probability vector j,
representing a pure state will be of the form
J=yx*=3Zj,E,.
We introduce two divergence operators

16 16
V=XE, @), V*=1(/,)E,, (8:21)

where 3/3x,, signifies 0/0x, written after its operand. Then since j, = — }x*E, i,
%, . O * 0
oz, - 1x 5z, Ey—ix*E, 5@'#,
so that, summing for p=1, 2, ..., 186,
divj=2(9j,/0%,) = — x* (V¥ + V). (8-22)

It is understood that the same frame E, is used throughout the whole
domain of z, in which § and x* extend.

The result of performing the operation V on i is another four-valued
quantity w. We can always find a matrix M such that w= M. Generally
M will be a function of the coordinates. We therefore set

Vi=Mp, x*V*=y*M*, (8-23)
so that divj = — jx* (M*+ M) p. (8-24)
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We ensure the vanishing of divj by setting M*= — M; so that (8-23)

gives the differential wave equations
(V=M)y=0, x*(-V*-M)=0. (8-25)

These wave equations will be invariant for all wave-tensor transforma-
tions, if V, V¥ and M are mixed wave tensors. This requires that o [0z, shall
be a complete space vector; that is to say, when a relativity transformation
is applied, it is transformed into a new array of operators 0/0z,' which are
linear functions of 9/9x,, , just as if it were a numerical vector. The condition
that 0/0x, is a complete space vector is equivalent to the condition that z,
is a complete space vector.

If we limit ourselves to solutions of (8:25) which are functions of four
rectangular coordinates (x,, 2,, 3, 2,), the equations reduce to

(E,%+E,%+E35%+E45%—M)¢=O, o
3 3 3 3
x*(-EIS*a—:;—EZE_ESS—@—E‘S;:;_-M)=O'
These equations are invariant only for the six relativity rotations in four
dimensions; because the other relativity transformations (applicable to
(8-25)) would reintroduce the terms that have been dropped.
Dirac’s wave equations for an electron of proper mass m in an electro-

magnetic field, which givesit an energy and momentum « 4 €an be written as

{%EM(—5%+K“)—M}¢=O,]

o s (8-262)
x*{}f(ig-@+xﬂ)—m}=0.1
Comparing (8:261) and (8-262), we obtain the identification
tM = —m+ B, x;+ Eyrg + Egng+ Eyxy. (8-271)
Writing as usual M =Xm, E,, we have
Myg=m (my, Mg, Mg, My)= —i(ky, Ky, Ky, Ky). (8-272)

We have made this comparison with Dirac’s equation in order to ascertain
the current nomenclature for the components of our space vector M. The
consequences of his equation have been worked out and compared with
experiment, so that we know how the quantities m, K, contained in it
manifest themselves observationally. Equation (8:272) transfers this
knowledge and the consequent nomenclature to our own equations (8:261).
It would be foreign to our plan to intermingle the current semi-empirical
theory with the purely deductive theory that we are developing, and our
reference to the current equations is for identification purposes only. In
current theory m is supposed to be a constant independent of the coordinates.
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We have as yet shown no reason why m should be constant; that is a con-
sequence of the dynamical equations, and will be proved in § 9-2; but it will
be assumed here in anticipation.

If Pu= -iéz—#+lcﬂ=i£;+lc“, (8:28)
(8-262) reduces to
(zEp.py.—m)./':O’ X* (ZEp.pp.—m):O,
which formally agrees with the simple wave equation as given in (5-13),
(5-14). But this is only a real agreement if (8-28) gives an algebraic value of
Py; for in (5-14) the p, are necessarily algebraic coefficients.

In order that the p, defined by (8:28) may be algebraic, § and x* must be
eigensymbols of 9/0x, . This requires that i shall be a function of z, of the
form P (X1, Ta, T3, T4) =f (%1, Ta, X3, 4) - o, (8-285)
where f is an algebraic function and i, a constant wave vector. We shall
call wave functions of the form (8-285) algebraic wave functions.

It would be undesirable to exclude non-algebraic wave functions. We
shall find, for example, that the wave functions giving the steady states of a
hydrogen atom are non-algebraic. Thus for unrestricted wave functions the
momenta p, are non-algebraic; and the identification of Py with the algebraic
coefficients j, in § 5-3 does not apply.

Thus in general we have two independent cquations

4
(?Eyju—m)x/;=0, (8-291)
4

(%’. E“pﬂ—m)x/:=0. (8-292)

The first is an identity, except that it is implied that the axes are so chosen
that j;=0. The second expresses the conservation of probability. For
algebraic wave functions the two equations are the same; so that the
momentum vector is the same as the stream vector except for a numerical
factor. For non-algebraic wave functions the two equations are distinct;
and no comparison between the stream vector and momentum vector is
possible, since the components of the latter are non-algebraic quantities.
We can rewrite (8-292), setting

4 16 ,
? B, Py =)1: B,p,

where the Pp' are algebraic coefficients; then the momentum vector can be
regarded as a complete space vector p,’, which has been formally reduced to
four dimensions by the device of admitting symbolic components.
If there is no electromagnetic field, (8-262) has the elementary solutions
./, = @¥ (D1 Ty +Dg Tg+P3 Ty—Do Tp) '/’o , X* = e~ ¥(D1 2+ D3 Zo+Dy T3—Dg Ty) Xo*’ ( 8: 293)
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where the p, are algebraic, and ¢,, xo* are solutions of the elementary wave
equations (5-13).

In this book we shall use non-algebraic wave functions in special in-
vestigations, but in pursuing the more fundamental problems we shall
generally limit ourselves to algebraic wave functions. That is because we are
especially concerned with the borderland of relativity and quantum theory,
and, as explained in the introduction, their meeting-point is to be found in
the most uniform conditions.

According to (8-28) there are two different formulae for p, . At present the
position (final or initial) of the wave vector is a sufficient indication which
formula applies. But it is hampering to have a definition of P, which pre-
vents us from changing the position of the wave vector; and we shall later
describe the difference of the two operators in a more general way (§ 8-6).

8:3. Covariant Differentiation.

We do not propose to generalise our formulae to apply to all kinds of curvi-
linear coordinates; but there is one kind of curvilinear coordinate which it
will be necessary to use, viz. an angular coordinate. Consider the trans-
formation from rectangular coordinates (x,, ,) to polar coordinates (r, 6,,)
in a plane; the question arises how this change is supposed to affect a general
space vector j, and its wave-vector factors . x*.

Our theory of ¢ has been hased on an orthogonal frame of reference, and
it would be a grave complication to depart from an orthogonal frame.
Therefore we do not consider the polar components of a vector in the sense
of general relativity, but rather in the sense of elementary mechanics in
which the ‘‘ polar components’’ of a force are its rectangular components in
the radial and transverse directions.t That is to say, our transformation
will correspond to (dx,, dx,) — (dr,rdb),), not to (dx, , dw,) — (dr,db,,). Thus
we retain an orthogonal frame, but the frame rotates as 6, changes; and a
local vector yx* is resolved orthogonally in continually changing directions.

We shall now find the covariant derivative of  with respect to 8;,. By
(4-15) the transformation ¢’ = e}enbia o gives t,' =1, cos 6,3 —ty8in 0,5, which
is the change of ¢, due to the axes having been rotated through an angle
—6,,. In the present case, when the angular coordinate changes from 0 to
0,,, the axes are rotated in the same direction so that the corresponding
transformation of i is  =e HEubuy, (8:31)

This assumes that there has been no ‘“‘real’’ change of ; that is to say, if we
had kept to rectangular coordinates, ¢ would have had the same value at

+ There is a distinction between ““a transformation of coordinates from (z, y) to (r, )
and “a transformation from rectangular coordinates (x, y) to polar coordinates (r, 6)”.
The first implies that all coordinates are to be treated alike as in general relativity; the
second implies that they are to receive the distinctive treatment usually accorded to rect-
angular and polar coordinates. (Cf. Mathematical Theory of Relativity, § 16.)
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(r,0,9) as at (7,0). We call displacement without real change parallel dis-
placement. Differentiating (8-31), the change due to parallel displacement is
0y’ [00,3= —3Ey,y’. For a general displacement we obtain the covariant
derivative by subtracting from the apparent change oy’/00,, the change
arising by parallel displacement. Thus the covariant derivative operator is

0 0
(551;) 6012+%E1’ (8'321)

The operator ~ M,,'= —i ( 3 98,“).; -1 (a—:— + a}E,w) (8-322)
is called the angular momentum conjugate to the coordinate 6y, - The term

—3iE,, is called the spin momentum. It was originally dlscovered as a
correctxon to the angular momentum, which had previously been assumed
to be —i0/08,,. We see that the spin momentum is merely the difference between
the covariant derivative and the ordinary derivative. It is a nominal addition
to the angular momentum due to our non-relativistic outlook.

By (3-38) the expectation value of &, is ij,,/j1, 80 that the expectation
value of the spin momentum is }j,,/j,4. The term ‘““spin momentum” is
primarily limited to the components jy3, Jjs, jia; but analytically all
components are on the same footing, and we have a complete space
vector J/2j,4 giving the part of the momentum (expectation value) which
arises from the difference between covariant and ordinary derivatives.
From this aspect the stream vector J is also a momentum vector. The
identification in § 66 of its Ep; component with mechanical spin is thus
confirmed and elucidated.

For an initial contravariant wave vector x*, the corresponding operators

Mm,'——i(sgw)c (&9 —}E ) (8-332)

Hence the covariant derivative of a space vector J =x* is

0 8
(g 1)} 49 i (s - 18
=0J/00,,+%(E,,J —JE,,). (8-34)
The angular momenta generally referred to in quantum mechanics are
conjugate not to the angles 6,,, but to angular parameters —a,, introduced
in the following way. Consider a distribution of y constituting an elementa,ry
state of a system. If the boundary conditions, extraneous electromagnetic
fields, etc. are symmetrical in the plane of 6,,,, we obtain another elementary
state by rotating the whole distribution of  through an angle a,, in that
plane. Thus we obtain a series of distributions ¢ (z,, %, 5, 2,, %)y Xy, Xa,
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5, x4 being coordinates, and «,, a parameter distinguishing one distribution
from another. In place of ,, x,, %3, , we can use polar coordinates, in-
cluding the angle 6,,. We have
¥ (o, @) =exp (B, 0, — %,,0/00,,) .4 (%,. 0), (8-35)
since the first term in the exponential gives the effect on ¢ of rotating the
axes backward through a,,, which is equivalent to rotating the whole dis-
tribution forward through «,,, and the second term is introduced because
the point ,, in the new distribution corresponds to the point §,,—«,, in
the old distribution.
Differentiating (8-35) with respect to a,,, we have

0 0
T _(m_gEF,), (8-361)
and the angular momentum conjugate to —a,, is
. 0 (0
MF”=1’5;—;;= —’l«(a—o;;—:}E“v). (8’362)
For x* the corresponding operator is
8 o
, ( 5%, -+ J:E,,,,) (8-363)

We shall call a,,, & dynamical coordinate, and distinguish M, and M, as
geometrical and dynamical angular momenta, respectively. The importance
of M, is that (in the symmetrical conditions already postulated) it com-
mutes w1th the hamiltonian; this, as we shall see later, makes it a constant
of the motion of the system, which is then said to possess an integral of
angular momentum. But when the conditions are not symmetrical, and no
integral of angular momentum exists, there is no reason to suppose that
(8-362) represents angular momentum of any kind. It is therefore rather
misleading to say that —i(9/00,,—1E,,) is the angular momentum of a
system; it is a form to which the dynamical momentum reduces in parti-
cular cases when it happens to be constant. On the other hand, M,," has
the same interpretation for symmetrical and for unsymmetrical systems
Whilst it has apparently little connection with momentum as conceived
in classical mechanics, it is a natural generalisation of the quantum theory
definition.

To reach the dynamical outlook we must promote a,,, originally intro-
duced as a parameter, to be a coordinate; so that  is a function of five
coordinates «,,, ¥, %3, 3, Z,, Or in polar coordinates «,,, 02, ¢, 7, t. (The
configurations occupy four dimensions 6,,, ¢, r, ¢, as before.) This means
that a series of elementary four-dimensional states is run together to form
a single five-dimensional state; and we adopt a new dissection into states
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in which the five-dimensional state is regarded as elementary. Incombining
the four-dimensional states we attribute to them a uniform probability
distribution in a;,. We can now assign only one probability factor p to the
whole five-dimensional state, whereas formerly we could assign different
probability factors p, to each orientation « of the four-dimensional state.
This sacrifice corresponds to the fact that, the conditions being perfectly
symmetrical, it is impossible to distinguish the orientation observationally,
and therefore we never have occasion to consider a modification of the
initially assumed uniform probability distribution in orientation (‘“‘a priori
probability ’) through additional information furnished by observation.

The usual method of obtaining (8-362) is to consider a form of hamiltonian,
which by its symmetry ensures that the dynamical angular momentum is
constant, and then to identify an analytical expression which turns out to
be constant as the angular momentum. This gives no indication of the cx-
pression for a non-constant angular momentum. For example, in an asym-
metric electromagnetic field, systems, besides being deformed by the field,
will tend to orient themselves in a certain way. Even if we ignore the
deformation and assume that exactly similar four-dimensional states can
exist in different orientations «, it will be necessary to insert in (8:35) a
probability factor p,} representing the unequal probability of distribution
of the different orientations; so that there will be an additional term in
Ofifoa. It is clear therefore that (8:362) is not the correct expression for the
angular momentum in unsymmetrical conditions.

In setting div j =X 0j, [0z, (§8-2), we assumed that the z, are rectangular
coordinates, the volume element being taken to be dV =dx,dx,dz,... so
that the probability or probability flux belonging to an element is j L4V [dz,, .
If angular coordinates are used, two courses are open. The simplest is to
introduce the vector density j,=j F\/ —g; the equation of conservation is
then X (0j,/0z,)=0. Otherwise we must substitute covariant derivatives
in place of ordinary derivatives in V.

Tt is instructive to check the agreement of the two methods. If E, is the
matrix corresponding to the radial direction, and Ej the matrix for a rota-
tion in a plane containing the radius (therefore anticommuting with E,), the
matrix for the corresponding transverse direction is By E, . The corresponding
term in V is

0\ KyE, (0 .
o E
—EgE,;a—e'{—g. (8-37)

t The running together of the configurations along a singular line in § 7-9 to form a single

“state of spin” of an elementary particle may be regarded as an elementary example of this
procedure.
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Thus for each rectangular coordinate replaced by an angular variable,
E,|2r is added to V. If there are n angular variables, the result is to change
the radial term E_0/0r to o in
(o7)
If we set y=r"12¢ and take ¢ as a new wave function, the extra term
In/r is eliminated. We find that y* behaves in the same way; so that, setting
x*=rinu* the extra term is eliminated in the equation for w*. (In
treating x* we must notice that Ey E, isreplaced by E, Ey, and this cancels the
change of sign of the spin correction.) Accordingly we have a new com-
bination §= ¢w* =7"J which satisfies the simple divergence equation with-
out the added terms. This will agree with our former result if  is the vector
density J Vv —g; hence V' —g should be equal to r*. This is correct, because
each substitution dz, =rdf, contributes a factor r to Vv —g.

. (8-38)

8:4. General Dynamical Equations.

Since our symbolic calculus has been ecxtended by the introduction of
differential operators 9/0z,, which I will call D-symbols, it is necessary to
refer again to the formal definitions in §2-1.

A symbol which commutes with every symbol in the calculus will be
called an algebraic number as heretofore. A symbol which commutes with
all symbols other than D-symbols will be called an algebraic function.t

Since D (yx) # (D) x, the D-symbols do not obey the associative law of
multiplication. If D,=0/0x, 1), fx =0 (fx)/0x. Hence

(@f /o) x=(Dpf —fD;) x
whatever x may be. We have therefore in all cases
of[0x =D, f —fD,. (8-41)
The introduction of D-symbols leads us to contemplate a wider variety
of tensor transformations, i.e. a wider variety of systems of description of
a physical system. We have been using transformations of the form g=e®,
where O is a matrix or more generally an £-number. It is natural now to
admit still more general transformations in which ® may be any combination
of symbols, including D-symbols. In particular we consider the trans-
formation q=eis, (8-421)

where W is any symbolic expression and s is an algebraic parameter.
Let x*, ¢ be initial and final eigensymbols of W, the eigenvalue m being
the same for both, so that

x*(W—-m)=0, (W-m)y=0. (8-422)

1 The term *‘algebraic function™ does not include “algebraic wave functions”, defined in
(8-285) as the product of an algebraic function and a constant wave vector.
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Transforming these as contravariant and covariant wave vectors respec-

tively, we have x*' = y*e—iWe = y¥g—ims, (8423)
. 'ﬁ' _ eiWalﬁ = eim¢,
8o that, if J =yx*, . J'=J.
If T is any other mixed tensor of the same class as J,
T’ = W Tg~iWs, (8-424)

Hence for an infinitesimal change ds
T+dT=(1+1Wds) T (1-1Wds),
so that dT|ds=i(WT-TW). (8:43)

To apply this, we regard s as a coordinate, and consider a physical system
8 described by mixed wave tensors 7' or the equivalent space vectors. When
(8-43) is satisfied, displacement along s is parallel displacement of the system;
that is to say, the tensors describing the system are unchanged except that
they undergo a common transformation which we interpret as a trans-
formation of reference frame.

It is important to understand the significance of this association of a
tensor transformation with every displacement. If the system S is the only
system contemplated, a change of the system of description has no useful
purpose; but then it is idle to talk of displacing the system, since there is
nothing to which the displacement can be referred. It is therefore pre-
supposed that there exists besides S a reference system S’ to enable the
displacement to be recognised; and the displacement constitutes an in-
trinsic alteration or strain of the combined system S, §’. The transformation
of the system of description, applied to § but not to §’, expresses the fact
that although 8 is intrinsically unchanged, its relation to & has been
altered.

In general relativity we are familiar with this change of the system of
description which necessarily accompanies every observable displacement.
It is expressed by the fact that an extended system of rectangular co-
ordinates is impossible, or equivalently that the curvature of physical space
cannot vanish. The effect of curvature is that displacements in different
directions do not commute. In symbolic calculus we are indifferent to
geometrical pictures, and express the same thing more directly by associating
non-commuting operators with the displacements. The change of description
is directly associated with non-commutation of operators, as may be seen
from (8-43); if the operator W associated with the displacement s commutes
with all the tensors 7' of the physical system no change of description
occurs.

The displacements whose associated operators are E-numbers can be
represented in Riemannian space. It is, I think, improbable that the
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displacements associated with the more general operators now admitted
are representable in Riemannian space. If we wish to represent them
graphically we must adopt whatever form of geometry is necessary to
provide representation of their non-commutative relations. In practice,
however, we are not much concerned with the totality of transformations
of the type (8-421); we have only to pick out a few special forms which yield
comparatively simple systems.}

The coordinate s is a dynamical coordinate of the same type as the co-
ordinate a,, introduced in §8-3. It will be remembered that we there con-
sidered a probability distribution in space-time and changed its orientation
through an angle «,, . Since the distribution was intrinsically unaltered, this
was a parallel displacement. The space vectors describing the probability
distribution at all points of the system underwent the same transformation
(8-35). Since for any wave vectors ¢, x*, the infinitesimal transformation is

Y+dp=(1+iWds)y, x*+dx*=x*(1—iWds),
we have W= —10/0s=15/8s, (8-44)

so that W is the momentum conjugate to s. It will be seen that M, and «,,,
form a particular case of W and s.

The distinction between geometrical and dynamical coordinates is rather
obscured by the fact that in the most familiar system of coordinates, viz.
rectangular coordinates, the conjugate momenta are the same. The distinc-
tion is necessary in angular and other curvilinear coordinates because the
conjugate momenta differ, and indeed are scarcely comparable in concep-
tion. Further, by generalising our operators, we have introduced dynamical
coordinates which may not be representable in the same space as the
geometrical coordinates and may therefore have no counterpart in Rieman-
nian geometry. The essential difference is that the geometrical coordinates
express the internal relations of a system or probability distribution, and
the dynamical coordinates express its relations to external objects. Geo-
metrical coordinates are internal; dynamical coordinates are external. In
elementary theory the only changes of external relations contemplated are
those corresponding to change of position or orientation; but by means of
general dynamical coordinates we can introduce external variables which
more closely correspond to the internal strain vectors of the extended
system which comprises the external reference objects.

Equation (8-43) is a point of junction of the present theory with
Dirac’s theory. He arrived at it by seeking what he regarded as the
most natural adaptation of the classical equations of motion to quantum
conditions.

t E.g., the forms W, U,, U,, Uy in § 9-2.
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8'5. Extension to Four Dynamical Coordinates.

Let W, U,, U,, U; be independent symbolic expressions which mutually
commute. We may expect to be able to find a common eigensymbol for
them. It was shown rigorously in § 3-7 (e) that a common eigensymbol can
be found if the commuting symbols are matrices, and the same proof applies
if they are symbols which satisfy algebraic equations. It is not clear that it
applies to operatorssuch as 9/0x which have an infinitenumber of eigenvalues.
But no inconsistency can arise through postulating a common eigensymbol
for mutually commuting symbols, and the only limitation on the invention
of symbols is that we must not ascribe to them properties which are not self-
consistent. It would seem therefore that, if we cannot find a common
eigensymbol for W, U;, U,, U;, we are at liberty to invent one—just as we
have invented a square root of — 1 in algebra.

For us it is sufficient that there exist important applications in which
initial and final eigensymbols ), x* of the four operators can be found. An
example will be given in §9-2. Let the eigenvalues be m, u,, us, py. Then
the transformation (8-423) can be extended to

,ﬁ’ = @i (W8+U) 8+ U385+ U3 83) l/, = @¥ (M3+pay 81+ 12g 89143 8y) 'l‘ (8'5 1)

As before the product J=ix* is unaltered by the transformation. For
other mixed tensors 7' we have in place of (8-43)

oTjos=i(WT —TW), 0Tjos,=i({U,T—TU,), etc.  (8-52)

and W, U;, U,, U; are the momenta conjugate to the dynamical coordinates

8,8y,85,83. By (8:52) they are constant over the whole domain of (s, s, , 85, 83).
We shall call the four-dimensional domain of the coordinates s, 8,, 85, 83

an S-space. It is a very simple kind of space—perhaps simpler than

Euclidean space—but it is unfamiliar since the axes in it are antiperpen-

dicular. All displacements in it commute, so that it is pictured as flat; but

in other respects it is not comparable with the space of ordinary conception.
An elementary example of an S-space is obtained by taking

W, 0, Uy, Uy=(Eig, E,, Eﬂ’ Ey)ma
where E,, Eg, E, form an anti-triad. We have then for all wave vectors
¥ (8, 84, 8, 8,) =eFurriattnrysiny,, (8:53)

which reduces to  § (s, 8,, 8g, 8,) =eMmEEatapta)y, (8-54)
when ¢, is a common eigensymbol of E,, Eg, E,.

Alternatively we can describe the same domain by spectral coordinates
8q> 8> 8, 85 conjugate to momenta J,, J,, J,, J; defined as in (5-71).

In the most elementary problems we cannot have more than four

dynamical coordinates, since not more than four independent E-numbers
can mutually commute. For that reason we have chosen to consider four



8:5] The Differential Wave Equation 129

dynamical coordinates in this section. The same general dynamical theory
applies to any number of coordinates; but the problems involving four
coordinates will be classed as one-body problems, and therefore come first
in our order of treatment.

Of the four dynamical coordinates one is singled out to be the proper
time s, and its conjugate momentum W is called the hamiltonian.t The
reason for this selection must lie outside the system itself; for the dynamical
equations (8-52) are perfectly symmetrical. The distinctive property of s
can only appear when we contemplate the system in relation to other
systems. It is, as we have seen (§ 8-1), the argument of the perturbations of
and by other systems. The peculiarity that the system ‘“goes on’ in s,
whereas it is merely extended in s,, 85, 83, is explained if it is through s that
changes in the system are linked to changes in the external world and
therefore ultimately to the time sequence in consciousness.

The principle that the separate physical systems into which we dissect
the universe shall each have just one coordinate in common with the rest,
is valuable as expressing the conceptions which are the basis of our nomen-
clature. It is not so important that it should be fulfilled rigorously, since any
supplementary coupling can be dealt with by perturbation methods. In
adopting s as the unique link we assume an idealised standard environment
of the system, such that any change in the environment produces effects
which occur simultaneously in all parts of the system according to the time
reckoning 8. In special cases we may have to treat an environment which
deviates markedly from this standard. Iflight waves are falling on an atom
in a particular direction, we should take account of the fact that the per-
turbation travels across the atom with the velocity of light. 1t would seem
therefore that the distinction between s, 8, , 8,, 83 is a matter of degree; and
that all four coordinates afford potential linkages with external systems of
appropriate character, though only one is called into play by the standard
environment which our equations presuppose.

To sum up: it is idle to treat in our equations a system supposed to have
no interaction with its environment, since the interaction is the only thing
about the system which concerns observational physics. On the other hand,
it is not necessary to go to the other extreme and treat a system with an
environment of the most general kind that can occur in nature. Just as we
begin by studying the simplest systems, so we begin by studying the
simplest form of environment, capable of introducing only the simplest
type of perturbation. Under these conditions one coordinate s plays a
unique role, and becomes distinguished from s,, sy, 8;.

+ In our nomenclature. On all points which concern the relations of s and ¢ our out-
look differs so much from the current theory that comparison of nomenclature is scarcely

possible.
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8:6. The Differential Wave Equation for a Strain Vector.

The tetrad of matrices in the wave equations (8:261) or (8:262) may be taken
to be either K, E,, By, E, or By, By, Eyy, Ey5. The choice is not entirely
a matter of indifference, because the two tetrads lead to different reality
conditions. When the p, are algebraic, the former is the appropriate tetrad
for a (four-dimensional) vector density yx*, and the latter for a space
vector yix*, by (6:51). From considerations of continuity the same distinc-
tion must hold for non-algebraic wave functions.

Accordingly the wave equations without electromagnetic field for a
space vector Yx* are

(E O Byt By Byl —zm):/z 0, (8611
10z, " "0z,  Pow, = Pox,

x* (E15%+E”‘§%+E358%3+E‘58%+m)=0‘ (8-612)
Let ¢* =ix*E,;, so that §=4yd* is the associated strain vector. Substituting
in (8-612) we obtain

P* (EM 88 +Eyy— 82 + E;, 883 88 zE“m) 0, (8-62)
which is equivalent to

(Eui + By 4 By 4+ -2 4, m)¢=o (8-631)

oz, Ox, ~M0x, Ox, B ’

since Ej; is the only antisymmetrical matrix in (8-62). Multiplying (8-611)
initially by — E,5 we obtain

0 0 0 0 .
(E14E+E"@+E3‘EE+E+'E“"Z)¢=0' (8-632)

Thus the covariant wave vectors i, ¢ are solutions of the same differential
equation.
The equations for ¢ and ¢ are, however, not the same when there is an

electromagnetic field. In (8:611) and (8-612), m is replaced by

m— Bygicy — Bog ey — Bgg iy — Egg iy
so that in (8-62) and (8-632), E,;m is replaced by

Eym+ By iy + Egykg+ Eyy kg + k.
But in passing from (8-62) to (8:631) the reversal of sign applies only to
Ey;m. The equations for ¢ and ¢, including electromagnetic terms, are most
conveniently written

{Eu.(—i—g- +K1)+-..+(—'—a“ +K4)+E45m}‘/‘=0, (8-641)
axl o Xy

{EM (i a——il + Kl) +ont ( aa‘+ K4) “m} $=0. (8-642)
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Remembering that 4 is contained implicitly in 2,, x, and in the imaginary
matrices Ey,, E,,, E3,;, we see that if the sign of (8-642) is reversed it becomes
the complex conjugate of (8:641). So that if ¢ (2, x5, %5, t) is a solution of
(8-641), its complex conjugate is a solution of (8:642). There are, of course,
other solutions of (8:642), and it is not necessary to suppose that the two
wave vectors representing a particle are complex conjugates.

The wave functions adopted by Diract and used, I think, in all current
treatises are i, ¢, not y, x. Even when «, =0, so that ¢ and ¢ satisfy the
same equation (8-:631), they are taken to be different solutions representing
waves travelling in opposite directions in four dimensions. This comes
about because the momentum operators applying to them have been defined
differently in (8-28); so that when the momentum has a given value (the
same for y and ¢) different functions are required.

We shall call wave functions whose momentum operator is —49/0z, +«,
wave vectors of index 1, and those whose momentum operator is £9/0z, + «,,
wave vectors of index — 1. The former satisfy (8:641) and the latter (8-642).
The definition will later be extended, so that a wave tensor is said to be of
index » if its momentum operator is

Pp= —%a—;"+lt’,. (8-65)
This applies to covariant, contravariant, initial or final wave tensors,
0/0x,, being changed to 3/8z, when the tensor is written initially.

We have seen that ¢ may be the complex conjugate of . Dirac goes further
and defines ¢ as the complex conjugate of ¢. In the present theory there is
no reason to impose this restriction, which is presumably a survival of the
Hermitic conditions employed in Schrodinger’s elementary theory. These
are superseded by the reality conditions found in Chapter vi. For algebraic
wave functions (8:285), i), and ¢, can be chosen independently from the
infinitude of solutions of the elementary wave equation, and there is in
general a similar independence of non-algebraic wave functions.

Let us, however, consider for a moment the current theory which takes
¢ to be the complex conjugate of . The. full specification of the system is
then contained in a single wave function ¢; for we do not add anything to
the specification by inventing a special symbol for the complex conjugate.
The system might equally well be specified by ¢; then i is merely a symbol
for the complex conjugate of ¢. But ¢ and ¢ represent waves travelling in
opposite directions in four dimensions. It may be asked, Which are the
real waves, or are there waves in both directions? The answer is that there
are no real waves. I suppose that no one nowadays attributes objective
existence to the waves described in wave mechanics,

t Quantum Mechanics, 2nd ed., p. 2565, equations (9) and (10).
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Since then the system is specified by a single wave vector , the most
natural wave tensor of the second rank furnished by it would seem to be
yYup* (or, with suffixes, y,1fg), i.e. the outer square of . If

(—ia/axp'*"‘p)‘l‘:pp,'/’,
where p,, is algebraic, we have
(—340/0x, + 1, ) Ynf* = p,, Yop*. (8-66)
Thus yu* is of index 2. By introducing the complex conjugate an alternative
wave tensor ¢ * of index 0is obtained. Attention seems to have been devoted
exclusively to the latter. It is of considerable importance; but we must not
let it unduly divert attention from the primary wave tensor yuj*.

As already stated, we do not accept the limitation in Dirac’s theory which
reduces the specification of a particle to a single wave-vector function. The
space vectors and strain vectors which comprise the ordinary vectors of
physics are wave tensors of the second rank. We resolve these into pure
constituents, which are factorisable into wave vectors. In general there is
no reason to expect or require that the two factors shall be equal. I have, of
course, no objection to the employment in quantum physics of wave tensors
which are perfect squares, if these are appropriate to the problems which are
studied—as is sometimes the case. But to regard it as more than a casual
adaptation creates an artificial gulf between quantum theory and relativity
theory, since there is no such limitation in the latter.

Thus a pure strain vector of index 2 will normally be the product of
unequal factors S;=1;,*. Exchanging one of these for its complex con-
jugate, we obtain an associated strain vector of index 0, Sy=;¢,*. The
latter is the strain vector we have been studying, but we shall now turn
attention to S,. S, has the advantage that there is no need to factorise it.
The momentum is given by the operator (8-65), used as in (8:66). Factorisa-
tion is only needed for wave tensors of index 0. For them the operator (8-65)
is indeterminate, and it is necessary to find a factor which is not of index 0
80 as to obtain the momentum.

At present we treat only wave vectors of index + 1. We may note, how-
ever, that there is a possibility of extending the theory to wave vectors of
any index =, integral or fractional, p, being always given by (8-65).

8'7. Application to Phase Space.
In Chapter viI we have described a system by a strain vector which specifies
simultaneously the configuration, the probability of the configuration, and
the time. This cannot be the strain vector S,=1i¢*, which was introduced
for the purpose of specifying the probability only, and is in fact independent

t Or, more generally, if p,, is an E-number containing only space-like matrices and there-
fore commuting with ¢.
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of the time. The strain vector which generates phase space is the associated
strain vector of index 2, viz. Sg=, ), *.
Consider a free particle in field-free space, so that the ordinary wave

functions are P=eimey p=g-imeg (8-711)
where M8 =P, Ty + Py Tq+ P33 — Pol.

Their product is the strain vector S,. Alternatively we specify the particle
by wave functions ¢, , 5, both of index 1,

1=€" (1)g,  Pa=e"(y),. (8712)
Their product is the strain vector
Sy =e%me(8,),. (8-72)

For a displacement ds, the only change produced in 8, is a change of algebraic
phase df,;=2mds. If displacement in time (proper time) is expressed in the
same linear measure in phase space as in ordinary space, so that df,,=ds/R,
we have 2mds=ds/R, so that m=1/2R, (8-73)

where R is the radius of the phase space.

At first sight it is anomalous that the general displacement (dz, , dz,, dz,,
dz,) should be interpreted as change of time only, and not change of con-
figuration. But the plane wave solutions (8-712) presuppose flat space-time.
If they are used in curved physical space-time, they must be restricted to
regions not too large to be treated as flat. This means that the region of
phase space which they cover is not too large for the distinction between the
different configurations to be neglected. The apparent discrepancy is thus
due to the nature of the approximation assumed in plane wave solutions;
although they formally distinguish configurations by coordinates, they
suppose that the distinctions when expressed by matrices are so inconsider-
able that they can be neglected.

We have suggested (§ 5-4) that wave vectors are introduced mainly to
secure purity of the wave tensors, and that many if not all of the problems
of quantum theory could be solved by using the wave tensors directly.
Current theory gives a rather fictitious importance to the vector factors,
because it recognises only wave tensors of index 0. These do not contain the
factor e?™; and, since the energy m is one of the most important character-
istics of a system, it is necessary to examine the factors in order to find it.
This is avoided by the use of wave tensors of index 2, which contain the
factor e2'ms, There is then no need to have recourse to the wave vectors, at
any rate so far as the calculation of m is concerned.

The position may be summarised as follows. Certain properties of a system
are naturally described by constant symbols, e.g. a steady distribution of
probability or probability flux. When these are factorised, they are resolved
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into components i, ¢ whose time factors cancel one another. But, since the
time factors cannot be supposed to exist solely for the purpose of cancelling
one another, this is a tacit admission that the constant symbols do not
comprise the whole data of the system, and that in a complete description
time factors must appear. Chapter viI gives this more compendious descrip-
tion in terms of strain vectors variable with the time; they are factorised
into components whose time factors reinforce one another.

The general dynamical theory of a system described by strain vectors of
index 2 is analogous to that developed for space vectors in §§ 8-4, 8-5. For
a transformation ¢ =¥, we have

S’ =i ¥ = ¢iWds h*eiWds — iWdsQeiWds, (8-74)
where Wo=¢*W. (8-75)
The determination of W from W presents no difficulty, remembering that
(0/ox) ¢ =¢* (8/3x). From (8-74) we obtain the general dynamical equation
for strain vectors dS/ds =1 (WS + SW). (8'76)
The transformation introduces a strain common to all the strain vectors of
the system. It may be regarded as defining parallel strain in the same way
that the transformation of the space vectors in §8-4 defines parallel dis-
placement. The dynamical coordinate s measures a progressive parallel
strain of the system. In elementary examples parallel strain is merely the
internal aspect of what is externally regarded as parallel displacement of
part of a system.

8:8. The Electromagnetic Potentials.

There exists an important transformation which leaves invariant the
momentum vector p, = —19/0%, +«,. Let

Y =eiE1ao1o¢=A¢:, (8-81)
where 6,4 is an algebraic function of the coordinates z, . Then if
(—40/0x, +K,)p=p, ¥, (—i0[0x,+K, )Y =p, ¥,

we havet (—10/0z, +x, ) N =p, M=Ap, ¥
=A(—10/0z, +K,) .
Hence
K, =k, +10 (logA)/0z, = Kk, — $00,4/0z,, . (8-82)

Accordingly the transformation ¢—>y', x,—~>«,’, defined by (8-81) and
(8-82), leaves p, unaltered. The electromagnetic field of force is also un-
altered, because the addition of an arbitrary gradient to the potentials has
no effect on the force.

T It is understood that p, here denotes the value (number or matrix) of the component

of the momentum vector, not the operational expression —$9/dz, + «, . Thus p, commutes
with A
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The corresponding transformation of other wave tensors depends on the
index n of the momentum operator (—i/x) 0/0x, + «,, . The general law is

¥ =y, (8:83)
where 7 is the index of i (§8:6). Since the transformation is algebraic this
applies to wave tensors of any rank (8’ =A"S), the index of the tensor
being the sum of the indices of its factors. In particular a wave tensor of
index 0 is invariant.

The foregoing transformation will be called a gauge transformation,
because it is the adaptation to wave mechanics of Weyl’s gauge trans-
formation in relativity theory. We may regard the electromagnetic potential
x, as having been created by a non-integrable gauge transformation of
neutral space-time. If in (8:82) we determine 6,4 so that 00,4/0%, = 2k, , We
have x,’ = 0; that is to say, the gauge transformation removes the electro-
magnetic field—which may therefore be created by the inverse transforma-
tion. But the equations 96,4/0x, = 2, , determining the transformation, are
non-integrable unless curl «, =0.

To justify the name ‘““gauge transformation’ we proceed as follows. If
0,4 is imaginary, X is real, and the strain vector S, which generates phase
space is multiplied by a real algebraic factor A2. By §7-7 this represents a
change of the probability of arange of configurationsat the point considered.
But the probability is also given by ¢*§dV, where y, $* are the ordinary
wave functions of indices 1 and — 1.} Usually changes of probability are
expressed by changes of the modifying factor ¢*ys; but in this transformation
¢*{ is invariant, since it is of index 0. The transformation therefore changes
the measure of volume to dV’=A2dV. That is what is meant by a gauge
transformation—a change of measure of volume (implying a change of the
standard of length) without alteration of the coordinates. In terms of
coordinates dV =V —g.dr, dV' =V —¢ .dr, so that the transformation can
also be expressed as vV — g’ =A%V —g.

In Weyl's theory it was taken for granted that changes of electromagnetic
potential correspond to real changes of gauge. Wave mechanics introduces
an important amendment. By (8:82) real changes of the electromagnetic
potential (k;, ky, K3, ko) correspond to real values of 6,4, and hence to
imaginary changes of gauge. The need for this amendment became obvious
as soon as it was discovered in quantum theory that the significant com-
bination is ~49/0x, + k, , not 9/0z, + «,,.

This amendment removes the only difficulties noticed in the unified

t Note that this interpretation only holds if A is real. If Ais complex (6,4 real) the change
affects the time coordinate and has no effect on the probability.

1 For simplicity we suppose that the transformation redistributes the probability
without altering the total amount, so that it is not necessary to re-normalise after the
transformation.
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gravitational-electromagnetic theory.t In the attempts to find a geometrical
invariant representing the Action (loc. cit., pp. 230-3, 257), the difficulty has
been that in the elementary invariants the total action G and the electro-
magnetic action F,, F** occur in the combination G + F,, F¥*. In particular,
the generalised volume +/(—|*@,, |), which has since been brought into
prominence by its use in the Born-Infield theory, reduces to this combina-
tion (loc. cit., p. 233). But there seems to be no sense in adding an electro-
magnetic action to a total action which already includes it. It is the differ-
ence G—F,, Frv, representing material or non-Maxwellian action, which
should be represented by the elementary invariants. Devices for changing
the sign, e.g. by alternating the suffixes in the invariant *G,,*G**, were
proposed, but were not very convincing. But the sign is rectified now that
we realise that, owing to the identification of the electromagnetic potential
with real instead of imaginary changes of gauge, ix, has been substituted
for x, and iF,, for F,,, throughout the field theory as originally given.
Consequently F,, F#* should have been — F,, Fu».

With this amendment the field theory as set forth in Chapter viI of The
Mathematical Theory of Relativity is acceptable today. The investigations
in this book have a close connection with it at many points, and confirm it
by elucidating the manner in which it forms the macroscopic counterpart of
wave mechanics.

After introducing gauge systems transformable at will, Weyl pointed out
that there exists at every point of space-time a natural gauge furnished by
the radius of spherical curvature; and he later reached the conclusion that
our actual measures are made in terms of this gauge. This was extended
by the writer who showed that a natural gauge, not only at every point but
for measurement in every direction at that point, is provided by the con-
tracted curvature tensor, and that the law of gravitation is the expression
of the fact that it is to this gauge that our actual macroscopic measurements
refer.

By starting with no determinate gauge system, and thereby discovering
the natural gauge instead of merely postulating it, Weyl had made a funda-
mental advance. But, in a sense, his conclusion stultified his premises. The
principles of physical measurement are bound up with the natural gauge;
we cannot employ alternative gauges without giving to the words ‘““length”’,
‘““volume’’, etc. meanings which they do not bear in physics. Gauge trans-
formation had become one of those etymological transformations—which
too frequently mar theoretical discussions—proclaiming the obvious truth
that if you alter the meanings of words you may assert anything you like.
In particular, one of the most attractive features of his electromagnetic
theory had to be given up, viz. that the arbitrary gradient, which can be

t Mathematical Theory of Relativity, Chapter vir



8-9] The Differential Wave Equation 137

added to the electromagnetic potential without altering anything observ-
able, represented the arbitrariness of gauge. Thus Weyl’s two results (1) the
discovery of variable gauge, which accounted for the existence of quantities
which might be identified with electromagnetic potentials, and (2) his
discovery of natural gauge, which leads ultimately to the explanation of the
law of gravitation, seemed to be contradictory; and it was necessary to
suppose that (2) superseded (1). But we can now accept them both, with the
modification that the variability referred to in (1) is an “imaginary gauge
transformation ’; that is to say, it is not a change of the real part of logA
which furnishes the standard for the measurement of lengths and distances,
but of the imaginary part of logA, which (although called a gauge trans-
formation by analogy) does not affect the reckoning of length.

In our present development natural gauge is used from the beginning,
because displacement first arises as an angular quantity (angle of a trans-
formation) which is the ratio of the linear displacement to the radius of
curvature. Thus we do not encounter the preliminary ambiguity which
leaves the measure of the displacement indeterminate until the radius of
curvature is brought in as standard.t There is no provision in our theory for
real change of gauge—for using any other standard. The reality conditions
for rotations restrict the transformation (8:81) to imaginary gauge trans-
formations, i.e. real changes of the phase angle 6.

8:9. Non-integrable Transformations.

In a general way we can trace the origin of the non-integrable gauge trans-
formation which creates an electromagnetic field. A non-integrable trans-
formation arises when we contemplate a field of transformation composed
of transformations which do not commute. For example, the transformation
Y =eFrmdutE;0d% ) jg non-integrable. If we apply it to a square circuit
composed of successive displacements (dz, , 0), (0, dx,), (—dz,, 0), (0, —dx,),
we obtain as far as the second order

¥ = (1 - Eyayda, — fay?dz,?) (1 - By oy dy — oy dy?)

X (1 + Eyugday — dato?day?) (1 + By oy doy — dar 2dy?) o,
which reduces to ' = (1— 28, By, aqdw, dzy) .
Thus the result of taking  round the circuit is to transform it to

¢ = e ntatadndz (8-91)

This, however, does not immediately solve the problem of the creation of an
electromagnetic field, which depends on a similarly non-integrable algebraic
transformation.

+ We are able to start in this way because we treat a very simple uniform space-time,
whereas the field theory is concerned with the origin of the natural gauge system in irregular
macroscopic space-time.
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The field «, is due to systems extraneous to the particle or system § to
which the wave vector i belongs. As explained at the end of §2-9 the
external particles have their own symbolic frames F,, etc., which commute
with the E-symbols of the system S. The effect of recognising these external
particles will be to introduce into our calculus a large number of additional
symbols which commute with the £, but not in general with one another;
so that a much wider variety of transformations ¢ can be contemplated.

We have hitherto ignored the external particles and the transformations
representing relative displacement of them, because the elementary equa-
tions suppose S to be in a standard environment, namely neutral space-
time. But an electromagnetic field presupposes a non-uniform environment.
A change of position dz, is not merely a transformation from one point to an
equivalent point of space-time (§4-4); it involves also an intrinsically
different environment of S. Thus the displacement dz, will involve a
supplementary transformation, representing the change of environment,
which we may take to be of the form

¢’ =exp {Yy,de, + Y0007, + Yyouday + Yyagda} i, (8:92)

where the Y, are composed of symbols belonging to the extraneous systems,
and therefore commuting with the Z,. We do not suppose that the ¥, are
anticommuting symbols of a complete set; they will usually be complicated
symbolic expressions. But provided that they imperfectly commute (as
normally happens with complicated symbolic expressions), the trans-
formation (8-92) will be non-integrable; and ¢, after being taken round a
circuit, will not return to its original value but will undergo a ¥ rotation of
some kind. But since the Y-symbol of the rotation commutes with all the
E,, it will be indistinguishable from an algebraic transformation; and it will
count as an algebraic transformation so far as the E-frame is concerned.

Thus the effect of irregularity of distribution of the surrounding protons
and electrons, which might be particularised with almost an infinitude of
detail by introducing their own symbolic frames, is reduced to a non-
integrable algebraic transformation of the vectors of the E-frame. This
transformation represents the difference between the standard environment
of neutral space-time and the modified environment—a difference which
is recognised as the macroscopic electromagnetic field due to the specialised
distribution of the external charges. As we have seen in § 88, a field of non-
integrable algebraic transformation is equivalent to the insertion of electro-
magnetic potentials «, in the momentum vector.

We have supposed that the supplementary transformation (8-92) contains
only the symbols belonging to the external systems. Would it not be more
natural to suppose that it contains combinations of these external symbols
with the symbols of 8, e.g. E,Y,? In that case the non-integrable trans-
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formation will not be algebraic in the E-frame, and the field cannot be
represented by a potential vector with algebraic components «,. I agree
that it would be more natural. But the question for us is, not what actually
happens, but what is supposed to happen in the ideal problems to which
Dirac’s equation (8-262) is applied. Actually a charged particle polarises
the surrounding distribution of electric charges. When it is displaced the
potential due to surrounding charges is altered by their changed polarisation.
This effect (Debye-Hiickel effect) is of great practical importance. But it is
not included in Dirac’s equation, which postulates that the field is due to a
rigid distribution of charge. If Dirac’s equation is applied to an electron in
a field in which the Debye-Hiickel effect is large, it gives an incorrect value
of the energy.

Thus in treating the origin of the «,, i.e. of the electromagnetic terms in
Dirac’s equation or equivalently the electromagnetic terms in the momen-
tum and energy, we must adhere to the same idealised conditions. The
postulate is that the system § itself has no share, direct or indirect, in
determining «,. We must therefore omit the terms, if any, which are not
invariant for rotations of the particle, substitution of particles of opposite
signt or opposite spin, etc. The terms admitted therefore correspond to a
purely algebraic transformation. There is no need for us to show that the
omitted terms are small in practical problems; very often they are not.

The term «, in the wave equation (8:262) is essentially a macroscopic
electromagnetic potential. In microscopic problems the field due to one or
more individual particles requires a more complex specification by means of
multiple matrices. The criterion is that, if the distribution of particles
producing the ficld can be treated as rigid, (8-262) suffices. The foregoing
discussion makes it clear that the field due to the particle itself is not to be
included in «,. Neglect of this condition has led to the occurrence of an
infinite self-energy of the particle in certain theories.

The internal wave equation for the hydrogen atom, adopted in (9-221),
provides an exception to the rule that «, is a macroscopic potential. The
equation is of the form (8-262) notwithstanding that the electromagnetic
field is due to a single particle (the proton). This is because the problem is
transformed by the use of relative coordinates into the motion of a particle
in a rigid field. It must be emphasised that this is a quite exceptional use
of k,, made possible by the simplicity of the problem, and that the micro-
scopic interactions of particles cannot usually be represented by a field of
this form.

+ There is an apparent change of sign of the electromagnetic terms in the wave equation

when a proton is substituted for an electron; but what has really happened is that the
electromagnetic terms are unaltered, and all the other terms have changed sign.



CHAPTER IX
THE HYDROGEN ATOM

9-1. Steady States.

Before tackling a practical problem, it is appropriate to recapitulate and
systematise certain ideas which have appeared in a scattered way in previous
chapters.

In the practical application of wave mechanics the central problem is the
search for systems which shall be dynamically steady. The phrase ‘‘ dynamic-
ally steady ’’ requires amplification.

There is an almost inevitable ambiguity in the use of the words ¢ electron
and “proton” in the new physics. We say that (@) an electron is no longer a
particle but a wave, and (b) that the waves specify the probability dis-
tribution of an electron. Thus the term is applied both to the distribution and
to that which is distributed. For definiteness let us call that which occupies
any point of the distribution an electron-point. We consider then electron-
points distributed over a domain of geometrical coordinates ,, . A displace-
ment dz, is a displacement of the electron-point that is contemplated; no
dynamical conception is attached to the displacement; it is a transfer of our
attention from one electron-point to another. But we can contemplate also
a bodily displacement of the whole distribution; such bodily displacement
is described as a change ds, of a dynamical coordinate s,. Here again the
displacement may be regarded primarily as a transfer of attention—from
one electron-distribution to another, instead of from one electron-point to
another. But when, by habit, we introduce dynamical conceptions they are
attached to the displacements ds,, not to dz,. The dynamical electron—
the moving entity—is the probability distribution, and its mode of dis-
placement is wave propagation.

We need not confine attention exclusively to bodily translation or rotation
of the distribution. We can consider more general sequences of distributions.
The general method of specifying a sequence of distributions is by a trans-
formation g =e?™%; then a displacement ds signifies the change of distribution
which is produced by applying the transformation e!?4 to the vectors
describing the distribution. If W is an E-number, this is a relativity rotation
of the space vectors defining the distribution, and is therefore a displacement
without intrinsic change. The corresponding coordinate s will be called a
simple dynamical coordinate. By allowing W to include differential oper-
ators, we obtain a more general type of displacement including deformation,
and define a correspondingly generalised dynamical coordinate. Each simple
dynamical coordinate is closely related to (and frequently confused with)
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& geometrical coordinate z, or 6“, viz. that defining the direction of the
bodily displacement or rotation of the distribution; but the generalised
dynamical coordinates have no geometrical counterparts. In practice,
however, they often have approximate counterparts; for a generalised
coordinate usually appears as a slight modification or adaptation of a simple
coordinate. For example, a free electron possesses (simultaneously) four
simple dynamical coordinates representing bodily displacement of its
distribution in four antiperpendicular directions x;, #,3, %5, %;4; When the
electron is in the electromagnetic field of a nucleus, we have to find four
generalised dynamical coordinates to replace these.

Let us consider a system with four dynamical coordinates s,. In what
circumstances should we describe the fourfold sequence of distributions as
steady? It would certainly be considered steady if the distributions were
all intrinsically similar. But that is unnecessarily stringent, since we cannot
make exhaustive observations of every detail of the distribution. The
minimum condition is that some recognisable characteristic of the distribu-
tion shall be steady, i.e. constant over the domain of dynamical coordinates
8, . Since the observable characteristics (physical vectors) are space vectors,
we require that a complete space vector J determined by the distribution
shall be constant over the domain s, . That is to say, J must be invariant
for the transformations g = e¥usu,

We take J to be factorisable. It would be possible to obtain a steady state
by compounding two pure states neither of which is steady. But the com-
bination is not of practical importance unless there is security that the two
states remain superposed with the same relative probability factors when
external perturbations are admitted. The argument runs: the steady states
which we wish to discover are those which behave as units under external
perturbations. Unitary character, i.e. purity, is expressed symbolically by
a spectral operator. Therefore to bring our symbolism into line with the
physical conditions to which it is applied, we must represent the unit states
by spectral operators. The latter are idempotent symbols. We consider in
particular the idempotent space vector as the simplest element in the
symbolism that is thrust upon us. We regard the simple elements of the
symbolism and their physical counterparts, not as hypothetically ‘‘exist-
ing”’, but as idealisations which owe their importance to the fact that any-
thing more complicated can be, and commonly will be, analysed into these
simple elements.

By § 85 a sufficient condition that J shall be constant over the domain
8, 8, 8y, 84 is that its factors ¢, x* shall be common eigensymbols of W, U, ,
U,, U;. It is easily seen that this condition is also necessary.

In practice we assume that W, U;, U,, U; commute. It is not true that
operators which have a common eigensymbol necessarily commute (§ 3-7 (f))
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but if W, U,, U,, U; do not commute they will not be constant over the
domain of s, s,, 8,, 85, their derivatives being given by (8-52). Transforma-
tions in which the operational forms are functions of the dynamical co-
ordinates, e.g. W (s;, 83, 83), are not considered in wave mechanics at
present. They bear the same kind of relation to constant transformations
that general relativity transformations bear to those of special relativity
theory. The domain of such transformations will have a curvature embodying
the non-commutability of the rotations in it. Whether it would be profitable
to pursue the study of non-commuting symbols with a common eigensymbol,
I cannot say. But it may be worth noticing that existing methods of search
for steady systems, i.e. distributions with a recognisable characteristic
which is constant over a multi-dimensional domain, are not necessarily
exhaustive; and it is just possible that steady states, which may have some
physical importance, have escaped our analysis.

Limiting ourselves accordingly to constant transformations, the problem
of finding dynamically steady states resolves itself into the finding of four
commuling symbols, or whatever number of symbols may be appropriate to
the kind of system investigated. The symbols represent constant cha-
racteristics of the system; but they are generally portions of the constant
space vector J, and do not imply any constancy of the system additional
to that originally postulated. For example, when the operators are E-
symbols, W + U, + U+ U= Eyg+ E, + Eps + Eg5=J .

We must next try to understand why these ‘‘steady states’’ are important.
Only one of the four coordinates is conceived as time displacement. Our
dynamical picture of a system pursuing a trajectory in the domain of
8, 81, 83, 83 does not suggest any reason why J should be required to be
constant in directions transverse to the trajectory. The importance of the
latter condition is that it introduces the maximum degeneracy into statis-
tical enumerations. In accepting J as the criterion of steadiness, we
implicitly decide to count all configurations which have the same J as one
configuration. Thus the probability occupying the whole of S-space counts
as the probability of one configuration. Our picture of a configuration
as an isolated point in S-space pursuing a trajectory does not apply; it is
a whole continuum or wave front that ‘“travels”’. Moreover, when (as in
quantised systems) the four-dimensional S-space exists only for discrete
values of J, and intermediate values of J occupy loci of three or fewer
dimensions, the discrete values have infinitely greater probability than the
intermediate values.

An S-space formed by generalised dynamical coordinates is not on quite
the same footing as an S-space formed by simple dynamical coordinates.
The difference is that the generalised displacement is a transformation
peculiar to the system, and is not applicable to its idealised environment.
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Now a system without an environment is unthinkable; and it is no use
displacing it all over the S-space if it cannot take with it the environment
which its structure demands. That was the early mistake of relativity
theory, which applied transformations to the differential equations but
omitted to provide for their application to the boundary conditions. The
standard environment is uniform, i.e. spherical, neutral space-time. This is
conceived as permanent; so that the only transformations admitted are
those which transform it into itself, namely the kinematical E-rotations.
Hence, in general, if we apply generalised W transformations to a system, it
will no longer fit the boundary conditions where it merges into standard
space-time. Physically we should say that the new configuration requires
a pressure or an electromagnetic field to maintain it.

It might seem from this that the importance of generalised steady states
is fictitious. But we have to remember that the standard environment is a
simplification of the actual environment. The practical physicist is not
concerned with a hydrogen at