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PREFACE
In this book I have endeavoured to give a connected account of a series of

investigations in the borderland between relativity theory and quanjbi^H

theory. It begins where my earlier book, The Mathematical Theory of

Relativity, leaves off at the point where in our surveyofnaturewe encounter

the phenomenon of atomicity. To our gross senses matter seeing .continuous,

and it has been treated as continuous in the usi^tl tftCory of relativity.

Experiment has, however, taught us that it is composed of multitudes of

units, and the theory is here extended to throw light on the existence and

properties of these units.

The central problem is to ascertain the conditions which fix the amount of

mass and electric charge carried by protons and electrons. The present
researches will probably be associated in the minds of many readers with

the number 137; this is one of four numerical constants of nature for which

the theory predicts definite values. Another fundamental constant, found

to be 2.136.2256
(approximately 3-150.1079 ), can be described as the

number ofprotons and electrons in the universe; but its practical importance
is that its square root enters into the ratio of the electrical to the gravitational

force between a proton and electron. The result of these determinations is

that there are no arbitrary constants left in the scale of relations of natural

phenomena.
Besides giving concrete results of this kind, the theory has, I hope, thrown

light on some of the obscure points in quantum theory and helped to deepen
its foundations. I have sought a harmonisation, rather than a unification,

ofrelativity and quantum theory. I do hot set out to obtain an all-embracing

formula; but the investigation shows in detail how to combine the con-

ceptions ofthe two theories in the solution of specific problems, which would

be outside the range of either theory separately.
The theory, as it was being developed, was published from time to time

in the Proceedings of the Royal Society (121, p. 524; 122, p. 358; 126, p. 696;

133, pp. 311, 606; 134, p. 524; 138, p. 17; 143, p. 327; 152, p. 253) and the

Journal of the London Mathematical Society (7, p. 58; 8, p. 142) between 1928

and 1935. But it has become increasingly difficult to deal with it in frag-

ments. Much of it (including practically the whole of Chapters vi, xi and

xvi) is now published for the first time. The new results of a practical kind

include the theory of the Stern-Gerlach experiment, the theory of Bond's

correction f|| to ejm, and the direct calculation of the number of particles

in the universe.
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In so extensive a work I cannot expect that serious mistakes have been

entirely avoided. But now that the theory can be viewed as a whole, I think

the reader will be convinced that there is a practicable way ofprogress along

the lines I have attempted. I hope therefore that he will see in the im-

perfections of this book an opportunity for developing, not an excuse for

dismissing, the subject which it sets forth.

Prof. G. Lomaitre and Prof. G. F. J. Temple have kindly read the book

in proof. Their interest and criticism has encouraged me in the develop-

ment of the theory, and I now owe them a further debt for many helpful

suggestions.
A. S. E.

CAMBRIDGE,

June 1936.



CONTENTS

INTRODUCTION l"*ge 1

PART I. WAVE-TENSOR CALCULUS

CHAPTER 1 Tensors and Matrices 13

II The Sixteenfold Frame 20

IK The Resolution of Matrices 34

IV Space Vectors 60

V Tho Simple Wave Equation 02

VI Reality Conditions 75

VII Strain Vectors and Phase Space 92

Vlll The Differential Wave Equation 115

IX The Hydrogen Atom 140

X Double Wave Vectors 154

PART II. PHYSICAL APPLICATIONS

XI The Ricmann-ChristoffelTensor 179

XII The Mass-ratio of the Proton and Electron 212

XIII Standing Waves 229

XIV The Cosmical Problem 256

XV Electric Charge 281

XVI The Exclusion Principle 308

INDEX 331





INTEODUCTION
0*1. In 1928, P. A. M. Dirac made a bridge between quantum theory

and relativity theory by his linear wave equation of the electron.f This
is the starting point of the development of relativity theory treated in

this book.

Previously there had been three principal stages of progress, namely
Einstein's special theory (1905), his general theory (1915), and Weyl's
theory of relativity of gauge (1918). Summarising the state of the theory in

1923, I wroteJ

We offer no explanation of the occurrence of electrons or of quanta; but in

other respects the theory appears to cover fairly adequately the phenomena of

physics. The excluded domain forms a large part of modern physics, but it is

one in which ail explanation has apparently been baffled hitherto. The domain
here surveyed covers a system of natural laws fairly complete in itself and
detachable from the excluded phenomena, although at one point difficulties arise

since it comes into close contact with the problem of the nature of the electron.

Relativity theory was in fact as comprehensive and as logically complete
as a purely macroscopic theory had any right to be. The next important step
must be an extension to cover microscopic phenomena, or a unification with

existing microscopic theories.

Microscopic physics was the province of quantum theory; but in 1923 this

was little more than a collection of empirical rules which led to no coherent
outlook. The "new quantum theory" began with Heisenberg'n researches

in 1925, and with the aid of many contributors it reached soon afterwards
the current form generally called wave mechanics. The conditions were

becoming ripe for a unification with macroscopic relativity theory.
To say that Dirac's wave equation was the first connecting link gives only

a partial idea of its importance. It was a challenge to those, who specialised in

relativity theory. Dirac's object was to obtain a form of equation (fulfilling
certain requirements of quantum theory) which should be invariant for

rotations and Lorentz transformations. We had claimed to have in the
tensor calculus an ideal tool for dealing with all forms of invariance and
covariance. But instead of using the orthodox tool Dirac proceeded by a

way of his own, and produced an expression of very unsymmetrical appear-
ance, which he showed to be invariant for the transformations of special

relativity theory. Why had this type of invariance eluded the ordinary
tensor calculus? As C. G. Darwin put it, "it is rather disconcerting to find

t Proc. Hoy. 8oc. A, 117, 610 (Feb. 1928).

j Mathematical Theory of Relativity, p. 237.
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that apparently something has slipped through the net ".f It was Darwin's

insistence on this point in private conversation which led me to take up
these investigations.

The failure ofordinary tensor calculus to include Dirac's type ofinvariance

is due to the introduction, at an early stage, of a convention whose arbi-

trariness had already been noticed.J The analytical theory of tensers had

been applied to physics by identifying its basic vector with a geometrical

displacement (dx)P. By a change of application, namely by identifying the

basic vector with Dirac's four-valued quantity 0, we obtain a new tensor

calculus, here called wave-tensor calculus, in which the invariance of the

wave equation falls into order. Formulae have to be found for expressing
the old tensors (space tensors) in terms of the wave tensors; and this leads

to a chain of new developments which have no counterpart in the tensor

calculus of ordinary relativity theory.

I was soon convinced that this was the extension of relativity theory for

whichwe had been waiting, and that Dirac's equation was only the beginning
of a more far-reaching application of the methods and conceptions of

relativity theory to microscopic phenomena. After seven years' work I find

the possibilities latent in the new departure still far from exhausted.

Naturally others besides myself were attracted to the new opening.

Allowing for divergences in the point of view, my first paper, dealing with

formal developments including the rudiments of wave-tensor calculus, was

perhaps not materially different from several other investigations published

about the same time.
||
But a month or two later I camo across a clue to the

origin ofthe charge ofelectrons and protons, ^f The trail has led all round the

universe, so that the subject with which I began comes almost at the end of

this book (Chapter xv). Ultimately the problem of the origin of charge was

found to be inseparable from the problem of the origin of mass. I was thus

led into a special field of investigation which, I think, has not been explored

by other writers.

Dirac's wave equation has led to important advances in quantum theory;

but here we shall be working mainly on the relativity side of the bridge. It is,

of course, impossible to treat protons and electrons without introducing a

considerable amount of quantum theory. But its subordinate position will

be apparent from the fact that the problems treated in Part II of this book

are not touched upon in books on quantum theory; they depend essentially

on developing the consequences of the relativistic conception.

f Proc. Roy. Sac. A, 118, 664. This paper was of great assistance in my early work.

j Mathematical Theory of Relativity, p. 49. Proc. Roy. Soc. A, 121, 524.

||
I think that the most far-reaching, as well as the earliest, paper of this type was by

J. v. Neumann, Zeits.fur Physik, 48, 868. But I have been more influenced by H. Tetrode,

ibid. 50, 346, whose point of view was less unfamiliar to me.

If "The Charge of an Electron", Proc. Roy. Soc. A, 122, 358 (Dec. 1928).
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0*2. As the work proceeded, it became focused on one problem, namely
the origin ofthe four numerical

' c

constants of nature
' '

. Seven fundamental

constants are commonly recognised:

me the mass of an electron,

mp the mass of a proton,

e the charge of an electron,

h Planck's constant,

c the velocity of light,

K the constant of gravitation,

A the cosmical constant.

Between these we must eliminate our arbitrary units of length, time and

mass; we are then left with four purely numerical ratios. The most familiar

are the mass-ratio mp/me> and the fine-structure constant Ac/2?re
2

; these are

found in Chapters xir and xv. The value of *c, i.e. its ratio to a constant of

similar dimensions furnished by the other constants, is obtained in Chapter

xiv. Also, with the help of the other constants we replace A by a number N,

the
" number of particles in the universe", whose theoretical value is found

in Chapter xvi. Thus all four constants are obtained by purely theoretical

calculation.!

The number of dimensions of space-time might be regarded as a fifth

natural constant. Even this number is found to be determined unam-

biguously by the epistemological principle that we can only observe

relations between two entities ( 16-8). At a much earlier stage (Chapter vi)

we prove that a four-dimensional neutral domain necessarily has the

signature 3+1.

So far as I can make out, the values of the constants given by this theory

are in full agreement with observation. For three of the four constants the

observations are accurate enough to provide a very stringent test. It would

have been disconcerting if it had turned out otherwise; but the theory does

not rest on these observational tests. It is even more purely epistemological

than macroscopic relativity theory; and I think it contains no physical

hypotheses certainly no new hypotheses to be tested. All that we require

from observation is evidence of identification that the entities denoted by
certain symbols in the mathematics are those which the experimental

physicist recognises under the names "proton" and "electron". Being

satisfiedon this point, itshouldbepossibleto judgewhetherthemathematical

treatment and solutions are correct, without turning up the answer in the

book of nature. My task is to show that our theoretical resources are

t A general account of the principles on which the calculations are based is given in

New Pathway* in Science, Chapter XL

1-3
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sufficient and our methods powerful enough to calculate the constants

exactly so that the observational test will be the same kind ofperfunctory
verification that we apply sometimes to theorems in geometry.
The replacement of four empirical natural constants by calculated num-

bers implies a unification of theory. Tri Maxwell's unification of electro-

magnetism and optics the ratio of the electromagnetic to the electrostatic

unit of charge was found to be equal to fche velocity of light ; similarly in the

unification of macroscopic and microscopic theory the macroscopic con-

stants K, A are found to be expressible in terms ofmp ,me ,e. The elimination

of superfluous constants is an outward sign of the unification achieved; and

for this reason I have regarded it as the first goal. But the theory that has

taken shape in these investigations should supply a foundation for the

treatment of other microscopic problems for which current quantum theory
is insufficient. I have not pursued these further developments, partly because

they often require a knowledge ofthe more technical side ofquantum theory
which I do not possess, and partly because the completion of the calculation

of the four natural constants has seemed an appropriate stage at which to

assemble the theory into a connected form. By way of exception, I have

applied the theory to the Stern-Gerlach experiment (12-8); the result

agrees with observation.

0-3. The marriage of relativity theory and quantum theory should be a

fruitful union as well as a formal union. In regard to the numerous formal

unified theories that have been suggested, we may recall

There are nine and sixty ways of constructing tribal lays,
And every single one of them is right !

But T think they have been inspired by a fundamentally different conception
of the problem of unification from that which I shall follow. There is a con-

siderable amount of formal theory in this book; but it has been developed

concurrently with the physical theory in Part II; and its progress has been

guided as much by the definite applications, in which it was to be used, as

by formal considerations.

A unified theory does not necessarily mean a unified formula. The latter

kind of unification is exemplified by the theory of the "Generalised Astro-

nomical Instrument" which combines in a single equation the theory of the

altazimuth, meridian circle, prime vertical instrument, equatorial and

almucantar.f Such compression appeals more to the mathematician than to

the physicist. We do not aim at producing a formula which shairinclude

simultaneously the irregular gravitational fields of general relativity and
the quantised energy of an atom. We seek instead the common meeting
point from which the specialised developments and approximations appro-

t ManMy Notices, H.A.S. 68, 171.
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priate to the gravitational and the atomic problem branch off. The source

of quantum phenomena is a degeneracy, or exceptional integrability, which

is associatedwith uniformityand symmetry, and invalidates the assumptions

underlying the ordinary theory of macroscopic averages. It is therefore in

uniform conditions (spherical space) that the linkage of quantum theory to

macroscopic relativity theory must primarily be studied.

For this reason we have not much to do with the formulae of general

relativity, though we have much to do with its principles. We generally treat

space-time of uniform curvature either the de Sitter form hyperbolic in

the time dimension, or the Einstein form cylindrical in the time dimension,

the space being spherical in either case. Thus, on the relativity side, we halt

at a stage intermediate between the general theory and the special relativity

theory of flat space.

For the same reason, when gauge transformations are employed, the

formulae used are those of Weyl's theory, not the author's generalisation

of it.| The generalisation would be required if we dealt with space-time of

irregular curvature; it coalesces with Weyl's theory in the uniform conditions

here considered.

With flat space-time we have nothing to do. The theory of space-time
will here be developed pari passu with the theory of the material systems
which occupy it. in this mode ofapproach the conception ofinfinite flat space
never arises; it could not be brought into the theory except as a limit that

might be approached but never attained. But in the same way the concep-
tion of definitely empty space never arises; it could not be brought into the

theory except as a limit that might be approached but never attained.

(By definitely empty we mean that the probability of containing a particle or

photon is zero.) Our rejection of flat space-time does not depend on the view

that definitely empty space has a natural curvature determined by the

cosmical constant.^ Space appears in our theory as the domain of the pro-

bability distribution of a particle, so that it is an essential characteristic

of space that it is occupied or has a finite a priori probability of being

occupied; and it is non-controversial that it will have a curvature (or an

expectation-value of the curvature) corresponding to the energy tensor (or

expectation-value of the energy tensor) of its contents.

0'4. I think it will be found that the theory is purely deductive, being
based on epistemological principles and not on physical hypotheses. But
it could not be presented in purely deductive form which would mean,
I suppose, that it was treated as an investigation in pure mathematics with

a physical denouement in the last chapter. It has seemed essential to

t Mathematical Theory of Relativity, Chapter vu, Pt. II.

j We are led to reject this view
( 11*7).
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keep the physical applications in mind throughout; for this purpose
results must sometimes be anticipated which are not reached by deduc-

tion until much later in the book, and interpretations must be employed
which are not definitely established until the whole theory is connected

together.

This method gives rise to certain difficulties. For mathematical seasons

we have to begin with the simplest equations; but these correspond to

highly idealised systems to which the ordinary physical conceptions only

partially apply. It is indeed obvious that a system must attain a consider-

able degree of complexity before anything remotely resembling the ordinary
method of observation is applicable to it. Consequently the physical ideas

can only take shape gradually as we proceed. Space-time of a kind first

appears in Chapter iv; but it has the wrong signature, and its scale is much
too small. These defects become rectified as the developments in later

chapters take us closer to actuality. So with most of the physical concep-

tions; we .have to introduce preliminary notions before the theory is suffi-

ciently advanced for a full treatment. The reader will probably find that

many of the difficulties that occur to him in reading the earlier chapters
arise from the unnatural conditions postulated in the most elementary

equations, and that they resolve themselves automatically when the theory
reaches more realistic problems.
Those who are expert in quantum theory should bear in mind that we are

proceeding from another starting point from that usually adopted. It

would be foreign tomy intention ofdeveloping the theory as a pure deduction

from relativistic principles to transfer conclusions, however widely accepted,
from the usual quantum theory which contains a large empirical element.

Nevertheless, I make frequent appeals to current quantum theory for three

purposes. Firstly, because it contains the definitions of the quantities with

which I am concerned. It would be impossible to make a theoretical deter-

mination of the constant known as the "mass of an electron" without an
examination of the equations by which the quantum physicist has chosen

to define it. Secondly, where the present theory coalesces with current

theory, it is unnecessary to repeat purely analytical investigations which

equally apply to either theory. Thirdly, certain results (especially the

Exclusion Principle), which cannot be treated until late in the book, have
been borrowed from current theory in anticipation.

It may be well to make it clear that although the present theory owes
much to Dirac's theory of the electron, to the general coordination of quan-
tum theory achieved in his book Quantum Mechanics, and to the many
contributions ofhimselfand others on these lines, it is not

"
Dirac's Theory

"
;

and indeed it differs fundamentally on most points which concern relativity.
It is definitely opposed to what has commonly been called "relativistic
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quantum theory ", which, I think, is largely based on a false conception of

the principles of relativity theory.

Atomic nuclei and free neutrons are outside the scope of this book. I see

no reason to fear that they will not fall into place in the theory; but I have

not developed any ideas on this point far enough to be worth recording. In

the main the theory of radiation has also been excluded; but there are three

short references ( 9-5, 14-3, 16-3) which show how it might be approached
in the present treatment.

0* 5. The division of the book into two parts, the one ostensibly treating

the auxiliary mathematical calculus and the other the physical applications,

is only a rough separation. Physical interpretations are considered as early

as possible; but with the introduction of double wave tensors in Chapter x

the relation of the mathematics to the physics changes considerably.

Instead of starting with the mathematical result and interpreting it as far

as possible physically, we start with the physical problem and formulate it

mathematically. The auxiliary mathematical development still continues;

but it is now guided by the character of the physical problems for which its

aid is required.

The student of relativity theory may well feel a grievance at the turn

which the auxiliary mathematics has taken. The macroscopic theory seemed

to indicate that Differential Geometry was the key to world-structure. After

being at pains to acquire some familiarity with this subject, we find that all

the new advances depend upon modern Algebra. The algebra required in

thepresent book is developed practicallyab initio by old-fashionedmethods

which, I fear, betray my limitations as an algebraist/though they may make
the theory more accessible to those most interested. Letme freely admit that

ability to use the more powerful modern algebraic methods would be an im-

mense advantage in handling these problems. For the kind ofalgebra chiefly

required I have found most helpful C. C. MacDuffee, The Theory ofMatricesJ[

A few remarks on terminology, etc. may be useful. I would direct special

attention to the limited use of the summation convention (p. 22), to my
unorthodox use of the term "algebraic" (p. 20), and to the change in the

order of writing the suffixes of the Riemann-Christoffel tensor (p. 181).

I would emphasise that wave analysis is a method, not a theory, and may be

applied to any physical tensor; therefore statements about the physical

meaning of the various products of wave analysis necessarily refer to some

special application (singled out by custom) and are not of general validity.

The term universe is used so often as perhaps to suggest megalomania.

It is really the opposite of megalomania, for it takes the place of infinity in

elementary wave mechanics. Mathematically it is much easier to treat a

t Ergebnisse der Mathematik und ihrer Grenzgebiete (Julius Springer, 1933),
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whole universe than part of one the universe being, of course, idealised to

accord with the simple conditions postulated in elementary problems. It is

more elementary to suppose that the uniform conditions continue inde-

finitely than to terminate them by a physical barrier; supernatural barriers

are often misleading, and should be avoided if possible. In the earlier

chapters there is sometimes a difficulty in deciding whether our equations
refer to an electronlor to the universe. Butthe fact is that the electrons treated

in ordinary elementary quantum theory are very much like the universe

only bigger. They are said to be "infinite plane waves". No doubt it is

intended that they shall be replaced by waves ofmore reasonable dimensions

in practical approximations; but this applies also to our theory. For applica-

tions in which a millimetre is a good enough approximation to infinity, it is

a fortiori a good enough approximation to 400 megaparsccs.

By a particle, I mean, not a classical particle, but a conceptual entity

whose probability distribution is specified by a \vave function. At different

stages in this book, different applications of wave analysis are made; and the

corresponding particles have different properties. In the earlier chapters

the particles are rudimentary protons and electrons existing in the rudi-

mentary space-time there treated. They gradually develop into recognisable

electrons and protons in macroscopic space-time, when the theory is ex-

tended far enough to introduce the observable relations by which protons
and electrons are known experimentally. The reader should therefore not

be surprised to find that initially the positive and negative particles have

completely symmetrical properties; that is merely another illustration of

the fact that the most elementary equations imply highly idealised con-

ditions to which the ordinary conceptions of physics only partially apply.

0*6. Those who have followed the progressive development of the

theory during the last eight years may desire a comparison of the present

revised theory with earlier versions. The papers are numbered for reference

as foliows:f
1 . "A Symmetrical Treatment of theWave Equation

"
, R.S. 121 , 524, 1928

Tl. "The Charge of an Electron", R.S. 122, 358, 1928.

III. "The Interaction of Electric Charges", R.S. 126, 696, 1930.

IV. "The Properties of Wave Tensors", R.S. 133, 311, 1931.

V. "The Value of the Cosmioal Constant", R.S. 133, 605, 1931.

VI. "The Mass of a Proton", R.S. 134, 524, 1931.

VTI. "Sets of Anticommuting Matrices", M.S. 7, 58, 1931.

VIII. "Theory of Electric Charge", R.S. 138, 17, 1932.

IX. "The Factorisation of ^-Numbers ", M.S. 8, 142, 1933.

X. "The Masses of the Proton and Electron", R.S. 143, 327, 1933.

XI. "The Pressure of a Degenerate Gas, and Related Problems ", R.S. 152,

253, 1935.

t M.S. refers to Proc. Roy. Soc. and M.S. to Journ. Land. Math. Soc.
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I will begin with a definite withdrawal. In I it was suggested that the

adjoint tetrads A\, E2 , Ez ,
E and JS?15 ,

JK25 ,
jB35 , #45 correspond to electrons

of opposite spin, and this niisjudgment persisted in 111. The present view

( 4-3, 4-4) of the role of E5 was first reached in IV. I think there is no

other point on which I went so completely astray; the other lines of

development begun in this series of papers, though sometimes requiring

substantial amendment, contain advances which in principle have been

retained. The papers fall into three groups:

(a) Auxiliary Mathematics (I, IV, VIT, IX). The ^'-symbols were at

first defined so that A^
2= 1

;
the present notation, with E^ 1, begins

in IV. In IV the mathematical development remains satisfactory; but

the physical interpretation was confused, because a degenerate wave

tensor was used in a context where the later results substitute a non-

degenerate wave tensor. The proofs of two important theorems in VII

and IX, namely the composition of a pentad by three imaginary and two

real matrices, and the standard forms of pure wave tensors, have been

found to be imperfect. Amended proofs are given in 3-5, 5-5.

(b) Electric Charge (11, III, V11I). Paper II has been affected less than

most of the early papers by subsequent progress, and can be regarded HH

substantially correct so far as it goes. Gauiit's form of the matrix co-

efficient of the Coulomb energy, employed in the paper, is now obsolete;

but this scarcely affects the investigation at the stage concerned. The

factor 136 was changed to 137 in subsequent papers; but the difference

is a question of definition
( 15-9). Paper 111 represents an interim stage

in a complicated investigation, and has the defects of an interim report.

Progress remained unsatisfactory until the interchange energy was associatec 1

with the operator P instead of with E$. The theory in Vlli is substantially

the same as the second of the two methods given in this book
( 15-7).

(c) Origin of Mass (V, VI, X, XI). With regard to V and VI, which

were preliminary papers, 1 need only say that the present theory follows

the ideas there suggested. In X the argument now replaced by the

formula jR 2 = JS./2' was unsatisfactory; otherwise the changes are mainly
of the nature of amplification. Paper XI is practically up to date ; but

a numerical change was made necessary by the discovery of an in-

consistency of a factor 2 in current quantum theory ( 9-6).

The various lines of investigation were very much interlocked ; a back-

ward state of one prevented progress in the others. Thus the whole work

reached completion as one unit. The cosmical problem treated in XI was

the last item on the main programme; and, after it was solved, there was

not much difficulty in supplying the remaining investigations needed to

fit together all the material. The investigations in the published papers
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are, of course, considerably altered in form now that they are connected
to a homogeneous theory instead of to fragments of current theory
partially modified to suit the growth of ideas.

It was found in III that the theory offers an explanation why one
dimension of the world differs from the other three; but, except for this,

little attention was paid to reality conditions in the series of papers.
This was deliberate; because it seemed premature to try to formulate

reality conditions before the main lines of connection of the analytical

theory with observational phenomena were settled. It was not until after

the last of the published papers that I took up the problem and reached
the reality conditions formulated, and used extensively, in this book.

Strain vectors first appeared in X, but were to some extent anticipated
in VIII. The more extended use of strain vectors, and the systematic
discrimination between internal and external wave functions, is a feature

of the new treatment. Other portions of the theory scarcely touched on
in the published papers are 8-4-9-1, 10-4-11-9, 12-6-12-8, 15-8-16-9.

At one time 1 laid stress on a suggestion (due to Zanstra) that the

packing ratio in helium is an approximation to f|. It seemed likely that

the binding of particles in a rigid nucleus might be represented as the

loss of one degree of freedom of the double wave functions, with a

corresponding reduction of the energy required for statistical equilibrium.
Recent atomic weights make the packing ratio less close to J-|| than was
at one time supposed; but in any case the theory of a rigid nucleus was
not expected to apply to helium exactly. I still regard the suggestion as

plausible; but as my investigations have not dealt with nuclear structure,
the question remains in suspense.
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CHAPTER I

TENSORS AND MATRICES

1*1. Linear Transformations .

A physical system may be described in many alternative ways. Different

systems of coordinates may be used for specifying its position; different

systems of units may be used for the measurement of mass, length, time;
and so on. Accordingly our attention is directed to the problem ofcomparing
systems ofdescription in which there is a one-to-one correspondence between

quantities A, B, C, ... occurring in one description and quantities .4', B 1

',

C', ... occurring in another description.

The description commonly includes sets of associated quantities which
are regarded as "components" of a single entity, e.g. the three components
of a force. We then have a correspondence between an array of n quantities

Ap in one description and A^ in another description (/u
= 1, 2, ... n).

We proceed at once to a special case of great importance, viz. when A '

is

given by a linear transformation of A^

...+qlHA n
[

...+?i,i4J

etc. Using the summation convention of the tensor calculus, these formulae

are written more compactly A > A /i i\r Aa =9oii
A
n (M2)

and the transformation, or change ofdescription, is described as A -> g A .

The array of coefficients q
afJL

defines the change of the system of descrip-

tion, so far as the characteristic A^ is concerned. Linear transformations

possess the Group property ; that is to say, the resultant of a succession of

linear transformations is a linear transformation. Thus we can have a set

of systems of description such that, in passing from any one description to

any other, the transformation of A^ is always linear. When for all systems
of description contemplated the transformation of A^ is linear, A is called

a tensor.

By solving equations (Ml) we can find Al9 A 2 , ... in terms of -4/, A2
'

, ....

The resulting formulae are linear and may be written

4r=?o/-V- (M3)
The array ofcoefficients qa^ defines the inversetransformationtothatdefined

fcysv
If Bp is another array of n quantities occurring in the description of the

physical system, and in the change of description in which AQ ->qaiL
A

tli
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Bp is said to be a tensor of the same kind as A^ (or to be cogredient with

4>-
If Cp is another array of n quantities occurring in the description, and in

the change of description in which Aa ->qafJtA^

C.+qr'Cp, (M5)

C^ is said to be a tensor of opposite kind to Ap (or to be contragredient to A^) 9

Note the inversion of the order of the suffixes of q'.

From Ap and C^ we may form an array of n2
quantities A^GV which

follows the transformation law

^C^q^A^C^q^q^A^. (M6)
If T^v is an array of n* quantities occurring in the description, and in the

change of description in which A^-^q^A^

T^q^'T^ (M7)

(i.e. if it is transformed in the same way as A^C^ then T^v is said to be a

mixed tensor of the second rank of the class A^ .

Tensor properties do not necessarily depend on the physical nature of

the entity that is being described; they depend on the variety of descriptions

which we admit. For example, the statement that B^ is a tensor of the same

kind asA^announces a limitation ofthe variety ofdescriptioncontemplated ;

for there can be no compulsion to change our description of one physical

feature of the system when the description of another feature is changed.

But unless there is some systematic plan underlying our descriptions it will

be impossible to assert any general laws governing the quantities occurring

in the descriptions.

For example, the strength of the wind is sometimes described by a

number of dynes per square centimetre and sometimes by a number on the

Beaufort scale. We cannot expect to find exact equations (relating our

measures of the strength ofthe wind to other meteorological characteristics)

applicable to both codes of measurement. By taking the wind strength to be

a tensor of the class of tensors used for describing other meteorological

characteristics we rule out one or other description not as illegitimate, but

as unsuited to the purpose we have in mind, viz. to express the regularities

underlying natural phenomena by mathematical equations governing the

quantities which occur in our descriptions of the phenomena.

1-2. Space Tensors and Wave Tensors.

When the change of system of description includes a change of coordinates

from (^ , a?2 ,
#3 , #4) to (#/ , #2

'

#3' > #4')* &*1 infinitesimal coordinate difference

dXp is transformed according to the formula

dxi (1-21)*
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etc. This may be written in the form (1-15)

dx^q^'dXp (q^'-dx.'/dxj. (1-22)

Thus every change of description contemplated as admissible corresponds
to a linear transformation of

dx^. Accordingly dx^ is a tensor; we call it

a displacement vector.

This is the basic tensor of the class of tensors used in the ordinary tensor

calculus. Displacement vectors and all tensors of the same kind are called

contravariant vectors; tensors of opposite kind are called covariant vectors.

Mixed tensors of the same class are defined as in (M7); and more generally
tensors of higher rank with 16, 64, 256, ... components are introduced, their

transformation laws being

We shall call this class of tensors space tensors.

Thus, although the theory of tensors belongs primarily to the algebraic

theory of transformations, it has usually been linked to geometry by
identifying the basic tensor of the algebraic scheme with a geometrical

displacement or coordinate difference dx^ . We shall here discard this special

linkage. We shall introduce another class of tensors called wave tensors,

derived from a basic contravariant wave vector^ in the same way that the

space tensors are derived from the basic contravariant space vector dx^ .

For the moment we leave the basic wave vector unidentified. But at a

certain point in the development of the system of wave tensors, we shall be

able to side-step into a new class of tensors. On examining the properties
of the new tensors we shall find that they can be identified with space
tensors. Thus the wave-tensor calculus leads up to the ordinary space-tensor
calculus and includes it as a side branch; but its greater comprehensiveness
fits it to deal with certain entities in modern quantum theory which are not

describable by space tensors.

The basic wave vector will be identified in Chapter v. It turns out to be
the four-valued wave symbol introduced into physics by P. A. M. Dirac in

his linear wave equation of the electron. Vectors of this class cannot be
reached from the ordinary calculus 6f space tensors, which does not begin
far enough back. Our plan accordingly is to begin with these vectors, and
lead up to the ordinary space vectors at a later stage.

1*3. Chain Multiplication.

Let Aj, Bj be two mixed tensors of the second rank. Having regard to the

summation convention we recognise four different products

A*B*
9 AJBV\ A*Bf % AjBf. (1-31)

The first is the outer product, and the fourth is the inner or scalar product.
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The second and third are called matrix prodticts and are denoted by AB and

BA respectively.

Matrix products are formed by chain multiplication, i.e. the second suffix

of one factor is repeated as the first suffix of the succeeding factor (the

repetition introducing a summation in accordance with the summation con-

vention). The productAjB* is of this form. AjBf- is not a chain product

as it stands; but it becomes one if it is rewritten as BfAj .

On the understanding that chain multiplication is the only kind of

multiplication admitted, no suffixes need appear in the formulae, since the

reader can always supply appropriate suffixes when required. Thus the

product of a number of double-suffixed quantities is written

P = ABCD, (1-321)

which stands for P^ABjCD. (1-322)

This rule of multiplication is the distinctive feature ofthe matrix calculus.

The notation is so useful that wo cannot afford to do without it. Nevertheless

matrix calculus suffers from being more limited than tensor calculus; and

we often want to introduce outer and scalar products and other combina-

tions for which matrix calculus provides no notation. This necessitates

resorting to various awkward shifts, and occasionally reverting to the full

suffixed expressions.

Chain multiplication does not contemplate quantities with more than two

suffixes. We shall at first limit the term
Sk

matrix
"
to two-suffixed quantities

representing two-dimensional arrays. Technically one-dimensional arrays

are also matrices, but it would probably be confusing to include them. One-

dimensional arrays will here be called vectors, even when no question of

transformation properties arises. The term implies very little restriction so

long as we do not specify the kind of vector.

Chain multiplication cannot be carried beyond a vector, so that vectors

can only occur at the beginning or end of a matrix product. We shall dis-

tinguish initial vectors by an asterisk, final vectors being unmarked. This

notation allows us to reintroduce outer multiplication to a limited extent.

The rule is that, if it is impossible to interpret two symbols in juxtaposition

as a chain product, they are to be interpreted as an outer product. Thus if

0^ is a vector, the expressions

are interpreted as (A$) xB, Ax

where thesymbol x indicates outermultiplication, chain multiplication being

impossible after a final vector or before an initial vector. Or, with suffixes,
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In particular, we have the following notation which is of great importance

0X* denotes the outer product ^uX
t \ ***t5 J

denotes the scalar product x^u-J

The asterisk is a substitute for suffix indications, and is dropped when the

suffixes are inserted.

A feature ofmatrix multiplication is that it is non-commutative; that is to

say BA*AB. (1-34)

It is to be remembered that the non-commutation only arises through the

omission of suffixes; when suffixes are inserted in BA, the factors commute
as usual. Thus

iy*4/-4/V- ( 1>35)

Since the suffixes are often omitted, we can no longer depend on dis-

criminating contravariant from covariant vectors by the upper and lower

positions of the suffixes. There would be little advantage in retaining a

method of discrimination which only worked spasmodically. Accordingly,
we shall in future generally write all wave tensor suffixes in the lower

position.

1*4. Transformation Laws of Wave Tensors.

In 1-1 we introduced three kinds of tensors of the class A^ with trans-

formation laws (1-14), (M5) and (1*17) respectively. The formulae may be

written as B' aB C' =Ca ' T '= '

^a qa, J'> ^a u ixor >
-L ar

The products, as here written, are all chain products, so that the suffixes

may be omitted and we have

B' = qB, C*' = C*q', T' = qTq'. (1-41)

Further by (1-12) and (MS)

Therefore AJ = q^q^'A^ . (1-421)

But A ' = *^Ar
'

9 (1-422)

where 8^ is the substitution operator, viz.

= 0,

Since Ar
f

is an arbitrary array of four numbers, it follows from (1-421) and

(1-422) that g^/^. (1-44)

The left-hand side is a chain product; we can therefore drop the suffixes,

obtaining
??

, = s (1
.

45)
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In matrix calculus 8 has the algebraic properties of the number 1. For,

if 8 is any matrix 88=8 88=8
so that, dropping suffixes, 8/9= $, 88 = 8.

Accordingly 8 is called the unit matrix] and since it is equivalent to the

number 1 in matrix calculus, we shall often denote it by 1, or with suffixes

(1) . Then (1-45) becomes qq'
= 1. Thus q' may be called the reciprocal of q,

and it will sometimes be written as q-
1

.

The formulae (1-41) and (1-45) constitute the principal transformation

formulae in wave-tensor calculus. Summarising our results for reference,

and changing to the notation which we shall usually employ, we have the

following classification and nomenclature:

Covariant (final) wave vectors

i/j'
=

qtfj. (1-461)

Contravariant (initial) wave vectors

Mixed wave tensors T' = qTq', (1-463)

with ff?'
= l- (1-464)

These would reduce to the transformation laws of the ordinary tensor

calculus if we set ^= a.yaV, ^' =^7^. <1')

But, as already explained, the wave tensors are not linked to geometry in

this way, and (1*47) does not apply. For a transformation of wave tensors,

anymatrix which has a reciprocal maybe used as q; that is to say, the corre-

sponding transformation will give a new description which is included in

the whole group of descriptions contemplated.
A matrix which has no reciprocal is said to be singular. A singular matrix

may be regarded as a generalisation of the algebraic number in much the

same way that the unit matrix is a generalisation ofthe number 1
; but there

are infinitely many different singular matrices. As q approaches a singular

value, one or more elements of its reciprocal q' tend to infinity; singular

matrices q are therefore excluded in the foregoing transformation theory.

1-5. Initial and Final Wave Vectors.

The terms "initial" and "final", applied to wave vectors, define their

behaviour in regard to chain multiplication, and do not necessarily describe

their actual position in the sequence of factors (cf. (1-33)). As far as

Chapter vi (inclusive) the initial vectors will be contravariant and the final

vectors covariant. But it must not be supposed that this is a general rule, or

that the asterisk is a symbol for contravariance.
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In order to express the covariant transformation law (1*461) in a form

appropriate for an initial covariant vector, we introduce a matrix q which is

the transpose of 0, obtained by interchanging rows and columns; thus

Then (1-461) stands for

$*

Hence, dropping suffixes, 0*' = 0*</. Treating (1-462) similarly, we have the

transformation laws:

Initial covariant wave vectors

t*' = *li*q, (1-521)

Final contravariant wave vectors

x
' =

q'x . (1-522)

The outer product ift<f>*
of two covariant wave vectors 0, $ is a covariant

wave tensor S. Using (1-461) and (1-521) we obtain the transformation law:

Covariant wave tensors S' = qSq. (
1 53

)

These formulae will not be required until Chapter vn.



CHAPTER II

THE SIXTEENFOLD FRAME

2* 1 . Symbolic Calculus .

For our physical applications the significance of a matrix is embodied, not

so much in its representation as an array of numbers, as in its non-commu-
tative multiplication property (1*34). Most, if not all, of the properties of

matrices which make them suitable for describing the conditions and
activities of the physical universe are also possessed by general symbols
endowed with the same non-commutative properties.

We shall therefore develop a calculus containing a number of symbols
which do not obey the commutative law of multiplication, but obey the

other elementary laws of algebra. The following definitions are adopted:
A symbol which commutes with every symbol in the calculus will be

called etn algebraic number.

The number 1 is defined to be a symbol which satisfies

l.E= E.l = E,

where E is any symbol in the calculus. From the definition of 1 the defini-

tions of other algebraic numbers follow in the usual way. In particular i is

defined to be a symbol satisfying

iE = Ei, UE=-E.

The underlying idea is that a symbol has no properties except such as

are manifested by it in the operations of the calculus in connection with

which it is used. Its nature lies in its behaviour; it has no intrinsic nature.

Therefore if a symbol behaves like the number 1 in every possible operation
of the calculus, it is the number 1. If our calculus is afterwards extended by
the introduction of additional symbols or operations which give a further

opportunity for discriminating behaviour, some of the symbols originally

counted as algebraic may cease to be algebraic. We may regard "algebraic
"

as a relative characteristic depending on the range of symbols which con-

stitutes our calculus.

I have here deviated from the terminology in pure mathematics, where it

is customary to give a much wider meaning to the term "algebraic". But
I think that most readers of a physical treatise will naturally understand

"algebra" to mean "ordinary algebra"; and therefore the distinction

between quantities which obey the rules of ordinary algebra (including the

commutative law of multiplication) and those which do not is most in-

telligibly described by the adjectives "algebraic" and "non-algebraic".
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2*2. Complete Orthogonal Sets.

Let El9 E2 , jE3 ,
JP4 be four symbols which satisfy

jy=-l, E^-E^ (^=1,2,3,4;^,,). (2-21)

That is to say, the symbols are four mutually anticommuting square roots

of 1. We shall find in 3*2 that there exist matrices which satisfy (2-21),

so that we need have no qualms as to the legitimacy of postulating such

symbols.
When we are given an even number ofanticommuting square roots of - 1

,

we can always find an additional anticommuting square root, making the

total number odd. Let iE^E^E^. (2-22)

We have (iE5)*= E^E2E3E^ E2E3 ff4

_ JET J7J J7I J/T
M

JB1 J7I Tfl
==

JLJ-[ J2/J 12/2 2 3 3 4 4 '

since the rearrangement of order involves six jumps of a symbol over a

different symbol, and each jump reverses the sign ofthe expression by (2-21).

Hence

so that EB
2 = - 1. We can verify similarly that ElE6

= -Eb A\ , etc.

Thus we have five symbols satisfying (2-21). Both equations of (2-21)

are included in the form

)=-8^ (^=1,2,3,4,5), (2-23)

where is the symbol defined in (1'43).

Any product formed by repeated multiplication of E19 E2 ,
E.3 ,

#4 can be

reduced to the form E
1
pE2

QE^
rE

4L

8
, since in collecting the factors the

alteration of order can at most change the sign of the product. Also, since

E
fJ
?= 1, E^

J reduces to E^ or 1. Thus, disregarding sign, the product
reduces to one or other of sixteen forms:

1, E^ E^EV ,
E

fi
EvEa , E^EsEt (^ v, a = 1,2,3,4; p*v* or).

Multiplying (2-22) by E ,
we have (

2 "24
)

iElE5
= E1

2E2E^E^= E2E3 E^,

so that by using E5 the triple products can be reduced to double products.

Disregarding factors 1, i, the forms (2-24) are equivalent to the sixteen

forms
i, E^ E^EV (^ v= 1,2, 3,4,5; ^v). (2-25)

As here written they are all square roots of 1; since

(EpErf-E^EpE^ -E^EVEV
= -EJE,?--!.

A linear function of the sixteen expressions (2-25) with algebraic coeffi-

cients (real or complex) will be called an E-number. We see that the opera-

tions of addition, subtraction and multiplication applied to JS?-number

will always yield JB-numbers. In virtue of this property the sixteen expres-
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sions are said to constitute a complete set. Similarly in algebra the symbols
1 and i constitute a complete set, since the operations of addition, subtrac-

tion and multiplication applied to complex numbers always yield complex

numbers.!
For reasons which will appear later the sixteenfold complete set here

introduced is called an orthogonal set.

The -E-iiumbers are a particular case (n = 4) of Clifford's numbers, J
which are formed analogously from any even number n of independent

anticommuting square roots of - 1. Since the J-numbers, or their equi-

valent matrices, play a fundamental part in the physical theory which we
shall develop, the theory is dependent on the choice n = 4 which we make at

the outset. This choice will ultimately be justified in 16*8, where it is

shown that it is imposed by the epistemologicai principles involved in the

conception of measurement.

2*3 . Notation of the E-symbols .

We shall write E^E^ (p, v= 1, 2, 3, 4, 5; /^ ). (2-31)

For uniformity we also give the original five symbols an alternative double-

suffix notation, viz. jr JT w /OQO\\ =
A)/*

= ~
A*o (

2 '32 )

Then the sixteen expressions (2-25) which constitute the complete set

become
^ ^ ()Lt)1

,= o, 1,2,3,4,5; p*v). (2-33)

By (2-31) and (2-32) we have in all cases E^v
= E

vfl
. In making up the

complete set of sixteen symbols it is arbitrary whether we employ E^v or

EVp
. It would, of course, be redundant to include both.

By using (2*21) and (2-22) we find the following general rules of multi-

plication: ^^=-1, (2-341)

*V^a= -E^v
=Eva , (2-342)

E^E^ E^E^iE^ (2-343)

where /*, v, a, T, A, p is any even permutation of 0, 1, 2, 3, 4, 5. For an odd

permutation E^E^^ -iE^.
The summation convention is not used in the above formulae. Unless

otherwise stated we shall limit the summation convention to the row-aiid-

column suffixes of matrices and wave vectors. In later developments the

symbols E^v will be identified with matrices; they will then have the form

t Some writers use the term "complete set" for the group of linear expressions (in this

case the j-numbers). The expressions in (2-25) would then be called "generators" of the

complete set.

J Amer. Jvurn. Math. 1, 350 (1878).

The summation convention is also employed when well-known formulae are quoted from

general relativity theory.
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C^/zv)a)3>
where a and ]8 indicate the element in the ath column and j8th row

ofthe matrix. In that case the summation convention will apply to a and
]3,

but not to the suffixes p., v which distinguish one matrix of the set from
another.

By (2-342) and (2-343) the JE-syrnbols commute or anticommute according
as they have no suffix or one suffix in common. We therefore obtain a sub-set

of mutually anticommuting symbols by fixing one of the two suffixes and

letting the other vary, e.g.

^30> ^31> ^32> ^34 ^35'

We call such a sub-set a pentad. There are six different pentads; and each

symbol is a member oftwo pentads. Our original symbols Ely E2 , E$, E4 ,
K5

constitute the pentad with fixed suffix 0. It will be seen that, if wo start

from any of the other pentads ami follow the same treatment, we reach the

same complete set.

There exist also triads, i.e. sets of three mutually anticommuting E-

symbols, which do not form parts of pentads, viz.

E^, Eva9 EafA (n*v*a). (2-35)

The maximum number of mutually commuting ^-symbols (excluding i)

is three; for no two ofthem can have a suffix in common, and therefore three

symbols exhaust the six possible suffixes. The three commuting symbols
.are accordingly

E^ ,
EaT , E^ (/*, v, or, T, A, />,

all different). (2-36)

We call such a set an anti-triad. Adding to it the symbol i, which commutes

with all symbols, wo obtain an anti-tetratl.

The two triads E^, Eva ,
EQ^\

ErX , 7?v E
pr , (2-37)

where p,, v, a, T, A, p are all different, are called conjugate triads. They have

the property that every member of one triad commutes with every member
of the other (see 3-8).

We shall often employ an alternative single-suffix notation for the

JSr-symbols (2-33), viz. E^ (JLC= 1, 2, ... 16). It is then understood that the

first five symbols form a pentad, and that

Ei* = i, (2-38)

but the order of the others is left unspecified. A general U-number is then

T^Z t^, (2-39)
/x-l

the coefficients ^ being algebraic numbers, real or complex. The individual

terms t^E^ are called components of the ^/-number. The algebraic com-

ponent Ji6 JS7i6i or i 18 ,
will be called the quarterspur (abbreviated as qs). We

have therefore
qg T^^ ^ (2-395)

If qs T= 0, I7
is said to be degenerate.
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2*4. Linear Independence of the E-symbols.

(a) If a complete set is multiplied through by any one of its members, we
obtain the same set in a different order, apart from algebraic factors 1 or

i. This follows from (2-34).

(6) If an JS-number vanishes, every component is zero. For suppose that

the ^-number
. + tmSm= 0, (2-41)

the coefficients being non-zero. Multiply through by Em \ it follows from (a)

that we obtain an expression of the same form and with the same number
of terms as (2-41). The last term is tmEm2 = tm (or itmEu ). Accordingly,
let the result be / / n tv jo\.-tm = 0. (2-42)

Let Er be one of the symbols which anticommute with J57a . Multiply (2-42)

firstly by initial ET and secondly by final ET ,
and add. Then

t
OL (ET EOL+E0i

Er) + tp(ET Ep + EpEr ) + ...^2tmET
= 0. (2-43)

The first term vanishes, and possibly some of tho other terms; but the

equation cannot wholly disappear since the last term does not vanish. If

ET commutes with Ep, (ETEp + EpEr )
= k2iEa , where Ea is another symbol

of the set, by (2-343). Hence (2-43) reduces to an expression of the same

form as (2-41) but with fewer terms.

By repeating the whole process as often as required we remove all terms

except the last; we are then left with an equation containing just one non-

zero term which is absurd. Thus an equation ofthe form (2-41) is impossible
unless all the coefficients are zero.

This shows that the ^-symbols are not connected by any linear algebraic

identity. In other words the set is complete but not redundant.

2*5. Miscellaneous Properties.

The following easily established properties of J?-symbols are collected here

for reference:

(a) Each symbol (except EIQ) anticommutes with eight symbols, viz. the

remaining members of the two pentads to which it belongs. It commutes

with the remaining eight symbols, which include itself and Eu .

(6) Each symbol (except E1B ) anticommutes with at least one member of

any given tetrad. (A tetrad is formed by four members of a pentad.) For if

the tetrad is Eol ,
EQ2 ,

EQ3 ,
J504 , the symbol E^ has one suffix in common with

one of these unless both a and r are 5. But a and r cannot be the same.

(c) If an JK-number commutes with E^ , every non-vanishing component
commutes with E^. For the condition that EtvEy commutes with E^ is

s,u^-v,)=o.
Terms for which EV9 E^ commute disappear; terms for which EV9 E^ anti-

commute reduce to the form 2tvEa by (2-342). No two terms reduce to
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the same Ea . By 2-4 (6) the coefficients of these surviving terms vanish

separately; that is to say, tv
= for those components Ev which do not

commute with E^ .

(d) Similarly ifan -E-number anticommutes with J
, every non-vanishing

component anticommutes with E^ .

(e) If an jE7-number commutes with each member of a tetrad, it is an

algebraic number. For by (c) its non-vanishing components commute with

each member of a tetrad, and by (6) no ^-symbol other than A\6 can do this.

The J5-number therefore reduces to E^t^, or itlB .

(/) For any /?-number T we have

ji=lG
2 E' TE = -16qsT. (2-51)

/t=i

Consider the component tvEv . We have

EpE Ep
= -Ev ,

if Ev , A; commute,

= +Ev ,
if Ev , Ep onticommute.

Hence, if v^ 16, we have by (a)

For v= 16, ^A;^16^=
Hence ^E^TE^ - 16#16 16

= - I6qs T.

(g) The coefficients ^ of an ^-number satisfy

tp= ~qs(T^)= -qs(^y). (2-52)

Let H=TE
fJL

. Each component of S corresponds to a single component of

T by 2-4 (a). The quarterspur of 8 corresponds to the component t^
E

fl
of T,

and is therefore equal to t
fA
E

fJi .E^= t^,
which proves the theorem.

Combining (2-51) and (2*52) we obtain

m^-l^^(TEa)^^E^TE E^^E TE^ (2-53)

(h) If S and T are U-numbers

(2-54)

2*6. Reciprocals.

Let S and T be Jff-numbers. Generally there exist two quotients T/S,

which are the ^-numbers R, R' defined respectively by

R8=T, SR' = T. (2-61)

Considering the first of these equations, the vanishing of the jB-number

RST requires that every component of it should vanish. We have there-

fore 16 equations (linear in
r^)

to determine the 16 coefficients r^
of the

J5-number R. A solution will exist unless the determinant of the coefficients
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of the
r^

vanishes. Since the coefficients of the r^
are furnished by 8, the

existence or non-existence ofa solution depends on 8 but not on T (assuming

If there is no solution, i.e. if 8 fails as a divisor, 8 is said to be singular.

In particular, taking jf=l, an JEJ-number 8 will have a reciprocal R
(such that R8= 1) unless it is singular. A singular J?-number has no re-

ciprocal.

If R8=l, SR' = 1, (2-62)

we have R= R (8R
f

)
= (RS)R = R', (2-63)

so that the same reciprocal is obtained by either definition. An jE-number

commutes with its reciprocal.

Let T be an JSJ-number which commutes with 8. Denoting the reciprocal

of S by S~\ we have S-i ^ Tg ^ S-i _ $-1 ^ ST ^ g-^

whence S~1T=TS-1
.

So that an U-number which commutes with 8 commutes also with its

reciprocal. We can also show that, if two TiJ-numbers commute, their reci-

procals (if any) commute.

If 8 is singular, the vanishing of the determinant of the coefficients makes

it possible to obtain an infinitude of solutions of

RS= 0. (2-64)

Any such solution R is called a jtseudo-reciprocal of 8. A pseudo-reciprocal
is necessarily singular. If R is a pseudo-reciprocal of 8, XR is also a pseudo-

reciprocal of 8, X being any jG7-number
;
for if RS = 0, XRS == 0. A product

of JB'-numbers is singular if any of its factors are singular.

It is important to notice that, when 8 and T are j&-numbers, the equation
ST = does not imply that either $= or T= 0. There is an alternative,

viz. that 8 and T are singular. If, however,

SEpT = Q (2-65)

for every symbol E^ of the complete set, then either $= or T= 0. For

suppose that 8^0. Then by (2-53)

= 0, by (2-65).

Hence ta
= 0. Since this applies to every component ta , it follows that T = 0.

If 8 is singular and RS contains no non-algebraic terms, then

jRS = 0. (2-66)

For if RS were a non-vanishing algebraic quantity a, JR/a would be the

reciprocal of 8, so that 8 could not be singular.

Since E^.E^l, the symbols E^ are not singular. Hence if
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2*7. Transformation of Complete Orthogonal Sets.f

Let F^qE^q', (2-71)

where 92
/ = ?'?= 1 - (2-72)

Then the F^ form a complete set having the same structure as the set of E^ .

This is proved by showing that the relations (2-34) pass over unchanged
from the E^ to the F^. Taking, for example, (2-342)

F^F^qE^q' .qE^q'

^qE^E^q' by (2-72)

=qEvaq' =Fv<,.

Here q and q' may be jE-numbers or they may involve entirely new symbols.
We make no assumption as to their nature.

The converse theorem is that if
JE^, F^ are two complete orthogonal sets,

arranged in corresponding order so that F^ ,
Fv commute or aiiticomniute

according as E^ Ev commute or anticommute, there exists a transformation

(2-71) connecting them. We shall prove this under the restriction that

(a) The F^ are ^-numbers, or

(6) The Fp are new symbols which commute with all the E^ .

16 16

Let P-aZJ^L, P'-aSlZUP, (2-73)
l

r r
l

r f*

a being an algebraic number. Consider the expression FVPEV . It has 16

terms of the form
ajp /p jg

\ ^
If Ev , Ep anticommute, and therefore Fv , F^ anticommute, this becomes

-oF^J^JEf,,, which is of the form -*FQEa by (2-342). If Ev , E^ and

FV9 Fp commute, it becomes ^.F^FVE^EV , which is of the form a (iFa ) (iEa )
or

-u.F Ea by (2-343). Thus FVPE gives the 16 terms of -P in a different

order; hence ^pE^
= _ p (2

.

741)

Similarly EVP'FV =-P'. (2-742)

Multiplying by final Ev and final FV9 respectively, these give

FVP= PEV , EV P' = P'FV . (2-75)

Case (a). F^ is an jB-number.

Multiplying together the two equations in (2-75), we have

EVP'PEV=P'FVFVP= -P'P.

Hence, multiplying initially by EV9

Therefore P'P commutes with every EV9 i.e. with every symbol in the

calculus. It is therefore an algebraic number. Reserving the singular case

t This transformation was introduced by G. Temple, Proc. Boy. Soc. A, 127, 342 (1930).
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P'P = 0, for consideration in 2-8, we can choose a so as to make P'P= 1. Tt

follows that PP' = 1; and by (2-75)

so that P is the required transformation operator q in (2-71).

Case (b). F^ commutes with the E^.
Then P = P'. If P is multiplied by E^F19 we obtain the same 16 terms in

a different order, except that those which commute with El (and therefore

with FJ acquire a factor i
2
by (2-343). Thus 8 terms are reversed in sign. In

the product P x P, each term ofP occurs 16 times, 8 times with the original

sign and 8 times with reversed sign, except that EIBF19 occurs 16 times with

reversed sign. Hence p2= a2
(
_ 16^16P16 )

= 16a2
.

Taking a= J, we have PP' =P2 = 1. Then by (2-75)

Hence the required transformation operator is

?= <?'
= iS#/t*;. (2-76)

2-8. The Singular Case.

In Case (a), but not in Case (6), it may happen that PP' = and the fore-

going method of determining q breaks down. We shall show that never-

theless there is a transformation F^qE^q'; but instead ofq = P, we have

^P^), where p^^^^ p^^^E^F^, (2-81)

and Ea is one of JK-symbols. The transformation previously given corre-

sponds to a= 16; ifthat fails we try another value of <r, until we find one such

Ordinarily the vanishing of PI" does not imply that either P or P' is

zero; but in the present case we have, by (2-75),

for every Ev . Hence by (2-65) either P = or P' = 0.

Let EM= (iEa ) Ep (iEa) --E^E,,. (2-82)

Since this is a transformation of the form qE^q' with qq' = 1, the JS (or) form
a complete set. By (2-82) E^^E^ or -E^ according as Ea commutes or

anticommutes with E^\ thus the transformation simply reverses the signs
of eight members of the set. We call the set E^ a reflection of the set E .

Including the original set (reproducedwhen a= 1 6) there are sixteen different

reflections, which correspond to the sixteen possible combinations of sign
in an initial tetrad El9 E2 , J 3 ,

E.

By (2-51) Sa^)=16qsJ^. (2-83)
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Hence by (2-81)

EaPMJ0a= - IGaZ^qs^ - 16o 1̂6#lfl
= 16a, (2-84)

since qs E^
= unless p,

= 1C. Hence at least one of the quantities 1*V}E has

a non-vanishing quarterspur. Therefore at least one of the quantities P(a)

does not vanish.

The quarterspurs ofP(o)Ea and Ea P'
(af) are equal; for they are the quarter-

spurs of -
ocS2^/y

a> and -
oEE^F^ , which are equal by (2-54). Hence, in

securing that P^^^Q, we also secure that P'(a)^ 0.

Having found non-vanishing P^a\ Pr(a
\ we use these instead of P 9 P', and

repeat our previous analysis as far as (2-75), obtaining

fwpw=pto]B, 9
EVP'M= P'WFV . (2-85)

It will be found that Ea remains passive in the middle of the expressions

F
vPWEv and does not affect the argument. Proceeding to Case (a), we find

as before that P'^pw is algebraic. Further, it cannot vanish; for, as shown

for P, P' at the beginning of this section, its vanishing would require that

either P^> or P'(a) is zero.

It may seem curious that we should be able to choose a arbitrarily in the

transformation
jF^
=
P^/S^ P'

(CT)
. The explanation is that by changing a we

introduce a purely algebraic factor which is absorbed in a. Evidently the

transformation could be further generalised by substituting an arbitrary

^/-number in place ofEa .

We notice for future reference that there is at least one reflection E^
which is connected with F^ by the unmodified transformation q= c

q'
= KZE^FH . For, choosing o- so that P<a)

,
P'<a) * 0, we have

-aEE.EpE.Fn~
-

2-9. Application to Relativity.

The transformation F^qE^q' is formally the same as the transformation

(1-463) of a mixed tensor T' = qTq'. Limiting ourselves for the present to

Case (a), q is now a non-singular jfir-number instead of a non-singular matrix.

We shall find in Chapter in that fourfold matrices are a special representa-

tion of Jfi/-numbers. Thus it is appropriate to generalise the definitions of

tensors in Chapter I by substituting symbolic JS?-numbers for matrices.

In physical applications we shall call a "complete set of E^ a symbolic

frame. By the above transformation we obtain a different but equivalent

symbolic frame F^ . If the E^ are taken to be mixed wave tensors, the

change from one symbolic frame to an equivalent frame is a tensor trans-

formation. A change of symbolic frame is then part of a general change of

system of description, and other quantities occurring in the description are
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changed simultaneously according to the wave tensor character assigned
to them in the group of descriptions contemplated.
The present analytical theory is being developed to serve as a tool in

physical investigations, and we cannot pledge ourselves always to use the

tool in one particular way. But the primary application will be that certain

characteristics of a physical system are described by JP-numbers which are

invariant for changes ofthe system of description, and therefore correspond
in conception to an absolute structure transcending our variable description.
Let T =

T&tpEp
be one ofthese invariant ^-numbers. The invariance requires

that when we transform to a new symbolic frame
E^', the coefficients t are

changed to */ so that
T^E^S^'E^. (2-91)

The arrays ^ , t^ are regarded as components of the same physical entity
referred to two different reference frames E E'.

It is convenient to call the transformation E^E '

a rotation of the

symbolic frame. Rotation is here given a somewhat generalised meaning;
the emphasis is on the fact that it is a type of change which does not involve

any intrinsic distortion of the frame. The frame JB
'

has the same intrinsic

structure as the frame E^, namely that expressed by equations (2-34).

Having defined rotations of the frame we can now define corresponding
rotations of a physical system described by ^-numbers. Consider a system
described by invariant A7

-numbers Z^S^JS^, J7 = S^jB
r

/x
, etc. Let the

system undergo a change such that T-+T', U-> U f

, etc., where

T'^pEp', U' =Vu^. (2-92)

Then the new physical system is constructed in the frame E^ according to

the same specification as that by which the original system was constructed

in the frame E^. In other words the system has rotated with the frame.

Clearly the systems (T, C7, ...) and (T
f

, U', ...) have the same kind of

equivalence as the frames. They are intrinsically similar, as the frames are

intrinsically similar.

Normally the rotation of a physical system is described by referring it to

a fixed frame. We therefore require the components of T' in the original

frame E^. Denoting these components by t^ (not the same t^ as in (2-91))

the condition is r =a^, =a^ (2
.

93)

The transformation J
/4
-><

/
/ represents a rotation of the physical system

relative to the fixed frame E^. Since E^^qE^q'y we have by (2*93)

Xtp'E^q&tpEJq'. (2-94)

The nature ofthe transformations of
t^
determined by (2-94) will be studied

in detail in Chapter iv.

Any change ^->^' represents some imaginable change of the physical

system described by ^ . The peculiarity of the transformations which satisfy
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(2-94) is that the new system is intrinsically similar to the old, and the

change is therefore pictured geometrically as a rotation without distortion.

More generally we call such a change a relativity transformation. It can bo

detected (if at all) by observing relations to extraneous physical objects

that do not form part of the system to which the relativity transformation

is applied.

The relativity of our orthogonal symbolic frames is precisely analogous

to the relativity of Galilean frames of space and time. Space-time frames

are all alike initially. Ifwe speak ofa frame x, y, z, t, it is impossible to define

in an absolute way which frame, out of an infinite number of equivalent

frames, we refer to. But when once we have selected and labelled an initial

frame A, any other frame B can be defined relatively to it by specifying the

space rotation and Lorentz transformation which would convert A into B.

Similarly we cannot define in an absolute way the frame E^ which we select

initially. But any other frame E^ can be defined relatively to E^ by speci-

fying the transformation symbol q (which is an ^-number of the form

Sgr^ .By) connecting E^ and E^
f

. We use these symbolic frames as the basis of

a relativity theory which (we shall find) includes, but is somewhat more

comprehensive than, the relativity of Galilean frames of space and time.

Attention may be called to the perfect adaptation of the mathematical

symbolism to the physical conditions. Owing to relativity we are unable to

define in an absolute way the physical frame initially selected, which we label

Ep . It is therefore appropriate that we should be equally unable to define

in an absolute way the label E^ which we affix. For the set of symbols E^
is only defined by its structural properties (2-34), and these apply equally

to Ep or to any other complete orthogonal set. The complete physical

equivalence is therefore represented by a complete mathematical equi-

valence. We lose this perfect adaptation when we use special kinds of /
/A

,

e.g. matrices.

There is no absolute distinction between a rotation ofthe physical system
and a rotation of the frame in the opposite direction; and in elementary

theory the term "relativity rotation" is applied indifferently to rotations

of the physical system and of the frame. But after the first results of this

equivalence have been gleaned, there is seldom anything to be learned by

introducing rotations of the frame. If the frame is rotated, we have to

transform simultaneously the specification of all objects, fields, boundary
conditions (including boundary conditions at

"
infinity"), normalising

conditions, etc., concerned in the problem. On the other hand, keeping the

frame fixed, we can introduce relativity rotations of a particular object,

leaving the other objects concerned in the system unchanged. In order that

it may possess independent relativity rotations, the object must be con-

ceived as separable from the rest of the system contemplated. A separable
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object will have a structure described by invariant Jff-numbers T, Z7, ..., so

that transformations of the form (2-94) represent displacements of the

object without intrinsic change of its structure.

Thus in later developments we are concerned with independent relativity

rotations of individual objects, which provide much wider scope for the

application ofrelativistic principles than a rotation of their common frame.!

For this reason, "relativity transformation" will normally mean displace-

ment without intrinsic change of an object referred to a fixed frame, though
it may also be applied to a rotation of the frame if occasion arises.

In practice an object cannot be rigorouslyseparatedfrom its surroundings ;

if it could be separated, it would not be accessible to observation. But that

does not do away with the usefulness ofthe conception of a separable object.

One of the greatest achievements of current quantum theory is that it

has found a rigorous method of avoiding this dilemma. An incompletely

separated object is represented as a probability distribution over completely

separated states. The environment then affects, not the state, but the

probability attached to the state. We may therefore, with all rigour, apply

relativity transformations to the IS-numbers describing the states pro-

vided, of course, that the states are such as can be specified by invariant

.E-iiumbers. This last reservation is liable to be overlooked ; and ^-numbers

(or the equivalent Dirac wave functions) have often been applied to states

which obviously do not possess the relativistic properties which jE-numbers

are designed to represent.

From one point of view the assumption that there exist in nature equi-

valent 16-fold frames, which can therefore be appropriately represented by

equivalent sets of j&'-symbols, is a hypothesis the fundamental hypothesis
of our theory. But actually we appeal to an epistcmological principle which

goes deeper than that. We will call it the
k<

Principle of the Blank Sheet".

Physics is concerned with the problem of distinguishing and classifying

the distinctions of objects, states, events. Exact measurement is a process

of determining and classifying minute distinctions. To develop a theory of

the characteristics which can be distinguished and of the measurement of

the distinction, we require a blank sheet to write on not a sheet already

scribbled over with vaguely recognised distinctions. A group of intrinsically

indistinguishable frames is chosen as the basis of a description of the uni-

verse, in order that the theory of distinguishable or measurable phenomena
to be erected on it may go down to the very origin of their distinction. Tn

t The above remarks refer to the more usual problems of quantum theory in which a

number of objects are referred to a single frame. An important Intermediate stop is the

consideration of the relativity rotations of two objects referred to a double frame E
fJL

Fv .

In this case any combination of rotations of the two objects is equivalent to a transformation

to an equivalent double frame E^F
f
. This (rather unusual) development is of great

importance in the special problems treated in the present book.
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practice we do distinguish frames of space-time otherwise than by their

transformation relations to one another; we distinguish them as being at

rest relatively to the earth, sun, etc., or as having a special orientation with

respect to the earth's gravitational field; but we conceive frames of space-

time as initially indistinguishable in order that these distinctions may be

properly inserted in the development of the theory and not hidden in its

initial assumptions. We do not assert that there exist intrinsically indis-

tinguishable 16-fold frames of reference in the physical world; it is only for

an ideally simplified universe that this would be true. Our principle is that

such distinguishability of the frames as occurs must be treated as a positive

characteristic to be represented by appropriate symbols and combined in a

unified theory with the other distinctions studied in physics. To exhibit a

positive characteristic, we have to imagine a frame which initially lacks it.

Our mode of thought requires us to formulate some kind of frame or

background for physical phenomena. Let the background be a white sheet

to show up the phenomena, not a jazz-painted camouflage against which

they may lie undetected.

Case (6), in which the equivalent frames E^ , F^ consist ofentirely different

symbols, has also an important physical application. Since q is now a

mixture of J5-symbols and J-symbols, the relation between the two frames

is not describable by reference to the A'-frame only. Ifwe have three such

frames E, F, G, the transformations yEy ,qEi} cannot be compared, and there

is no meaning in saying that the change from E to F is greater or less than

the change from E to G. Equivalent frames of this kind are required when
we deal with the properties of two similar atoms or two electrons, con-

ceived as non-interacting. Two electrons are intrinsically similar (or equi-

valent) but are not the same; we cannot specify different degrees or different

kinds of not-the-sameness, as we do for equivalent space-time frames. If

there is interaction the case is somewhat altered, and the electrons are not

so definitely distinct; but here again the Principle of the Blank Sheet

requires us to start with frames corresponding to non-interaction, into

which interaction is introduced as an explicit perturbation.



CHAPTER III

THE RESOLUTION OF MATRICES

3* 1 . Four-point Matrices .

We are now going to show that fourfold matrices may be expressed as

2?-numbers ; so that the theory developed in Chapter n has a particular

application to matrices.

First consider the six matrices

a= 100 8p
= Q 010 #y

= 0011000 0001 00100001 1000 01000010 0100 1000
Da=l 000 D0=l 000 JD

y
=l 0000100 0-100 0-100

00-10 0010 00-10
000-1 000-1 0001

The system of nomenclature is that the suffixes a, /J, y have reference to the

three ways of pairing four numbers, viz. 12, 34; 13, 24; 14, 23.

We also introduce two alternative notations for the unit matrix, viz.

S8= J9S =1.

The following results of matrix multiplication are easily verified:

flfy
= fl

y , D^D^DV \ (3-111)

8u*=i, #a
2 =i; (3-112)

SaDa=Da ,Sa ,
Sa^=-Z>0ASa ; (3-113)

with similar results obtained by permuting a, /?, y, but not S.

The commutativepropertiesmaybesummarised asfollows (a, 6 = a, /?, y, 8) :

SaSb = SbSa , DaDb
=DbDa9 SaDb

= (ab)DbSa , (3-12)

where (a&) = (6a) = l if a= 8, or 6 = 8, or a=
= 1 otherwise (

"

The product ofany number of these matrices in any order can be reduced

to one of the sixteen forms:

SaDb (a,6 = a,j8, y,8).

For we can bring all the $'s to the beginning and the >'s to the end by
applying (3-12), and then reduce the 's to a single S and the D's to a single
D by applying (3-112) and (3-111). If either the S factor or the D factor

disappears, we insert the unit matrix Ss or JDg to preserve homogeneity.



3-2] The Resolution of Matrices 35

Thus the sixteen forms constitute a complete set in the sense explained in

2*2. Ifwe call a linear function of them with algebraic coefficients an SD-

number, the operations of addition, subtraction and multiplication applied
to D-numbers will always yield /SZ)-numbers.

3-2. Pentads.

It follows from (3-12) that

(8aDb) (8cDd)
-

(be) (ad) (ScDd) (SaDb). (3-21)

Hence the condition that SaDb and 8 Dd anticommute is

(bc)(ad)=-l. (3-22)

Let us write down the matrices ScDd which anticommute with /Sa />8 .

Here 6 = 8, so that (6c) = l. Hence (orf)
= -1; and since a = a, we have

d=
]8 or y. The suffix c can have any value. Hence the matrices are

Sfy> fyDp, S
? Dp, SsDp, SaDy , tyDy , SyDY , S^Dy . (3-23)

Selecting one of these, S8 Dp, we find in a similar way that the following
anticommute with it:

SaDa , 8a fy, SaDy , 8^, S^, S
Y Dp, 8yDyt

S
r
D8 . (3-24)

Hence the following anticommute both with $a />a and 8$ Da:

S^Df), 8^, S
yDp, SY

D
Y

. (3-25)

The first of these is the product of /Sa jDs and 8$ Dp.
A symbol which anti-

commutes with two symbols necessarily commutes with their product; thus

no further matrices can anticommute with the triad:

SaD8 , SB Dp, 8^. (3-26)

It will be found that the remaining three matrices in (3-25) anticommute
with each other, so that

constitute a pentad of mutually anticommuting matrices.

Dropping the superfluous 8$ and 1 D8 , and inserting a factor i where

necessary to make the square of the matrix equal to -
1, the pentad is

ASaf iDp, iS
y
D
y , Sa Z)

y , SY
D

ft
. (3-27)

These five matrices accordingly satisfy the same conditions (2-23) as a

pentad of JS-symbols, and constitute a particular identification of El9 J 2 ,

j 3 , 4̂ , ES . Ifidentified in this order they are found to satisfy (2-22). All the

theorems of Chapter H then have an application to matrices.

The complete set E^ can accordingly be identified with the complete set

i (ab)*8aDb , the factor i being inserted when (ab) = -h 1 in order to make the

sauare eaual to - 1.



36 Wave-tensor Calculus [3-2

The five other pentads can be found from the theory of JE-symbols, or

more simply by permuting a, ]8, y in (3-27).

A set of four anticoinmuting four-point matrices was first introduced

into physical theory by P. A. M. Dirac in his wave equation of an electron.

The particular matrices used by Dirac form part of one of the pentads here

found. It was shown by J. v. Neumann that the complete set consisted

of 16 matrices.! The complete set SaDb was first studied in this connection

by the author.J It has been pointed out by P. du Val that a similar analysis

had been developed in connection with the theory of Kummer's Quartic

Surface.

3*3. Components of Matrices.

In 3-2 we have found a representation of the U-symbols, and hence of all

JB-numbers, by fourfold matrices. We shall now prove the converse, viz.

that every fourfold matrix will represent an ^-number; that is to say, any
fourfold matrix T can be expressed in the form

T^t^, (3-311)
i

r r

where El9 E2 , E3 , E, E5 are the matrices (3-27).

The meaning of (3-31 1) will be clearer if we insert the row-and-column

suffixes a, /? of the matrices, viz.

T^= S^(^) aj3
. (3-312)

Considering in succession the 16 combinations of suffixes a, j3,
we have 16

equations to determine the 16 algebraic coefficients
t^

. The values of
t^

are

unique; for if there were another set of values
t^, we should have by sub-

traction

Hence by 2-4 (6), ^-y = 0.

As we shall presently solve these equations for
t^,

it is not necessary to

stop to prove here that the condition for the existence of a solution (non-

vanishing of the determinant of the coefficients) is satisfied.

We call
1^ (or E^) a component of J7

, and p a matrix suffix, as distin-

guished from the elements Tap and the row-and-column suffixes a, /?.

The sum of the diagonal elements of a matrix is called the spur, and will

be denoted by {T}.

The matrices SaDb have no diagonal elements unless a = 8. Also we see

from the definitions of Da ,
JCjj,

D
y
in 3-1 that their spurs vanish. Hence

t Zeits.fur Physik, 48, 881 (1028).

J Proc. Hoy. 8oc. A, 121, 524 (1928).

The connection with the Kummer collineation group has been treated fully by
0. Zariski, Amer. Journ. Math. 54, 466 (1932).
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{SaDb]
= 0, except {S8DB}

= 4. Changing to the E^ notation, we have

{^}= for ^=1,2,. ..15, {#16} = 4i. (3-32)

Taking the spur of (3-311), we have

T

(3-33)

by (2-395). Thus the spur of a matrix is (appropriately) four times the

quarterspur. It is to be remembered that for a general symbolic Jr-number

(not identified with a matrix) the diagonal sum would have no meaning. It

is for that reason that we have introduced the quarterspur as a more general
characteristic, not implying matrix representation.

By (2-52) tp= -qs(^rH -H^Z 1

} (3
'34

)

by (3-33). We have thus an explicit formula for the components t of a
matrix.

Owing to the great importance of (3-34) it may be desirable to give a

direct proof. Multiply both sides of (3-311) by Ev , and take the diagonal
sum; we have

Now EvEp reduces to a single symbol, whose spur vanishes by (3-32) except
,
= v. Hence , . ,.

which is equivalent to (3-34).

We can write (3-34) in a form which avoids the use of the symbol { }.

Inserting row-and-column suffixes (and temporarily dropping the matrix

Divide the symbol T into two portions each carrying a suffix, thus,

Since the suffixes are explicitly indicated, we may rearrange the order of

the factors,

the suffixes being omitted after the rearrangement since they follow the

chain rule. Thus (3-34) becomes

(3-35)

We call T! and T symbolic factors of T.

In particular, if a matrix J is the outer product of two vectors 0, #*, so

that

J=VX*> (3-36)

the components are . T * w /F -*
(3-37)
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The expectation value of an operator X with'respect to wave vectors

and x* is defined to bef x = x*X0 H- x*^. (3-38)

It follows from (3-37) that the expectation value of E^ is y^/fa.

3*4. General Orthogonal Frames.

The SD matrices which constitute the symbolic frame used in 3-3 are of a

special type, called four-point matrices, since they have only four non-

vanishing elements. By 2-7, Case (a), an equivalent frame E^' is obtained

by the transformation
jy

_^ , ^ = ^ ^3
.41

j

where g is any non-singular JS7-number, and therefore in the present applica-

tion any non-singular fourfold matrix.

The matrices E^ ofthenew frame willnot generally be four-point matrices.

We have therefore to consider whether the results of 3-3 will apply to

the new frame.

The spur {E^}
is invariant for the transformation (3-41). For

yy
={E^ (3-42)

since q'q=l. Hence the formulae (3-32) apply equally to the frame E^.

Except in calculating the spur, no use was made of the special properties of

SD matrices; and therefore all the results in 3-3 apply to
E^'.

In particular the formulae (3-35) and (3-37) for the components apply to

any orthogonal frame of matrices.

Up to the end of Chapter vi we shall (unless otherwise stated) take the E^
to be general fourfold matrices which satisfy the conditions for a complete
set. We shall not specify the particular set ofmatrices used. This is in accord-

ance with the relativity principle in 2-9, that there can be no absolute

description of the reference frame initially chosen; but if other frames are

subsequently introduced they can be defined relatively to the first frame by

stating the components (in the first frame) of the transformation matrix q.

The frame SaDb has served its purpose in enabling us to construct the whole

set of equivalent frames; but it has no special significance in physics, since

the structure of the commutation relations is common to all the frames.

For example, we must not think of 8aDb as being physically distinguished

from other legitimate frames in the way that Galilean coordinates are

distinguished from other legitimate coordinates. Its apparent distinctive-

ness (shown in the simplicity of the matrices) is really a misfit between the

f This is a somewhat generalised definition of expectation value. In current theory the

term is restricted to an expectation value with respect to one wave vector #; x is then replaced
in the formula by the complex conjugate of 0. It must not be assumed that the familiar

properties (e.g. that the expectation value is intermediate between the greatest and least

eigenvalues) hold for the generalised definition.
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physical structure and the mathematical expression of it by matrices. If we
keep to general symbolic J?-numbers no such misfit occurs, and in that

respect they give a closer representation of the actualities of physics than
the matrix representation does.

It may be asked, What do we gain by introducing matrices instead of

general JE-numbers? Ultimately I think we gain nothing. I do notthink that
there is anything in the physical constitution of the systems to which we

apply this calculus that is represented in the matrices and unrepresented
in the general ^-numbers. The main justification for using a particular

representation is that it simplifies the algebra in practical problems. Thus in

Einstein's theory we introduce special coordinates for the discussion of the

phenomena ofthe solar system, since the analysis ofthese phenomena would
be intolerably difficult if we retained general coordinates throughout. We
shall sometimes use the frame of four-point matrices in this way to establish

results known to be invariant, which it is therefore sufficient to prove in any
one frame of reference. On the other hand we are liable to lose valuable

insight by premature introduction of special frames or special coordinates.

Temple has shown that, even in so special a problem as the determination
of the energy levels of the hydrogen atom, matrices are not required, and
the work can be carried out with general ^-symbols; his determination

appears to me not only more illuminating but actually much simpler as

regards algebraic calculation than the proofs previously given in terms of
matrices ( 9-3). In any case the use of matrix representation expressly for

the purpose of facilitating calculation is a very different matter from its use
in the formulation of the fundamental laws of physics.

But, whatever the ideal course, I am here limited by the fact that I do
not propose to reinvestigate the whole quantum theory. I must develop the

present relativity theory up to a point at which it meets the accepted results

of quantum theory which are soundly (if unaesthetically) established.

These results are given in matrix representation by Dirac and others, and
the conventional nomenclature and definitions have reference to the matrix

representation. I must have an eye on the theory that I am steering to meet
before I actually make contact with it; therefore it seems unwise to post-

pone the transition to matrix representation for long. Meanwhile the

knowledge that there is an equivalent theory in terms of general symbols
is reassuring; for I cannot believe that anything so ugly as the multiplication
of matrices is an essential part of the scheme of nature.

In 2-7, Case (6), we may take the E^ to be matrices and the F to be

general symbols, or vice versa ; then q will be a mixture ofmatrices and general
symbols. Thus the use of matrix representation does not entirely cut us off

from general symbols; the gap can be bridged by an ordinary tensor trans-

formation. I shall be talking chiefly about matrix frames; but if you will
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inscribe q on the front cover of the book and q' on the back cover then I

am talking about general symbolic frames !

There are two kinds of property which at first sight seem to be expressed

more simply in matrix calculus than in general symbolic calculus:

(1) A matrix can or cannot be resolved into two factors. We shall call a

factorisable matrix a pure matrix. Thus we can recognise a distinction

between pure and impure matrices, which is not apparent in the corre-

sponding general symbols; the
"
factors" of a general U-number are an

undefined conception. But purity of a matrix is an invariant property for all

wave tensor transformations, since the two factors (vectors) transform

separately. There is therefore some invariant characteristic of an JE?-number

which corresponds to the factorisability of all its matrix representations.

This characteristic is found to be idempotency ( 5-6). Purity is expressed

quite as easily by idempotency in symbolic calculus as by factorisability

in matrix calculus.

(2) In the specimen pentad (3-27) three matrices are imaginary and two

are real. This partition persists in all pentads ( 3-5); and it is of great im-

portance in physics, being the foundation of the distinction between space

and time. To ascribe real or imaginary character to general symbols would

involve something not expressible in terms of their commutability relations.

It is to be remembered that the E^ are all square roots of - 1, whether they

are represented by real or imaginary matrices. In the case of four-point

matrices the imaginary matrices are symmetrical and the real matrices

antisymmetrical (for interchange of rows and columns), and the distinction

can be equivalently described by reference to symmetry; but the property

of symmetry or antisymmetry is not invariant for tensor transformations.

Matrix representation seems to afford the easiest way of expressing this

distinction; but there would be no great difficulty in working out an alter-

native treatment by general symbolic methods if desired.

From Chapter vn onwards our point of view changes, and we shall gener-

ally restrict the E^ to four-point matrices (SD matrices). That is because

we have finished contemplating the "blank sheet" and are beginning to

write something on it; and the property of symmetry or antisymmetry of

the matrices of a certain frame is one of the first things that we write.

3*5. Real and Imaginary Matrices.

A matrix is said to be real if all its elements are real, and imaginary if all its

elements are imaginary. If any of the elements are complex, or if some are

real and some imaginary, the matrix is said to be complex. We shall show

that, if complex matrices are excluded, three members of a pentad are

imaginary and two are real.

We first prove by a reductio ad absurdum that five imaginary matrices
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cannot form a pentad. Suppose then that jPlf F^F^F^ Fb are imaginary
matrices forming a pentad; this is connected by a tensor transformation

with the known pentad (3-27) containing three imaginary matrices El9 &>,

E3 and two real matrices J574 , JE^. By 2-7 the transformation connecting

complete sets E^ , F^ is

F^PE^P', P-o^^, P' =aS^, PP'-l. (3-51)

The singular case is avoided by using an appropriate reflection of the pentad

(3-27); for, as shown at the end of 2-8, there is at least one reflection which

gives non-zero P and P'.

Write P=R + iS, P' = Rf + i8'
9 (3-52)

where R, R', 8, 8' are real matrices. Then, since P'P=* 1,

R'R-ti'S=l, R'S + S'R = U. (3-53)

By (2-75) Fl P = PEly J^P'-P'I^.

Hence, separating the real and imaginary parts,

so that EIR
fREl

= R'F^\R=-R'R.
Hence E^ R'R = R'RE^ . Similarly R'R commutes with E2 and E.3 . Therefore

by 2-5 (c) it consists of components which commute with El9 E2 , E.^. This

restricts it to the form R'R = a + W545 . (3-54)

Since J?45 is a real matrix, a and b are real coefficients.

Again, separating the realandimaginaryparts ofF P= P/?4 ,E^P
f = P't\ ,

we have

so that #4 R'SEi= S'F F^R=-S'R= R'S

by (3-53). Therefore R8 anticommutes with #4 . We can show similarly

that it anticommutes with Eu , jE24 ,
?34 . This restricts it to the form

R'S = cEt5=-S'R, (3-55)

where c is real.

By (3-54) and (3-55)

R'P=R (R + iS) = a+ bE^+ icE^ ,

Therefore

R'R= R'PP'R= (a + 6^45 )

2 + c2^45
2 = a2- 62- c2 + 2a6 Jfi?45 . (3-56)

Comparing with (3'54), we have

a= , a2 62 c2= a,

so that 62+ c2= J, which is impossible since 6 and c are real.

We can show similarly that a pentad of four real matrices F19 F2 , F^, F6
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and one imaginary matrixF3 leads to a contradiction. For, denoting the real

matrices in the standard pentad by El9 E2 and the imaginary matrices by
E3 , JK4 , E& , we have again two matrices -F4 ,

F6 whose character (real or

imaginary) is opposite to that of the corresponding matrices E^, E5 , and

the proof applies without alteration.

No other case arises, since by (2-22) the number of imaginary matrices in

a pentad is necessarily odd. Thus the only possible partition of matrices in

a pentad is three imaginary and two real.

The theorem has been generalised to matrices ofm rows and columns by
M. H. A. Newman.f If m = 2p, where p is odd, the maximum number of

matrices in an anticommuting set is 2q+ 1; and of these q+ 1 are imaginary
and q real.

A case that might possibly be of physical interest is w= 16. The maximal

anticommuting sets are then nonads with five imaginary and four real

matrices. A nonad can be constructed as follows: The sixteen rows are

designated by double suffixes ocj8 (a, /?=!, 2, 3, 4). Then if E^ denotes a

4-rowed matrix correlated to the first suffix, and F^ the same matrix

correlated to the second suffix, the outer productE^FV is a 16-rowed matrix.J
An example of a nonad is

iVi, iE3lFl} iEl2Fl9 iEtF29 iE,F29 iE^F29 F39 JF4 , F5 . (3-57)

It is constructed by means of a pair of conjugate triads of E matrices (see

(3-82)).

3-6. Determinant of an A7-number.

It is useful to have before us the explicit expression for the matrix which

represents a general JE7-number T= S^E^ with some standard identification

of the matrices E^ . The following is the matrix representing T, when the
matrices El9 E2y JE?3 , E^ E^ are taken to be i8u , iDa, iS

y
D
y , 8^, 8y Do as

in (3-27). We write ru for ftu .
r* r*

*6 + T3 ,

-T
2 -T14 ,

T62+ e23 -f6 ~Tg, T43+ t^
- T16

- t3l ,

+*5
~ T3J T16~ T35"^ T2 ~ T14> T1

~ T42 + ^21
""

*4 >

T52"~'23"~^5 + T3> T43~^45
~ T15^'31> Tl

~ T42
~

^21 + ^4 T16
"" T85 "" T + T14*

(3-61)

The columns correspond to the first suffix and the rows to the second suffix

ofV
The determinant formed by (3-61) can be evaluated. It is found to be

detr =S^2E^^+ 8S^^TU^ 8S^^^^6< (3
.

62)

Here the first two terms on the right are written in single-suffix notation,

t Journ. Land. Math. Soc. 7, 93, 272 (1932).
J Matrices of the formS^ are treated fully in Chapter x.
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and the last two terms in double-suffix notation. In the second term the

sign is positive iiE^,Ev anticommute and negative ifthey commute; in the

last term the sign is positive if
/A, v, a, T, X, p is an even permutation of the

suffixes 0, 1, 2, 3, 4, 5 and negative for an odd permutation. It is understood

that each component is written in one way only in the double-suffix nota-

tion; e.g. 2i may also be written as 12 , but it is not to be included a second

time in the summation on account of the two ways of denoting it.

The determinant ofa mixed tensor is unalteredbytensor transformations.

Thus (3*62) will be invariant when the special matrix frame used in (3*61) is

changed to any other frame E '

We define the determinant of an E-number to be the function (3-62) of its

sixteen coefficients. With this definition the determinant of an JSJ-number

is the same as the determinant of any matrix representation of it; and

properties of fourfold matrices which involve their determinants can be

extended to general symbolic JB-numbers.

It is well known that the condition that a matrix T shall be singular is

detT^O. '

(3-63)

Also, by a well-known theorem, for any two matrices S and T

det(ST) = detSxdetT. (3-64)

We see by inspection that when E^
= SaDb

det Ep
= det 8a x det Db

= 1
; (3-65)

and, since the determinant is invariant for tensor transformations, this

holds for the matrices E^ of any complete orthogonal set. (The same result

is also found directly from (3-62).)

By (3-64) and (3-65) det (E^ T)
= det T. (3-66)

And by (3-62) det (a + bE^)
= (a

2+ 62)
2

(/x ^ 16).

Hence

det(cos0 + ^sin0) = l (^16). (3-671)

We generally write cos + E^ sin 6= e**e (see 4- 1) ;
hence by (3-64)

det (Te
E e

)
= det T (^ 16). (3-672)

We shall later consider transformations of the form T-+TeEn9n
f

T-*elB 9*Te*Enen, etc. By (3-672) any number of these transformations

leaves det T invariant, if the algebraic transformation /LC= 16 is excluded.

Further, if p,
= 16 and 16 is real, the transformation does not alter the

modulus IdetTj. A transformation which leaves |detjf| unaltered is

called a unitary transformation. Of the 32 possible transformations eEi*
9

(counting real and imaginary 0^
as different transformations) the only one

which is not unitary is that given by imaginary 16 .

These results apply to general ^-symbols as well as to matrices, the

determinant being defined bv (3-62).
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3-7. Eigensymbols and Eigenvalues .

If X is any symbol, and is a symbol (not zero) such that

X =
oc<, (3-71)

where a is an algebraic number, < is said to be an eigensymbol ofX and a an

eigenvalue of X . We collect here some of the most important properties of

eigensymbols. The results are given for final eigensymbols; but there are

in all cases corresponding theorems for initial eigensymbols defined by
(f)
X == a^.

Iff is a polynomial function, repeated application of (3-71) gives

/(*).*-/().*. (3-715)

(a) If the symbol X satisfies a polynomial equation /(X) = 0, the only
possible eigenvalues ofX are roots off (a)

= 0. For we have/(X ) .
</>
= 0, and

therefore /(a) .< = 0. Then, since ^ is not zero, /(a) = 0.

In particular ifX2 is algebraic and equal to ra2
,
X has only two possible

eigenvalues m. The eigenvalues of the E^ are i.

(b) A symbol which has an eigenvalue has no reciprocal. For if X<f>
=

and X~1X=
1, we have =X"1

(X</>)
=

</>.
But an eigensymbol, by definition,

is not zero.

Hence if an ^-number or matrix T has a zero eigenvalue, it is singular,
anddet!T= 0.

(c) If T has an eigenvalue A, T - A has an eigenvalue 0, so that

det(T-A) = 0. (3-72)

Accordingly the eigenvalues A of an ^-number or matrix are the roots of

equation (3-72), which is called the characteristic equation. For an -B-number
or fourfold matrix the characteristic equation is of the fourth degree in A,

and may be written

/(A)-(A-A1)(A-A2)(A~A3)(A-A4 )
= 0. (3-73)

It is known that a matrix satisfies its own characteristic equation (Hamilton-

Cayley theorem), so that we have

/(r) = (r~A1)(r-A2)(T-A3)(T-A4 )
= 0. (3-74)

Equation (3-74) may be regarded as the converse of the result (a).

The polynomial equation of lowest degree satisfied by a symbol T is

called the minimum equation. Since every eigenvalue must be a root of the

minimum equation (by (a)) and every root of the characteristic equation
is an eigenvalue, the minimum equation can only differ from the character-

istic equation if the latter has repeated roots.

(d) To find an eigensymbol of T corresponding to one of its eigenvalues,

say A19 we proceed as follows. Let m (T) = be the minimum equation, and
let sr(T)=m(T)/(J

T-A1 ). Since (I
1

-^) is a factor of m(T), g(T) is a poly-
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nomial in T\ it cannot vanish, because g(T) = Q would be a polynomial

equation of degree lower than the minimum equation. Let
<l>

where x is any symbol. Then

Hence T<j>
=

\<j>\ so that
<f>

is the required eigensymbol.

(e) Mutually commuting matrices S, T, 17, ... have a common eigen-

symbol, and in particular a common eigenvector.

We form polynomials ft (5), g*(T) y g^(U) for S
9 T, U as in (d), and take

<!>
= </i(S)9*(T)<J3(U)x- Since ft (S), jrf (5T), <73 (#) commute, it follows as

in (d) that is an eigensymbol of 8 and T and U. Also ft (S), ft (T), g^(U)

are matrices, and their product is a matrix; hence if x is a vector, (f>
will be

a vector.

(/) IfX and F have a common eigensymbol <, we have (X Y - YX) (f>
= 0,

so that JC7 7X is either singular or zero.

(g) IfEp and Ev commute, and
<f>

is an eigensymbol of aE^ + bEv ,
where

a2
7* 6

2
, then <f>

is an eigensymbol of E^ and^ .

For if (aEp + &#) ^ = a^,

we have, on multiplying by aEp bEv ,

so that < is also an eigensymbol of aE^
-6^ . Hence is an eigensymbol of

+ 6A;) (aB^
- 6A1

,), i.e. of E^ and ff, .

(h) If J^, #, ^? mutually commute, and
<f>

is an eigensymbol of

where a2 ^ fc
2 ^ c2 , then <^

is an eigensymbol of E^ , ^ and Ea .

By (2-36) and (2-343) JS7a
= iE

fJL

Ev . Hence, if c' = ir, the datum is

We obtain, on multiplication by E^, Ev ,

Hence the determinant

This gives the possible eigenvalues a. Then, by eliminating E and E^EV

from three of the equations, we obtain a result of the form (jE^ -f k) </>
= 0.

Hence ifj ^ 0, ^ is an eigensymbol of E^ .
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The singular case, when j= for every combination of three equations,

occurs when the four minors of the fourth column ofthe above determinant

all vanish. It is easily found that this condition requires that two of the

quantities a2
, 6

2
, -c'2 shall be equal. This is excluded by the enunciation

(i) If X, Y9
Z are commuting symbols with eigenvalues xit y^, z

(

(i=l, 2, 3, ...), the eigenvalues of any rational function f(X, Y, Z) are

included among the quantities f(xi9 j

We can write

f(X, Y, Z)-f(Xi , yf , zk)={f(X, Y, Z)-f(x{ , Y, Z)}

+ {f(xt , Y,Z)-f(Xi , y} , Z)}+{f(Xi , yit )-/(* y,,
zk)}

zk), (3-75)

since the first bracket vanishes when X = xi , the second when Y=yit
the

third when Z=zk . Now form the product

U{f(X,Y,Z)-f(xt ,yi ,zk)}
i,3,k

for all combinations of values of i, j, k. By substituting (3-75) in it, we

express it as the sum of a number of terms containing products

(X-x1Y(X-x2)>...(Y-y1)>(Y-y2)...(Z-z1)(Z-z2r....

Every term will contain a complete set of eigenvalues of at least one of the

symbols X, Y, Z. For, if not, let there be a term which does not contain the

factors (X x
t), (Y-ym), (Zztl ). But one of the factors is

so that either (X x
t)
or

(
Y ym)

or (Z zn )
must appear in every term.

The minimum equation for X is m (X) = llt (X- xj = 0. Since every term

contains m (X) or m ( Y) or m (Z), every term vanishes; and we have

n {f(X, r f Z)-/(s<f y, f %)}= <>. (3-76)
$t j *

This is a polynomial equation satisfied by the symbol f(X, Y, Z), and its

rootsf(xi9 yi9 zk) accordingly include all possible eigenvalues ofthe symbol.

Not every root will be an eigenvalue; for example, if JC, Y, Z are fourfold

matrices,f(X, Y, Z) will be a fourfold matrix, so that not more than 4 ofthe

64 roots of (3'76) can be eigenvalues.

Of the above results (a), (&), (d), (e), (/), (i) apply to all symbols which

satisfy a polynomial equation. A common example of a symbol which does

not satisfy any polynomial equation is djdx.

t Frobenius's theorem. It holds for any number of commuting symbols; we here take

three as a sufficient illustration.
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3*8 . Paul! Matrices .

A notation for the U-symbols based upon the conjugate triads (2-37) is

sometimes useful.f Denote the symbols E^, Eva9 Eafl \ Er\, E^ 9 Epr9
which

form conjugate triads, by

Al9 A29 A3 i Bl9 B2 ,Bs.

Then the sixteen E^ can be written as

Aa9 B09 iA Br ,
i (cr,T=l,2,3). (3-81)

Each A is the product of the other two A\ and each B is the product of

the other two J3's. The rules of commutation are: an A anticommutes with

an A, and a B with a B\ an A commutes with a B.

There is one pair of conjugate triads in which all six matrices are real, viz.

^23 > ^31 > ^12 ^45 > ^5 ^4> (3' 82)

J5?4 , JS75 being the real matrices ofthe pentad. The other ten matrices ofthe sot

are imaginary. With this identification, the real or imaginary character of

the matrices in (3-81) is explicitly indicated by the absence or presence of i.

This method of constructing a complete set can be exhibited in another

way. We apply the treatment of 2*2 to two symbols instead of four. Let

Al9 A2 be any two symbols which satisfy

V- 1
' A^^-ArAp. (3-83)

Then, if A3
= A1A29 A3 is an additional symbol satisfying (3-83). The

symbols A19 A, A, i (3-84)

form a "minor complete set". Calling any linear function of them an A-

number, the operations of addition, subtraction and multiplication applied

to A-numbers always yield A-numbers.

A minor complete set can be represented by twofold matrices. Let

It-*' 0, 2
=

i, ^0 -1
-i i 10 v '

These satisfy C/--1, ,,-&- -WM , (3
'86 )

where /*, v, X are in cyclic order. Thus ^ , 2 , 3 , i is a particular representation
ofAl9 A29 A39 i. The matrices (3-85) are called Pauli matricea.%

We can show, in the same way as for the E-symbols, that with this

identification every .4-number is represented by a twofold matrix and every
twofold matrix can be expressed as an ^4-number. We find also a transforma-

tion theory for minor complete sets analogous to 2-7, viz.

where

f This was pointed out by G. Lemaitre.

% Most writers employ the matrices tju whose squares are + 1.
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In Case (6), in which the
,/

are new symbols commuting with the
i^,

we
have a= i, so that the transformation operator is

P-^-K-l +W^ + kk' + W.'). (3-87)

To reproduce the sixteen E^ we require two minor complete sets A and B.

These may be represented by two sets of Pauli matrices ^, 0^, provided
that the products ^Ov are taken as outer products. The outer product of

two twofold matrices is a fourfold matrix. We are thus led back to the

ordinary representation of the ^-symbols by fourfold matrices.

3-9. Left-handed Frames.

The coefficients
t^

ofan ^-number are in general complex algebraic numbers,
saY T

/i
+

**ii
For * we have a choice of two algebraic square roots of 1,

which we shall call ij, t
a . We may regard the symbols (l,i) as constituting

an algebraic frame; we have then to distinguish two possible algebraic
frames (1, ij, (1, i2 ) either of which can be combined with a given symbolic
frame E^ .

We have hitherto used Z?16 and i indiscriminately; but it is now desirable

to define the structure of an orthogonal symbolic frame unambiguously by
eliminating i in the fundamental equations. We therefore replace (2-22)
and (2-343) by

(3-91)

where p, i/, cr, r, A, p is an even permutation of 0, 1, 2, 3, 4, 5.

An .E-nimiber T =
(r^ + iv^) E^ will involve an algebraic square root of

- 1 denoted by E19 which occurs in the symbolic frame, and also an algebraic

square root of - 1 denoted by i which occurs in the coefficients. The complete
reference frame for ^-numbers thus consists of

(a) A symbolic frame E^ ,

(6) An algebraic frame (l,t) for the coefficients.

jB16 and i may or may not be the same root of 1. Absolutely it is meaningless
to inquire whether they are the same root. But if we (arbitrarily) regard
them as the same in one complete reference frame, we can define other

complete reference frames in which they are opposite roots.

A complete reference frame in which El9
= i will be called right-handed,

and a frame in which Eu = - i will be called left-handed.

Since Ele is invariant for tensor transformations, there is no transforma-

tion of the type F^qE^q' between right- and left-handed frames.f Their

relation is like that of right- and left-handed systems of rectangular co-

ordinates, which cannot be changed into one another by rotation.

We usually treat the algebraic frame as unalterable so that a right-
handed frame E^ and a left-handed frameF^ are distinguished byF^= - E^ .

t The existence of two kinds of complete sets not transformable into one another by
relativity transformation was, I think, first recognised by 8. R. Milner.
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The relation ofthe other matrices can have various forms; we give the three

most important. If the frames are constructed from the same tetrad

we have by (3-91)
lf 2 ' 3> 43= lf 2l 3> 4f

(3-92)

the other ten matrices being the same. Similarly if they have the tetrad

Eu ,
E25 ,

E3S , E^ in common,

^18> ^l ^2> ^3 -^4> ^5 ""^18 "~-^l> "~^2> ~~^3 ~"^4
"" ^5 > (3'93)

the other ten matrices being the same. Another form, obtained by giving
alternative signs to i in (3-81) is

Fr
=Er , *l=-0if (3-94)

where Er denotes the real matrices 2?23 , E$l9 B12 , E^ E6 , E^, and A\ the

imaginary matrices. In this last case we change from a right- to a left-

handed set by writing i for i in the elements of the matrices.

We shall find later that the distinction between positive and negative
electric charges corresponds to the distinction between right- and left-

handed frames; so that a positive charge cannot be changed into a negative

charge by a relativity transformation of frame.



CHAPTER IV

SPACE VECTORS
4-1. Rotations.

When an exponential contains non-algebraic symbols, it is understood to be

denned by the exponential series. Thus

since JSL
2= 1. Hence

eV=rcos0+ J^sm0. (4-11)

In fact, so long as no opportunity for exhibiting non-commutative pro-

perties arises, E^ is indistinguishable from i. The reciprocal of eE G
is e~E^.

The ordinary factorisation of an exponential ea+0= ea .e holds only so

long as a and ]8 commute. For example,

eK1e+ES3 <t = eE1
9
meE^ 9 e*i0+^4 96 e*i*.eM. (4-115)

By (4-11)

ePvflEy
= (cos 6+ Ep sin 6)Ev

=Ev (cos + Ep sin 0) if EH ,
Ev commute

=Ev (cos Q Ep sin 0) if E^ ,
J57y anticommute.

Hence eP eEv
= j0,eV if E^ ,

JS7V commute ]

=Eve-
E 6

if
JS^ ,

Ev anticommute/
" (

'

'

We now consider the relativity transformations of the JS?-numbers

describing a physical system. By (2-94) the change t^t^ ofthe coefficients,

due to a rotation of the physical system relative to a fixed frame E^, is

given by

Let }

which satisfies qq' = 1. Then

J^e-*^, (4-14)

by (4-12), where Sa denotes summation of the eight terms which commute
with E12 , and 2^ summation of the eight terms which anticommute. As an

example of terms anticommuting with E12 and therefore included in S^,
we take 1^+1^. We have

a) cos
-

(tlEl+ t2E2) JS?12 sin

+ t2E2) cos fl
-

(
- ^ JS?2+ <2EJ sin fl
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By 2-4 (6) we may equate coefficients of the same matrix on both sides of

(4*14) Hence
tj = ft cos 0-J2 sinff, ^'^sintf+ facosfl. (4-15)

That is to say, the relativity transformation q= e*** rotates (^ , t2) through

an angle 0.

Examining the other terms in S^ we find that three other pairs of com-

ponents are rotated in thesame way, viz. <13 , t^\ tu * ^4* ^is > ^25 The remaining

components are unchanged.

Considering the more general relativity transformation g=e^^, and

taking /z
=

1, 2, ... 15, we obtain 15 independent rotations of this type, each

rotating four pairs ofcomponents. We may, ifwe like, add the E19 rotation,

viz. q= e&e
, q'

= e~ti6, but this does not alter T.

Two terms which mutually rotate necessarily anticommute with each

other as well as with the transformation matrix. We can always find a

transformation matrix which will rotate two anticommuting terms E^vt

Epa , v*z - their product Eva . There is no corresponding mutual rotation of

two commuting terms. Suppose, for example, that we try to rotateE^ and

^23*23- Since J?23
= iE^Elt we shall require the transformation q=e*

K*&
',

butEl and J?23 commute with J045 , and therefore come underSa . Accordingly

^ ,
J23 are unchanged by the transformation.

Pairs of components which can rotate with one another will be called

perpendicular] pairs which cannot rotate will be called antiperpendicular.

We have the rule:

Matrices commute: components antiperpendicular;

Matrices anticommute : components perpendicular.

The term orthogonal will be understood to include antiperpendicularity as

well as perpendicularity.

If the components ^ are represented as coordinates in a space of 16

dimensions, the space contains certain planes in which rotation is possible

and certain planes in which it is forbidden. Actually the 120 coordinate

planes consist of 60 planes of rotation and 60 forbidden planes. More

preciselywe should saythat rotation in aforbidden plane is a non-relativistic

change; although depicted graphically as a rotation, it is an intrinsic

deformation of the physical system described by t^
.

Rotation in a forbidden plane will be called an antiperpendicular rotation.

It is produced by the (non-relativistic) transformation

(4-16)

or t

Taking g=e*
B * as before, we have instead of (4-14)



52 Wave-tensor Calculus

Hence pairs of terms which are not rotated by the relativity rotation are

rotated by the antiperpendicular rotation, and vice versa. As an example of

terms commuting with E12 and therefore included in Sa ,
we take

=
(t3E3 + 45^45) cos + (^3^45+ ^45^3) sin 9

=
( 3 cos + i 45 sin 6) E3

- i (
-

3 sin + #46 cos

Hence t3
' = J3 cos 4- i 45 sin 0, i 46

' =
1$ sin -f i 45 cos 0. (4-17)

The other pairs rotated by the same transformation are

^4> *^35 ^5 ^34 ^12 > ^16'

If alternatively we treat (4-16) as a transformation of the frame, so that

T ' = SW> where */-, (4-18)

the new frame S^ does not satisfy the conditions (2-23) for a complete

orthogonal set. Its structure is intrinsically different from that of the

standard frame E^ and the physical structure built by t^
in such a frame is

therefore not equivalent to the structure built by the same
t^

in an orthogonal
frame. It is tobe noticed that this argument that antiperpendicular rotations

are non-relativistic changes, does not introduce the question whether (4- 16)

is a tensor transformation. We shall see later (Chapter vn) that in some cases

(4*16) is a rather simple tensor transformation, though it is not that of a

mixed tensor. I think that confusion of thought has often been caused by
failure to recognise that, although tensor calculus is an almost indispensable

tool in relativity theory, it does not in itself imply any relativistic hypo-
thesis.

4-2 . Alternative Treatment .

The rotations of the components t^
can also be found directly from (3-35)

or (3-37). Consider first a factorisable matrix J= 0x* = sjftJ^. By (1-461)

and (1-462) the relativity transformation g=eHA gives

0'
= eH**M ^, x

*' = x*e-k*A.

Hence, by (3-37),

jv
' = -

lx*
r

vV = ~
ix*e-**A^e*VM ^.

If
JE^,

Ev anticommute, this becomes, by (4-12),

where J a
==JS^. Hence, by (3-37),

3* =^ cos 9 4-ja sin 0. (4-21)

If Ep , Ev commute, the result is jv
'

=jy . The components of a general matrix

T are transformed according to the same formula, because the general
matrix can be expressed as the sum of a number of factorisable matrices.
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It is tempting to combine these elementary rotations into a "general

rotation" g= e*2J5A; but we have seen in (4-115) that non-commuting

exponentials cannot be compounded in this way. This prohibition merely

reflects the non-commutability ofrotations in ordinary Euclidean geometry ,

and is not a peculiarity of the -spaee. The objection, however, does not

apply to a combination of infinitesimal rotations. The most general in-

finitesimal rotation, corresponding to a general infinitesimal matrix dfc), is

g = e*d = eteV^, (4-22)

the squares and products ofdB^ being neglected, so that the question ofnon-

commutation does not arise. Equivalently (4*22) may be written

q= 1 + $d = 1 +iSB^ . (4-23)

When the ^ are represented as coordinates in a 16-dimensional space,

each elementary relativity rotation g = e*M/* appears as a rotation through
an angle 0^ occurring simultaneously in four different planes. The 15 values

of /z (excluding ft= 16) accordingly give 60 planes of rotation; and there

remain 60 forbidden planes. It is evident that the geometry of this 16-space

is different from that of any type of space ordinarily studied. The novel

features are (1) the occurrence of antiperpendicular pairs of axes, and (2)

the locking together of four rotations. We shall now consider how to repre-

sent the components t^
in a more familiar type of space.

4*3. Five-dimensional Euclidean Space.

A pentad provides five mutually perpendicular components tl9 1%, t^, J4 , J
6 .

Any pair of these can be rotated. Moreover, the rotation matrix E12 com-

mutes with E9 ,
7?4 ,

E5 , so that the mutual rotation of^ and tz leaves 3 , 4 ,
J5

unaltered. It is therefore a simple Euclidean rotation so far as these five

components are concerned.

If then we represent (tl9 2 > ^a> ** W as coordinates (or as components of a

vector) in five-dimensional space, this space has the ordinary relativistic

properties of Euclidean space, namely that simple rotation in any of the

ten coordinate planes is a relativistic transformation. Accordingly the

intrinsic properties of a physical system are not affected by changing its

orientation in this space.

Thus by limiting ourselves to a sub-space of five dimensions we encounter

neither of the complications of the geometry of 16-space. The domain of

(^u 2a , J3 , 4 ,
<5) has the properties which we attribute to ordinary space; and

(leaving aside the fifth dimension for the present) we may identify physical

space-time with a continuum constructed in this way.
This provides a linkage between wave tensors and space tensors (1*2).

A space vector is the pentadicpart ofa mixed wave tensor . Ordinarily we regard

the components of a space vector as an array (tl9 t29 t^ 9 t
4t9 6), whereas in a



54 Wave-tensor Calculus [4-3

wave tensor they are strung together with symbolic coefficients as a linear

expression/^ + tzE2 -h t$Ez+ 4 1?4+ J6 J?5 ; butthelattermodeofrepresenting
space vectors has long been recognised as permissible, e.g. in quaternion

notation, so that the difference of form need not be stressed.

This is not a hypothetical identification. In 1-2 we left the basic wave

vector undefined, and we are therefore free to define it at this stage. We
now define the relation of wave tensors to the ordinary space vectors of

physics to be such as is expressed by this identification. Henceforth our

calculus embraces both wave tensors and space tensors.

The question remains, What is the significance of the eleven remaining

components of the wave tensor? When the 5-vector undergoes a relativity

rotation, e.g. in the plane tt t2 , rotations also occur between 13 , 23 ; 14 , t^\

*i5 ^25 Theordinarytensorcalculusprovides fortheselockedtransformations ;

a transformation consequent on a transformation ofthe basal space vector is

made automatic by assigning the appropriate space tensor character to the

quantities concerned in it. We shall prove in 4-5 that the following is the

required specification:

(a) 19 2 > *3> *4> 5 is a space vector,

(6) 12 , 13 ,
... 45 is a 10-vector or antisymmetrical space tensor of the

second rank (analogous to a 6-vector in four dimensions),

(c) 16 is an invariant.

The statement that (a) is a vector and (b) an antisymmetrical tensor of the

second rank secures that the transformations of (b) are locked to those of

(a) in such a way that the rotations of pairs of terms occur in groups of four

as required.

We shall call the group of space tensors (a), (6), (c) a complete space vector,

or (ifno ambiguity is likely to arise) simply a space vector. We have therefore

the simple relation

Mixed wave tensor= Complete space vector. (4-31)

In dealing with space vectors we recognise only ten relativity rotations,

viz. the ten rotations of five-dimensional space. The wave tensor had 15

relativity rotations (or 16, if we count the algebraic rotation). The five

extra rotations intermingle the two space tensors (a) and (6); for example,

the E2 rotation rotates the component ^ of (a) with the component tl2 of (b).

Ordinarily (a) and (6) will be recognised in physics under different names, e.g.

velocity and spin, and a transformation which does not keep them distinct

could only be pictured at the cost of abandoning the usual representation

in space and time. We rather miss the point of the interpretation of mixed

wave tensors as space vectors, if we go on to attribute to the space vectors

transformation properties outside those which the name ordinarily suggests.

There is no advantage in introducing space vectors so generalised that we
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can no longer
"
see

" them in space; for if we are not going to use the space

picture, we have to fall back on their analytical description as mixed wave

tensors, and it is more appropriate to refer to them by that name. We may
therefore agree that the name space vector implies that only the ordinary

relativity rotations of the space are under consideration; and that if it is

desired to include the transformations which transcend space-time repre-

sentation the proper designation is wave tensor.

This question of nomenclature arises because in 7-6 we shall define an

important entity which behaves as a mixed wave tensor for the ten rotations

of 5-space, but not for the other rotations . Thus it may be properly described

as a space vector, but not as a mixed wave tensor. Except in this connection

it is not necessary to emphasise the distinction, and I shall generally use

the two names as equivalent.

4*4. Four-dimensional Spherical Space.

We have now to consider why the actual world is four-dimensional, although

the analytical theory (which we have reason to think is appropriate to the

physical world) seems to provide for five dimensions. The answer is not

difficult to find. Space-time is four-dimensional, but it is not flat (Euclidean) ;

and if we restrict ourselves to Euclidean geometry, we require at least one

more dimension to represent its curvature.

Our actual space-time with its irregular curvature, due to local gravi-

tational fields, requires a ten-dimensional Euclidean space for its repre-

sentation; but we do not arrive at this complexity until we provide for a

more varied content of the universe than can be represented by a simple

wave tensor. Any problem which is mathematically simple is necessarily

highly idealised; and the simple wave tensor with which we commence our

study can carry us only a little way towards actuality. We have found

that it is capable of rotation, without intrinsic change, in ail planes in

five dimensions. This leads immediately to the conception of an entity

distributed over a continuum which is a hypersphere (four-dimensional

manifold) in a Euclidean space of five dimensions. We must start with this

simplified space-time, and watch the more complex characteristics of actual

space-time grow out of it as the theory develops.

We shall first show that it is the hypersphere (and not the five-dimen-

sional space in which it is represented) which constitutes the physical

continuum. This is because the hypersphere is a locus of equivalent

points, whereas the points in five-dimensions are not generally "equivalent
"

points.

Let the coordinates ofa point P be (^ ,
t2 , J3 , $4 , 5). Any ofthe ten rotations

in five dimensions will (if it displaces P) carry P to a new position P
1 on

the same hvneranhftTe ahniit tha oricrin. Than t.hft -nninfja P P' nr
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structed according to the same specification in different but equivalent

frames, and are therefore equivalent points (2-9). None of the relativity

transformations provides anyconnectionbetweenpointswhich are notonthe

same hypersphere. If we consider a point P" such that PP" is normal to the

hypersphere, P and P" are not equivalent points. The transformation

(0, 0, 0, 0, J6)
-> (0, 0, 0, 0, t$) is not a relativity transformation; it is in fact

an antiperpendicular rotation with matrix A7

16 .

Thus displacement normal to the hypersphere involves, either a different

construction, or the same construction in a frame which differs intrinsically

from the original frame. Taking the latter view, the difference between the

two frames is evidently a difference of scale-constant. Our five-dimensional

picture accordingly represents change of scale-constant or gauge by dis-

placement in a fifth coordinate, normal to the four ordinary coordinates

used to represent position. A similar graphical representation of change of

gauge is used in "Projective Relativity".

It is the essence of the elementary conception of space and time that all

points of it are equivalent. A particle is not intrinsically different because it

is at a different point of space or because it is contemplated at a different

time. It is true that in later developments regions of space and time are

distinguished from one another by varying curvature; so that the space-time

background is no longer a "blank sheet". But we have to trace the origin

of these distinctions, and must begin with the blank sheet. This is provided

by the hyperspherical continuum of equivalent points; the curvature is

uniform, and every part of the continuum is precisely similar to every other

part, as the conception of
"
equivalence" implies.

Thus although the transformation theory introduces the conception of

five dimensions, it is clear from the start that there is an absolute distinction

between the displacements lying in the four-dimensional hypersphere and

displacements in the fifth dimension normal to the hypersphere. Whereas

the former changes of a system are of the type which we conceive as dis-

placement in physical space and time, the latter are only
"
displacements

"

in the sense in which we regard any change of quality of a system (scale,

temperature, entropy, etc.) as a displacement of the representative point
in a graph of that quality.

Let us now confine attention to a region of the hypersphere small enough
to be treated as flat, and let tb be the coordinate normal to this region, the

coordinates in space-time being (tl9 t2 ,t3 ,
J4 ). We now exclude the rotations

^15 > ^25 ^35 > ^45 > because they would carry us away from the small region
considered and mix the scale-coordinate 5 with the coordinates recognised
in our ordinary outlook. There remain the relativity transformations

corresponding to the matrices
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These constitute the transformations admitted in special relativity theory,
viz. three rotations in space and three Lorentz transformations. We now
consider how the general mixed wave tensor will appear from this outlook

the ordinary outlook on which current nomenclature is chiefly based.

The mixed wave tensor is found to break up into

(a) a vector tl9 t2 , J3 ,
?4 ,

^

(6) another (adjoint) vector 15 ,
J25 ,

J35 , J4B ,
| (4-42)

(c) a 6-vector *23 , *

(d) two invariants

The proof that (a) and (6) undergo the same transformations for any of the

rotations (4*41), and are therefore "tensors of the same kind", is obvious.

The proof that (c) is a 6-vector is given in 4-5.

Thus in four dimensions the complete space vector is composed of two

vectors, a 6-vector, and two invariants. These remain distinct in any of the

six internal rotations of the 4-space which transform the 4-space into

itself. Naturally the use of the four-dimensional picture presupposes that

we are not interested in the transformations which cannot be represented

in the 4-space; if we have occasion to refer to them we must revert to one

of the other modes of description.

If we are right in our belief that all physical phenomena are analysable

into ultimate elements described by wave vectors and their combinations,

it follows that an ordinary space vector cannot occur alone; it is part of a

group of allied space tensors (4-42). The other members of the group may,
of course, have zero value, but that is not the same as being non-existent.

This is one of the ways in which the new outlook enriches the earlier theory.

4-5. Proof that (J23 , /31 , /12 , 14 , J24 , J34 )
is a 6-vector.

If Xp , y^ (p = 1, 2, 3, 4) are ordinary space vectors X, Y, their vector product

consists of six quantities (x^yv ^y^). Then any set of six quantities which

transform according to the same law as (x^ x^y^) is called a 6-vector.

In matrix form the vectors are

X =E

Their matrix productXY is found by direct multiplication (usingE^= - 1
,

EpE,- -tf,ig to be XY = -

where (xy) is the scalar product, and

to be -
(4-51)

). (4-52)

Apply a transformation q representing a rotation or Lorentz transforma-

tion in four dimensions. Then (xy) is invariant, and
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Hence by (4-51) S' = X'Y' + (xy)=qXYq' + (xy)

(4-53)

Let #-#23*23 + ^31 '31+- +^34*34^ (
4 '54)

Then, since the constituents (a), (6), (c), (d) of the complete space vector T

transform separately, we have
^, _ jj

,

(4-55)

By (4-53) and (4-55) U and S obey the same transformation law for rotations

and Lorentz transformations in four dimensions. It follows that their

components t^v
and (x^yv

- xvyj obey the same transformation law. Hence

Vv 0*' v== lj 2
> 3 >

4
)
is a 6-vector -

We can show similarly that t^v (ft, v= 1, 2, 3, 4, 5) is a 10-vector in 5-space.

It will be seen that the matrix product XT, used in the present calculus,

is not the same as the ordinary vector product X x Y, but is X x Y - (xy).

When two vectors are perpendicular their scalar product (xy) vanishes, and

the matrix product is then the vector product.

The product of two complete space vectors is a complete space vector.

For the product W UV transforms according to the law

W = U'V'=: qUq'qVq' = qUVq' = qWq'. (4-56)

But, as we have seen above, the matrix product here employed is a type of

combination which has no exact counterpart in the ordinary theory of

vectors.

4-6. Volume Elements.

The expressions E^dx^ E2dx2 , E^dx39 E^dx^ are the wave tensor notation

for four space vectors (displacements) along the four rectangular axes in

space-time. Their product constitutes a volume element dVI234k . Writing
dr= d

by (2-22). Since the jEJ's anticommute, dV^^ is antisymmetrical in its four

suffixes as in the ordinary tensor calculus.f The factor iE5 corresponds to

V -
g. We are restricted to rectangular coordinates (one ofthem time-like),

and therefore g is always 1; but we deviate from the usual theory which
assumes that the radical indicates the algebraic square root. We take
instead a matrix square root iE5 .

Consequently, notwithstanding that we use rectangular coordinates, the
distinction between vectors and vector densities does not wholly disappear.
In the

ordinary_calculus we have, corresponding to a vector A
, a vector

density A^V g. Here V g= iEb , so that corresponding to a vector

we have a vector density

i(E

t Mathematical Theory of Relativity, 49.
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Of the two adjoint vectors in (4-42) one represents a vector and the other a

vector density. We shall show later ( 5-8) how it is possible to decide which

is which.

More generally we define the volume element contained by four space

vectors
ePa?^, &*x^ A^x^ d*Xp,

which do not coincide with the axes, to be

the permanent

1̂234
= E2d

lx2 , (4-62)

E2d
2x29

E2d*x2 ,

E2d*x29

A permanent is expanded like a determinant except that all the terms are

given positive sign. The factors are arranged in the order of the rows from

which they are taken; since the rows correspond to the four vectors, this is

the natural order of the factors when the vectors are multiplied in a given

order. The anticommutation of the four J5?'s provides an alternation of sign

which converts the permanent into a determinant; and (4-62) reduces to

dF1234=ElE2E3E^ dot (dXp)
= iE& det (dxp).

In our later developments three-dimensional vector densities are more

important than the foregoing four-dimensional densities. The volume-

element of three-dimensional space, contained by vectors Eidx1> E2dx29

E3dx3 along the coordinate axes, is

^E2E^dw=lEudw, (4-63)

where dw= dx^dx^dx^ .

If T is any space vector

TdWl2z= iTEudw= Sdw, (4-64)

where S= iTE^. (4-65)

Then 8 is the three-dimensional vector density which corresponds to the

vector T. We shall later meet with S in another connection, in which it is

called the strain vector associated with the space vector T.

By (4-65) we can find the componehts s^ of 8 in terms of the components

tp
of jP. The following is the complete scheme of relation:

The components of S associated with real matrices are given in the first line

and those with imaginary matrices in the second line. It will be seen that

the latter correspond to the 10-vector part of T.
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4-7. Wave Functions.

Consider a wave vector which is a function of a complete space vector T.

That is to say, to every one of a continuous set of space vectors T there

corresponds a wave vector which we denote by ^ =/ ( T), or by/(^ ,
J2 ,

. . . J16) ,

where tl9 t2 , ... are the components of T.

It is usual to distinguish certain ofthe variables t^
as coordinates, the others

being parameters of the wave function /. Denoting the coordinates by #
,

and the parameters collectively by a, the notation is changed to $a =/a (x^).
Thus the original wave function is treated as a continuous set of wave
functions

\f>a distinguished by parameters a, each ofwhich covers the domain
of coordinates # .

In most practical applications the domain of coordinates is space-time;
and a wave function has the form ^=/(#l5 tf2 > a?3 ,

o?4), or f(X), where
Z =^1x1+ E^x^+ E^x3+ B^XI. The function then specifies a wave vector

field in space-time.

The function /is necessarily double-valued. To show this, let

I.e a wave-vector field, r, 0, </> being polar coordinates. If we apply a tensor

transformation jsae**"
06 to the frame, we refer the vector field to a new

coordinate system. By (4-15) the effect of the transformation on the co-

ordinate system is that the point whose azimuth was
<f>

in the old system
has an azimuth ^ -f a in the new system. The new coordinates are therefore

r' = r, 0' = 0, ^' = < + oc, #4
' = z4 . (4-72)

The transformation of ^ is $' = e^wa^. (4*73)

Let the vector field in the new coordinate system be

,s4). (4-74)

Then, by (4-73), I" (r, 0, <f>
+ a, xj =e^JP

1

(r, 0, *4). (4-75)

Now let a = 277. Since e*"11
"=

1,

P' (r, 0, ^ + 27T, Xt)=-P (r, 0,^ ajj, (4-76)

or in rectangular coordinates

/' (*i, x*, ZB, ^4)= -70*1, ^2, ^3, aj- (
4 ' 77)

But, since the axes after rotation through 2?r are the same as they were

originally, */>=f(xl9 x2 ,x3 , xj and 0=/
;

(xl9 #2 , #3 , a;4 ) are both expressions
for the wave-vector field in the original coordinate system. Thus

iff
is a

double-valued function f of rectangular coordinates.

Since this result is of vital importance, we must try to remove any
doubt as to its meaning. Let I! be a particular frame of rectangular
coordinates and time, and let P be a particular point in that frame.



4-7] Space Vectors 61

Suppose first that
iff

is single-valued; so that, referred to the frame and
at the point P, it has the value

ift
and no other; in particular 0^ ^r .

When we vary the frame or the point considered, iff changes; but if after

such variation we return to the frame S and the point JP, ifr
must return

to
iffQ . For example, if we rotate the frame in any plane in space, after

a rotation 2ir we come back to the frame S again, so that
iff

is again .

But if is a wave vector, the law of transformation of wave vectors

requires that, when the space-time axes are rotated through 2?r, iff
shall

change continuously from ifta to iffQ . Therefore the single-valued if/
which

we have been considering cannot satisfy the transformation law of a

wave vector.

The double-valuedness of / becomes of practical importance when (as

usual) the vector field is defined over a region which includes all azimuths
<f>.

For then, on following the point P round a circuit back to the initial

azimuth, we may find ourselves on the opposite branch of / from that on

which we started. The return may be either to the opposite branch or the

same branch ; either type of connection satisfies the condition of continuity
of

ift
in the region over which it is defined.

We note accordingly (for future reference) that a symbol iff^ (a = 1, 2, 3, 4),

defined to be a single-valued function of rectangular coordinates over a

domain which includes or encircles the origin, cannot be a wave vector. By
"encircles the origin" we mean that a circle having the origin as centre

can be drawn in it.



CHAPTER V

THE SIMPLE WAVE EQUATION

5* 1 . Invariant Equations .

In order that the laws of physics may be independent of the choice of frame

(among the equivalent orthogonal frames) they must be expressible as

tensor equations. In wave-tensor calculus, the simplest non-trivial tensor

equation is of the form ^ i __ Q /

5.11 \

where H is a mixed wave tensor and $ a covariant wave vector. Then (5-11)

is a vector equation Hj*iltp
= Q equivalent to four algebraic equations.

It may be anticipated that the simplest, and presumably the most

fundamental, laws of physics will have this form. Alternatively, regarding

(5-11) as a definition rather than a law, it is an appropriate means of intro-

ducing a wave vector and relating it to the ordinary space vectors of

physics. For we have seen ( 4-4) that a mixed wave tensor H is constituted

ofspace tensors which will presumably be recognised as such in our practical

observations; but there is no such "projection" of ^ into a space-time

representation, and its connection with the ordinary space tensors ofphysics
can only be expressed indirectly by an equation such as (5-11).

It is appropriate to introduce simultaneously a contravariant wave
vector x*, satisfying x*ff= 0. (5-12)

We may expect that $ and #* will occur symmetrically in physical theory.
Thus far our argument has been that if ever nature condescends to

simplicity, equations of the types (5-11) and (5-12) will figure in her scheme.
Before the birth of wave mechanics the systematised part of physics was

wholly described by space vectors and tensors. Wave mechanics introduced
a new kind of entity 0. It was introduced in the way here proposed by a
"wave equation" in which the coefficients were the ordinary space-tensor

quantities of physics. The original ifi
of Schrodinger did not satisfy the

relativity requirements of atomic physics; but in 1928 Dirac introduced a

/r
with four components, which satisfied an equation invariant for the six

relativity rotations of space-time, although the invariance was not ofa kind

contemplated in the usual tensor calculus. Our anticipated fundamental

equation turns out to be a form of Dirac 's equation.f

t The form given by
Dirac (Quantum Mechanics, 2nd ed., p. 255, equations (9) and (10))

is the equivalent strain vector equation, which we shall obtain in (7'73). Dirac further

postulates, as a "reality condition", that the two wave vectors are conjugate complex
quantities. Our reality conditions are determined directly from relativity principles in

Chapter vi, and do not impose this restriction.



5-2] The Simple Wave Equation 63

The mixed wave tensorH used in Dirac's equation is limited to five com-

ponents. One component has dropped out through special choice of axes,

permissible when as usual the region contemplated is small enough to be

treated as flat. Apart from this the truncation is significant, because the

general mixed wave tensor T cannot be reduced to Dirac's special form //

by any choice of axes. We shall account for this limitation in 5-4.

We shall derive Dirac's equation according to the principles which we are

developing in 5-4; but we shall first examine its elementary properties

looking ahead to see the theory which we are about to meet.

Dirac's equations are Hi/t
= Q, x*JF/

= 0, (6-13)

where H =Elp1 +E2p2+E3j)3 + ff4P4
~m (5- 14)

and El9 E2 ,
J53 ,

E constitute a tetrad. We call H the Jiamiltonian.^ Since

// is required to be a mixed wave tensor, its components form space tensors

in accordance with the specification in (4-42), namely (pl9 p29 ^3 , 2>4 ) is a

space vector and the quarterspur m is an invariant.

Conversely if, following Dirac, we construct a hamiltonian // out of a

"momentum vector
"
(pl ,p2 , p* , p*) and an invariant massm by the formula

(5-14), H will be a mixed wave tensor; and therefore the wave equations

/fy= 0, x*// = will be tensor equations which continue to be satisfied

when any of the six relativity transformations of space-time are applied.

Thus the invariance of Dirac's equation for relativity transformations,

which was a novel kind of invariance from the point of view of ordinary

tensor calculus, is an elementary consequence of wave-tensor calculus.

5-2. Properties of Dirac's Equation.

The equation H^ = shows thatH has an eigenvalue 0, and hence that it is

singular ( 3-7 (6)). It has a pseudo-reciprocal

H'^Eipi+ Etpz + Ezpz + Etpt+ m. (5-21)

For, multiplying by (5-14),

##'= -Pi
2
-P2

2
-P*

2
-P*

2~ 2
. (5

'22
)

The product contains no non-algebraic terms, and therefore vanishes by

(2-66).

For a physically real momentum vector (pl , p2 , p3 , jp4 ), pl , p2 , Pz are real

and PI is imaginary. Let
ft=^ ? (6

.

23)

f In classical theory the hamiltonian is the expression for the energy ( tp4) in terms of

the momenta pl9 p%9 p9 and coordinates. If, following the usual relativistio view, time is

treated on the same footing with the other coordinates, the hamiltonian is correspondingly

defined as the expression for the proper energy m in terms of pl9 p29 p99 p4 and the co-

ordinates. This would make the hamiltonian strictly T+m, but we shall use the term without

regard to an additive constant.
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so that ft is the real time component, i.e. the energy or mass. The vanishing
of (5-22) gives rf-A--A--A--A'. (5-24)

This identifies w with the proper energy (or proper mass) corresponding
to the momentum vector. Thus m must be real.

By (5-24) pQ
= (mt+pf+pf+pf)*. (5-251)

Usually pl9 2h> Pz are small compared with m, and we then have the

"classical
"
approximation for the energy

PQ
=m+ (Pi* + ft

2
+ft

2
)/2w. (5-252)

The general solution of the wave equations is found as follows. Let ^, o>*

be arbitrary four-valued quantities. Since HH' =H'H = 0, we have

Thus ^= #'<, x* = w*77' (5-26)

are solutions of (5-13). Inserting row-and-column suffixes, these become

Since ^lf <^2 , <^3 ,
< 4 are arbitrary coefficients, the general value of a is a

linear combination of four elementary solutions#al', /7a2', ^Ta3', //a4', i.e. the
four rows of the matrix //'. Similarly the four columns ofH' are the elemen-

tary solutions for # Since H' is singular, its determinant vanishes, and
therefore only three of the rows and three of the columns are linearly

independent. There are therefore not more than three independent solutions

in each case.

For example, use the matrix representation (3-61). The special form (5-21)
for H' gives

-i#'= pz-im Pl+pQ ps

Pi-Po -ft -fin -#3

-ft ft-iw PI-PQ

ft Pi+pQ -p2 -im. (5-28)

Any row gives a solution for ^ and any column a solution for x*- It is not

necessary to choose the solutions in a corresponding way.f For example
we might take

^ = (ft~im,p1 +ft, 0,ft), x* = (0, -ft,ft-im,Pi+ft)
as the pair of wave vectors constituting a solution of the wave equation.

t Our treatment here differs fundamentally from that of Dirac. See footnote, p. 62;
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5-3. The Stream Vector.

Let
iff, x* be solutions of the equations H$= 0, #*/?= 0; and let

X
* = J =S^. (5-31)

Multiply the wave equations by initial x*^ia an(l final ^120> respectively;

we obtain

Hence, subtracting, j

so that, by (3-37), j*Pi-PiJ*= 0- (5-321)

Again, multiplying by initial x*^i5 and final #15 0, and subtracting,

(5-322)

so that ^'5
= 0. Also multiplying by initial x*^i and final E^, and adding,

(5-323)

The results (5-321), (5-322), (5-323) give

3\ _ fa _ Jz _ Ji _3&_ VIB / K oo\
X lO'uOJ

Pi P* Ps P* m '

The wave equation can therefore be written in the equivalent form

(EJi+EJ2+#J3 + ^74J4
- JPMJ16 ) ^r

= 0. (5-34)

We call (Ji,J2,j* 9 Ji) the stream vector. The whole set of sixteen j^ is the

complete stream vector. We have here proved that the stream vector is equal
to the momentum vector except for a numerical factor. Multiplying the

complete stream vector by the same factor we obtain the complete momentum
vector.

We regard this correspondence ofthe stream vectorandmomentum vector

as a coalescence which occurs in the peculiarly simple system here studied.

In more general physical systems they are not so closely connected. Accord-

ing to the definition of the momentum vector usually adopted in quantum
theory and reached later in this book, the componentsp^ are not necessarily

algebraic quantities; they may be matrices or general symbols. On the

other hand the components^ of the stream vector are necessarily algebraic

quantities.

The result (5-34) leads us to a new view of the wave equation. Consider

a physical system described by a pure (i.e. factorisable) wave tensor /, or

by the equivalent set of space tensors. We are not given the whole set of

space tensors, but only one of the space vectors (j^ , j2 , ^3 , jj together with

the two invariants^5 (
= 0) andjlB . We cannot therefore determine definitely
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the factors of J; but our data are sufficient to limit them to certain possi-

bilities, viz. they must be solutions of (5-34) and of the corresponding

equation for #*.

The wave equation is therefore an equation for determining the possible

factors of a wave tensor, which is only partly known.

At this pointwe must try to make clear a difference in our attitude towards

wave mechanics from that which appears to be usual among quantum

physicists. It will probably be agreed that wave mechanics is a method of

analysis, not a theory of phenomena. The waves have no objective exist-

ence; we invent them as required in solving our problems. In the present

treatment we have found that any space vector can be expressed as a wave

tensor. Ordinarily it is not a pure wave tensor; but it can be represented as

a sum of pure wave tensors, which are then resolved into their wave-vector

factors. If the space vector is a function of the coordinates, the wave-vector

factors become "wave functions". In this way wave functions appear in

connection with any characteristic of a system which is described by space

vectors. It is therefore ambiguous to speak of the wave functions of a

system; we should rather speak of the wave functions associated with some

specified tensor of the system. Reference to the wave function or the wave

equation of a system leaves us in the same state of conjecture as if reference

weremadeto ' '

thetensorofthehydrogenatom
"
or

"
theequation ofthe sun

' '

.

I am not cavilling at expressions, whose meaning is doubtless made plain

either by the context or by custom. My point is that when wave analysis is

our standard procedure when the ordinary tensor calculus is replaced by
wave-tensor calculus we shall introduce new wave functions as casually

as we introduce new tensors. The domain of physics treated in this book is

for the most part different from that which has occupied the attention of

writers on pure quantum theory. Sometimes our wave functions will

coincide with theirs; sometimes they will differ. We find it well to maintain

a certain amount of contact in order to utilise well-known results; but in

principle we do not bind ourselves to use the wave functions that the

quantum physicists have discussed. Remembering that the introduction of

wave functions is merely a factorisation, we must obviously retain freedom

to employ factorisation whenever it is useful.

The reader must therefore be prepared to find here a greater elasticity in

the definition and use of wave functions than he has been accustomed to.

5*4. The Wave Equation as an Identity.

If we represent E^E^E^E^ E5 by the special pentad of matrices (3-27),

it is not difficult to prove by straightforward verification that
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where is any four-valued quantity. Here, as usual, E^ is the four-valued

quantity formed by chain multiplication, and (E^)^ is one of its four

components, i.e. (E^) QL ^(E^) QL^.
Any other pentad E^ is obtained by a transformation E^ = qE^q-

1
. Let

$' =g^; then E'^qE, so that

Hence, multiplying (5-41) by qaoiqTp, we have

it** 5

S <JV*%(Wr- (#16fU#160')r==0. (6-42)

We can choose ty arbitrarily; because (since q is not singular) the corre-

sponding ^=y1
^' can be employed in (5-41).

Thus the identity (5'41), verified for a particular pentad, is true for any

pentad of matrices whatsoever.

Let x* be another arbitrary four-valued quantity. Multiply (5-41) by
initial x (inner multiplication). We have by (3'37)

where 0* J %j E . The result is therefore

or (ttiJi +E2h+#3J3 + EtJt+ EsJ5- JP16jle )
= 0. (5-43)

We can show similarly that

. (5-44)

Except that the term inj5 is included, these are the wave equations as given

in (5-34). They are here obtained as an identity satisfied by any two wave

vectors 0, x* and their outer product J.

We see that Dirac was right in restricting his hamiltonian to the above

terms, instead of employing the sixteen terms of a complete space vector.

By omitting j& he restricts the equation to stream vectors which have zero

component normal to space-time; otherwise his equation is a perfectly

general one satisfied by the factors ofany pure wave tensor. The hamiltonian

H is part of the complete stream vector J, except that the sign of j16 is

reversed. It must not be supposed that the components of J (other than

j5) which do not appear inH are zero.

On the other hand Dirac's postulate that
i/
and x* (or rather a quantity

<* easily derived from x*) are conjugate complex quantities would restrict
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J to very special forms. The restriction has to do with certain special

applications, and is inappropriate in general theory.

Multiply (5-43) by initial x* and apply (3*37). We obtain

Ji
2
+J2

2+Js
2+J42+J52~Jie

2- 0. (5-45)

Again, multiply (5-43) by initial x*^& an(l aPpty (3-37). We obtain

JJlS +J2J2S +J3JM +JJ*5= 0. (5'46)

These, and the corresponding equations obtained by substituting other

pentads, are relations satisfied identically by the components of a pure
wave tensor. There are, ofcourse, no such relations between the components
of a general wave tensor T which is not stated to be factorisable.

Let Pa=j- 1? (a= 0, 1, 2, 3, 4, 5; M ^a). (5-47)
/i=0

For fixed a, the matrices E^ form a pentad. We therefore call Pa a pentadic
part of J. There are six pentadic parts which overlap, so that

PaPa+ qsJ= J. (5-48)

The pentad which we have been using corresponds to <x= 0, and the wave

equation (5-43) can be written

But since the proof holds for any pentad, we have more generally

CP.-tfieW^O (5-491)

or equivalently P^iff
=

(qs J) iff (5-492)

for all six values of a.

From the present standpoint the use ofthe wave equation is to determine

the factors of a pure wave tensor J. It seems to be generally true that in

physics we determine a factor
iff,

not because its value is of particular im-

portance to us, but because that happens to be the most convenient way of

ascertaining that a factor exists, i.e. that J is pure. For example, the wave
function

iff
of a hydrogen atom is investigated primarily because the mere

existence of such a function imposes certain conditions on the hamiltonian

(which is part of J), and these conditions determine the energy levels of the

atom. It would probably be difficult to solve the more complex problems
of quantum theory without evaluating iff,

but since the observables of

physics are always space tensors and therefore derived from wave tensors

of the second (or higher) rank, the wave vector factors must ultimately be

recombined.

In the present case (which is perhaps too elementary to be typical) the

conditions for purity of J are expressed directly by the equations (5-45)
*<M\\ n.nd t.Viprp is Tin npari t,n pvalnat.** t.ViA fnnf.nra
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5*5. Standard Forms of Pure Wave Tensors.

Equation (5*492) asserts:

A factor ofJ is an eigensymbol ofevery pentadic part of J, and the eigenvahte

of a pentadic part is qs J. (5-51 )

Consider an antitriad E^, Ear , E^p (2-36). Each pentad contains one and

only one member ofan antitriad. Hence, in the expression (E^v+E^+ EXP ) m,

each term is a pentadic part and has eigenvalues im. Accordinglythe form

J^(EtLV
E

<jr E^+E^)m (5-52)

will, if the signs are properly chosen, satisfy the condition (5-51) that the

eigenvalue .of every pentadic part is equal to the quarterspur. It turns

out that four of the combinations of sign make J factorisable, and four

do not. For example, take. the + sign for the first two terms; then

Hence, if
/*, v, a, T, A, p is an even permutation of 0, 1, 2, 3, 4, 5,

so that the + sign must also be taken for the third term in order to satisfy

(5-492). It is then easy to verify that J is factorisable by working out the

factors in a particular matrix representation, or by testing it foridempotency

according to the theory given in the next section.

Accordingly our result is that

J= (E^+Em+ EXP+ j016 )
m (5-54)

is a pure matrix if
//,, v, or, T, A, p is an even permutation. Any two of the first

three terms can be given negative sign, since this is equivalent to reversing

the order of their suffixes and the permutation remains even.

Any non-degenerate pure wave tensor can be reduced to the standard

form (5-54) by a relativity transformation J' = qJq'. We first make a trans-

formation so that one of the components, say J5 , becomes zero. Then, by

(5'45),

Since J is non-degenerate, J16 ^0. Hence the vectors (jl9 j2 , fa, jj and

Ois * ,?25 J35> ^45) have the same non-zero length, and by (5-46) they are at

right angles. We can therefore choose two of the axes in four dimensions to

coincide with them; we then have

l
=
J25

=
Jie > 32

=h= 4
=

15
=

35
=

Applying (5-492) with <x= 0, 5, 3, we now have

#1J10= ih**l>> EU>3tot= ijltfr (^31hi+ ^32J

(5-552)

Thus is an eigensymbol of the two commuting symbols E19 E25 and there-

fore of their product iEu . It is therefore an eigensymbol of (jE731j31 -fEZ2j32) ;
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and the eigenvalue must be zero because (E3lj3l+E32j32) anticommutes

with 2734 . Hence the third equation of (5-552) breaks up into

so that ./si=#32* JH*

Hencej31 (E3l iE^) $ 0; or, multiplying byE9l ,J31 (
- 1 iE^) = 0. Now

cannot be an eigensymbol of Jffla , because it is an eigensymbol ofE^ which

anticommutes with E12 . Hence

Jn= 0, J32= 0.

Similarly we find J41 = 0, j"42
= 0.

The pentad <x= 1 then gives (E^ + E^j^if/^ij^. Hence, by the first

equation of (5-552), ^12
= 0. All the components are now accounted for, and

J reduces to (El -f E%5+EM + EI6)j^ , which is ofthe required standard form.

To obtain a standard form for a degenerate pure wave tensor we proceed

as follows. Let J= 0x* be a degenerate pure wave tensor (J16
=

0), and let

jvr be a component which does not vanish. Then EmJ is a pure wave tensor,

since ithas factorsEw and #* ;
and it is non-degenerate since its quarterspur

is Ew (E^j^) = jv . Hence EWJ can be reduced to the form (5-54) by a

relativity transformation. We take therefore

Ev cannot be E^, EOT9 E^ or B16 , since J would then be non-degenerate;

but it can be any other U-symbol. Taking Ew = E^ , we obtain

J=(Eva +E^iEVT+ iE^)m. (5-56)

This is the standard form for a degenerate pure wave tensor.

5*6. Idempotency.

A symbol J is said to be idempotent if J2= J.

To normalise an JS?-number we multiply it by an algebraic factor so as to

make the quarterspur J. If it is represented as a matrix (so that a spur

exists) we normalise it by making the spur 1. It is, of course, impossible to

normalise a degenerate ^/-number.

We shall show that a necessary and sufficient condition for a non-

degenerate matrix to be pure is that it shall be idempotent when normalised.

(5-61)
Let J= ^x* be a normalised matrix so that

spurJ=

Then J2=^X*^* = ^- 1 -X* SS=^
so that the condition is necessary. To prove that it is sufficient, let T be a

matrix satisfying ^^ spur y=L .,
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Any matrix can be expressed as the sum of a number of vector products;

therefore let
.... (6-63)

Here the suffixes a, b, c, ... distinguish different vectors, the row-and-column

suffixes being omitted as usual. We write A^ for the scalar product Xa*^*
so that the product *l*a Xa*'llbXb* reduces to -^a&^aXb*- Then

Ti-2f

-(^-l)^Xi.*+^*a* + ^^X-i* + --0. (5-64)

Corresponding to the four suffixes of x this gives four linear equations satis-

fied by the vectors $a , & , */tc , .... Using any one of these equations to give

the value of a in terms of the other ^'s, we can eliminate ^ft
in (5-63) and

so reduce by one the number of vector products on the right-hand side of

(5-63). Repeating the process, we reduce the number of vector products one

by one.

The procedure fails if the coefficients of
ifja vanish in all four equations,

But we can then use (5-65) to eliminate x* in (5-63), and the number of

vector products is again reduced by one.

The reduction can be continued so long as there are any non-vanishing
coefficients in (5*64). When all the coefficients vanish so that

Aaa
~AM ^ ACC

~ = *> Aafr
=

**ba
^ = ",

no further reduction is possible. We then have, by (5-63),

spur T = spur $axa
* + spur fa x&

* + spur $cx* +

But spiir T= 1, so that there can be only one term on the right-hand side.

That is to say, T is the product of two vectors.

A pure matrix is necessarily singular. This follows from 3-7 (6), since the

idempotent condition, 72 J = 0, gives eigenvalues and 1. A singular

matrix is not necessarily pure.

If the square of a matrix is 1, the question sometimes arises whether it

has to fulfil any other condition in order that it may be a member of a com-

plete orthogonal set. The most commonly occurring combinations whose

squares are algebraic are triadic and pentadic expressions; these can serve

as individual members of a new complete set. But it has been pointed out

by D. E. Littlewoodf that we can also form combinations of antiperpen-

dicular matrices whose squares are algebraic, and these cannot be members

of a complete set. We find by direct multiplication that the square of

(5-66)

f Journ. Land. Math. Soc. 0, 41 (1934).
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is 1. Ofthe eight possible combinations of sign in an antitetrad, four yield

factorisable matrices, as we have seen; the other four give matrices whose

squares are algebraic.

The quarterspur of (5-66) is \i, whereas the quarterspur of E^ is or i.

Since the quarterspur is invariant for the transformation F
fJlf

=qEtl q
f

9 there

can be no such transformation connecting (5-66) and E^. Therefore (5-66)

cannot be a member of a complete set. We shall call an expression of the

form (5-66), or reducible to it by a relativity transformation, a compact

U-number.

I have not as yet found any physical application for compact JS7-numbers;

but perhaps others will be more successful. They surely must have an im-

portance of some kind, possibly in the theory of radiation or even in the

theory of the nucleus subjects which we do not seriously attempt to treat

in this book.

5-7. Spectral Sets.

We suggested in 5-4 that the wave vector was investigated in physics, not

for its own sake, but because the existence of factors imposes certain in-

variant conditions on the stream vector and on the hamiltonian which forms

part of it. We may now go a step further, and say that the condition which it

is sought to impose is that of idempotency. Those familiar with the Group

Theory ofwave mechanics will recall the fundamental part played by idem-

potent operators in selecting the "pure" states of a statistical ensemble.

Consider the wave tensors

J
fl=-ii (tf

We have found in (5-54) that these are pure. Since the quarterspur is

Ji716= J, they are normalised. Hence they are idempotent, as can be

verified by direct multiplication. We can also verify that their products are

zero. They accordingly satisfy

A set of operators satisfying the conditions (5-72) is called a spectral set.

Here the set consists of four operators only. The more familiar examples of

spectral setsin physics includean infinite numberofoperators. For example,

let J\ denote the operation of selecting light of wave length A from a source

of light represented by $; thus the light of wave length A existing in the

source is represented by JA^. If we repeat the selective operation J\ on

JA^, it makes no difference; hence J^= J\. The symbol ^e^ denotes the

operation of selecting wave length A' out of light already selected as being
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ofwave length A; the result is obviously zero. Further, selecting every wave

length in turn and adding the results, we reproduce the original source of

light; hence SAJA is equal to the "identical operator" 1. The selective

operators of spectral analysis therefore fulfil the equations (5-72), which

ensure that they are idempotent, non-overlapping and exhaustive.

As G. Temple has pointed outf it is equations of the form (5-72) which

directly embody the physical conception of a "pure constituent". The

mathematically convenient criterion of purity, namely factorisability of

the operator in matrix representation, should be regarded as derived from

(5-72) rather than vice versa.

This suggests a new approach to the theory of the representation of

phenomena by -E-symbols. We can regard the matrices E^ as introduced

by a spectral analysis of entities represented by algebraic numbers (in

particular, probability distributions or densities) into four pure constituents

given by (5-71). This point of view is developed in 13-0.

5*8. The Complete Stream Vector of a Particle.

Consider a particle in spherical space-time. A classical particle is described

by two 4-vectors, namely a position vector and a velocity vector. In five-

dimensional representation the position vector is the radius of space-time

which passes through the particle; the velocity vector is at right angles to it

and lies in the four-dimensional hypersphere.

Ifwe take axes such that the position vector is in the E& direction and the

velocity vector is in the E direction, the two vectors reduce to single com-

ponents j5 and .7*4
. Let us treat them as components of a single wave tensor.

There is, of course, no compulsion to combine them; there is no unique

definition of the wave tensor of a particle, any more than in ordinary rela-

tivity theory there is a unique definition of the tensor of a particle; and it

would be legitimate to investigate a tensor representing position only or

velocity only, if desired. But we shall try to find a tensor, called the complete

stream vector, which comprises both.

If the complete stream vector is pure, it must have two more com-

ponents besides
j"4 andj'g. We may take it to be

(^41+ ^50+ ^40 + ')> (5
*81

)

which is ofthe standard form (5-56) with p, v, a,r= 5, 4, 1, 0. The additional

terms define an axis in the three-dimensional space, which is in some way
characteristic of the particle. This axis, which in (5-81) is taken to be in the

E
l direction, is called the spin axis.

The question now arises whether in ascribing a complete stream vector J

to the particle we should take (5-81) to be the actual vector J or the vector

t "The Physical Principles of the Quantum Theory", Proc. Roy. Soc. A, 138, 479.
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density J . iE6 . This is answered by the Uncertainty Principle, which asserts

that a particle cannot have exact position and exact velocity simultan-

eously. Thus our combination of a position vector and a velocity vector will

not apply to a discrete particle, but describes an element of its probability

distribution. We must therefore take (5-81) to be a vector density, so that

tJE6
= (E^+EM+ iEM+ iE^) a. (5-82)

From this we obtain J= (En +E19 + JB746+Eol ) a, (5- 83)

which is of the standard form (5-54) for a non-degenerate pure tensor.

The direction ofthe spin axis is shown by the term Eol , or equivalently by
the term E23 which gives the plane ofthe spin. The velocity vector, which by
our choice of axes is in the time direction, is represented by the term E^,
this being the matrix of the rotation which would displace the particle in

the time direction. Instead of a position vector, we have an invariant E19 .

The "position" of the particle is therefore invariant for all relativity rota-

tions; this is only possible ifwe represent the particle as an entity uniformly
distributed throughout the hypersphere of space-time. This is in agreement
with the uncertainty principle; for we have ascribed an exact velocity
vector J5746 to the particle, and therefore its position is entirely indeterminate.

The attempt to assign a combination of position vector and velocity
vector to a particle breaks down, as the uncertainty principle foretells. The

position vector H760 in (5-82) defines, not the position of the particle, but the

position of an element of its probability distribution selected for con-

sideration.

We define an elementary particle to be an entity whose characteristics are

completely specified by a complete stream vector of the type (5-83), so that

it can be represented by simple wave vectors 0, x*~ It has exact momentum
but indeterminate position. This would perhaps more usually be called an

elementary state of an elementary particle; and it is contemplated that a

number of elementary states may be superposed forming a wave packet
which has approximate position and momentum. It is to be remembered,
however, that the properties of observational significance are relations to

other elementary particles or combinations ofparticles, and notthe primitive
relations to a symbolic frame summed up in (5'83). We must not be in too

great a hurry to identify our formulae with those employed in the practical

applications of quantum theory.

By (4-65) the three-dimensional vector density or strain vector corre-

sponding to J is S^iJEto* For the special wave tensor (5-83), we find

S=-J. (5-84)



CHAPTER VI

REALITY CONDITIONS

6*1. Distinction between Space and Time.

In relativity theory the interval between two point-events is defined by its

square ds2 . In Galilean coordinates

ds*= dt*- dxf

the velocity of light being taken to be unity as usual. By the use of anti-

commuting symbols, the square root can be expressed in rational form; thus

we may write

On squaring, the product terms cancel owing to the anticommutation, and

we have
(rfg)2==

_dx *_dx *_dx *_ dx *= ds*

if a;4
= it. The algebraic square root ds is the eigenvalue of ds. Since (6- 1 1

)

is the space vector, or displacement, between the two points, our conclusion

is that the interval is the eigenvalue of the displacement.
It is of fundamental importance that, since a pentad contains three

imaginary and two real matrices, we cannot cover more than three dimen-

sions with matrices of the same real or imaginary character. If then we use

the imaginary matrices El9 E2 , E% for the three similar space dimensions, we

have to use a real matrix E for the fourth dimension of the physical con-

tinuum of equivalent points. Thus the distinctive character of the fourth

dimension (time) is already foresJiadowed in the constitution of the pentads.

For real phenomena x1 ,
x2 ,

x3 are real, and a:4 (
=

it) is imaginary. Since

E19 E2 , E3 are imaginary and E^ is real, the vector interval ds is a wholly

imaginary matrix.

A matrix which is wholly real or wholly imaginary will be called mono-

thetic. Two matrices are homothetic if both are real or both imaginary, and

antithetic if one is real and the other imaginary. The distinction between

space and time is comprised in the statement that ds is a monothetic matrix.

In Schrodinger's wave mechanics certain "Hermitic conditions" were

imposed in order that the mathematical expressions should correspond to

real physical phenomena. It seems to have been generally assumed that

the reality conditions of Dirac's wave mechanics must be of the same

Hermitic form, although several writers have pointed out the difficulties

arising from this assumption. In my own developments, I abandoned

Hermitic conditions at the outset; it seemed illogical to retain them in an

analysis which recognises sixteen different square roots of 1. We shall
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determine the reality conditions of the present theory independently. By
relativity considerations it is possible to determine them uniquely.

For a formal treatment, it is best to begin by considering the reality

conditions for rotations. Corresponding to a matrix E^, we can consider

two antithetic rotations, E^Q^, E^iu^, where
0^

and u^ are real. Only one

of these will be admissible for physically real phenomena. Now "physical

reality" is an invariant property; therefore our reality condition must be

such that it is invariant for all relativity rotations of the frame of reference,

provided that these rotations are themselves physically real and therefore

satisfy the reality condition that is being considered.

For trial suppose that a rotation q=e^6^ is physically real, if E^O^ is

imaginary. Then q is in general complex. Consider another rotation

ql
= e\EvQv

^ whose matrix EV9V is imaginary and therefore satisfies the pro-

posed reality condition. Ifnow we apply the physically real rotation q to the

frame of reference, Ev6v -^q(Ev6v ) q'. IfE^ anticommutes with Ev , q (EV8V ) q'

is complex, so that qt no longer satisfies the reality condition. Thus the

proposed reality condition is non-invariant, and must be rejected.

Accordingly the reality condition for a rotation is that q must be real.

Then the matrix EVQV of the rotation ql is real, and remains real when it is

transformed to qEv6v q' by the real rotation q.

The essential point in the argument is that the matrix of a relativity
rotation can be transformed by applying another relativity rotation; so that

any proposed reality condition is employed twice over and its self-consist-

ency is thereby put to a test. In other words we have to secure that the

physically real rotations constitute a Group.

Considering the most general rotation in four-dimensional space-timef

g= exp I (E23 2s +E3l 31 +El2ei2 + Euiuu + Euiuu +E^ (6-12)

the condition that q is real requires that 23 , 31 , 12 ,
^14 ,

%24 ,
^34 shall all be

real. An Eu rotation gives, as in (--15),

Xi = xl cos (iuu)
-

4 sin (m14), x = x
l sin (iuu) + #4 cos (iuu ),

or, if #4
=

it,

Xi = xl cosh wu+ 1 sinhuu 9 t
f = xl sinh%4+ 1 cosh w14 , (6-13)

so that the rotation is hyperbolic (Lorentz transformation). Thus the rela-

tivity transformations in four dimensions consist of three circular rotations

and three Lorentz transformations u in agreement with experience.
As a by-product we see that the real quantity concerned in the Lorentz

transformations is t= xji, so that a4 is imaginary (ifxl9 x2 , x3 are real). We
have thus a deductive proof of the result, already noticed, that (6-11) is a

t We here exhibit the six elementary rotations collected together for reference. As
explained hi 4*2, it would be necessary to restrict them to infinitesimal rotations if it were
intended to apply them simultaneously.
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monothetic matrix. It is a matter of convention that it is imaginary, not

real. By taking xl9 x2 , x3 real, so that #4 is imaginary, we conform to the

convention of ordinary relativity theory which assigns real measure to

time-like intervals. But we might equally have taken xl9 x2 , x$ imaginary
so that #4 would be real; ds is then real for space-like intervals. Thus the

compulsory reality conditions are:

For rotations (in four dimensions): q is a real matrix,

For intervals or displacements: ds is a monothetic matrix,

Alternatively we may measure an interval by its vector density

)
V

ix,
j

Then by (6-11) -ids^E^dx^E^dx^+ E^dx^+ E^dx^. (6-15)

Since E5 is real, ds is antithetic to ds; and with the usual convention ds is

real and ds is imaginary.
At this stage it is well to review the progress of our theory of space and

time. We have shown that, starting with a basal wave vector ^r, it is possible

to construct a continuum of "equivalent" points which forms a four-

dimensional hypersphere in five dimensions. In Chapter iv we showed that

this continuum has the local isotropic quality of ordinary space-time in

that rotations in any of its coordinate planes are relativity rotations; but

we did not there discriminate between circular and hyperbolic rotations. We
have now confirmed the resemblance in greater detail by showing that the

relativity transformations of this theoretical continuum consist of three

ordinary rotations and three Lorentz transformations; or equivalently that

one of the four dimensions is antithetic to the other three.

Further, referred to this continuum, the basal vector $ has the trans-

formation properties ofDirac's $, and in fact satisfies identically an equation
identifiable with Dirac's wave equation.

We must remind ourselves, however, that this is no more than the embryo
of the actual macroscopic space-time of our experience. In the next section

we shall find a very significant difference which shows the need for intro-

ducing further developments in due course.

6*2 . Translations .

Considering the neighbourhood of a particular point P on the hypersphere,

we take as usual the coordinate x5 to be along the radius at P, so that

#1, #2 #3 #4 are rectangular coordinates in space-time. This coordinate

system is necessarily local, for it is impossible to construct an extended

system of rectangular coordinates in a curved space. We must therefore

restrict ourselves to an infinitesimal region around P.

The transformation q= e^E^ gives a rotation of the hypersphere in the

plane xlx^ and therefore displaces P in the xl direction. Thus infinitesimal
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translations of a point along the four axes in space-time correspond to

relativity rotations with matrices U16 , E2b , JS?35 ,
U45 .

The recognised relativity transformations in space-time, viz. four trans-

lations, three rotations in space and three Lorentz transformations, make

up the ten relativity rotations in five dimensions introduced in 4'3. The

customary approximation which treats space-time as flat hides the fact that

translation is a form of rotation, viz. rotation about the centre of curvature

of space-time.

The general translation in space-time is accordingly given by the trans-

formation
9==exp KEuOu + EnOn+EnOu +EM. (6-21)

If we apply the previous reality condition that q is real, the expression in

real variables is

q= exp (E15iulb+ J 25m25+ E^iu^+E^), (6
'22)

since E15 ,
jE25 ,

J5735 are imaginary, and E^ is real. As in (6-13) the u's give

hyperbolic rotations, and 45 gives a circular rotation. This means that the

continuum is open in three (space) dimensions and closed in one (time)

dimension the reverse of the conditions in actual space-time.

The root of the trouble is that, when space-time is pictured in five dimen-

sions, these dimensions are four space-like and one time-like; for the radius

ofcurvature represented in the fifth dimension is space-like. But the matrices

associated with these dimensions are three imaginary and two real. The real

matrix J575 is incongruously associated with a space-like dimension.

Some writers on relativity have mooted the possibility that the world

might have negative curvature. (Negative curvature refers to the Gaussian

curvature which is proportional to l/B
2

. IfB2 is negative, B is an imaginary

length, or equivalently it is a t'me-like radius.) But the proposal has been

treated from the point of view of formal mathematics, and can scarcely be

entertained in physical theory .f

We shall find the significance of this incongruity in the next section. But
we shall first consider how it is to be reconciled with the invariance ofreality
conditions. To conform to the actual universe it will be necessary to admit

that the exponent of q is real in (6-12) but imaginary in (6-21); that is to

say, the general rotation is to be resolved into = Ql+ 2 , where

i
= +^8i+ ^iiii + ^i4^4+^i4^+^^il

2
= JS?15 15+ -^25^25+ -^35^35+ ^45*^45 > I

with the reality condition that X is real and 2 is imaginary.
What then becomes of the invariance of physical reality? The saving

circumstance is that we have restricted ourselves to an infinitesimal region

t The objection to unclosed space arises from quantum theory rather than from relativity

theory. It will become obvious as our investigation proceeds.
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round a point P\ and at the point P the direction denoted by E6 (normal to

space-time) is absolutely distinguished from the other directions (4-4).
Thus the separation of into X and 2 is defined in an absolute way; and
we can attach different reality conditions to the two parts without coming
into conflict with relativity principles.

Let us now apply a rotation 1
' + 2

'

to a rotation 1 + 2 . Under the

transformation g1
= eiei', x and 2 transform separately. By the above

reality conditions ql is real, and therefore ft!?/, ?i02 ?i' remain real and

imaginary respectively, and continue to satisfy the reality conditions.

Under the transformation g2= eie ', Ql and 2 are not kept separate. The
real matrix l is transformed into a complex matrix g2 1?2

/

; but it is easily

verified that the imaginary terms in it are of the form 2 so that they

satisfy the reality conditions. Similarly the imaginary matrix 2 becomes
a complex matrix ?2 2g2

/

; but the real terms introduced are of the form

X , and satisfy the reality condition for lB Thus the reality conditions

are found to be self-consistent, and the rotations which satisfy them form
a Group.
We have confined ourselves to an infinitesimal (initial) region because it

is only locally that we can pick out a unique direction, absolutely different

from other directions, to distinguish as J?5 . But is it sufficient to treat an
infinitesimal region? A relativity rotation cannot be real at some points
and unreal at other points of space-time; we ought therefore to show that

the same rotation tested in two different localities fulfils the proposed

reality conditions at both or neither. It turns out that this self-consistency
is assured automatically. If we examine the reality condition at another

point of space-time, we must first make sure that it is a real point; and the

test of its reality is that it is equivalent to the real point first considered

that it can be transformed into it by a relativity rotation which satisfies the

reality condition. Thus we have to lay down the reality condition for rela-

tivity transformations of a single initial point (given as real) before we can

decide what values ofthe coordinates represent real points, i.e. points which

have real equivalence to a point known to be real. Thus we have not to show
that our adopted reality condition is self-consistent over a predetermined
real domain; the domain over which it is self-consistent is ipso facto the

domain of real points.

We begin with one real point P the observer, in fact, for all reality is

relative to him.We determine a group ofinfinitesimal transformations which

we define as the physically real transformations. These transformations

applied to P give all the neighbouring real points. By a process of continua-

tion (using at each stage the local reality conditions) we reach the more
distant real points. Any of these real points can now be taken as the initial

real point; proceeding from it we shall by the same construction obtain the
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same real domain. This is a consequence of the group property of the

transformations used.

We have shown that the reality conditions (6-23) satisfy relativity re-

quirements; but we have still to explain why these are the conditions pre-

vailing in nature, rather than the simple condition that Ql and 2 should

both be real.

6*3. Neutral Space-time.

We shall find later that the entity represented by a simple wave tensor is an

electric particle (proton or electron). Up to the present we have dealt with

one particle only; we have not yet developed the apparatus of description
for two or more particles. It is therefore rather premature to talk about

space-time, which is a macroscopic conception presupposing vast numbers
of particles. What we have investigated is a preliminary geometrical frame-

work in which the characteristics of a single elementary particle are repre-

sented vectorially . This framework is the genesis ofmacroscopic space-time;
and it already contains two of the most essential features: (1) four dimen-

sions, of which one is antithetic to the other three, and (2) a radius of

curvature.

For clearness we shall here anticipate some of the changes which will take

place in converting this preliminary conception into the space-time of

macroscopic experience. By introducing great numbers of particles the

radius of curvature will be greatly increased, relatively to the linear scale

characteristic of a single particle (commonly recognised as the wave length
of its Schrodinger waves). The increase of the population will give scope for

irregularity, and the hypersphere of space-time will be distorted by gravi-
tational fields. But the difference that chiefly concerns us now is that there

will be a balancing of positive and negative particles. A universe containing

only one particle, and therefore only one sign of charge, is lop-sided com-

pared with a universe containing equal numbers of positive and negative

charges. It will readily be imagined that ifmatter consisted ofelectrons only,
the enormous negative potential would so alter the world that we should

require a different type of space-time to frame the phenomena. It is just
such a world in miniature that our theory of a single charged particle

imitates.

The Riemannian space-time of Einstein's general relativity theory is

derived from the extensional relations of neutral matter. The test bodies

whose behaviour determines its characteristics scales, clocks, moving
particles, light waves are electrically neutral. Moreover, all macroscopic
matter in our experience is to a very high approximation neutral; if the

proportion of electrons to protons differs from equality by one in a billion,

the electric charge expressed in ordinary units is stupendous.
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The test bodies are used to measure intervals, and hence determine the

tensor g^v
characteristic of neutral space-time. Ideally their use is restricted

to regions where there is no electromagnetic field. In practice this is not a

very important restriction, because the strongest electromagnetic fields

encountered in nature correspond to a very trifling lack of balance of dis-

tribution of positive and negative charges. But in an electromagnetic field

too strong to be neglected, it would be impossible to use the test bodies to

determine g^v , because there is no agreed definition as to how g^v is related

to the indications ofthe test-bodies when electromagnetic fields are present.

Each investigator has defined it according to his own fancy. No experi-

menter would undertake to make accurate measurements of length in an

intense electromagnetic field; statements about lengths and distances

within the field are inferences from observations made outside the field, and

depend on the theoretical formulae employed in calculating the inference.

Current scientific literature abounds in rival formulae (usually embodied in

an "action-principle") for making such calculations, each corresponding to

a different definition ofg^v in regions where there is no means ofdetermining

it by direct observation.!

We must therefore consider even at this early stage the main difference

between the space-time of a universe whose content is neutral and the

space-time of a universe containing a particle or particles of one sign only.

We shall call the space-time of a universe containing only positive particles

positively saturated; if containing negative particles only, it is negatively

saturated.

In 3-9 we have shown that there exist two kinds of frame, right- and

left-handed, which cannot be transformed into one another by a relativity

rotation. If we take two vectors T = S^ B^ , T' = S^ F^ ,
where E^ , F^ are

respectively right- and left-handed, these cannot be transformed into one

another by a relativity rotation. Clearly a distinction of this kind is

required to discriminate between positive and negative charged particles.

We shall therefore provisionally identify T and T' with the complete stream

vectors of positive and negative particles subject, of course, to confirma-

tion by detailed examination of the Resulting properties.

Take right- and left-handed frames related as in (3'92), so that

^18> ^5> ^15 ^25> ^35> ^45= ~"^16> ~^5 "~^15 ~^25> ""^35 ""^45-

(6-31)

For the second particle we have T' = S
t^ F^

= X t^ E^ , where

^18 *5 W* ^25' W> ^45
^

"~"'l6> ~~^5> "~^L5 ~~*25 ~^35 "~^45 (6'32)

the other ten components being the same for both particles. Hence, con-

sidering the position vector, the coordinates of the two particlesj are

t See 13-4.

j More strictly coordinates of elements of their probability distributions ( 5*8).
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respectively (^ , 12 , (, , 4 , J6 ) and (^ , J2 , *3 , 4 ,
- J6). Ifwe take as usual the E5

axis normal to the small region that we are considering, so that t ,
t2 ,

t3 , t^

are infinitesimal, the particles are in antipodal regions in five dimensions;

but the ordinary four-dimensional point of view is that they are at the same

point of space-time (^ ,
t2 ,

tf3 ,
J4),f and that the centre of curvature of space-

time is in opposite directions along the normal, according to which particle

we are considering.

There is nothing surprising in this. The two particles are contemplated as

alternatives; for our analytical machinery is not yet capable of dealing with

two particles at once. By Einstein's theory the curvature of space-time

depends on its contents. So, ifwe start by considering an infinitesimal region,

we do not know how the region will continue until we have decided on the

contents of the region. It will curve away from the tangent plane more or

less strongly according as the density is high or low. We now see further that

it will curve to one side of the plane or the other side of the plane according

as we insert an elementary positive or negative charge (or a probability there-

of). This is not noticed in Einstein's theory, because that is a theory ofmacro-

scopic matter, which (even if it is electrically charged) contains equal num-

bers of positive and negative charges to an extremely high approximation.

It will be seen that the idea first suggested by the five-dimensional picture

that the positive and negative particles are at antipodal points on a fixed

sphere is rather misleading. They are not simultaneously present; and the

sphere is not fixed until we have decided which is present.

Our result is that, considering an infinitesimal region of space-time, if it

contains part ofthe probability distribution ofa positively charged particle,

the radius of curvature will be in one direction of the normal, say #6 ;
and if

it contains part of the probability distribution of a negatively charged

particle, the radius of curvature will be in the opposite direction #5 ; or

briefly, if the region is positively saturated the radius of curvature will be

in the direction #6 ,
and if negatively saturated it will be in the direction

#5 . Suppose now that it is neutral having equal probability of positive

or negative charge. Two possibilities are open. The curvature may be zero,

or the radius of curvature may be in the direction of the imaginary normal

ixb . These are the only alternatives which have neither a positive nor a

negative bias. We know from ordinary relativity theory that the first

alternative is incorrect; neutral matter does involve a curvature of space-

time. Therefore we must accept the second alternative; the radius of curva-

ture is in the direction ix6 . That is to say the radius ofcurvature changes its

character from time-like to space-like when we pass from a positively or

negatively saturated world to a neutral world.

t We have chosen the relation (3-92) rather than (3*93) or (3*94) in order that our formulae

may refer to particles at the same point of space-time.
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This result will be confirmed in our subsequent investigations. But I

think it is clear, even at this early stage, that it is forced upon us.

We cannow understand the origin ofthe curious reality conditions in 6-2.

The whole trouble was that the radius of curvature was associated with a

real matrix E$ indicating time-like character. But the radius of curvature is

time-like in the positively or negatively saturated world to which the most

elementary formulae relate. It is in the transition to a neutral world that

the space-like radius of curvature becomes substituted for a time-like

radius. In a positively saturated world the relativity transformations

q= e* satisfy the simple condition that is a real matrix. The V^l never

gets a footing in so simple a world. According to this theory a positively
saturated world is open in its space dimensions and closed in its time

dimension. Saturation is so remote from the conditions of our actual ex-

perience that we certainly cannot bring forward any observational evidence

to the contrary. We can well imagine that the stupendous electrical repul-
sions would be sufficient to burst any closed space.

Since the vector E5x& towards the centre of curvature has in neutral

space-time a value antithetic to its value in electrically saturated space-

time, it is antithetic to the four-dimensional position vector

X=E^ +E2x%+ EzXz+ E^x^ .

The rotation about a centre at J
5#6 , which produces a displacement dX, is

given by dX/E5x^ . Thus the rotation 2 is antithetic to its value in electric-

ally saturated space-time, and is therefore imaginary. This gives the reality
conditions (6-23). The change from a time-like to a space-like radius of

curvature from saturated to neutral space-time is the source oftheV^l
which is such an inescapable feature of quantum formulae.

6*4. Kinematical and Electrical Matrices.

For general developments it is more convenient to take right- and left-

handed seta Ep, Fp connected by (3'93),f so that

^>^i6= -JV-^i6 (ft =1,2, 3, 4, 5), (6-411)

the other ten matrices being the same. Let

N^N^^iE^iE^. (6-412)

We shall call N^ a neutral set. As a further generalisation we define a macro-

scopic set Hp by ^ *-*%, A^, (6-413)

the other ten matrices being the same. Then A is a scale constant which may
be real, imaginary or complex. Real values correspond to electrically

saturated space-time, and imaginary values to neutral space-time. An

t We shall see in 6-5, that (3-92) gives the association of vector densities and (3-03) the

association of vectors.
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ordinary field of positive or negative potential could therefore be repre-

sented by a complex value of A, the real part being very small compared
with the imaginary part; this kind of representation is only used when we

are pursuing a unified field theory, involving non-Riemannian geometry.
More usually macroscopic electrical fields are represented as perturbing

influences superposed on Einstein's neutral space-time.

We may express a complete space vector in terms of macroscopic com-

ponents, namely T^^m^M^^m^E^XL.m^E^ (6-42)

where S
fc
refers to the ten unchanged matrices and Sc to the six changed

matrices in (6-413). We shall call the unchanged matrices the kinematical

matrices, and the matrices whose sign is changed between right- and left-

handed frames the electrical matrices. The electrical matrices are accordingly

El9 E29 EZ, EI, E&9 J5716 (6-43)

and the kinematical matrices are those associated with the ten rotations in

five dimensions. We shall adhere to this nomenclature, irrespective of the

physical interpretation.!

The relativity rotations in five dimensions correspond to the ten kine-

matical matrices. We may therefore distinguish them as kinematical

rotations, the other six relativity transformations being electrical rotations.

As shown in 4-3 the kinematical and electrical parts of (6-42) are trans-

formed separately by the kinematical rotations; so that from the ordinary

standpoint they are separate vectors arbitrarily combined into one analy-

tical expression. In combining them we can introduce a scale constant A,

which remains invariant in the transformations. For example, in macro-

scopic spherical space-time we may meet with two distinct but somewhat

analogous vectors, say a velocity and a spin. We think it probable that there

is some significant combination of these into a complete space vector, which

will lead to a more far-reaching theory of the phenomena. But until the

details of that theory are worked out, the combination involves an undeter-

mined scale ratio A. If we regard the components m^ of the complete

vector as definite and equal to the components of the two separate vectors

as ordinarily measured, A must be embodied in the frame of our ordinary

measurements which then becomes a macroscopic frame M^ .

We have found representations of a complete space vector in five dimen-

sions ( 4-3) and in four dimensions ( 4-4). There is also a representation in

six dimensions. The components tl9 t2 ,
... tl& form a 15-vector, or anti-

symmetrical tensor of the second rank in six dimensions. From a purely

algebraic standpoint this is the most fundamental representation; and the

f The matrix associated with a particular characteristic depends on whether the

characteristic is expressed as a vector, vector density or strain vector. Thus the "electrical

matrix" El has not always an electrical significance.
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theory of U-symbols is primarily a study of the group of rotations in space

of six dimensions. But the ordinary vectors of that space (6-vectors)

cannot be expressed in terms of -E-symbols. The physical application of this

group is specialised by the fact that space, as defined in physics, is an

abstraction of the extensional relations of neutral matter, and therefore

involves the superposition ofa right- and a left-handed frame in the 6-space.

This superposition involves the selection of a pentad (here taken to be /5
0/t )

which, together with EIB , is reversed in sign between right- and left-handed

frames. One suffix (in this case 0) thereby acquires distinctive properties;

and, once chosen, it remains associated with an invariant direction in the

6-space. The remaining five dimensions become the 5-space of 4-3.

To review the argument: A right-handed frame can be represented as

having complete symmetry in a (5-space. Such a frame would be appropriate

as a reference system if the universe consisted of particles of one sign

only. Since actual physical systems consist of nearly equal numbers of

positive and negative particles, our actual reference system is based on a

frame which is a superposition of right- and left-handed frames, the one

being, as it were, a reflection of the other. In the composite frame it is

no longer true that all directions in six dimensions are equivalent; one

direction must be chosen as the axis of the reflection, and thereby becomes

distinguished from the others. We have associated the suffix with this

direction. Thus, whilst the elementary right-handed frame exhibits six-

dimensional relativity, the actual composite frame exhibits five-dimensional

relativity. Accordingly the starting point of the theory of actual space-

time is the five-dimensional representation of wave tensors treated in 4-3.

The kinematical rotations have the same relations to the frames E
,
F

,

Np , Mp . In each case they rotate separately the two parts into which (6-42)

is divided, and the value of A does not affect the result. But the electrical

rotations have opposite effects on E^ and F^ , and therefore correspond to

some kind of separation of electric charge, or polarisation. For this reason

they give apparently non-relativistic transformations of neutral or macro-

scopic space vectors. This does not mean that it is unprofitable to investigate

them further; but it is only by dropping the usual representation in Rie-

mannian space-time, and following a unified geometrical representation

of gravitational and electromagnetic fields, such as those of Weyl and the

author, that these electrical transformations become admissible.

6-5. Summary of the Reality Conditions.

Since physical quantities can be expressed as space vectors, vector densities

(four-dimensional), or strain vectors (three-dimensional densities), we have

to state the reality conditions separately for these three forms. The following

conditions refer to vectors, etc., in neutral space-time.
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(1) Space vectors.

The condition is that the electrical part, involving the matrices

is antithetic to the kinematical part; or Te is antithetic to Tk .

(2) Vector densities.

Since the vector density X-iTE&9 the above condition becomes

(ZE6)e is antithetic to (3^5) fc ,

so that the part of X, involving the matrices

^16> ^159 ^25> -36> ^45> -5>

is antithetic to the rest of the expression.

(3) Strain vectors.

Since the strain vector or three-dimensional density 8= iTE^ 9 the

condition becomes
(SE^ is antithetic to (8E^)k .

By (4-66) the part of 8 which corresponds to the electrical part of I7
is that

containing v v v v v vo /&23 , /&31 , ^12 , /&4 , ^5 , /&46 ,

i.e. the real matrices. Thus the part of 8 containing real matrices is anti-

thetic to the part containing imaginary matrices. We have therefore the

simple result that the coefficients s^ of a strain vector are homothetic.

(4) Kinematical rotations.

These are restricted to ten components and their reality conditions, given
in full in (6-23), secure that the part containing

-15> ^25 > -^35 > -^45

is antithetic to the rest. Comparing with the above results, we see that the

matrix of a rotation must be regarded as a vector density.

These conditions are founded on the result obtained in 6-3, that for a

position vector JS?5 a?5 is antithetic to Ex+ Z?2#2 4-^3^3+ jE?4#4 . By 5-8, a

position vector is part of a complete vector density. We have therefore to

choose right- and left-handed frames related in such a way that the reality

condition (2) for a vector density agrees with this. This justifies the choice

made at the beginning of 6-4 when we took the connection to be that given

by (3-93).

The foregoing are the natural reality conditions in neutral space. But it

must be understood that, since the only test is the invariance of physical

reality, the conditions become less stringent as we limit the variety of

transformations contemplated. Thus ifwe have a 5-vector U and a 10-vector

F, forming a complete space vector U + V which satisfies the foregoing

reality conditions, the combination U -f iV will violate them. But so long as
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we confine ourselves to the ten kinematical rotations which transform 11

and V separately, there is no special reason for preferring the combination

U + VtoU+ iV. It may well happen that U + iV is the customary form of

combination. All we can say is that this latitude exists, because the expres-
sion is a mental association rather than a genuine combination. Combination

implies some loss of independence of U and F; so that a more general
transformation is contemplated in which the combination U -f V persists

and the combination U + iV is broken up.

The hamiltonianH=E1pl +E2p2+E3p3+E^ m adopted in Chapter v

satisfies the reality conditions for a vector density, since m is the com-

ponent E^im. Accordingly J=^* is a vector density. If we require the

wave equation for a vector we must identify (p{ , p2 , #3 , jp4 ) with tho adjoint

vector (J1&9J2&9 ./as > ^45) > and therefore write the hamiltonian as

H=El5pl+E25p2+ Etopz+#45p4
- m. (6-51)

This satisfies the conditions (1) for a space vector. We need not stop to

decide which of these forms is the most advantageous, because we shall find

later that the form chiefly required in practice is that which corresponds

to a strain vector.

6*6. Charge and Spin.

We have found in (5-83) that the complete stream vector of an elementary

particle is, if the axes are suitably chosen, of the form

Ja= (El+E23 + EU +EIB ) im. (6-61)

We have set a.= im in anticipation of the identification found below. We
first notice that, since E2S , E^ are real and El ,

EIB are imaginary, Ja satisfies

the reality conditions for a space vector in neutral space-time (
6-5 (1)).

It may seem surprising that the result obtained in 5-8 is already adapted
to neutral space-time, which was not formally introduced until later. The

reason is that in the course of the derivation we selected the combinations

of suffixes in accordance with experience-, and since we have no experience of

electrically saturated space-time it was implicitly excluded. For a pure
wave tensor in electrically saturated space-time the appropriate form is

(El+E24t+E35 +E1B) im,

which is monothetic. It is easily seen that the momentum vector is then in

the space-like direction E3 .

The hamiltonian is given by the last two terms of (6*61):

Ha
= Eftim-E^im=E46ip + m. (6-62)

We thus verify that m is the proper mass. The terms JE?45 and E19 in (6*61)

accordingly represent the energy and the proper energy, which, although
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equal in magnitude (owing to our special choice ofcoordinates), are exhibited

separately in the wave tensor.

To obtain a particle of opposite sign to Ja we must reverse the sign of the

electrical matrices, obtaining

Jb= (
E + #23+ #45 EM) im.

The corresponding hamiltonian is Hb
- E^ipQ

- m. It will be seen that if the

standard form of the hamiltonian is taken to be

the identification of m with the proper mass must be qualified by the

proviso that this refers to the magnitude, and that the sign ofm is that of

the charge. The identification was based on (524) which gives m2
, not m.

The terms El and U23 describe a spin, the one giving the axis of the spin

and the other the plane ofthe spin. But they play somewhat different parts,

because one is reversed when we change the sign ofthe charge and the other

is not. Clearly J523 ,
which is not reversed, represents the mechanical spin;

and TJj ,
which is reversed, represents the magnetic moment.

To obtain a particle of opposite spin we reverse the sign of J523 . In order

that the wave tensor may remain pure, we must also reverse the sign of

another term (5-5). We cannot reverse 7?16 ,
since that would reverse the

charge; we cannot reverse jE45 , since that would give negative energy p(} ,

representing a "minus-particle". Hence we must reverse E. This confirms

our interpretation of El as a magnetic moment, whose sign depends on the

direction of spin.

Assuming arbitrarily that Ja represents a positive charge with a "posi-

tive
"
direction ofspin in the plane x2x$ , we have the following classification :

Ja = im (E -f- #23+ ^45+ EM) positive charge, positive spin,

Jb = im (
- EL+ EM + #45 ^ie) negative charge, positive spin,

Jc = im (
- E!- 23+EM+E16) positive charge, negative spin,

Jd= im (#JL
- U23 -f- E^- EIB ) negative charge, negative spin.

(6-63)

The three-dimensional densities or strain vectors are also of importance.

They are given by S = iJE^ . We obtain

Sa
= im (El -f #23+ EM -hE^ positive charge, positive spin,

Sb
= - im (E1 ^23 ,#45+ #16) negative charge, positive spin,

Sc
= - im

(
-#x #23 4- JS/45 -I-E1Q ) positive charge, negative spin,

Sd= - im (
El + JE?23 #45 4-Eie ) negative charge, negative spin.

(6-64)
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We notice that in the strain vector the mechanical spin is represented by E
and the magnetic moment by E^ opposite to the representation in the

space vector.

Since 8a+ Sb + Sc+ Sd= 4m, (6-65)

the four forms can be regarded as resulting from a spectral analysis (5-7)

of algebraic numbers. The properties of matter which is neutral as regards

charge and spin can be represented by simple algebraic wave functions of

the type introduced by Schrodinger. To introduce charge and spin Schro-

dinger's algebraic wave tensors are analysed into components $a ,
Sb , 8C ,

Sd ,

which can then be assigned modified probabilities independently, so that

they no longer balance. This is the simplest way of connecting the theory of

protons and electrons with the ordinary relativistic mechanics of neutral

matter, as will be shown in 13-6.

An entity represented by i (Ja + Jb + Jc + Jd) or bY I (8a + 8b + So + Sd)

will be called a neutral particle. The term is not intended to have any con-

nection with the neutron. A neutral particle is not a combination of four

particles; it is a single particle which (so far as our information goes) has

equal probability of being a proton or electron and equal probability of

either direction of spin. We regard Sa ,
8b , flc ,

8d as four elementary state*

of a particle. In general the probabilities of the four states will be different.

As a particular case (which, however, is the commonest case in practice) the

probability of one of the states, say 8a , may be unity; the particle is then

classed definitely as a proton of positive spin.

From the ordinary standpoint a neutral particle is a mathematical fiction,

having no counterpart in experimental physics. Usually, ifan experimenter

knows anything at all about a particle, he knows whether it is a proton or

electron. Direction of spin is less easily recognised; and a combination

S + ASC ,
which gives a particle neutral as regards spin, may often represent

the experimental knowledge available.

The complete stream vector (space vector) of a neutral particle consists

of a single component #45*45, and its three-dimensional density (strain

vector) consists of a quarterspur ElBs^. Thus we have a very simple way of

passing from electrical to neutral particles, namely by taking the quarter-

spur of the strain vector an operation which corresponds to contraction of

the corresponding wave tensor.

In more general coordinates the term / 23 in the strain vector is replaced

by three components jB23 ,
EVL9 E1Z . We have seen that these represent the

magnetic moment. The electric moment (if any) will be represented by

terms JE714 ,
E24 ,

J 34 ,
since by the usual electromagnetic equations the

magnetic and electric moments form a 6-vector. No such terms occur if the

particle is at rest in the coordinate system; this is what we should expect,
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since an electric moment implies a doublet, and cannot be associated with a

single particle at rest. Electric moment terms are introduced if we set the

particle in motion by applying a Lorentz transformation with matrix JE?24

or JE734 to (6-63). The electric moment thus produced is real. Dirac's theory

seems to differ from ours on this point, since he obtains an imaginary electric

moment for the electron.!

6-7. Minus -particles.

The wave tensor Ja must presumably be regarded as expressing the

absence of a particle of the kind represented by Ja , or else an entity which is

observationally equivalent to such absence. We may accept the current

view (due to Dirac) that positrons and negatrons are minus-particles of this

kind equivalent to the absence of electrons and protons. Thus

represents a negatron. The sign of the last term shows that the charge is

negative.

The sign of the third term should signify that the energy is negative,

according to the somewhat confusing definition ofenergy in wave mechanics.

But the energy of a negatron or positron, as ordinarily understood, is cer-

tainly positive. It is necessary to clear up this discrepancy of definition.

Energy, momentum and spin are familiar conceptions in classical

mechanics, and a complete energy-momentum -spin vector can be defined

for a macroscopic system. Let us suppose that, by adapting this definition,

we can assign to an elementary particle a complete vector T representing

its energy, momentum and spin "as ordinarily understood". In wave

mechanics we associate with the elementary particle a wave tensor Ja= ^#*,

whose components have at least some analogy with the energy, momentum
and spin of classical mechanics. It is tempting to assume that T Ja . But

Jn has the idempotent property that, apart from a numerical factor

depending on the choice of units, Ja2= Ja* We have therefore just as good
reason to make the identification T = Ja2 .

The proton and negatron which have opposite stream vectors Ja , Ja9
have the same vector /a

2
. The identification T 7

tt

2 will accordingly make
the energy of negatrons (and positrons) positive, as it should be.

We therefore regard the primary wave tensor J= ^x* of an elementary

particle as a charge-current vector, and 72 as the true energy-momentum
vector. We have been considering the vector J for simplicity, but strictly

the relation is between the three-dimensional densities S, $2
; the charge-

current density is represented by S, and the energy-momentum density

byfl
2

.

t Quantum Mechanics, 2nd ed., p. 263.
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Since /Sa is an algebraic multiple of /S, the two vectors coalesce for an

elementary particle. This has happened by design rather than by accident.

The coalescence of S* with S is virtually the definition of an elementary

particle; for elementary character has been taken to correspond to purity,
and purity to idempotency. This helps us to understand why so much im-

portance is attached in wave mechanics to resolution into pure or idem-

potent constituents. It is for these constituents that we are able to replace
a quadratic dynamical property by a linear property. For impure con-

stituents these would be distinct wave tensors describing different pro-

perties. Broadly speaking S2
represents mechanical characteristics and 8

electrical characteristics; they become unified only in an elementary particle

whose momentum and current coincide.

This agrees with general relativity, in which the mechanical properties

are specified by an energy tensor of the second rank (a quadratic function

of the individual velocities), and the electrical properties by a charge-

current vector (a linear function of the individual velocities).



CHAPTER VII

STRAIN VECTORS AND PHASE SPACE

7- 1 . Internal Wave Functions .

In classical mechanics it is usual to resolve the motion of a system of par-

ticles into a motion of the centre of mass, and a motion of the individual

particles relative to the centre of mass. We shall distinguish these as the

external and the internal motions of the system.

Similarly in wave mechanics we resolve the motion of a system into an

external motion specified by externalwave functions, and an internal motion

specified by internal wave functions. So far as the external motion is con-

cerned, the system is equivalent to a single particle located at the centre of

mass. It is characterised dynamically by an external momentum vector

(lh 9 Pz > #3 > jPo) an(i a proper mass m. Ifthe space-time frame ofreference for

the external motion is changed, the momentum vector undergoes rotations

and Lorentz transformations. The theory of the external wave function

coincides with that of a simple particle.

The internal wave function introduces new ideas. Lorentz transformations

are not applicable to the internal motion; for, by definition, the internal

motion is relative to the centre of mass, and, if we applied a Lorentz trans-

formation to it, it would be referred to some other standard of rest. The

time-axis of the frame of reference for internal motions and wave functions
must agree with the direction of the external momentum vector.

Thus we have a uniquely defined space-time frame for internal motions,

and "simultaneity" has a definite meaning provided that the system is

not so extensive as to make it necessary to take account of curvature of

space-time. It is part of our mental conception of a complex system that

it is a simultaneous aspect of its several parts. Each particle has three

internal (relative) coordinates ^ =
2^ x^ and the momenta conjugate to

f^ are the internal momenta of the particles of the system. There is one

time-coordinate s common to the whole system. If the same coordinate

system is used for the internal and external motions, the external time will

also be s. But in general different frames will be used, since it would be idle

to consider external motion if the external frame had always to be chosen

so that the system was at rest in it; the external time t will then differ from

the proper time s.

The independent variable for the internal motions and wave functions is

always the proper time s. It should be noticed that if, for special purposes,

separate internal time-coordinates analogous to the internal space co-

ordinates are assigned to the particles, these will be T=$ t. To associate t
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with Xp
-
Xp (as is sometimes attempted) is a hybrid procedure unwarranted

by any theoretical principle.

For internal wave functions Lorentz transformations are definitely ruled

out; but relativity rotations in three-dimensional space are applicable. The

direction of the time-axis is prescribed by the external momentum vector;

but there is no corresponding specification of the orientation of the other

axes.

The use of internal wave functions which, by their very nature, cannot be

subjected to Lorentz transformations is often called "non-relativistic

treatment" with the implication that it conflicts with the principle of

relativity. This is a misunderstanding of the nature of the Lorentz trans-

formation and its place in relativity theory. So long as we deal with quan-

tities defined as relations between physical entities relative coordinates,

relative velocities, relative momenta we are on safe ground. (By relative

coordinates we do not, of course, mean the difference of coordinates in some

arbitrary frame ofreference,! butthe coordinates of one particle in the frame

in which the other particle is at rest at the origin.) It is when we introduce

into our formulae analogous quantities relative, not to physical reference

objects, but to abstract frames of space and time, that Lorentz invariance

is demanded. For we are then unable to define which of the equivalent

frames has been selected to which frame our formulae apply so that, if

the formulae are to mean anything at all, they must have a form invariant

for all transformations of the frames.

In relativity theory itself there has been no such tendency to let Lorentz

invariance grow into an obsession. One of the best known formulae in

relativity theory is ds2 = -y-1 dr2 -r2d02 -r2 sin2 0d^
2
H-ydi

2 for the line

element in the gravitational field of a particle. This is not invariant for

Lorentz transformations; but we can scarcely describe the formula which

is the soiirce of the three crucial tests of Einstein's theory as "non-rela-

tivistic". If Lorentz invariance is not demanded in the investigation of

the motion of a planet round the sun, it can scarcely be demanded in the

investigation of the motion of an electron round a nucleus.

Hitherto, in developing the analytical theory, we have had in mind the

motion of a particle or the external motion of a system. In the present

chapter we shall introduce the modifications appropriate for treating the

internal configuration and motion of a system. There are two fundamental

differences. Firstly, the time reckoning will now be a proper time, fixed by

the external momentum vector, and therefore invariant for any permissible

transformations of the variables describing the internal configuration.

Secondly, whereas change of the coordinates x^ of the centre of mass is a

t This possible confusion of meaning does not arise in the case of relative momentum,
which obviously has no connection with difference of momentum.
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relativistic change, all points in the space-time hypersphere being equi-

valent, change of the relative coordinates f^ is in general a strain or intrinsic

distortion ofthe system, and is therefore not to be represented as a relativity

rotation of the vectors describing the internal state.

7-2 . Covariant Wave Tensors .

We shall now consider the transformations of a covariant wave tensor of

the second rank 8^. Like the mixed tensor it is a matrix composed of 16

elements; and it may be resolved into matrix components in an orthogonal

frame by the same formula 8-I^s^E^ but s^ will not be a space vector.

We shall call
s^

a strain vector. Thus a strain vector corresponds to a co-

variant wave tensor in the same way that a complete space vector corre-

sponds to a mixed wave tensor.f

The transformation formula for a covariant wave tensor has been found

in (1-53), namely S' = qSq. (7-21)

Let q= e^Efe . First let E^ be an antisymmetricai matrix, so that

Then (**"V= cosW . (
1

)]3a
+ sin *0 .

That is to say, 9^9"^

If EH is a symmetrical matrix, we have q= q. Hence (7-21) becomes

S' = qSq~
l for antisymmetricai transformation matrices!

= qSq for symmetrical transformation matrices. }

The transformation qSq~* agrees with that ofa mixed wave tensor (1-463).

The transformation qSq has been called an antiperpendicular rotation

(4-16). We have therefore the result:

A strain vector behaves as a space vector when the transformation matrix is

antisymmetricai, but undergoes antiperpendicular rotations instead of the

corresponding ordinary rotations when the transformation matrix is sym-

metrical.

As in the case of space vectors, we shall use the name "strain vector"

indifferently for the array of components s^
or for their symbolic combina-

tion S^XSpEp.
A strain vector may be represented graphically by plotting its com-

ponents s in a 16-dimensional space. But it must be remembered that the

line which represents it will be thought of as a space vector. When a tensor

t This is the fundamental definition of a strain vector. It will be shown in 7-6 that

three-dimensional vector densities are strain vectors, and they have therefore been called

strain vectors in anticipation ( 4-6).



7-2] Strain Vectors and Phase Space 95

transformation is applied, all geometrical reference lines in the space rotate

as space vectors; the strain vector follows its own transformation law, and
is displaced relative to this background of space vectors. We shall now
examine this relative displacement.

Let S be a strain vector and T a space vector, and at first let T coincide

with 8. Perform the infinitesimal transformation g= e*de , where d is a

general infinitesimal matrix. We write d*=d 8+d a , where d 8 , d a are

its symmetrical and antisymmetrical parts. Since d is infinitesimal, q is

equivalent to the transformations </a
= e*d and ga= e^* applied succes-

sively. Thus we have

S'-Matffc-
1
*., T f

^qsqa Tqa^q8-\ (7-23)

And, since 8= T, S' = T'q*= T'ed *. (7-24)

Hence, d 8 being infinitesimal,

S'-T' = T'd 8
= Sd 8 . (7-25)

We take S to be non-singular. Then 8d 8^0 for any non-zero value of

d 3 . Since the general symmetrical matrix contains ten independent con-

stants, the relative displacements Sd 8 will occupy a ten-dimensional space.
We call this the phase space of the strain vector.

To exhibit this graphically, let S and T be represented by the lines OQ 9

OP in the 16-space. A tensor transformation of the space vector is repre-

sented by keeping OP fixed and rotating the axes of reference, thereby

altering the components ^ referred to the axes; thus P can be regarded as

a fixed origin. At first Q coincides with P; but the transformation produces
the relative displacement PQ = 8' T'. The interesting point is that,

although there are 16 independent tensor transformations, Q is limited to

a ten-dimensional locus. Provided that 8 is non-singular, every direction

in this locus is a possible direction of PQ.
This construction gives only an infinitesimal region of phase space, and

we must extend it by a process of continuation. The problems which arise

in constructing the complete phase space will be considered later.

We have seen that antiperpendicular rotations represent intrinsic

deformations of the physical system considered. The points of phase space

therefore represent in systematic order different intrinsic states or con-

figurations! of a system described by a strain vector. This corresponds to

the usual definition ofa phase space in statistical mechanics. In the applica-

tions for which it is intended, phase space is occupied by a probability

distribution.

t I shall generally use the term configuration; it is to be understood in its broadest sense.

State would express the meaning better; but I was anxious to avoid using a term which has

been given a technical significance by Dirac. The term phase is often used in statistical

theory; but I have reserved it for the angular variables occurring in the exponentials.
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7*3. Real Phase Space.

For treating strain vectors and phase space we adopt a frame E^ consisting

offour-point matrices. The E^ then consist often symmetrical and six anti-

symmetrical matrices; the symmetrical matrices are imaginary and the

antisymmetrical matrices real. In 6-1 space-like directions have been

associated with imaginary matrices and time-like directions with real

matrices; it is convenient to use these descriptions generally as a nomen-

clature rather than as an anticipation of the physical manifestations of the

vector components associated with them. Having regard to a future

extension to double wave tensors, the definition is best stated in the form:

A space-like matrix is homothetic with its eigenvalue; a time-like matrix is

antithetic to its eigenvalue.

The eigenvalues of the E^ are imaginary. Thus, for simple wave tensors,

we have the equivalence:

Space-like = symmetrical = imaginary matrices,

Time-like = antisymmetrical= real matrices.

The ten dimensions of phase space are space-like.

We can no longer represent the E^ by general fourfold matrices, since

these are usually neither symmetrical nor antisymmetrical. At first sight

the limitation to a particular frame of matrices seems a serious loss of
4 *

relativity". But the application of this chapter is to the internal wave

tensors of a system, which, as we have seen, are not subject to Lorentz

transformations. It is not merely permissible to use a fixed frame; it is

essential that the frame to which these internal tensors are referred should

have some quality which resists Lorentz transformations.J

In treating external space we considered it to be a drawback that in

matrix representation the E^ have properties additional to those which

they are defined to have as constituents of a complete orthogonal set. But
the additional properties come in useful in internal space, because we have

to indicate a distinctive direction, viz. that of the external momentum
vector, and the planes of simultaneity orthogonal to it. We do this by giving
to the matrix J54 , belonging to the distinctive direction, the property of

antisymmetry; matrices belonging to directions in the plane of simultaneity

are symmetrical; matrices belonging to intermediate directions are neither

symmetrical nor antisymmetrical.

We have seen that one of the difficulties of applying to physics an algebra

comprising complex numbers is that half the mathematical possibilities

have to be set aside as unreal, i.e. not corresponding to actual phenomena.
We approach the problem of determining the reality conditions of phase

f It is the Lorentz transformations of the frame which introduce asymmetry. For spatial
rotations the matrices preserve their symmetry or antisymmetry.
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space somewhat differently from the similar problem in Chapter vi. The
feature ofphase space is that it is the seat of a probability distribution. Ifthe

probability distribution does not extend totheunrealconfigurations ifthey
have zero probability there is no need to stigmatise them further. Accord-

ingly the discrimination of the world of real phenomena from the world of

unreal phenomena is made when we insert the probability distribution. We
shall showthat this fixesthe reality conditions ofphasespaceunambiguously .

The method of statistical mechanics contemplates an initial or a priwi

probability distributed over phase space so that the probability in any
volume is proportional to the volume. Observational information modifies

this initial probability, sothatthe actual probability concernedin aparticular

problem is the product of the initial probability and a modifying factor. It

is essential to the method that the phase space over which the probability
is distributed should have finite volume; for if it were infinite, the initial

probability associated with any finite region would be zero, and the method
would break down. This requires that phase space should be a closed space.

It is true that statistical mechanics is often applied to a space closed by
a supernatural barrier instead of by its own re-entrancy . But the barrier is

merely a compression of the curvature required to close the space into a

singularity. If we reverse the motion of the particles by natural fields of

force instead of supernaturally, space must be curved to represent these

fields. No ordinary field is such that an electron has zero probability of

leaking through; to confine it rigorously the curvature must be sufficient to

close the space.

Thus, in order that our phase space may be the seat of a probability dis-

tribution, it must be closed. This means that the matrix dQ^^E^dQ^,
which gives the displacements in phase space, must correspond to circular,

not hyperbolic rotations. This requires that the dO^ shall be real (cf. (4-15)

and (6-13)). Then, since the symmetrical E^ are imaginary, d&8 is imaginary.
We have the result:

In order that the displacement in phase space given by the transformation

q e\d s may represent a real change of configuration, d 8 must be an

imaginary matrix. (7'31)

This reality condition may also be expressed by saying that the space is

a phase space in the other sense of the term phase. Instead ofa single algebraic

phase 8 indicated by a factor eie
,
we have ten phases for which i is replaced

by different matrix roots of - 1. Since the
0^

are real, they are real periodic

phase angles in the ordinary sense.

We can see this most easily by taking the initial value ofthe strain vector

to be unity. This involves no loss of generality. By (7-24) 8' = T'ed**. Since

S' and T' are non-singular, T' has a reciprocal T'"1
; then
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The transformation law of T-*S is

so that T~1S is a strain vector, and its initial value is 1. Thus the phase space

generated by the transformations of an arbitrary non-singular strain vector

8 may equally be regarded as generated by the transformations of a unit

strain vector, viz.
(1)'

= 1 ed&*. (7'32)

If d&8 does not involve non-commuting components, (7-32) can be in-

tegrated so as to apply to finite displacements. Thus there will be a line of

configurations for which the strain vector is

If is real, the strain vector repeats itself at intervals 0^
=

2?r, so that we

return to the original configuration. In other words phase space is re-entrant

in the 0^ direction. If 0^
is imaginary, the strain vector is non-periodic and

the phase space is open in that direction. Hence, in order that phase space

may be closed, real configurations must correspond to real phase angles 0^ .

Following an arbitrary track in phase space the transformations are in

general non-commutative. Thus the exponentials combine bynon-commuta-

tive multiplication, and the increments of the phases combine by non-

commutative addition. The ten-fold phase is therefore non-integrable; this

means that it must be represented in a curved space.

By 3-6 the transformations g= e*AV^^, in which dO^
is real, are all

unitary. Thus a strain vector which is non-singular initially remains non-

singular throughout phase space.

By (7-31) and 6-5 (3) the matrix d&s ,
which represents displacement in

phase space, satisfies the reality conditions for a strain vector, but not those

for a space vector or vector density. We must therefore take d 8 to be a

strain vector.

7-4. Coordinates in Phase Space.

Let g= eid be the transformation which displaces a point Q to a neigh-

bouring point Q' in phase space, and let

d&^^E^. (7-41)

Then the ten 0^ provide locally a coordinate system for describing points Q'

near an origin Q. We call these local orthogonal coordinates or natural

coordinates. A corresponding system of linear coordinates x^BO^ is

introduced by attributing to the phase space a definite scale constant jR.

For the present B must be considered arbitrary, since it could only be

defined by introducing relations to an extraneous system.

The volume of a ten-dimensional element of phase space is defined to be

do>=d01d02 ...d010 . (7-421)



7-4] Strain Vectors and Phase Space 99

It is a scalar quantity.We can, ifwe prefer, write it asElddl .E2dd2 ... Ewddw ,

but the product of the ten matrices is found to be 1. We thus have a

definition of equal volumes at different points of phase space, each volume

being measured in terms of natural angular coordinates at the point where

it lies. By this definition equivalent volumes are equal volumes. As in 2*9

equivalent volumes are formed by making the same construction in

equivalent frames.

For any other system ofcoordinates x^ , we have in the notation ofgeneral

relativity d^V^g.dr, (7-422)

where dr= dx^dx^ . . . dxlQ .

In particular for natural linear coordinates

V^7==jR-10
. (7-43)

The local orthogonal system is only applicable when the squares of
0^

are

neglected. The most importantequations ofphysics are differential equations
of the second order, and in order to investigate them it is necessary to intro-

duce a coordinate system valid at least as far as the squares of the co-

ordinates. This problem will be treated in the next section. We have not

much occasion to employ the properties of phase space as a whole, and our

methods are chiefly adapted for treating an infinitesimal region. But it is

important for our theory to prove that the whole volume of phase space is

finite. Although this seems rather obvious, I have had some difficulty in

proving it formally. We have adopted circular rotations in order to secure

finiteness; but until we examine how they are to be extended beyond an

infinitesimal region we cannot be sure that they will achieve this end. They
secure re-entrancy along geodesic tracks, but we have still to prove that

phase space has no tortuous exit. Although phase space has the same kind of

uniformity as a hypersphere, it is different from a hypersphere; it contains

pairs of antiperpendicular directions. Thus ordinary spherical coordinates

do not apply, and I do not know of any suitable adaptation of them.

There is a fundamental difficulty in specifying finite deformations or

strains of a system, which arises in the following way. Let Al9 ^42 denote

two different orientations of the same (unstrained) system, and let A 1

denote the system in a strained condition; how are we to decide whether the

strain should be measured by A' Al or A' A2 1 There is no absolute

one-to-one correspondence of the orientations of strained and unstrained

systems; but it is necessary to lay down some conventional rule which will

prevent our representing the same deformation twice over as A' A l and

A'-A 2 .

We have secured a unique representation of infinitesimal strains. The

initial (unstrained) state was represented by S or T\ the strained state 8'
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was then compared with T", which represents the unstrained state in a

different orientation connected with S' by tensor rules. This cannot be

extended to finite regions, because the transformations T-+T' are not

integrable. To meet this difficulty, consider the transformation

3=n^= IIe*^M, (7-44)

the product consisting of ten factors with space-like E^ arranged in a fixed

order. The elementary transformations q^ are applied successively (in the

reverse order to that in which they are written). The^ are not infinitesimal.

Applying this transformation to a strain vector, so that $->$', we obtain a

strained configuration which will correspond to some point Q
f

in phase space.

We can adopt^ as the coordinates of Q'.

Let one of the ^, say <f>a , receive an increment d<f>a . Let the new point

be #", and the new value of q be q". For two matrices q, q" which differ

infinitesimally we can find a matrix d such that

q"= e***q.

It is easily seen that d =XE d<j> X-*, (7-45)

whereX is the part ofthe product IT which precedes qa . X cannot be singular

(3-6). In general d will include time-like matrices. Since e*rfw is the

transformation which changes Q' to Q", the components of d s are the

natural coordinates dO^ of Q" referred to the origin Q'.

Similarly, we can express the other displacements d^ in natural co-

ordinates dOp at Q'. The jacobian 3 (^J/3 (0^) gives the ratio of the volume

element dr = dfadfa . . . d<f>w to the natural volume element da) = d9ld62 . . . d010

and hence determines V g in the usual formula da) =V gdr.

The half-period of each of the^ is 2?r. After each half-period the values

of q repeat themselves with opposite sign, and the corresponding strain

vectors repeat themselves; so that the half-period represents a circuit of

phase space. Hence for the whole of phase space, or of that part of phase

space covered by the coordinate system ^ ,

Thus unless V g becomes infinite anywhere, or unless there are configura-

tions not obtainable by the transformation (7-44), the volume Jdeo is finite.

Since X cannot be singular, (745) shows that
30^/3^,

is not infinite, and

hence V~-^g is never infinite. There are, however, loci where V-gr= 0. For

example, if the first two factors of II are e*^"e*^, where Ev , Ea anti-

commute, we have by (7-45) for a displacement d<f>a

d =e^^Ead^ae^^ eE***Ea d<t> .

On the locus ^p
= i^, this becomes EvEad<f>a . The product of two anti-

commuting space-like matrices is a time-like matrix; thus d is wholly
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time-like, and d 8 vanishes.f But this type of singularity, in which a small

natural volume is infinitely magnified in coordinate volume, is harmless for

our purpose.

I have little doubt that a geometer could furnish a more elegant proof.

Probably he could evaluate the volume. But 1 think the above investigation

satisfies us that the volume of phase space is finite.

7*5. Stereographic Coordinates.

One of the most important practical steps in the theory is to provide the

analytical machinery for investigating differential equations of the second

order. For this purpose we introduce a system of coordinates valid (under

certain restrictions) for finite regions of phase space.

On a hypersphere of radius R, Stereographic coordinates are such that the

line element is _ )? (7
.

51)

where ra= #2 + y
z + z2 + . . . . The coordinates are thus locally orthogonal and

isotropic, but not uniform; the actual length ids is Ar times the Euclidean

length (dx
2 + dy

2 +dz2
+...)*, where

A^l + r2/^2
)-

1
. (7-52)

The hypersphere is in this way projected into a Euclidean space with a

variable gauge factor Ar .

Analogous coordinates x^ in phase space are defined as follows. Let

X = S8^o;/t
, the summation being restricted to the space-like matrices.

Then Stereographic coordinates are such that the displacement from the

origin to the point x^ corresponds to the transformation

The right-hand side is to be interpreted by expanding in infinite series. This

formula is limited to a domain containing only perpendicular coordinates

together with its infinitesimal neighbourhood in all directions. That is to

say, X is limited to a pentadic expression or to a single algebraic variable,

but dX is unrestricted. The inclusion of the infinitesimal neighbourhood is

essential, because these coordinates are used principally when we are treating

the complete ten-dimensional volume element of phase space.

Accordingly X* is algebraic, J and we set

Z2= -r2
. (7-54)

t This is illustrated graphically by taking Eff , E to correspond to rotations of a sphere
in the planes xy, yz. Taking an origin on the x axis, a displacement from the origin to any

point on the sphere can be represented by two such rotations in the order given. Different

values of
<f>a , <f>v will give different points, unless

</>v
= k7r or <t><j~^- This example shows

that the singularity of the representation at these two points does not signify a failure of

the coordinate system ^M to cover the whole of the space.

% It is tempting to describe the domain of X as being limited by the condition that X2
is

algebraic; but we define it more stringently in order to exclude compact ^-numbers (5*66).
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If displacement from x^ to x^ + dx^ corresponds to the transformation

e**e , we have by (7-53)

<* JHJW*_(l(1Xm\
l

. (7-55)C
tl-Z/2JZJ -\l-(X+dX)l2R\

l j

When -2C is limited as above, the most general matrix dX can be divided into

two parts, one of which commutes and the other anticommutes with X\ for

the limitation secures that a complete set can be formed with X/r as one of

its members; and if dX is resolved in that frame, its components either

commute or anticommute with X/r. The transformations corresponding to

the two parts ofdX can be treated successively, since they are infinitesimal.

First, let dX commute with X. Then, since there are no non-commutative

symbols, (7-55) can be solved like an algebraic equation, giving

d@
|
log r

Next, let dX anticommute with X. Then the differential of any even

power ofX is zero. Since

dX/2R _

Hence by (7-55)

By definition Jf and dX contain only space-like matrices, and since they

anticommute their product is time-like. Thus (7-56) and (7-57) give the

same value of d 8 d ^ (l + r*i B*)-idXIR = \rdXIR (7-58)

by (7-52).

Thus the differentials dx^ are the natural linear coordinates at the point

considered, but the scale constant B/\r is variable precisely as in (7-51).

The volume of a ten-dimensional element being

dw = dO^dO^ . . . d9lQ=V gdx^dx^ . . . dxlo ,

we have by (7-58) _
V -

g= (A,/!?)
10= J2-10 (

1 + r2/.R
2
)-

10
. (7-59)

The following theorem is required later:

If a transformation X (not infinitesimal, but not containing antiper-

pendicular components) is applied to the strain vectors, the stereographic

coordinates of all points in the infinitesimal neighbourhood of the origin are

changed by the same amount, to the first order.
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Let the stereographic coordinates 0, dx^ of the origin and a neighbouring

pointbechangedbythetransformationto x^ , x^+dx^ ; and letdX= SE^dx^ ,

etc. We have to show that dX'=dX. The transformation is that given by

(7-53), and we have

ilX!2R^ _
U-Z/2IZJ

~

where d3T" differs (if at all) from dX' by including time-like components,!

By the conditions imposed on X, we can divide dX into two parts which

respectively commute and anticommute with X, and treat them separately.

For the commuting part the left-hand side can be treated algebraically, and

gives immediately the required result dX" = dX. For the anticommuting

part we proceed as in obtaining (7-57) and find that dX" differs from dX by
time-like components only, so that dX' = dX.

This result may also be stated in the form: In stereographic co-

ordinates, a finite displacement of the above restricted type commutes

with all infinitesimal displacements.

The results of this section are used extensively in Chapter xn.

7-6. Associated Strain Vectors and Space Vectors.

We employ four-point matrices, jB4 ,
E6 being as usual the real members of

a pentad. Let
e^

be a covariant wave tensor which has the value JSL in the

coordinate system initially chosen. Then, after a transformation g, we have

fysssgJE^gr
1 or qE^q according as q contains a time-like or a space-like

matrix (7-22).

The wave tensor e46 has the remarkable property that it is invariant for the

ten rotations in five dimensions (kinematic rotations). This is easily verified,

remembering that by the above formulae it is unaltered by transformations

with real matrices with which it commutes or imaginary matrices with

which it anticommutes. Thus for all orientations of the axes in five dimen-

sions *

No other strain vector has this property. It may be compared with the

metricaltensorg^= 8^"
andthe contravariant tensor density *

V(rrin ordinary
tensor calculus, which are likewise exceptional in having invariant values.

In ordinary tensor calculus we define associated covariant and contra-

variant vectors A^ A* by the relation Ap^g^A*. We shall now define

associated (initial) covariant and contravariant wave vectors 0*, #*. A
linear relation between them must be of the form

t The left-side gives the transformation -> cfoM followed by the transformation -> x^ .

By definition this takes us to the point #M +<fo/ . We cannot immediately identify it with the

direct transformation -> x^+dx^', since an infinitesimal time-like matrix may be included.
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where a^ is a covariant wave tensor. Consider the special case a^p
= i (e45 ) a .

Then ^^t'x* (45)00 by (7-61); or, dropping suffixes,

f =*y 45 . (7-62)

Wave vectors connected by the relation (762) will be called associated wave

vectors.

Thus in wave-tensor calculus, (iE^)^ plays the part ofg^p in the operation
of lowering a suffix.f Since (i#45 )

2
=l, we have also x* = ^*^?45, which

defines the operation of raising a suffix. Since four-point matrices are used,

raising or lowering a suffix is a rather simple process; for example, in the

standard pentad (3*27),

J 45
= 00100001-1000
0-100

Hence &,**,**, #4= *' (*
3

> X
4

,

" X\ ~
X
2
)- (7-63)

Now multiply (7-62) by a covariant wave vector ^ by outer multiplication.

We have *

Or, denoting the covariant wave tensor 0<* by S, and the mixed wave
tensor fc* by T, !3=iTEK . (7-64)

We have therefore the important result:

If a space vector T is multiplied by iJ5?45 we obtain an associated strain vector

S. Reciprocally, ifa strain vector 8 is multiplied by iJE745 we obtain an associated

space vector T.

The components of S are obtained by shuffling the components of T, and

in some cases inserting factors i\ the process is thus somewhat analogous
to (7-63). We have already given the precise relation between the

s^
and ^

in (4-66).

The relation (7-64) is invariant for kinematical rotations, but electrical

rotations ( 6-4) are excluded. It would be undesirable to exclude electrical

rotations of a strain vector; because a strain vector is used primarily in

connection with phase space, and some of the directions of displacement in

phase space correspond to electrical matrices. But we have suggested that

the term "space vector" implies that only kinematical rotations are con-

templated ( 4'3). It would appear therefore that the strain vector is the

more fundamental conception, and that space vectors are a derivative

conception introduced into physics by the formula (7-64). That is to say,

we take 8 to be a covariant wave tensor for all transformations; then the

t If we could depend on the suffixes appearing explicitly in the formulae, we should

naturally use the notation x", #a for the two associated wave vectors; but since suffixes are

generally omitted, we have to distinguish them by different letters x> <f>.
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matrix T determined from it by (7-64) will behave as a mixed wave tensor

for kinematical rotations but not for electrical rotations; so that it will be

rigorously a space vector, but only imperfectly a mixed wave tensor. If all

space vectors in physics originate out of strain vectors in this way, we see

why there is never any occasion to employ in practice the extra relativity

transformations possessed by space vectors derived from mixed wave

tensors. We have previously attributed the absence ofthese transformations

to the neutrality ofspace-time. The two explanations are connected; because

a system composed of particles of one sign could have no equilibrium con-

figuration, and give no foothold for statistical mechanics with its attendant

conception of phase space.

Since (7-64) is the same equation as (4-65), S is the three-dimensional

density of T\ and we reach our earlier definition of a strain vector as the

three-dimensional density of a space vector. The relation is reciprocal, and

T is also the three-dimensional density of 8. But the discussion in 4-6 was

limited to an infinitesimal region round the origin, where the volume element

of the 3-space was dWJ2^= iE^dw. If we move away from the origin, the

matrix of dfF123 will no longer be the original ,645. In addition to the change

of direction of the normal to space-time, we must allow for an arbitrary

rotation of the time direction, since there is no absolute way of defining the

reckoning of simultaneity over an extended area. The general formula for

the volume element is dW123 =i(eu)J>dw, (7-65)

where (e45 )a^ is the space vector which has the value E^ in the original co-

ordinate system at the origin. Hence the three-dimensional density of T is

iT (^g)/, whereas the strain vector is iTE^^iT (e45) aj3
.

We see therefore that the elementary definition of a strain vector as the

three-dimensional density of a space vector, and vice versa, does not hold for

an extended curved region. It can, however, be preserved if we represent

the element of volume as a strain vector with matrix (e45) a instead of in the

more familiar way as a space vector with matrix (e45 )a^. To regularise this

we distinguish an internal and an external three-dimensional space. They

consist of the same points; a particle which is in one is in the other; but the

metrical conceptions are different. The internal space is part of phase space,

corresponding to three of its ten dimensions. We have seen (7-421) that the

whole volume element is scalar; the separation of the three and the seven

dimensions is so drawn that each combination is a strain vector with matrix

JS745 ,
constant throughout phase space, and therefore in a sense characteristic

of the whole phase space.

The phase space, including the internal space, is described wholly by

strain vectors. It will be remembered that the matrix d@8 , determining

displacement in it, was found to be a strain vector ( 7-3). But when the
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three dimensions are separated from the others, the densities or fluxes of

strain vectors with respect to the three-dimensional volumes constitute

space vectors. These require for their representation an external space.

7*7. Normalised Strain Vectors.

We shallnow transform the wave equation so that it applies to strain vectors.

The equations giving the factors
iff, x* f a space vector are

/fy= 0, X*ff= 0, (7-71)

where H= E^Pi +E26p2 +E3bp3 + E^p^- m, by (6-51). Let

H8
= -EMH=EuPl + E2tp2 +E3tp3 +pt +E^m. (7-72)

Then (7-71) becomes E^H8^= 0, x*E*&H8
=

>

so that #0= 0, <*#8= 0, (7-73)

where <* = *x*^45 by (7-62). These are the wave equations for the factorisa-

tion of a strain vector ^*. The hamiltonian Hs is part of 0^*. If p^ ipo,

we have
. (7-74)

This satisfies the reality conditions for a strain vector (
6-5 (3)), the coeffi-

cients in (7-74) all being real. The energypQ is associated with the algebraic

matrix J5716 ; and the coordinate conjugate to it, namely the time t, must also

be associated with E1Q . Accordingly in phase space the algebraic phase

represents the time.

Since the phase space corresponds to the internal configurations of

a system, the time 16 is measured in the direction defined by the external

momentum vector ( 7-1).

In phase space the algebraic phasemay be separated from the other phases,

leaving a nine-dimensional space. This is permissible, because the algebraic

phase commutes with all the others. If dcoc is the nine-dimensional volume

element and d016 the algebraic phase, so that

da> = dajcd6u , (7-751)

we can treat d016 separately in integrating; so that, ifQ is the volume of the

ten-dimensional phase space, and tic the volume of the nine-dimensional

sPace' a=Qc .27T. (7-752)

In defining phase space we associated a strain vector 8 with each point.

We shall now more definitely associate a strain vector S= Sdo>c/Qc with a

range of configurations rfo>c . This strain vector will serve three purposes:

(1) Its algebraic phase indicates the time.

(2) Its symbolic phases describe a particular configuration.

(3) Its amplitude indicates the probability of the system having this

configuration to within a range do>c .
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This interpretation applies differentially to small changes of
, but it is

not so easy to interpret S itself. For the latter purpose we must introduce

the determinant of S. Since det S is invariant for all non-algebraic displace-

ments in phase space ( 3-6) it is independent of (2). For a purely algebraic

strain vector, detS= S4
. If then we take as "origin" the configuration for

which the strain vector is algebraic (regarding this as the standard un-

strained condition), we have

(1) The time is the argument ofthe complex number (det Z)*.

(2) The configuration is specified by the matrix S/(detS)*.

(3) The probability is the modulus
| (det S) |

.

It is a most important feature of the symbolic theory that tlie same

symbol specifies both the configuration and the probability that the system has

that configuration.

The probability distribution which we contemplate initially is uniform

throughout phase space, so that an element dcuc contains probability dcoc/lc .

Hence for the initial probability | (det S)l \

= 1. In particular, at the origin

(standard unstrained configuration) S=l. This initial or apriori distribution

is the framework the "blank sheet" into which we insert whatever we

may learn about the system by special observation. If the observational

evidence shows that at a time t certain configurations were more probable
than others, we inscribe on the blank sheet a function /(#i, 0%, ... t) in-

dicating that the actual probability of the configuration (6lt 2 , ...) was/
times the initial probability. We call / the modifying factor. The modified,

i.e. the actual, distribution is therefore represented by a strain vector S
which does not in general satisfy | (det Sft |

= 1. The factor / is necessarily

an algebraic function. In wave analysis it is expressed as the product oftwo

wave functions, and is therefore formally a wave tensor of the second rank

in which all terms are zero except the quarterspur. This suggests a

generalisation of the modifying factor /. It often happens that in intro-

ducing the modified probability we make at the same time a transformation

of coordinates; that is to say, we compare the modified probability of

a configuration with the initial probability, not of the same configuration,

but of a configuration related to it by a transformation. The trans-

formation and the modification of probability are comprised in a non-

algebraic modifying factor/, which is the product of vector wave functions.

Whether we are treating the initial or the modified distribution, its strain

vector is normalised so that the total probability in the volume iic is 1. In

this normalisation the time dimension 16 is excluded, because the con-

ception of distributing probability over extension in time is rather unusual.

An atom exists continuously in time, so that the association of its pro-

bability with particular time intervals dt does not arise in a direct way.
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But consider a clock with one hand moving at a uniform rate. If the clock

is part of the system, we shall, in specifying the configuration ofthe system,

specify the position angle 16 of the hand of the clock; and the elementary

range of configurations dot will include the element d016 of position angle.

Thus from the internal point of view 16 is an ordinary angular coordinate

in the specification of configuration, and is one of the dimensions of the

domain over which the unit probability is distributed. It may be included

in the general normalisation; or (owing to its commutation with all the other

phases) it may be excluded and normalised separately, so that the pro-

bability d016/2?r of a range d016 is stated separately.

It was rather surprising to find time appearing at all in phase space. We
apparently rid ourselves of it when we retained only the displacements

associated with space-like matrices. But it has gained entry in space-like

disguise as the position angle ofthe hand ofa clock. Moreover, it is a periodic

angular coordinate, not an open infinite coordinate like external time.

This may be made clearer by an illustration from celestial mechanics.

The orbit of a planet is specified by six elements, one of which is the epoch
of perihelion passage T. The element T corresponds to 16 . If there are

several planets, we must include the element T for each of them in enumer-

ating the possible systems which might be formed. Thus T is an essential

coordinate of the configuration space in which we represent the possible

combinations, although it is ordinarily conceived as having a time-like

character.

Since time is measured by a phase angle, instants which differ by multiples

of a period are to be considered identical; and the whole extent of time is

27r.fi in natural linear coordinates. That is because in the structure assigned

to the system there is no provision for a revolution counter. A more extended

time reckoning can only be given a meaning when we treat more complicated

systems. It is fairly obvious that infinite time will appear automatically

when we introduce systems with incommensurable periods.

7*8. Physical Meaning of Strain Vectors.

By the aid ofspace vectors we have defined a domain which has the primitive

property of conceptual space-time, namely that all points of it are equiva-

lent. It is all one whether a given object is at the pointA or at the point B.

But this is in flagrant contradiction to our experience that somehow it is

possible to find out that the object is at A, not B. We have to combine two

different conceptions ofposition absolute and relative. By absolute I mean
4

'conceived as absolute", i.e. pictured in an abstract geometrical frame; by
relative I mean "relative to observable landmarks". In so far as the points

of space-time symbolise absolute positions they are equivalent to one

another; in so far as they symbolise relative positions they can be dis-
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criminated observationally. According to whether the point is being con-

sidered in its absolute role or its relative role, the position vector defining it

is a space vector or a strain vector.

The same applies to other physical entities. The energy and momentum
constitute a vector. Referred to an abstract geometrical frame, this is a

space vector, but relative to another physical system it is a strain vector.

The difference between space vectors and strain vectors might be defined

by saying that when we treat of space vectors we are contemplating the
"
blank sheet"; when we treat of strain vectors we are beginning to write

something on the clean page.
It is true that when we contemplate two space vectors we are implicitly

writing something on the clean page, namely the internal relations of a

system consisting of two parts. But the treatment of two vectors, and the

extraction of the internal relations of that which they represent, is slightly

more advanced than the problem we are now handling, and is not suitable

for our first writing lesson. We here treat the internal relations as already

extracted and presented to us in the form of a strain vector.

The conception of relative position or relative momentum arises when,
instead of contemplating the particle as a solitary system in an abstract

frame, we regard it as part of a more comprehensive physical system.

Consider, for example, an electron in an atom. A displacement of the

electron has two aspects. It is a translation of the electron from one point

to another in external space-time; as such it is a change of the space
vector defining the absolute position of the electron. But it is also a

deformation or strain of the atom; as such it is a change of a strain

vector. The atom is changed to a new configuration, so that there is a

displacement in the phase space in which the configurations of the atom

are represented.

The tensor calculus provides a machinery for locking the changes of one

characteristic to those of another. The changes of strain of the system are

locked to the changes of absolute position of its parts. We should commonly

say that the change of position of the electron is the cause of the change of

strain of the atom. To work out this, connection in an actual system of

several particles is too complex a problem for us at present. We proceed in

the converse way. We consider the simplest form of tensor interlocking, and

construct the ideal "system
"
to which it would apply. We cannot find any

more elementary starting point thaji the locking of a covariant wave tensor

to a mixed wave tensor; and the former has been called a strain vector in

anticipation of this application.

Accordingly when we wish to pass from the absolute to the relative

aspect of the position of a particle, we treat the particle as an element of an

ideal physical system whose configurations (so far as they are determined by



110 Wave-tensor Calculus [7-8

this particle) are specified by a simple strain vector, and therefore occupy
a phase space of the kind we have been investigating.

What exactly has been added to the particle to make it part of a physical

system instead of a lone particle to de-absolutise it? Mathematically it is

the matrix J?45 , which transforms its space vector into its strain vector. This

matrix defines a particular three-dimensional section of the world a plane
of simultaneity. Physically the particle is made part of a system by asso-

ciating with it a plane of simultaneity.
We have seen that when a number of particles are treated as a combined

system, each particle retains its separate space coordinates, but there is only
one time coordinate for the whole system. This replacement of the in-

dividual time coordinates by a common time coordinate is the essence ofthe

process of combining ; it defines the change in our point of view when we
consider the system as a whole instead of its constituent parts. A hydrogen
atom is composed of a proton and electron; but a proton today and an elec-

tron yesterday do not constitute a hydrogen atom. We have seen ( 7*1) that

the planes ofsimultaneity which correspond to the common time coordinate

of the system are determined by the direction of its external momentum
vector.

We can now see how the conversion of space vectors into strain vectors

corresponds to our change of attitude when we consider the particle to be

part of a system. Actually to introduce the other particles of the system
would greatly complicate the problem; but, in anticipation oftheir presence,
we introduce the planes of simultaneity which will be determined by the

external momentum vector of the system when it appears. We construct

these planes in the geometrical space-time which previously contained no
indication of a particular direction of section; we inscribe the matrix J545 ,

henceforth to be permanently associated with the planes of simultaneity,
on the sheet which was previously blank. Simultaneity isno longer arbitrary ;

we cannot modify the reckoning of it to suit a particular particle of the

system. Suppose that the particle has a momentum in the ^-direction; by
(6-51) the space vector representing this is El&pl . Formerly the particle

could be "reduced to rest" by a Lorentz transformation with matrix of the

form J5?14 itt14 ; but we are no longer allowed to rotate the plane of simul-

taneity. The strain of the system (as compared with a system in which the

particle is at rest) is measured by the inhibited rotation E^iu^ . Apart from

a numerical factor this is the strain vector El5pl .iE^5=E1^ipl associated

with the space vector E-^p^
This example calls attention to another feature ofthe connection between

internal and external space. The external velocity or momentum vectors

correspond to internal displacement vectors, and vice versa. At present we
can only recognise this in a preliminary way; but another example may be
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of interest. If we apply this principle to the internal energy attached to the

matrix E19 , the corresponding space vector attached to the matrix 7S45

should be interpretable as an external time displacement. As in the previous

example it will be an inhibited or virtual time displacement. If we change
the scale ofthe system, we change the light-times between its various parts,

and therefore change the time at which a particle becomes causally effective

at the centroid where the external wave vector is supposed to be located.

But in our internal wave functions the particles are assigned simultaneous

times, not the times at which they are causally effective. Thus the distance

of a particlefrom the centroid can be looked upon as an inhibited time displace-

ment. As an isolated particle we should have contemplated it at an ante-

dated instant to allow for the lag of causal efficiency; as part of a system we
can only contemplate it at the same instant as the rest of the system. If it

receives a radial displacement 8r, a further lag 8rjc is introduced which (ifthe

particle were not considered to be part ofthe system) would be compensated

by giving it a time displacement 8r/c. Since the planes of simultaneity in

the system are fixed, we cannot give an individual time displacement to the

particle; and the inhibited time displacement appears as, and is the measure

of, a strain of the system. We have seen that this strain will be associated

with the matrix jE716 and therefore be an internal energy. Thus a system will

in general have an internal energy depending on its linear scale. This is one

aspect of the origin of electrostatic energy.f

Our present point of view is that, instead of starting with an elementary

particle defined to be such that its properties can be represented by a com-

plete space vector, it is rather less abstract to start with an elementary

system defined to be such that its condition or "configuration" can be

represented by a simple strain vector. Then by introducing the associated

space vector we detach the active principle of the system from the passive

principle represented by planes of simultaneity, and so obtain a still more

abstract entity, namely an elementary particle in free space. It may seem

far-fetched to describe a particle coupled with a plane of simultaneity as a

"physical system". But that is as much of a physical system as we can

represent by a simple wave tensor. And inasmuch as current quantum

theory has made shift to treat a wide range of problems of observational

importance with simple wave tensors, it is an important stage in the advance

of the theory towards actuality.

If a system A were completely isolated it would be unobservable. There-

fore it enters into observation as part ofa more extended system B. As such

it will be represented in the internal space of B. The external momentum

t Conversely, if we derive the electrostatic energy as in Chapter xv, the foregoing

investigation shows how to connect with it the idea of antedating the particles by the

light-time.
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vector of B determines planes of simultaneity for the internal constituents

of B\ and the external momentum vector of A, which was a space vector so

long as A was considered in isolation, is replaced by the associated strain

vector when A is considered as part of B. But B in its turn would be un-

observable if it were not part of a larger system C\ its external momentum
vector must therefore be replaced by a strain vector, representing B as a

constituent of the internal structure of C. And so on.

At each stage there is an external space vector ofthe system contemplated,
which is converted into a strain vector when we consider a larger system
until the system has been extended to comprise the whole universe, when
the external vector can be dropped, all phenomena being comprehended in

the internal structure.

From this point of view space vectors make only a temporary appearance
when we halt for breath in the course of the analysis. As soon as we are

ready to proceed further, we replace them by their associated strain vectors.

There are, however, two reasons why space vectors remain an important

conception in practical investigation. Firstly, it is impracticable to treat

the exact equations of the internal statew of highly complex systems;

therefore when we have to deal with'a number of systems with weak inter-

action, we leave them uncombined and treat their mutual influence (which

brings them within reach of observation) by approximate perturbation

methods. Secondly, in dealing with a large number of similar systems, we
combine them statistically, not individually. The external space vectors are

not transformed individually into internal strain vectors of the complex

system; but are first replaced by a probability or average distribution. The

internal state of the complex system is described by a very much simplified

set of strain vectors embodying coefficients of the distribution function.

Thus the internal state of a gas is described by pressure, energy density,

virial, vorticity, etc., representing certain averaged characteristics of the

external space vectors of the molecules. Normally the direct procedure of

replacing space vectors by their associated strain vectors is not extended

to systems greater than a molecule.f

7-9. Singular Phase Space.

The phase space which we have been considering is generated by the trans-

formations of a non-singular strain vector. If we use instead a singular
strain vector Sa , the resulting phase space has fewer dimensions, since

SadQ8 s=Q when d 8 is a pseudo-reciprocal of Sa . Displacement in such a

direction involves no change of the strain vector and therefore no change of

t The averaging could perhaps equally well be performed on the associated strain

vectors. But since space vectors are more familiar we generally adhere to them as long as

we can.
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configuration; the direction accordingly is not a dimension of the phase

space of Sa .

To show the relation between singular and non-singular phase space, we
consider a non-singular strain vector which at some point of phase space has

a purely algebraic value S . By (6-64) this is analysed into spectral coiu-

P nentS = S . (7-91)

The components are pure and therefore singular. Consider the component
Sa . Since the products Sa8b , etc. are zero, the singular directions, which

satisfy Sad&8
= 0, are ^=

6/g& +^ + dSd (7
.

92)

Since d 8 cannot contain time-like matrices, the ratio b:c:d must be chosen

so as to eliminate the time-like matrices J5?23 ,
J5745 . There is therefore only

one singular direction
d&.=c(8 + 8d). (7-93)

If, as in (6-64), S
f,
= -

iiS (#1 +#23 + #45 + #16), (7-941)

the singular direction is d 8=(-El + #16) d<f>. (7-942)

For Sc and Sd the singular direction is d&8
= (El -fE19 ) d<f).

Non-singular phase space of ten dimensions can thus be regarded as a

superposition of two singular phase spaces of opposite spin, each of nine

dimensions. The axis of spin, here represented by Et , can be in any direction

in three-dimensional space. When the singular phase space of8a is delineated

in ordinary phase space, the added dimension (direction of
</>) gives a line of

indistinguishable configurations which are really one configuration. The

equation of the singular line (7-942) may be written

d<f>
=

cZ0j_
= dd^Q .

Or, since dt= Rd6IB , dOJdt = -
I/R.

The singular line therefore represents an entity spinning with uniform

velocity. We do not distinguish the different orientations corresponding to

the sequence of points along the line, but count the state of spin as one con-

figuration a constant state of strain of the system. The strain produced by
the rotation is to be compared with the gyrostatic torque of a fly-wheel, not

with the torque of a wound-up spring. A change of the plane of spin would
be a change of configuration.

When we separate non-singular phase space into two singular phase

spaces, we require an additional variable to specify how the probability is

divided between the two phase spaces. This extra variable compensates for

the loss of a dimension in passing to singular phase space. It is to be remem-
bered that Sa+ Sc does not represent two particles of opposite spin; two

particles would require a double wave tensor. It represents a particle which

has equal probability of having either spin.
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It is perhaps rather surprising that there is no corresponding separation
ofphase space for positive and negative charges. The physical reason appears
to be that the conception of phase space is bound up with the conception of

statistical equilibrium, and there can be no equilibrium if the charges (or

the probabilities of positive and negative charges) do not balance. Equi-

valently it is attributable to our result that electrically saturated space
satisfies different reality conditions; and the phase space (if any) associated

with it would require to be reinvestigated from the beginning. Although
there is considerable analogy between opposite sign of charge and opposite

spin, there is the fundamental distinction that opposite charges, unlike

opposite spins, cannot be transformed into one another by relativity

rotations.



CHAPTER VIII

THE DIFFERENTIAL WAVE EQUATION

8* 1 . Conservation of Probability.

In the terminology introduced by Diracf a "state" of a system consists of

a particular distribution of probability over the various possible configura-

tions. The state is supposed to extend over all time. The probability dis-

tribution may vary with , but always so that the integrated probability of

all the configurations for a fixed value of t is unity. In other words pro-

bability is conserved.

We may treat the probability as a fluid occupying the configuration space,

the probability of a given range of configurations being represented by the

mass of fluid in a corresponding volume. The change of distribution of

probability is then represented by a motion of the fluid.

The method of wave mechanics is to analyse the whole probability of the

system, which must be unity, into the probabilities pa , pb , pc , . . . of a set of

elementary states a, b, c, .... Then if ^(a^, t) is the probability of the con-

figuration Xp at time t in the state a, the whole probability of the configura-

tion X at time t is

A. perturbation of the system means a variation ofpa , pb9 pc , ..., subject to

their sum remaining unity.

The object of this device is to separate the mathematics of interaction

from the mathematics of structure; for the influence of extraneous bodies is

described by changes of the factors p, and the functions q which describe

the structures of the various states remain unaffected.

Since the elementary states are introduced for analytical purposes, we

may impose on them such limitations as appear advantageous. It would be

possible to contemplate discontinuous flow of probability, whereby pro-

bability is created at one point and disappears at another point in the state,

subject to the total probability remaining constant; but in current quantum
theory the states are assumed to be continuous, that is to say the fluid moves

subject to the equation of continuity.

We introduce a vectorj^ whose component in the time direction gives the

density of the probability fluid and whose space components give the

density of its flux. The conservation of probability is then secured by the

equation of continuity of the fluid

div^-0. (8-12)

t Quantum Mechanics, 1st ed.
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This assumes that the configurations are represented in a space with Eucli-

dean metric. More generally the density of probability and of its flux are

represented by a vector density j^,
and the equation of continuity is

divj^O, (8-13)

the covariant divergence of a vector density being the same as its ordinary

divergence.

For the general development ofthe theory it is necessary to use the phase

space and strain vectors treated in Chapter vn; but in order to connect our

treatment with Dirac's theory, we first consider a simple particle whose

"configurations
"
are determined by its coordinates x, y, z in ordinary space.

The probability distribution in state a is then a function qa (x, y, z, t).

Since we admit perturbations, we have to recognise an independent
variable s extraneous to the state as an argument for the perturbations, so

that (8-11) becomes
I^p. <).*. (a, y.M). <*14)

The distinction between s and t is often ignored; but it is necessary to attend

to it when we consider Lorentz transformations. We may apply a Lorentz

transformation to x, y, z, t, and thus obtain a new but equivalent description

of the probability distribution in the state; but the functionpa (s) is a factor

applying to the whole domain of x, y, z, and the time s which appears in it is

not associated with any particular values of x, y, z; there is therefore no

possibility of applying a Lorentz transformation to s, and it is invariant

for the internal transformations of the state.

The perturbations are imposed on the system from without, and occur at

times fixed according to an extraneous time reckoning. If we like, we may
choose the time t within the state so as to conform to this reckoning; but we
then lose the possibility of applying Lorentz transformations to the state.

It is undesirable to do this at any rate at the present stage since the

study of the Lorentz transformations, initiated by Dirac, has contributed

greatly to our understanding of the theory. To preserve this advance and

exhibit it in its proper relation to the more general developments, we have

to distinguish a relative time t in the state and an invariant time s which

serves as a link with other systems.!

If we wish to make a relativity transformation which includes both the

perturbed and the perturbing system, we must treat them as one combined

system and analyse the probability distribution into elementary states of

the combined system. But then, for this combined system, there will be an

invariant time 8 forming the argument of the perturbations ofthe combined

system by systems extraneous to it. However many systems we combine

there is always an invariant time left over for the purpose of representing

t In the nomenclature introduced later in this chapter, t is a geometrical coordinate and
a a dynamical coordinate.



8-1] The Differential Wave Equation 117

the perturbation effects of systems not yet included. It would be idle to
consider a system without making provision for perturbation from outside;
for in that case we could never acquire knowledge of it unless indeed it

were so extensive as to include the brain of an observer.

We note in particular that the time t is reversible, but the time s is irre-

versible. The axes in the state can be rotated so that ->- 1, and there is no
absolute distinction between waves travelling forward and waves travelling
backward in t. The latter are oddly said to have negative energy or mass

according to the technical definitions in quantum theory. But the inter-

action with other systems depends on the invariant time s\ thus the rotation

of t and the substitution of "negative mass" for positive mass does not

signify an observable change it would not be a relativity transformation

if it did. Similar considerations apply to more complex systems, until we
reach a system which includes a human brain and is observed from within

instead of from without. Extraneous time 8 is then no longer needed. But
the inclusion of the observer in the system automatically prevents the

relativity transformation from being pushed so far as to turn t into -
1\ at

least it is unusual to include among the admissible systems of description

(1-1) those of an observer whose consciousness runs backward in the

adopted time reckoning, and who endeavours to predict the past from his

memories of the future.

By (8-14) the probability of a configuration x^ is a function of the two
times s, t. The same duality of time occurs, for example, in perturbation

theory in celestial mechanics; at each moment s there is an osculating orbit

of a planet which professes to give the position of the planet for all times t

between - oo and + oo. These positions are not actually realised. To obtain

the realised positions we have to associate corresponding values of s and t.

This means that in the present problem we have to lay down in the state a

series of locif(x,y,z,t)=s which give a "representation" of s in the state.

In particular cases it could be arranged that f(x,y,z 9 t)
= t= 8', but, as

already stated, this definite choice of t requires that we forgo the applica-
tion of Lorentz transformations.

The coordinate s, which is primarily.an extraneous time-variable but has

also a representation in the state, is a connecting link between the system
which is being described and the rest of the universe. This ideal type of

connection cannot be exactly realised in practice. The approximation lies

in the assumption that, whatever the source of the perturbation, its argu-
ment s is represented by the same series of loci/ (x, y, z, t) in the state. Prac-

tically this means that the velocity of propagation of all perturbations is

assumed to be infinite. If we require greater accuracy, the only course is to

amalgamate the perturbed and perturbing system and investigate the

states of the combined system.
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To insist on this greater accuracy would be a counsel of despair. It would

be to tell the physicist that, since the whole universe is interrelated, it is no

use his attempting to study anything less than the whole universe. It is

obvious that it is profitable to study portions of the universe as isolated

systems. The method of states provides for this, and at the same time makes

provision for re-attaching these systems to the rest of the universe in an

approximate way, so that they may not be entirely cut off from observation.

It would be possible to choose the set of elementary states a, b, c, ... in

many different ways. In practice therefore certain limitations are imposed.
In particular the states are so chosen that the wave tensor SJ2^j^ corre-

sponding to the probability vector is factorisable. The state is then said to

be pure. Further, the whole set of states must be complete without being
redundant so that, when the probability distribution of the configurations

at time t is given, the coefficients pn , pb , ... are uniquely determined by it.

The conditions of purity, completeness and non-redundancy require that

the states shall correspond to a spectral set of operators. The spectral

set is, of course, much more general than that which we have introduced for

resolving an isolated wave tensor ( 5-7). We shall not enter into the detailed

treatment of these conditions, since our theory here coalesces with current

quantum theory.

8*2 . The Divergence Condition .

For a system describable by simple wave tensors the probability vector j^

representing a pure state will be of the form

We introduce two divergence operators
16

V-S^a/eteg, V

where
8/80;^ signifies3/9^ written after its operand. Then sincej"

=

16 16

S^a/eteg, V* = 2(8/8^)^, (8-21)

so that, summing for /A= 1, 2, ..., 16,

divj=S (dj^dxj
= -

Jx* (v* + v ) 0- (8-22)

It is understood that the same frame E^ is used throughout the whole

domain of x^ in which and x* extend.

The result of performing the operation V on $ is another four-valued

quantity o>. We can always find a matrix M such that co=M
ift. Generally

M will be a function of the coordinates. We therefore set

Vt= Mif>, x*V* = x*M*, (8-23)

so that divj= -
** (M* +M) 0. (8-24)



8-2] The Differential Wave Equation 119

We ensure the vanishing of divj by setting Jf*= If; so that (8-23)

gives the differential wave equations

(V-Jf)^ = 0, x*(-V*-Jlf) = 0. (8
.25

)

These wave equations will be invariant for all wave-tensor transforma-

tions, if V, V* andM are mixed wave tensors. This requires that
3/3a^ shall

be a complete space vector; that is to say, when a relativity transformation

is applied, it is transformed into a new array of operators 3/3^' which are

linear functions of
d/dx^ , just as if it were a numerical vector. The condition

that
3/Sa^

is a complete space vector is equivalent to the condition that x^
is a complete space vector.

If we limit ourselves to solutions of (8-25) which are functions of four

rectangular coordinates (xl9 x2 ,x3 , #4 ), the equations reduce to

s
<8

'261 >

These equations are invariant only for the six relativity rotations in four

dimensions; because the other relativity transformations (applicable to

(8*25)) would reintroduce the terms that have been dropped.
Dirac's wave equations for an electron of proper mass m in an electro-

magnetic field, whichgivesit an energy and momentum K^ , can be written as

(8-262)

Comparing (8-261) and (8-262), we obtain the identification

(8-271)

Writing as usualM= Sm^E^ , we have

mle
=m (wij , w2 , w3 ,

w4)
= - i fa , KZ , /c3 ,

*4). (8-272)

We have made this comparison with Dirac's equation in order to ascertain

the current nomenclature for the components of our space vector M. The

consequences of his equation have been worked out and compared with

experiment, so that we know how the quantities m, K^ contained in it

manifest themselves observationally. Equation (8-272) transfers this

knowledge and the consequent nomenclature to our own equations (8-261).

It would be foreign to our plan to intermingle the current semi-empirical

theory with the purely deductive theory that we are developing, and our

reference to the current equations is for identification purposes only. In
current theorym is supposed to be a constant independentofthe coordinates.
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We have as yet shown no reason why m should be constant; that is a con-

sequence of the dynamical equations, and will be proved in 9-2; but it will

be assumed here in anticipation.

If ^-iJL +
^i^.^, (8-28)

(8-262) reduces to

which formally agrees with the simple wave equation as given in (5-13),

(5-14). But this is only a real agreement if (8-28) gives an algebraic value of

Ppl for in (5-14) the p^ are necessarily algebraic coefficients.

In order that the p^ defined by (8-28) may be algebraic, and x* must be

eigensymbols of
d/dx^

. This requires that shall be a function of x^ of the

form
Jf(x x x. x )

= /(# x x x ) Ji (8-285)

where / is an algebraic function and a constant wave vector. We shall

call wave functions of the form (8-285) algebraic wave functions.
It would be undesirable to exclude non-algebraic wave functions. We

shall find, for example, that the wave functions giving the steady states of a

hydrogen atom are non-algebraic. Thus for unrestricted wave functions the

momentap^ are non-algebraic ; and the identification ofp with the algebraic

coefficients^ in 5-3 does not apply.

Thus in general we have two independent equations

= 0, (8-291)

= 0. (8-292)

The first is an identity, except that it is implied that the axes are so chosen

that J5= 0. The second expresses the conservation of probability. For

algebraic wave functions the two equations are the same; so that the

momentum vector is the same as the stream vector except for a numerical

factor. For non-algebraic wave functions the two equations are distinct;

and no comparison between the stream vector and momentum vector is

possible, since the components of the latter are non-algebraic quantities.

We can rewrite (8-292), setting
4 16

where the p
'
are algebraic coefficients; then the momentum vector can be

regarded as a complete space vector
p^',

which has been formally reduced to

four dimensions by the device of admitting symbolic components.
If there is no electromagnetic field, (8-262) has the elementary solutions

^ (8-293)
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where the p^ are algebraic, and ^ , Xo* are solutions of the elementary wave

equations (5-13).

In this book we shall use non-algebraic wave functions in special in-

vestigations, but in pursuing the more fundamental problems we shall

generally limit ourselves to algebraic wave functions. That is because we are

especially concerned with the borderland of relativity and quantum theory,

and, as explained in the introduction, their meeting-point is to be found in

the most uniform conditions.

According to (8-28) there are two different formulae for y^ . At present the

position (final or initial) of the wave vector is a sufficient indication which

formula applies. But it is hampering to have a definition ofp which pre-

vents us from changing the position of the wave vector; and we shall later

describe the difference of the two operators in a more general way ( 8-6).

8-3 . Govariant Differentiation .

We do not propose to generalise our formulae to apply to all kinds of curvi-

linear coordinates; but there is one kind of curvilinear coordinate which it

will be necessary to use, viz. an angular coordinate. Consider the trans-

formation from rectangular coordinates (xl9 x2 ) to polar coordinates (r, 12 )

in a plane; the question arises how this change is supposed to affect a general

space vector jL and its wave-vector factors
^r, x*.

Our theory of has been based on an orthogonal frame of reference, and

it would be a grave complication to depart from an orthogonal frame.

Therefore we do not consider the polar components of a vector in the sense

of general relativity, but rather in the sense of elementary mechanics in

which the "polar components" of a force are its rectangular components in

the radial and transverse directions.! That is to say, our transformation

will correspond to (dx^ , dx2 )
-> (dr, rd012 ), not to (dx^ , dx2 )

-> (dr, d012 ). Thus

we retain an orthogonal frame, but the frame rotates as 12 changes; and a

local vector 0x* *s resolved orthogonally in continually changing directions.

We shall now find the covariant derivative of
iff
with respect to 12 . By

(4-15) the transformation $'
= C*

AI ^" gives J/ = ^ cos 12
- 12 sin 12 >

which

is the change of t due to the axes having been rotated through an angle

12 . In the present case, when the angular coordinate changes from to

12 ,
the axes are rotated in the same direction so that the corresponding

transformation of is y = e-+*ue^ m (8-31)

This assumes that there has been no "real" change of 0; that is to say, if we

had kept to rectangular coordinates, ^ would have had the same value at

t There is a distinction between "a transformation of coordinates from (a;, y) to (r, 0)"

and "a transformation from rectangular coordinates (x, y) to polar coordinates (r, 0)".

The first implies that all coordinates are to be treated alike as in general relativity; the

second implies that they are to receive the distinctive treatment usually accorded to rect-

angular and polar coordinates. (Of. Mathematical Theory of Relativity, 16.)
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(r, 12) as at (r, 0). We call displacement without real change parallel dis-

placement. Differentiating (8-31), the change due to parallel displacement is

3^7^12= ~"i^i2^'- For a general displacement we obtain the covariant

derivative by subtracting from the apparent change d*fi'/dOl2 the change

arising by parallel displacement. Thus the covariant derivative operator is

>. (8-321)

(r\

\
/ 7\ \

- - -
)
= - 1 1 - + p? y | (8-322)

vUpv/c \vOpv /

is called the angular momentum conjugate to the coordinate
6^v . The term

\iEpy is called the spin momentum. It was originally discovered as a

correction to the angular momentum, which had previously been assumed
to be

id/ddpy
. We see that the spin momentum is merely the difference between

the covariant derivative and the ordinary derivative. It is a nominal addition

to the angular momentum due to our non-relativistic outlook.

By (3-38) the expectation value of E^ is
ij^/jw, so that the expectation

value of the spin momentum is ^j^/j^. The term "spin momentum" is

primarily limited to the components jM , j31 , j 12 ; but analytically all

components are on the same footing, and we have a complete space
vector //2j16 giving the part of the momentum (expectation value) which
arises from the difference between covariant and ordinary derivatives.

From this aspect the stream vector J is also a momentum vector. The
identification in 6-6 of its E^ component with mechanical spin is thus

confirmed and elucidated.

For an initial contravariant wave vector #*, the corresponding operators
are

(8
'

332)

Hence the covariant derivative of a space vector J = ^^* is

,+ * (E^J
-
JEy,). (8-34)

The angular momenta generally referred to in quantum mechanics are

conjugate not to the angles 6^, but to angular parameters -^v introduced
in the following way. Consider a distribution of^ constituting an elementary
state of a system. If the boundary conditions, extraneous electromagnetic
fields, etc. are symmetrical in the plane of0^ ,

we obtain another elementary
state by rotating the whole distribution of through an angle a F in that

plane. Thus we obtain a series of distributions iff(xl9 x29 x9 ,Xt, V) *i> *i
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xa ,
#4 being coordinates, and a^,,

a parameter distinguishing one distribution

from another. In place of xly xz ,
x3 ,

#4 we can use polar coordinates, in-

cluding the angle B^v
. We have

since the first term in the exponential gives the effect on $ of rotating the

axes backward through a^,,,
which is equivalent to rotating the whole dis-

tribution forward through oc^,
and the second term is introduced because

the point 0^ in the new distribution corresponds to the point 6^v
-

oc^
in

the old distribution.

Differentiating (8-35) with respect to a^, we have

(8-361)

and the angular momentum conjugate to
oc^

is

For x* the corresponding operator is

(8-363)

We shall call
a^,,

a dynamical coordinate, and distinguish M^ and M
IW

as

geometrical and dynamical angular momenta, respectively. The importance

ofM v is that (in the symmetrical conditions already postulated) it com-

mutes with the hamiltonian; this, as we shall see later, makes it a constant

of the motion of the system, which is then said to possess an integral of

angular momentum. But when the conditions are not symmetrical, and no

integral of angular momentum exists, there is no reason to suppose that

(8-362) represents angular momentum of any kind. It is therefore rather

misleading to say that -*(3/3fl^-i^
f

f4J is the angular momentum of a

system; it is a form to which the dynamical momentum reduces in parti-

cular cases when it happens to be constant. On the other hand, M^ has

the same interpretation for symmetrical and for unsymmetrical systems.

Whilst it has apparently little connection with momentum as conceived

in classical mechanics, it is a natural generalisation of the quantum theory

definition.

To reach the dynamical outlook we must promote <x12 , originally intro-

duced as a parameter, to be a coordinate; so that ^ is a function of five

coordinates <x12 ,
xl9 x2 ,

xz , #4 ,
or in polar coordinates a12 , 12 , <, r, t. (The

configurations occupy four dimensions 12 , <, r, t, as before.) This means

that a series of elementary four-dimensional states is run together to form

a single five-dimensional state; and we adopt a new dissection into states
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in which the five-dimensional state is regarded as elementary.f In combining
the four-dimensional states we attribute to them a uniform probability
distribution in a12 . We can now assign only one probability factor p to the

whole five-dimensional state, whereas formerly we could assign different

probability factors pa to each orientation a of the four-dimensional state.

This sacrifice corresponds to the fact that, the conditions being perfectly

symmetrical, it is impossible to distinguish the orientation observationally,
and therefore we never have occasion to consider a modification of the

initially assumed uniform probability distribution in orientation ("a priori

probability") through additional information furnished by observation.

The usual method ofobtaining (8-362) is to consider a form ofhamiltonian,
which by its symmetry ensures that the dynamical angular momentum is

constant, and then to identify an analytical expression which turns out to

be constant as the angular momentum. This gives no indication of the ex-

pression for a non-constant angular momentum. For example, in an asym-
metric electromagnetic field, systems, besides being deformed by the field,

will tend to orient themselves in a certain way. Even if we ignore the

deformation and assume that exactly similar four-dimensional states can

exist in different orientations a, it will be necessary to insert in (8-35) a

probability factor p^ representing the unequal probability of distribution

of the different orientations; so that there will be an additional term in

30/8a. It is clear therefore that (8-362) is not the correct expression for the

angular momentum in unsymmetrical conditions.

In setting divj= S Sj^/dx^ ( 8-2), we assumed that the x^ are rectangular

coordinates, the volume element being taken to be dV= dx1dx2dxs ... so

that the probability or probability flux belonging to an element isj^dV/dx^ .

If angular coordinates are used, two courses are open. The simplest is to

introduce the vector density j^j^V -g; the equation of conservation is

then
(dj^/9^)

= 0. Otherwise we must substitute covariant derivatives

in place of ordinary derivatives in V.

It is instructive to check the agreement of the two methods. If Ef is the

matrix corresponding to the radial direction, and Ee the matrix for a rota-

tion in a plane containing the radius (therefore anticommuting with Er ), the

matrix for the corresponding transverse direction is EgEr . The corresponding
term in V is

-** + - (8
'37 >

t The running together of the configurations along a singular line in 7-9 to form a single
"state of spin" of an elementary particle may be regarded as an elementary example of this

procedure.
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Thus for each rectangular coordinate replaced by an angular variable,

Er/2r is added to V. If there are n angular variables, the result is to change
the radial term Er dldr to """

(8-38)

If we set 0=r *n ^ and take ^ as a new wave function, the extra term

\n\r is eliminated. We find that x* behaves in the same way; so that, setting

X* = r~*w co*, the extra term is eliminated in the equation for o>*. (In

treating #* we must notice that EgEr is replaced by ErEg , and this cancels the

change of sign of the spin correction.) Accordingly we have a new com-

bination 3= <!><*>*
= rnJ which satisfies the simple divergence equation with-

out the added terms. This will agree with our former result if3 is the vector

density JV^gi henceV g should be equal to rn . This is correct, because

each substitution dx^rdO^ contributes a factor r to V g.

8-4. General Dynamical Equations.

Since our symbolic calculus has been extended by the introduction of

differential operators djdx^ ,
which I will call Z)-symbols, it is necessary to

refer again to the formal definitions in 2-1.

A symbol which commutes with every symbol in the calculus will be

called an algebraic number as heretofore. A symbol which commutes with

all symbols other than D-symbols will be called an algebraic function.^

Since D ($x) ^ (D$) x, the i>-symbols do not obey the associative law of

multiplication. IfDx= d/dx, DJx = 9 (fx)ftx - Hence

whatever x may be. We have therefore in all cases

Sfldx=DJ-fDc . (8-41)

The introduction of Z)-symbols leads us to contemplate a wider variety

of tensor transformations, i.e. a wider variety of systems of description of

a physical system. We have been using transformations of the form g= e
w

,

where is a matrix or more generally an JS-number. It is natural now to

admit still more general transformations in which may be any combination

of symbols, including D-symbols. In particular we consider the trans-

formation
q== eiW8, (8-421)

where W is any symbolic expression and s is an algebraic parameter.

Let x*> $ be initial and final eigensymbols of W, the eigenvalue m being

the same for both, so that

X*(JF-m) = 0, (TF-w)0= 0. (8-422)

t The term ''algebraic function" does not include "algebraic wave functions", defined in

(8-285) as the product of an algebraic function and a constant wave vector.
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Transforming these as contravariant and covariant wave vectors respec-

tively, we have *> _. *e-**r ^ *e-imsx x * '

(8-423)

so that, if J = 0**, .
J' = J.

If T is any other mixed tensor of the same class as J,

T' = e*
w*Te~iw*. (8-424)

Hence for an infinitesimal change ds

so that dTlds=i(WT-TW). (8-43)

To apply this, we regard s as a coordinate, and consider a physical system
S described by mixed wave tensors T or the equivalent space vectors. When

(8-43) is satisfied, displacement along s is parallel displacement ofthe system;

that is to say, the tensors describing the system are unchanged except that

they undergo a common transformation which we interpret as a trans-

formation of reference frame.

It is important to understand the significance of this association of ci

tensor transformation with every displacement. If the system S is the only

system contemplated, a change of the system of description has no useful

purpose; but then it is idle to talk of displacing the system, since there is

nothing to which the displacement can be referred. It is therefore pre-

supposed that there exists besides S a reference system S' to enable the

displacement to be recognised; and the displacement constitutes an in-

trinsic alteration or strain ofthe combined system 8, 8'. The transformation

of the system of description, applied to S but not to /S', expresses the fact

that although S is intrinsically unchanged, its relation to 8' has been

altered.

In general relativity we are familiar with this change of the system of

description which necessarily accompanies every observable displacement.

It is expressed by the fact that an extended system of rectangular co-

ordinates is impossible, or equivalently that the curvature of physical space

cannot vanish. The effect of curvature is that displacements in different

directions do not commute. In symbolic calculus we are indifferent to

geometrical pictures, and express the same thing more directlyby associating

non-commuting operators with the displacements. The change ofdescription
is directly associated with non-commutation of operators, as may be seen

from (8-43); ifthe operator W associated with the displacement s commutes

with all the tensors T of the physical system no change of description

occurs.

The displacements whose associated operators are ^/-numbers can be

represented in Riemannian space. It is, I think, improbable that the
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displacements associated with the more general operators now admitted

are representable in Riemannian space. If we wish to represent them

graphically we must adopt whatever form of geometry is necessary to

provide representation of their non-commutative relations. In practice,

however, we are not much concerned with the totality of transformations

of the type (8-421); we have only to pick out a few special forms which yield

comparatively simple systems.!

The coordinate s is a dynamical coordinate of the same type as the co-

ordinate
aipV

introduced in 8*3. It will be remembered that we there con-

sidered a probability distribution in space-time and changed its orientation

through an angle a.^
. Since the distribution was intrinsically unaltered, this

was a parallel displacement. The space vectors describing the probability

distribution at all points of the system underwent the same transformation

(8-35). Since for any wave vectors ^r, #*, the infinitesimal transformation is

we have W = - i d/fo
= i 8/85, (8-44)

so that W is the momentum conjugate to s. It will be seen that M^ and
oc^

form a particular case of W and s.

The distinction between geometrical and dynamical coordinates is rather

obscured by the fact that in the most familiar system of coordinates, viz.

rectangular coordinates, the conjugate momenta are the same. The distinc-

tion is necessary in angular and other curvilinear coordinates because the

conjugate momenta differ, and indeed are scarcely comparable in concep-
tion. Further, by generalising our operators, we have introduced dynamical
coordinates which may not be representable in the same space as the

geometrical coordinates and may therefore have no counterpart in Rieman-

nian geometry. The essential difference is that the geometrical coordinates

express the internal relations of a system or probability distribution, and

the dynamical coordinates express its relations to external objects. Geo-

metrical coordinates are internal; dynamical coordinates are external. In

elementary theory the only changes of external relations contemplated are

those corresponding to change of position or orientation; but by means of

general dynamical coordinates we can introduce external variables which

more closely correspond to the internal strain vectors of the extended

system which comprises the external reference objects.

Equation (8-43) is a point of junction of the present theory with

Dirac's theory. He arrived at it by seeking what he regarded as the

most natural adaptation of the classical equations of motion to quantum
conditions.

t E.g., the forms W, U19 Us , Ua in 9-2.
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8*5. Extension to Four Dynamical Coordinates.

Let W, UL , U% 9
U3 be independent symbolic expressions which mutually

commute. We may expect to be able to find a common eigensymbol for

them. It was shown rigorously in 3-7 (e) that a common eigensymbol can

be found ifthe commuting symbols are matrices, and the same proof applies

if they are symbols which satisfy algebraic equations. It is not clear that it

applies to operatorssuch as d/dxwhichhavean infinitenumberofeigenvalues .

But no inconsistency can arise through postulating a common eigensymbol
for mutually commuting symbols, and the only limitation on the invention

ofsymbols is that we must not ascribe to them properties which are not self-

consistent. It would seem therefore that, if we cannot find a common

eigensymbol for W, Ul9 U2 ,
C/3 ,

we are at liberty to invent one just as we

have invented a square root of 1 in algebra.

For us it is sufficient that there exist important applications in which

initial and final eigensymbols $, x* of the four operators can be found. An

example will be given in 9-2. Let the eigenvalues be w, p,l9 //,2 , /*3 . Then

the transformation (8-423) can be extended to

^'
__ gi^+tfiSi-t-l^+t^s) ^

_ elXw*4Vil *1+fl2*2+/*3*3>
iff. (8-51)

As before the product e/ = ^x* is unaltered by the transformation. For

other mixed tensors T we have in place of (8-43)

dTjds =i(WT-TW), dTfa^i^T-TUJ, etc. (8-52)

and W, Ul9 U29 Uz are the momenta conjugate to the dynamical coordinates

s 9 sl9 s29 s3 . By (8-52) they are constant over the whole domain of (s 9
sl9 s29 s3 ) .

We shall call the four-dimensional domain of the coordinates s, sl9 s2 >
5a

an $-space. It is a very simple kind of space perhaps simpler than

Euclidean space but it is unfamiliar since the axes in it are antiperpen-

dicular. All displacements in it commute, so that it is pictured as flat; but

in other respects it is not comparable with the space of ordinary conception.

An elementary example of an S-space is obtained by taking

W, U19 C/2 , */3
= (EIQ9 E^ Ep 9 Ey)m,

where J5?a , Ep 9
E
y
form an anti-triad. We have then for all wave vectors

t(8, *, *0,
5
y)
= e< ie*+^^^^+AVy)^^ , (8-53)

which reduces to $(s 9
*a , sf , 5y )

= efw^ ^ ^ v>0 , (8-54)

when is a common eigensymbol ofE
(X9 Ep 9

E
y

.

Alternatively we can describe the same domain by spectral coordinates

sa9 sb9 sC9 sd conjugate to momenta J
tt ,
Jb9 JC9 Jd defined as in (5-71).

In the most elementary problems we cannot have more than four

dynamical coordinates, since not more than four independent ^-numbers

can mutually commute. For that reason we have chosen to consider four
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dynamical coordinates in this section. The same general dynamical theory

applies to any number of coordinates; but the problems involving four

coordinates will be classed as one-body problems, and therefore come first

in our order of treatment.

Of the four dynamical coordinates one is singled out to be the proper
time s, and its conjugate momentum W is called the hamiltonian.f The

reason for this selection must lie outside the system itself; for the dynamical

equations (8-52) are perfectly symmetrical. The distinctive property of s

can only appear when we contemplate the system in relation to other

systems. It is, as we have seen ( 8*1), the argument of the perturbations of

and by other systems. The peculiarity that the system "goes on" in s,

whereas it is merely extended in sl , sz , 3 , is explained if it is through s that

changes in the system are linked to changes in the external world and

therefore ultimately to the time sequence in consciousness.

The principle that the separate physical systems into which we dissect

the universe shall each have just one coordinate in common with the rest,

is valuable as expressing the conceptions which are the basis of our nomen-

clature. It is not so important that it should be fulfilled rigorously, since any

supplementary coupling can be dealt with by perturbation methods. In

adopting s as the unique link we assume an idealised standard environment

of the system, such that any change in the environment produces effects

which occur simultaneously in all parts of the system according to the time

reckoning s. In special cases we may have to treat an environment which

deviates markedly from this standard. Iflight waves are falling on an atom

in a particular direction, we should take account of the fact that the per-

turbation travels across the atom with the velocity of light. It would seem

therefore that the distinction between s, sl9 s^ 9 $3 is a matter of degree; and

that all four coordinates afford potential linkages with external systems of

appropriate character, though only one is called into play by the standard

environment which our equations presuppose.

To sum up: it is idle to treat in our equations a system supposed to have

no interaction with its environment, since the interaction is the only thing

about the system which concerns observational physics. On the other hand,

it is not necessary to go to the other extreme and treat a system with an

environment of the most general kind that can occur in nature. Just as we

begin by studying the simplest systems, so we begin by studying the

simplest form of environment, capable of introducing only the simplest

type of perturbation. Under these conditions one coordinate 8 plays a

unique role, and becomes distinguished from sl9 s2 > *s-

t In our nomenclature. On all points which concern the relations of s and t our Out-

look differs so much from the current theory that comparison of nomenclature is scarcely

possible.
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8-6. The Differential Wave Equation for a Strain Vector.

The tetrad ofmatrices in the wave equations (8-261) or (8-262) may be taken
to be either El9 E^ E3 , J04 or J516 ,

jE?25 , J536 , j 46 . The choice is not entirely
a matter of indifference, because the two tetrads lead to different reality
conditions. When the p^ are algebraic, the former is the appropriate tetrad

for a (four-dimensional) vector density 0^*> and the latter for a space
vector 0x*, by (6-51). Prom considerations of continuity the same distinc-

tion must hold for non-algebraic wave functions.

Accordingly the wave equations without electromagnetic field for a

space vector 0x* are

- <8
-6i2

>

Let <* = ix*^45 > so tha^ 8=W* is the associated strain vector. Substituting
in (8-612) we obtain

<>' (8-62)

which is equivalent to

^ (8-631)

since E^ is the only antisymmetrical matrix in (8-62). Multiplying (8-611)

initially by E^ we obtain

4+^4+g|+ ** m
)*-

-
<8

'632
>

Thus the covariant wave vectors 0, ^ are solutions of the same, differential

equation.

The equations for $ and ^ are, however, not the same when there is an

electromagnetic field. In (8-611) and (8-612), m is replaced by

so that in (8-62) and (8-632), E^m is replaced by

But in passing from (8-62) to (8-631) the reversal of sign applies only to

JS?45m. The equations for and ^, including electromagnetic terms, are most

conveniently written

=0> (8-641)
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Remembering that i is contained implicitly in #4 ,
*4 and in the imaginary

matrices JS714 , E^ ,
1 34 , we see that ifthe sign of (8-642) is reversed it becomes

the complex conjugate of (8-641). So that if (a?1 #2 #3* is a solution of

(8-641), its complex conjugate is a solution of (8-642). There are, of course,

other solutions of (8-642), and it is not necessary to suppose that the two
wave vectors representing a particle are complex conjugates.
The wave functions adopted by Diracf and used, I think, in all current

treatises are $, <f>,
not ^r, x- Even when ^= 0, so that ty and <f> satisfy the

same equation (8-631), they are taken to be different solutions representing
waves travelling in opposite directions in four dimensions. This comes

about because the momentum operators applying to them have been defined

differently in (8-28); so that when the momentum has a given value (the

same for
*fi
and

</>)
different functions are required.

We shall call wave functions whose momentum operator is
idfiXp+ Kp

wave vectors of index 1, and those whose momentum operator is
id/dXp+ Kp

wave vectors of index 1. The former satisfy (8-641) and the latter (8-642).

The definition will later be extended, so that a wave tensor is said to be of

index n if its momentum operator is

v (8>65)

This applies to covariant, contravariant, initial or final wave tensors,

d/dXp being changed to
S/Sa?^

when the tensor is written initially.

We have seen that
<f> may be the complex conjugate of$. Dirac goes further

and defines
</>
as the complex conjugate of 0. In the present theory there is

no reason to impose this restriction, which is presumably a survival of the

Hermitic conditions employed in Schrodinger's elementary theory. These

are superseded by the reality conditions found in Chapter vi. For algebraic

wave functions (8-285), ^r and ^ can be chosen independently from the

infinitude of solutions of the elementary wave equation, and there is in

general a similar independence of non-algebraic wave functions.

Let us, however, consider for a moment the current theory which takes

^ to be the complex conjugate of 0. The. full specification of the system is

then contained in a single wave function 0; for we do not add anything to

the specification by inventing a special symbol for the complex conjugate.

The system might equally well be specified by <f>;
then is merely a symbol

for the complex conjugate of
</>.

But and
<f> represent waves travelling in

opposite directions in four dimensions. It may be asked, Which are the

real waves, or are there waves in both directions ? The answer is that there

are no real waves. I suppose that no one nowadays attributes objective

existence to the waves described in wave mechanics.

f Quantum Mechanics, 2nd ed., p. 255, equations (9) and (10).
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Since then the system is specified by a single wave vector 0, the most

natural wave tensor of the second rank furnished by it would seem to be

00* (or, with suffixes, 000), i.e. the outer square of 0. If

where p^ is algebraic,f we have

(-iO/a^+^W^W*. (8-66)

Thus 00* is ofindex 2. By introducing the complex conjugate an alternative

wave tensor 00* ofindex is obtained. Attention seems to have been devoted

exclusively to the latter. It is of considerable importance; but we must not

let it unduly divert attention from the primary wave tensor 00*.

As already stated, we do not accept the limitation in Dirac's theory which

reduces the specification of a particle to a single wave-vector function. The

space vectors and strain vectors which comprise the ordinary vectors of

physics are wave tensors of the second rank. We resolve these into pure

constituents, which are factorisable into wave vectors. In general there is

no reason to expect or require that the two factors shall be equal. I have, of

course, no objection to the employment in quantum physics ofwave tensors

which are perfect squares, ifthese are appropriate to the problems which are

studied as is sometimes the case. But to regard it as more than a casual

adaptation creates an artificial gulf between quantum theory and relativity

theory, since there is no such limitation in the latter.

Thus a pure strain vector of index 2 will normally be the product of

unequal factors /S2
=

1 2*. Exchanging one of these for its complex con-

jugate, we obtain an associated strain vector of index 0, /S = 1 2*. The

latter is the strain vector we have been studying, but we shall now turn

attention to S2 . S2 has the advantage that there is no need to factorise it.

The momentum is given by the operator (8-65), used as in (8-66). Factorisa-

tion is only needed for wave tensors ofindex 0. For them the operator (8-65)

is indeterminate, and it is necessary to find a factor which is not of index

so as to obtain the momentum.

At present we treat only wave vectors of index 1. We may note, how-

ever, that there is a possibility of extending the theory to wave vectors of

any index n, integral or fractional, p^ being always given by (8-65).

8*7. Application to Phase Space.

In Chaptervn we have described a system by a strain vector which specifies

simultaneously the configuration, the probability of the configuration, and

the time. This cannot be the strain vector /S = 00*, which was introduced

for the purpose ofspecifying the probability only, and is in fact independent

t Or, more generally, if p^ is an ^-number containing only space-like matrices and there-

fore commuting with 0.
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of the time. The strain vector which generates phase space is the associated

strain vector of index 2, viz. /Sg-^^j*.
Consider a free particle in field-free space, so that the ordinary wave

functions are = eiww^ > *-*-*"*), (8-711)

where ma=p1x1 +p*x*+Pz^pQ t.

Their product is the strain vector /S . Alternatively we specify the particle

by wave functions <Ai> ^2> both of index 1,

0i=eiw*(Wo> fc-d'-foJo. (
8'712

)

Their product is the strain vector

S2
= e2*m*OSa) . (8

.72)

For a displacement <fc, the only change produced in &2 is a change ofalgebraic

phase dOl9= 2mds. If displacement in time (proper time) is expressed in the

same linear measure in phase space as in ordinary space, so that d016= dsjR,
we have 2rads = d$/-R, so that m=H2R (8-73)

where R is the radius of the phase space.

At first sight it is anomalous that the general displacement (dxl ,
dx2 ,

d#3 ,

dx) should be interpreted as change of time only, and not change of con-

figuration. But the plane wave solutions (8-712) presuppose flat space-time.

If they are used in curved physical space-time, they must be restricted to

regions not too large to be treated as flat. This means that the region of

phase space which they cover is not too large for the distinction between the

different configurations to be neglected. The apparent discrepancy is thus

due to the nature of the approximation assumed in plane wave solutions;

although they formally distinguish configurations by coordinates, they

suppose that the distinctions when expressed by matrices are so inconsider-

able that they can be neglected.

We have suggested ( 5-4) that wave vectors are introduced mainly to

secure purity of the wave tensors, and that many if not all of the problems
of quantum theory could be solved by using the wave tensors directly.

Current theory gives a rather fictitious importance to the vector factors,

because it recognises only wave tensors ofindex 0. These do not contain the

factor eim*i and, since the energy m is one of the most important character*

istics of a system, it is necessary to examine the factors in order to find it.

This is avoided by the use of wave tensors of index 2, which contain the

factor e*im*. There is then no need to have recourse to the wave vectors, at

any rate so far as the calculation ofm is concerned.

The position may be summarised as follows. Certain properties ofa system
are naturally described by constant symbols, e.g. a steady distribution of

probability or probability flux. When these are factorised, they are resolved
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into components 0, </>
whose time factors cancel one another. But, since the

time factors cannot be supposed to exist solely for the purpose of cancelling
one another, this is a tacit admission that the constant symbols do not

comprise the whole data of the system, and that in a complete description

time factors must appear. Chapter vii gives this more compendious descrip-

tion in terms of strain vectors variable with the time; they are factorised

into components whose time factors reinforce one another.

The general dynamical theory of a system described by strain vectors of

index 2 is analogous to that developed for space vectors in 8*4, 8*5. For

a transformation q= eiw*9 we have

S' = ^'<*' = eiwd* .^eiWda= eiwd8SeiWd8, (8-74)

where W<f>
=

<t>*W. (8-75)

The determination of W from W presents no difficulty, remembering that

(djdx)<fr
=

<l>* (8/8x). From (8-74) we obtain the general dynamical equation
for strain vectors

(8-76)

The transformation introduces a strain common to all the strain vectors of

the system. It may be regarded as defining parallel strain in the same way
that the transformation of the space vectors in 8-4 defines parallel dis-

placement. The dynamical coordinate s measures a progressive parallel

strain of the system. In elementary examples parallel strain is merely the

internal aspect of what is externally regarded as parallel displacement of

part of a system.

8- 8 . The Electromagnetic Potentials .

There exists an important transformation which leaves invariant the

momentum vector p^
= i

djdx^+ K^ . Let

0'
= e^iAe0= A0, (8-81)

where 16 is an algebraic function of the coordinates x^ . Then if

we havef

Hence

Accordingly the transformation 0->0', K^-**/, defined by (8-81) and

(8-82), leaves p^ unaltered. The electromagnetic field of force is also un-

altered, because the addition of an arbitrary gradient to the potentials has

no effect on the force.

t It is understood that p^ here denotes the value (number or matrix) of the component
of the momentum vector, not the operational expression -td/&*?M+KM . Thus p^ commutes
with A.
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The corresponding transformation of other wave tensors depends on the

index n of the momentum operator ( i/n) 3/3a?M+ K^ . The general law is

f =AV, (8-83)

where n is the index of ^ ( 8-6). Since the transformation is algebraic this

applies to wave tensors of any rank (/S'=A
n

), the index of the tensor

being the sum of the indices of its factors. In particular a wave tensor of

index is invariant.

The foregoing transformation will be called a gauge transformation,
because it is the adaptation to wave mechanics of Weyl's gauge trans-

formation in relativity theory. We may regard the electromagnetic potential

Kp as having been created by a non-integrable gauge transformation of

neutral space-time. If in (8-82) we determine 16 so that SO^dx^
= 2^ , we

have Kp
= 0; that is to say, the gauge transformation removes the electro-

magnetic field which may therefore be created by the inverse transforma-

tion. But the equations dO^dx^
= 2^ , determining the transformation, are

non-integrable unless curl AC = 0.

To justify the name "gauge transformation" we proceed as follows. If

16 is imaginary, A is real, and the strain vector $2 which generates phase

space is multiplied by a real algebraic factor A2 . By 7-7 this represents a

change oftheprobability ofarange ofconfigurations atthepointconsidered, f
But the probability is also given by ^*^dF, where ^r, ^* are the ordinary
wave functions of indices 1 and - 1. J Usually changes of probability are

expressed by changes ofthe modifying factor <[>*fa but in this transformation

^*^r is invariant, since it is ofindex 0. The transformation therefore changes
the measure of volume to dF' = A2dF. That is what is meant by a gauge
transformation a change of measure of volume (implying a change of the

standard of
length]_without alteration of the coordinates. In terms of

coordinates dV=*V gjk, dV'^V^-g' .dr, so that the transformation can
also be expressed as V g'

= A2V^- g.

In Weyl's theory it was taken for granted that changes ofelectromagnetic

potential correspond to real changes of gauge. Wave mechanics introduces

an important amendment. By (8-82) real changes of the electromagnetic

potential (fclf *2 , *3 ,
ic

) correspond to real values of 18 , and hence to

imaginary changes of gauge. The need for this amendment became obvious
as soon as it was discovered in quantum theory that the significant com-
bination is - i3/3^ H- Kp , not 3/Sa^ 4-^ .

This amendment removes the only difficulties noticed in the unified

t Note that this interpretation only holds if A is real. If A is complex (0W real) the change
affects the time coordinate and has no effect on the probability.

J For simplicity we suppose that the transformation redistributes the probability
without altering the total amount, so that it is not necessary to re-normalise after the
transformation.
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gravitational-electromagnetic theory.| Inthe attempts to find a geometrical
invariant representing the Action (loc. cit., pp. 230-3, 257), the difficulty has

been that in the elementary invariants the total action and the electro-

magnetic actionF^Fw occur in the combination G+ F^v Ft*
v

. In particular,

the generalised volume V(- I *^wl)> which has since been brought into

prominence by its use in the Born-Infield theory, reduces to this combina-

tion (loc. cit., p. 233). But there seems to be no sense in adding an electro-

magnetic action to a total action which already includes it. It is the differ-

ence G-FpyFP", representing material or non-Maxwellian action, which

should be represented by the elementary invariants. Devices for changing
the sign, e.g. by alternating the suffixes in the invariant *Gr

/4r

*
(?"'*, were

proposed, but were not very convincing. But the sign is rectified now that

we realise that, owing to the identification of the electromagnetic potential

with real instead of imaginary changes of gauge, IK^
has been substituted

for Kp
and iF^ for F^, throughout the field theory as originally given.

Consequently F^F^ should have been -F^F^.
With this amendment the field theory as set forth in Chapter vn of The

Mathematical Theory of Melativity is acceptable today. The investigations

in this book have a close connection with it at many points, and confirm it

by elucidating the manner in which it forms the macroscopic counterpart of

wave mechanics.

After introducing gauge systems transformable at will, Weyl pointed out

that there exists at every point of space-time a natural gauge furnished by
the radius of spherical curvature; and he later reached the conclusion that

our actual measures are made in terms of this gauge. This was extended

by the writer who showed that a natural gauge, not only at every point but

for measurement in every direction at that point, is provided by the con-

tracted curvature tensor, and that the law of gravitation is the expression

ofthe fact that it is to this gauge that our actual macroscopic measurements

refer.

By starting with no determinate gauge system, and thereby discovering

the natural gauge instead of merely postulating it, Weyl had made a funda-

mental advance. But, in a sense, his conclusion stultified his premises. The

principles of physical measurement are bound up with the natural gauge;
we cannot employ alternative gauges without giving to the words "length ",

"volume", etc. meanings which they do not bear in physics. Gauge trans-

formation had become one of those etymological transformations which

too frequently mar theoretical discussions proclaiming the obvious truth

that if you alter the meanings of words you may assert anything you like.

In particular, one of the most attractive features of his electromagnetic

theory had to be given up, viz. that the arbitrary gradient, which can be

t Mathematical Theory of Relativity, Chapter vn.
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added to the electromagnetic potential without altering anything observ-

able, represented the arbitrariness ofgauge. Thus Weyl's two results (1) the

discovery of variable gauge, which accounted for the existence of quantities
which might be identified with electromagnetic potentials, and (2) his

discovery ofnatural gauge, which leads ultimately to the explanation ofthe

law of gravitation, seemed to be contradictory; and it was necessary to

suppose that (2) superseded (1). But we can now accept them both, with the

modification that the variability referred to in (1) is an "imaginary gauge
transformation"; that is to say, it is not a change of the real part of log A

which furnishes the standard for the measurement of lengths and distances,

but of the imaginary part of log A, which (although called a gauge trans-

formation by analogy) does not affect the reckoning of length.
In our present development natural gauge is used from the beginning,

because displacement first arises as an angular quantity (angle of a trans-

formation) which is the ratio of the linear displacement to the radius of

curvature. Thus we do not encounter the preliminary ambiguity which

leaves the measure of the displacement indeterminate until the radius of

curvature is brought in as standard.f There is no provision in our theory for

real change of gauge for using any other standard. The reality conditions

for rotations restrict the transformation (8-81) to imaginary gauge trans-

formations, i.e. real changes of the phase angle 16 .

8-9 . Non-integrable Transformations .

In a general way we can trace the origin of the non-integrable gauge trans-

formation which creates an electromagnetic field. A non-integrable trans-

formation arises when we contemplate a field of transformation composed
oftransformations which do not commute. For example, the transformation

^'==e^aid*rM*2jfcjj^ is non-integrable. If we apply it to a square circuit

composed of successive displacements (dxlt 0), (0, dx2) 9 (dxl9 0), (0, dx2) 9

we obtain as far as the second order

0'
=

(1
-E2*2dx2

- frfdvf) (1
-

which reduces to $'= (1
- 2ElE^c^c^dx^dx^) $.

Thus the result of taking round the circuit is to transform it to

^Be-t^s****!**!^. (8-91)

This, however, does not immediately solve the problem of the creation ofan

electromagnetic field, which depends on a similarly non-integrable algebraic

transformation.

t We are able to start in this way because we treat a very simple uniform space-time,

whereas the field theory is concerned with the origin of the natural gauge system in irregular

macroscopic space-time.
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The field K^ is due to systems extraneous to the particle or system S to

which the wave vector belongs. As explained at the end of 2*9 the

external particles have their own symbolic frames F^ etc., which commute

with the ^-symbols of the system 8. The effect of recognising these external

particles will be to introduce into our calculus a large number of additional

symbols which commute with the E^ but not in general with one another;

so that a much wider variety of transformations q can be contemplated.

We have hitherto ignored the external particles and the transformations

representing relative displacement of them, because the elementary equa-

tions suppose S to be in a standard environment, namely neutral space-

time. But an electromagnetic field presupposes a non-uniform environment.

A change ofposition dx^ is not merely a transformation from one point to an

equivalent point of space-time (4-4); it involves also an intrinsically

different environment of 8. Thus the displacement dx^ will involve a

supplementary transformation, representing the change of environment,

which we may take to be of the form

0' = exp{F1 a1^1 +72 a2da:2 + r3a3^3 +74a4da:4}.0, (8-92)

where the Y^ are composed ofsymbols belonging to the extraneous systems,

and therefore commuting with the E^. We do not suppose that the Y^ are

anticommuting symbols of a complete set; they will usually be complicated

symbolic expressions. But provided that they imperfectly commute (as

normally happens with complicated symbolic expressions), the trans-

formation (8-92) will be non-integrable; and 0, after being taken round a

circuit, will not return to its original value but will undergo a Frotation of

some kind. But since the F-symbol of the rotation commutes with all the

Ep , it will be indistinguishable from an algebraic transformation; and it will

count as an algebraic transformation so far as the Enframe is concerned.

Thus the effect of irregularity of distribution of the surrounding protons
and electrons, which might be particularised with almost an infinitude of

detail by introducing their own symbolic frames, is reduced to a non-

integrable algebraic transformation of the vectors of the -E-frame. This

transformation represents the difference between the standard environment

of neutral space-time and the modified environment a difference which

is recognised as the macroscopic electromagnetic field due to the specialised

distribution of the external charges. As we have seen in 8-8, a field ofnon-

integrable algebraic transformation is equivalent to the insertion of electro-

magnetic potentials K^ in the momentum vector.

We have supposed that the supplementary transformation (8-92) contains

only the symbols belonging to the external systems. Would it not be more
natural to suppose that it contains combinations of these external symbols
with the symbols of S, e.g. E^l In that case the non-integrable trans-



8-9] The Differential Wave Equation 139

formation will not be algebraic in the .E-frame, and the field cannot be

represented by a potential vector with algebraic components K^ . I agree

that it would be more natural. But the question for us is, not what actually

happens, but what is supposed to happen in the ideal problems to which

Dirac's equation (8-262) is applied. Actually a charged particle polarises

the surrounding distribution of electric charges. When it is displaced the

potential due to surrounding charges is altered by their changed polarisation.

This effect (Debye-Hiickel effect) is of great practical importance. But it is

not included in Dirac's equation, which postulates that the field is due to a

rigid distribution of charge. If Dirac's equation is applied to an electron in

a field in which the Debye-Hiickel effect is large, it gives an incorrect value

of the energy.

Thus in treating the origin of the K^,
i.e. of the electromagnetic terms in

Dirac's equation or equivalently the electromagnetic terms in the momen-

tum and energy, we must adhere to the same idealised conditions. The

postulate is that the system 8 itself has no share, direct or indirect, in

determining K^.
We must therefore omit the terms, if any, which are not

invariant for rotations of the particle, substitution of particles of opposite

signf or opposite spin, etc. The terms admitted therefore correspond to a

purely algebraic transformation. There is no need for us to show that the

omitted terms are small in practical problems; very often they are not.

The term K^ in the wave equation (8-262) is essentially a microscopic

electromagnetic potential. In microscopic problems the field due to one or

more individual particles requires a more complex specification by means of

multiple matrices. The criterion is that, if the distribution of particles

producing the field can be treated as rigid, (8-262) suffices. The foregoing

discussion makes it clear that the field due to the particle itself is not to be

included in
K^. Neglect of this condition has led to the occurrence of an

infinite self-energy of the particle in certain theories.

The internal wave equation for the hydrogen atom, adopted in (9-221),

provider* an exception to the rule that K^
is a macroscopic potential. The

equation is of the form (8-262) notwithstanding that the electromagnetic

field is due to a single particle (the proton). This is because the problem is

transformed by the use of relative coordinates into the motion of a particle

in a rigid field. It must be emphasised that this is a quite exceptional use

of*, made possible by the simplicity of the problem, and that the micro-

scopic interactions of particles cannot usually be represented by a field of

this form.

t There is an apparent change of sign of the electromagnetic terms in the wave equation

when a proton is substituted for an electron; but what has really happened is that the

electromagnetic terms are unaltered, and all the other terms have changed sign.



CHAPTER IX

THE HYDROGEN ATOM

9*1. Steady States.

Before tackling a practical problem, it is appropriate to recapitulate and

systematise certain ideas which have appeared in a scattered way in previous

chapters.
In the practical application ofwave mechanics the central problem is the

search for systems which shall be dynamically steady. The phrase
' c

dynamic-

ally steady" requires amplification.

There is an almost inevitable ambiguity in the use ofthe words ' '

electron
' '

and "proton
"
in the new physics. We say that (a) an electron is no longer a

particle but a wave, and (6) that the waves specify the probability dis-

tribution ofan electron. Thus the term is applied both to the distribution and

to that which is distributed. For definiteness let us call that which occupies

any point of the distribution an electron-point. We consider then electron-

points distributed over a domain of geometrical coordinates x^ . A displace-

ment dXp is a displacement of the electron-point that is contemplated; no

dynamical conception is attached to the displacement; it is a transfer of our

attention from one electron-point to another. But we can contemplate also

a bodily displacement of the whole distribution; such bodily displacement
is described as a change ds^ of a dynamical coordinate

s^
. Here again the

displacement may be regarded primarily as a transfer of attention from

one electron-distribution to another, instead of from one electron-point to

another. But when, by habit, we introduce dynamical conceptions they are

attached to the displacements ds^, not to dx^. The dynamical electron

the moving entity is the probability distribution, and its mode of dis-

placement is wave propagation.
We need not confine attention exclusively to bodily translation or rotation

ofthe distribution. We can consider more general sequences of distributions.

The general method of specifying a sequence of distributions is by a trans-

formation q= eiw*\ then a displacement ds signifies the change ofdistribution

which is produced by applying the transformation eiwds to the vectors

describing the distribution. IfW is an J5-number, this is a relativity rotation

ofthe space vectors defining the distribution, and is therefore a displacement
without intrinsic change. The corresponding coordinate 8 will be called a

simple dynamical coordinate. By allowing W to include differential oper-

ators, we obtain a more general type ofdisplacement including deformation,
and define a correspondingly generalised dynamical coordinate. Each simple

dynamical coordinate is closely related to (and frequently confused with)
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a geometrical coordinate x^ or
0^,

viz. that defining the direction of the

bodily displacement or rotation of the distribution; but the generalised

dynamical coordinates have no geometrical counterparts. In practice,

however, they often have approximate counterparts; for a generalised

coordinate usually appears as a slight modification or adaptation ofa simple

coordinate. For example, a free electron possesses (simultaneously) four

simple dynamical coordinates representing bodily displacement of its

distribution in four antiperpendicular directions xl9 #23 , #45 ,
a?16 ; when the

electron is in the electromagnetic field of a nucleus, we have to find four

generalised dynamical coordinates to replace these.

Let us consider a system with four dynamical coordinates
s^.

In what

circumstances should we describe the fourfold sequence of distributions as

steady1 It would certainly be considered steady if the distributions were

all intrinsically similar. But that is unnecessarily stringent, since we cannot

make exhaustive observations of every detail of the distribution. The

minimum condition is that some recognisable characteristic of the distribu-

tion shall be steady, i.e. constant over the domain ofdynamical coordinates

8p
. Since the observable characteristics (physical vectors) are space vectors,

we require that a complete space vector J determined by the distribution

shall be constant over the domain
s^

. That is to say, J must be invariant

for the transformations q= eiw* 8
*.

We take J to be factorisable. It would be possible to obtain a steady state

by compounding two pure states neither of which is steady. But the com-

bination is not of practical importance unless there is security that the two

states remain superposed with the same relative probability factors when
external perturbations are admitted. The argument runs: the steady states

which we wish to discover are those which behave as units under external

perturbations. Unitary character, i.e. purity, is expressed symbolically by
a spectral operator. Therefore to bring our symbolism into line with the

physical conditions to which it is applied, we must represent the unit states

by spectral operators. The latter are idempotent symbols. We consider in

particular the idempotent space vector as the simplest element in the

symbolism that is thrust upon us. We regard the simple elements of the

symbolism and their physical counterparts, not as hypothetically "exist-

ing ", but as idealisations which owe their importance to the fact that any-

thing more complicated can be, and commonly will be, analysed into these

simple elements.

By 8-5 a sufficient condition that J shall be constant over the domain

s, ! ,
82 ,

s3 is that its factors ^r, x* shall be common eigensymbols of W, U^ ,

U2 , U$. It is easily seen that this condition is also necessary.

In practice we assume that W, Ul9 U2 , U3 commute. It is not true that

operators which have a common eigensymbol necessarily commute ( 3-7 (/))
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but if W, #i, U2 , J73 do not commute they will not be constant over the

domain of s, sl9 s29 s^ 9 their derivatives being given by (8-52). Transforma-

tions in which the operational forms are functions of the dynamical co-

ordinates, e.g. VP(*i,*i,*a), are not considered in wave mechanics at

present. They bear the same kind of relation to constant transformations

that general relativity transformations bear to those of special relativity

theory. The domain ofsuch transformationswillhaveacurvatureembodying
the non-commutability ofthe rotations in it. Whether it would be profitable

to pursue the study ofnon-commuting symbols with acommon eigensymbol,

I cannot say. But it may be worth noticing that existing methods of search

for steady systems, i.e. distributions with a recognisable characteristic

which is constant over a multi-dimensional domain, are not necessarily

exhaustive; and it is just possible that steady states, which may have some

physical importance, have escaped our analysis.

Limiting ourselves accordingly to constant transformations, the problem

of finding dynamically steady states resolves itself into the finding of four

commuting symbols, or whatever number of symbols may be appropriate to

the kind of system investigated. The symbols represent constant cha-

racteristics of the system; but they are generally portions of the constant

space vector J, and do not imply any constancy of the system additional

to that originally postulated. For example, when the operators are E-

symbols, W+U^U^U^E^+E^E^ +E^^J.
We mustnext try to understandwhy these

' '

steady states
' '

are important .

Only one of the four coordinates is conceived as time displacement. Our

dynamical picture of a system pursuing a trajectory in the domain of

s
9 SJL,

sa ,
53 does not suggest any reason why J should be required to be

constant in directions transverse to the trajectory. The importance of the

latter condition is that it introduces the maximum degeneracy into statis-

tical enumerations. In accepting J as the criterion of steadiness, we

implicitly decide to count all configurations which have the same J as one

configuration. Thus the probability occupying the whole of S-space counts

as the probability of one configuration. Our picture of a configuration
as an isolated point in /S-space pursuing a trajectory does not apply; it is

a whole continuum or wave front that "travels". Moreover, when (as in

quantised systems) the four-dimensional /S-space exists only for discrete

values of J 9 and intermediate values of J occupy loci of three or fewer

dimensions, the discrete values have infinitely greater probability than the

intermediate values.

An /S-space formed by generalised dynamical coordinates is not on quite
the same footing as an /S-space formed by simple dynamical coordinates.

The difference is that the generalised displacement is a transformation

peculiar to the system, and is not applicable to its idealised environment.
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Now a system without an environment is unthinkable; and it is no use

displacing it all over the S-space if it cannot take with it the environment

which its structure demands. That was the early mistake of relativity

theory, which applied transformations to the differential equations but

omitted to provide for their application to the boundary conditions. The

standard environment is uniform, i.e. spherical, neutral space-time. This is

conceived as permanent; so that the only transformations admitted are

those which transform it into itself, namely the kinematical ^/-rotations.

Hence, in general, ifwe apply generalised W transformations to a system, it

will no longer fit the boundary conditions where it merges into standard

space-time. Physically we should say that the new configuration requires

a pressure or an electromagnetic field to maintain it.

It might seem from this that the importance of generalised steady states

is fictitious. But we have to remember that the standard environment is a

simplification of the actual environment. The practical physicist is not

concerned with a hydrogen atom existing alone in uniform spherical space.

He deals with hydrogen atoms surrounded by other atoms or ions, or in

fields ofradiation. We admit that it would be useless to consider generalised

displacements of a system which could not be applied to its environment;

but this is discounted by the fact that we cannot say beforehand what the

exact environment will be, and what type of displacement it will admit.

We therefore investigate the most general steady states, since they may
become realisable if the environment is appropriate.

To conform to our observational knowledge there should be just one

steady state of a hydrogen atom in the standard environment, namely the

ground state. The other states can be realised if the environment is such as

is capable of "exciting" the atom in particular if it contains a field of

radiation.

We proceed to an investigation of the steady states of a hydrogen atom.

This belongs to quantum theory proper, and strictly speaking is outside our

territory. But it is necessary for liaison purposes to follow through in ourown

notation, and from our own point of view, one practical problem which

introduces the leading ideas of quantum theory. Unexpectedly the in-

vestigation has proved to be vitally important, because it reveals an in-

consistency ofa factor 2 (for which, I think, the quantum physicists must be

held responsible) which led to an error in the numerical results found in

earlier versions of the present theory.

9-2. The Commuting Operators for a Hydrogen Atom.

The conditions for a steady internal state ofa hydrogen atom were obtained

approximately by Schrodinger as a differential equation ofthe second order.

This is now superseded by Dirac's exact treatment. It is commonly said that
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Dirac replaced Schrodinger's second order equation by a first order equation

(W m)<Jj
= 0. I regard this as a misconception. The modern equivalent of

Schrodinger's equation is the set ofpartial differential equations 3W/ds^
= 0,

30i/8*M
= Of etc., which secure that certain characters remain steady for

fourfold displacement. Since W, Ul9 U2 , U$ contain differential operators,

these equations are of the second order. The introduction of ^-matrices has

not affected the fundamental conclusion that the condition that
ifi

shall

represent a steady state is expressed by differential equations of the second

order.

By the dynamical equations (8-52) the equation 3W
r
/3 1

= is equivalent
to 4W WUi= 0. In this way the original set of equations is reduced to

the condition

W, U19 U2 ,
C73 mutually commute. (9-21)

We may regard (9-21) as a first integral of the second order equations.

The way in which Dirac's wave equation enters into the problem is that it

fixes the analytical form of one of the symbols W in (9-21); and hence it is

the starting point for determining three other analytical forms which com-

mute with it and with one another.

We have shown in 9-1 that $ must be a common eigensymbol of W, Ul9
U2 , J73 ; so that, if ra is the eigenvalue of W, we have (TF-ra)^= 0. This

equation is provided by (8-261), which we found as a condition for the con-

servation ofprobability . We could not at that time show thatm was constant

in time; but this now follows from the dynamical equations, because W is

constant. We have still to show that m is the same for different states of the

system. It will be proved in Chapter xn that (for particles represented by

simple wave tensors) m has one of two absolutely determined values, corre-

sponding respectively to electrons and protons. Using this result in anti-

cipation, we shall take m to be a constant of nature.

The eigenvalue m of W is imposed from outside; there are no limitations

on the eigenvalues ofUl9 U2 ,
Z73 other than those which will be found in the

course of the investigation. This difference is due to the fact that s is singled

out as the connecting link with extraneous systems ( 8-5).

We now consider the wave equation (8-262) for an electron in an electro-

static field of positive potential proportional to 1/r, so that

^-(0,0,0, -t/r), f^-

Then writing (8-262) in the form (JF-w)^= 0, we have

We seek three other operators, linear in 9/3^, which commute with W and
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with one another. It is easily verified that the following satisfy this condition :

~ 1 ' (9>222)

<9>223)

^=a=-- (9>224)

We denote the eigenvalues ofU , Z72 , Uz , JF by /A, u, 9 m, and our problem is

to find the relations which must exist between them, in order that the com-

mon eigensymbol ^ may satisfy appropriate boundary conditions. More par-

ticularly we wish to determine c, which is the energy conjugate to , in terms

of w, /A, u. The method of solution here followed is mainly due to Temple.f
We have enunciated the problem in an abstract way, without mentioning

the hydrogen atom. But (9*221) is the hamiltonian of the hydrogen atom

adopted in Dirac's theory, and we shall provisionally assume that that is

the physical application. There is no obvious reason to expect that the wave

equation (8-262), in which the K^ are potentials of a macroscopic electric

field ( 8*9), will be adequate in the interior of an atom; so that for the time

being the term E^OL/T in (9-221) is only justified empirically. But in Chapter
xv we shall find that (9-221) is the exact hamiltonian for a system of two

elementary particles and we shall determine the theoretical value of the

constant a.

9*3. Solution of the Equations.

Let Er^(Elxl+ E^x^E,Ax^lr (9-311)

so that Er
2= 1, and Er anticommutes with E. By direct multiplication

r3
a^

~
Xl te

tj^&i-l. (9-312)
Hence by (9-221)

(9-313)

Multiplying this by the common eigensymbol ^, the operators W, Ui9

reduce to their eigenvalues m> p, *, so that

" ai (9
'

321)

t Proc. Roy. Soc. A, 127, 349 (1930).
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Or, writing ^= ^01,

= Q. (9-322)

T ^4- "El Jf Jjl _ _|_ fl

*
If /Wl /2 A ~Ifl mm U' B' Jk* /AOQ1\

XJ\Jv jF "- ""
p ^A ^ "i ** r t"j ^y sag p py < jLv

* * fwm "f^A QC l7 OJA)

so that the equation is da> / v Q\
-j- 1 jj I" i 1^ ss y, i y*oo^& )

c/y \ r /

By (9-331) -F2=/a
, (?a =8'

a
, FG+GF= -2*e, (9-333)

where /=(ma- a
)*, gr^-a8

)*. (9-334)

To solve (9-332) we make the algebraic substitution

r=x/2f, a>=e-*x $, (9-341)

and take and x as our new variables. The equation becomes

In an ordinary algebraic equation this transformation would have re-

moved the last term; but in the symbolic equation it leaves a singular

coefficient J (F/f 1) instead of a zero coefficient. Assume a solution in series

(9-351)
o

where the Cn may be non-algebraic. In order that the integral of the three-

dimensional density ^(f>*r
2dr may be finite for a region enclosing the

origin, 0r and </>*r must be finite or else tend to infinity less rapidly than r~*.

Hence co is finite or diverges less rapidly than r~*
f so that

p>-\. (9-352)

Further, in order that the same integral may converge when the region
extends to infinity, the series must terminate at some finite value of n, say
n = n'. (It can be proved that, unless the series terminates, it diverges
when #->oo.)

Substituting (9-351) in (9-342) and equating coefficients of xn+-\ we
obtain the recurrence relation

(*+p+ Q}0%--l(PU-l)Ort. (9-361)

Setting n= 0, (p + G) <7 = 0. So that 6f

is an eigensymbol of G, and p is an

eigenvalue of G. Hence, by (9-333), p= g. We shall find later that there is

no possible value of g between and , so that by (9-352) p =g.

Setting w=w' + l, we obtain %(F/f l)Cn, = 0; so that Cn. is an eigen-

symbol of F, the eigenvalue being/.

Multiply (9-361) by (F/f+ 1); since jP^/2
, we have

(F/f+l)(n+g+ G)Cn= 0. (9-362)

Hence, by (9-333),

0. (9-363)
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Now set n = n'. Since FCn'=fCn*, we obtain

rc' + gr-<X//=0. (9-371)

Or, by (9-334), c

a

This is Sommerfeld's formula for the energy . Here nr

is a positive integer
or zero. It remains to determine the possible values of p.

9-4. The Eigenvalues of U^ U2 .

Take spherical polar coordinates r, 0, <f>,
so that

</>
is the aziniuthal angle in

the plane #2 a?3 . Then U2
= i 3/3^4- \iE^\ and, since u is its eigenvalue,

(Ut-u)$= (-idfi<l> + \iEw-u)$= Q. (9-411)

Let x= e^'tt

+*^3>^. (9-412)

Then
fJ
= by (9-411).

Accordingly x & constant for change of ^; and since (assumed to be

single-valued) is unaltered when
(f>

is increased by 2?r, we have

Or, since e* ^= 1 = e*
w

,

^r
= e-^+*> 2w

^. (9-413)

Therefore w+ is a positive or negative integer. The eigenvalues of Z72 are>

therefore the half odd integers positive and negative.

To find the possible values of
JLI,
we write

a>i
= xJltot-xJlfai+ JjBMJ etc. (9-421)

Then it is easily verified that

<>i<>2 ctfa a>1
= co8 , etc. (9-422)

Hence
<o1 (co2+ to3)

=
(a>2 + ia>3)(a>1 --i), (9-431)

a>! (a>2
- ia>3)

=
(a>2

- ia>3) (^ + i), (9-432)

(a>2 + ia>3) (a>2 i<o3)
= w2

2+ a>3
2

icoi , (9-433)

(a>2
- ia>3) (a>2+ ia>3)

== a>2
2 + co3

2+ ia>L . (9-434)

By (9-222) and (9-223)

tJ?4 {71 ^i8 ai1+ lf81 ciit+ JBu cii,+ i 9 02= ^!. (9-441)

Since J?4 commutes with Ul9 we obtain by squaring the first expression,

using (9-422). Hence

(9-442)

10-2
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and, by (9-434),

(9-443)

Our solution ^ is an eigensymbol ofU19 U2 , but not ofE . We can, however,

obtain a common eigensymbol xo ofthe three commuting symbolsUl9 U29 E^ 9

with eigenvalues /*, M,
-

i, by the method of 3-7 (e) 9 namely #0
= (E^

-
i) ^,

since this gives (E^+ i) Xo
= - Hence by (9-442) and (9-443)

(9-451)

We introduce a series of symbols defined by the recurrence relation

Xr=K+ *w8 ) fr-i ' X-r* (Wa ~~ ia)*) x-f+* '

r being positive. Multiplying (9-452) initially by (w2+ iw3), it becomes

(co2 4.fco3)(coa -ia>3) Xl = {~(,,--l)
2+ (i+^} Xl . (9-471)

Also

ico! xi= io*! (o>2 + io>3) xo= i (o>2 + iw3) (c^!
-

i) Xo

by (9-431). Since U2 =ia)l9 this gives

^2Xi =K+ ^3)(^+l)Xo = (^+l)Xi. (9-472)

Adding (9-471) and (9-472) and using (9-433)

2
} Xx- (9-473)

By (9-472) the substitution of xi for XQ changes the eigenvalue ofU2 from

u to ul
=u+ 1; and, comparing (9-473) with (9-451), we see that the eigen-

value of (w2
2 + ci>3

2
) retains the same form with u changed to % .

Proceeding step by step, we find that for xr > the eigenvalues of U2 and

Since U2 =ia)l9 the eigenvalues of w^ are negative. Similarly the eigen-

values ofw2
2 and o>3

2 are all negative. If this implies that the eigenvalues of

co2
2+ o>3

2 are all negative,! there is (for given /x) an upper limit to the value

ofur
2 in (9-474). Hence the series ofsymbols XT must terminate with symbols

Xfc> X-fc' sothat

Xk+i
= (^2+ ^3) Xk= 0, X-*'-i= (o>2

- ico3 ) x-tf
= 0. (9-481)

Adapting (9-452) to Xk> ^e condition gives

We find similarly 0=-(fi-l)
2+(-i +u^)2

9
so that

(/i-l)
2= (^+ fc + J)

2= (^~&'-i)
2

. (9-482)

Hence, for a fixed value of /*, the possible values of u range between

| ^_ 1
1

- and _
| JX- 1

1
+ , the former limit corresponding to &= and

the latter to *' = 0.

t The legitimacy of this inference is examined later.
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For our purpose the pertinent result is that by (9-482), /A is a positive or

negative integer; for we have already seen that u + $ is a positive or negative

integer. We are therefore able to calculate the energies e of all possible

steady states by giving n* and ft integral values in (9-732). Zero value of^ is

excluded because it would make the term VO*2-
<*
2
) imaginary; zero value

of n' is not excluded.

The assumption made above that o)2
2
4- o>3

2 has only negative eigenvalues

requires consideration. I do not think there is a general law for non-com-

muting symbols that if the eigenvalues of X and Y are all negative the

eigenvalues ofX + Y are all negative. But here we contemplate a restricted

type ofeigensymbol i/t.
In one form or another conditions must be introduced

which make the expectation value with respect to
iff
intermediate between

the greatest and least eigenvalues. As this part of the theory of eigen-

functions in wave mechanics does not concern us very closely, we shall not

enter upon it. Accepting such conditions, the expectation values of c^
2 and

o>2
2 will always be negative, and therefore the expectation value ofw^ -f o>2

2

will always be negative. The eigenvalues, being particular cases of expecta-
tion values, will therefore be negative.

9- 5 . Metastable States .

According to the theory which will be developed in Chapter xv, our adopted
wave equation for the hydrogen atom is exact] that is to say, the interaction

of the proton and electron is precisely expressed by a potential *4 = icK.fr.

There is no failure of the formula however small r may be. We have found

exact solutions of the exact equations; and they agree with the well-known

series ofquantum states ofthe hydrogen atom. But we seem to have proved
too much ! Observationally these states are only imperfectly steady; even

if the atom is undisturbed, they do not endure indefinitely. Thus a state

which satisfies the exact theoretical conditions for a steady state is found

observationally to be imperfectly steady.

The explanation is that in practical applications we have to take into

consideration the environment as well as the atom itself (p. 143). We have

found the exact solutions of the differential equations; but whether a par-

ticular solution has an exact counterpart in nature depends on whether the

boundary conditions which it demands are forthcoming. The boundary
conditions of a "state

"
are difficult to visualise. Our general outlook is that

whatever exists outside| the state is to be treated as a possible source of

perturbations; an environment is therefore regarded as conformable to the

boundary conditions of the state if it causes no perturbation of the state.

Light is thrown on this subject by distinguishing between the algebraic

and the non-algebraic wave functions of a hydrogen atom. The algebraic

t In the sense of not belonging to the state, not necessarily exterior to it in space.
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solutions of (9*332) are easily found. If CD is an algebraic wave function, the

term d/dr in

reduces to an algebraic function of r, so that o> must be an eigensymbol of

F+ O/r for all values of r . Therefore co is an eigensymbol of F and G. Then

by 3-7 (/), FQ- OF is singular (or zero). By (9-331)

$(FG-GF) = iEr n-ErEtmp+ iEim<x,, (9-51)

so that J (FG- GF)2= c2/*
2-mV+w2a2, (9-52)

since Er ,
JS?4 ,

J5?rJE4 anticommute. The right-hand side must vanish, because

FG GF can have no reciprocal. We have therefore

2
/(w

2- 2
)
= O*

2- oc
2
)/a

2
. (9-53)

Comparing with (9-372), we see that the algebraic wave functions correspond

to n' = 0. In this case the series (9-361) reduces to its first term, and the wave

function is
(9

.

54)

It is well known that the states given by n' = are the metastable states.

Accordingly the distinction between the metastable and the unstable states

is that the former have algebraic wave functions and the latter non-algebraic

wave functions.

It appears therefore that, in order to satisfy the boundary conditions

furnished by the standard environment uniform neutral space-time the

wave function must be algebraic. Non-algebraic wave functions do not

precisely satisfy the boundary conditions; but the discrepancy can be

treated as a perturbation. The spontaneous transitions from these states

to lower states are attributable to the perturbations which represent this

discrepancy. Even the algebraic wave functions are not quite perfectly

conformable to the boundary conditions, the only really permanent state

being the ground state.

9*6. Single-valuedness of the Internal Wave Function.

We must now refer to the assumption italicised in the second paragraph of

9-4. In determining the possible eigenvalues ofU2 and Ul9 $is assumed to

be a single-valued function of rectangular coordinates. But the assumption
is untrue. Dirac's Lorentz invariant wave vector $ is necessarily a double-

valued function of rectangular coordinates ( 4-7). Little attention seems to

have been paid to this inconsistency; but it reveals a flaw in the foundations

of the current theory of the hydrogen atom.

We have to consider two alternatives:

(1) The investigation in 9-4 must be amended so as to apply to double-

valued instead of single-valued wave functions.

(2) The eigensymbol is a single-valued function, and the investigation
in 9-4 is correct ; but in this case cannot be a wave vector,and (W- m) $=
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cannot be Dirac's original Lorentz-invariant equation. Its origin therefore

remains to be investigated.

Our theory will be found to lead to the second alternative; but we may
briefly consider the first. The result of taking $ to be double-valued is that,
when the angle <f>

is increased by 27r, may become either + or -
$. We

can then deduce that the eigenvalues ofu are the integers and half-integers.
No further change is made until we reach (9-482), which shows that the

eigenvalues of p will also be the integers and half integers. We obtain

therefore twice as many eigenvalues of p and of u as in the previous dis-

cussion. The additional eigenstates do not correspond to observed states of

the atom.

Double-valuedness of the eigenfunction has been discussed by Temple.f
It is pointed out that there would be a distinction between the integral and
the half-integral eigenvalues, the latter being in a sense ineffective because

a displacement has no matrix components corresponding to them. It is

doubtful whether this ought to be regarded as an excuse for, or an objection

to, a theory which employs the double-valued $. But the crux of the matter
is the exclusion principle. The observational result is that when we consider

a nucleus with a number of electrons, the electrons occupy the states given

by integral values of /x and u+ ,
and ignore the "ineffective" half-integral

values. It would therefore be necessary to abandon the accepted form of the

exclusion principle, and substitute a new principle according to which only
a quarter ofthe cells, into which phase space is divided bythe eigenfunctions,
are allowed to be occupied. This would be a very drastic alteration ofexisting
quantum theory.

Following the second alternative, the only change required is to recognise
that the eigenfunction of an internal state of the hydrogen atom (dis-

tinguished as ^H ) returns to its original value when the space axes are rotated

through 27r, and therefore rotates twice as fast as the wave vector ^ (dis-

tinguished as
ifiD) in Dirac's Lorentz-invariant wave equation. Thus fl

transforms like a space vector or strain vector. We have seen that the in-

ternal configurations of a system are specified by strain vectors, and we
therefore take

ifiH to be a strain vector. It must be of index 2, since a strain

vector ofindex (representing a combination ofwaves travelling in opposite

directions) would not have the unidirectional properties of H .

Current theory has assumed that the momentum in practical units is

t An Introduction to Quantum Theory, pp. 106, 131. His discussion (which is based on a
treatment by Born and Jordan) refers to the Schrodinger scalar wave function. It is pointed
out that (even in that case) ^ may not be a single-valued wave function, and that the usual
inference as to the integralvalues of the angular quantum numbers is "decidedlyprecarious".
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It is on this basis that the observational value of h is determined, and we
must accept it as a definition of h. The momentum operator for a tensor of

index 2 being iA/27r, the standard momentum operator for a wave vector

of index 1 will be ih/Tr by (8-65). We have therefore

The common assumption, that the momentum operator which applies to

the wave function of a hydrogen atom applies also to the relativistic wave

functions introduced in Dirac's Lorentz-invariant equation, is thus found

to be untenable. The error of a factor 2 has escaped notice, because the

Dirac wave functions are highly abstract (being referred to an unobservable

geometrical frame) and are not directly concerned in comparisons of theory
and observation; it is in connection with internal wave functions, which

(aswe have seen) are not Lorentz invariant (
7- 1), that quantising conditions

arise. But it is important that the factor should be set right in fundamental

investigations of the connection between relativity theory and quantum

theory. We have therefore to note that the theoretical unit of mass used in

our fundamental investigations is such that A = TT, not 27r, and that the

momentum operator for wave-vector functions is (in practical units)

*
*

(9
'

63)

It is in accordance with the theory of phase space in Chapter vii that the

configurations or states of the hydrogen atom should be discriminated by
strain vectors of index 2 rather than by wave vectors. The theory of the

energy levels of hydrogen thus falls into line with the general theory of the

representation of internal configurations of systems. Looking at the matter

froma physicalpointofview, thedouble-valuednessof \fiDreflectsthe abstract

character of the analysis which introduces it. We can only observe relations

between two systems or parts of a system, so that the minimum we can

contemplate observationally is a double function
*f>D .$D'. Rotation of the

axes through 2ir no longer introduces an ambiguity of sign; each factor

becomes multiplied by e, and the product by e27ri . When we consider

relative motion, i.e. refer each particle to the other as origin, ^, ^/
become equal; tyD gives the distribution ofthe electron relative to the proton,

and 02/ the distribution of the proton relative to the electron. In this case

^H ^D-^D-t If we prefer to represent the state by a wave vector
if/D9 we

must remember that ^= V^rH , and not ignore the ambiguity of sign

| In this way wave tensors of index 2 which are perfect squares acquire a special

prominence in practical problems. The wave tensors of index which correspond to them
are Hermitic ( 8-6). This seems to be the origin of the Hermitic conditions, which have

been applied too indiscriminately in current quantum theory.
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which is an essential characteristic of
\fi'D . Taking the square root is, however,

a gratuitous complication; and the actual investigation of the hydrogen
atom is based on H .

As a working rule, we note that normally the coefficient ofthe momentum
operator will be ih/ir for absolute coordinates of a particle referred to a

geometrical origin,and iA/2?r for its relative coordinates referred to another

particle as origin. But it is impossible to lay down a universal rule, since the

momentum operator depends on the index of the wave function adopted

(8-65).

Accordingly in practical units the special form for the hydrogen atom of

the wave equation (8-262) of the double-valued wave function will be

E *\- l*E^-fiiUj-0, (9-64)
dxj cr

*
J

^D ^ '

since in practical units ^=
(0, 0, 0, fe2/cr). When, as in (9-221), the

operand ^^H= ^fD^D9 the coefficient A/TT must be replaced by h/2rr to give
the same condition. It follows that the constant a in (9-221) is

l/a= Ac/27re
2

. (9-65)

Attention may be called to a further point on which we are unable to

accept the current view. In (9-224), following the usual notation, we have

denoted the coordinate conjugate to UB by t. We must now point out that t

has nothing to do with time. Our equations refer to the internal states of the

atom, and we have seen (7-1) that the only time-variable in an internal

state is the dynamical or proper time s which is conjugate to W. Ifthe atom

is moving in an external frame the coordinate time in that frame is obviously

not the t referred to in the equations. The dynamical coordinate conjugate to

U3 is of an altogether different nature, and will be identified in Chapter xv

with the linearised permutation coordinate of the proton and electron.



CHAPTER X

DOUBLE WAVE VECTORS

10* 1 . Multiplication of Probabilities.

Probabilities are combined by multiplication. We have seen ( 7-7) that the

configuration of a system and the probability ofthat configuration are speci-

fied by a single symbol a strain vector. The multiplication of probabilities
therefore involves a multiplication of the strain vectors; and the treatment

of a combined system is based on the multiplication of the vectors descrip-

tive of its separate parts.

Ifthe combined probability oftwo events is precisely the product of their

separate probabilities, the two events are said to be independent. Similarly,

we define independent systems to be such that the combined vector speci-

fying probability and configuration is the product of the separate vectors.

If in combining the systems the product is modified, the modification con-

stitutes an interaction. For the present we consider combination without

interaction.

It is, of course, entirely opposed to our habit ofthought to regard a system
as the product of its parts rather than as the sum of its parts. Therefore we
have a long way to travel before we can connect the combination of systems

by multiplication with our ordinary outlook.

Admitting that multiplication is the primary operation in the theory, the

prevalence of exponentials in the formulae which we have developed in-

dicates the way in which the subsidiary operation of addition arises. We see

that in general the additive quantities ofphysics must occur in exponentials.
An elementary example is afforded by action, which is well known to be

additive; in wave mechanics it is represented as the phase angle of an

imaginary exponential. Other cases are not so simple. We speak of the

density p in a unit volume, due to the probability distribution of a particle,

without specifying whether it is a low probability of a high mass or a high

probability ofa low mass; this agrees with the principle that the probability

p and the characteristic m of the system are not to be detached from one

another. If we consider a second particle, the combination of probabilities

pp' involves taking the product pmp'm' =pp'. But the combined system is

ordinarily considered to be characterised by a density p+p'* This is a point
to be investigated in due course.!

In so far as an addition a+ j3 arises from a multiplication e" . eP> addition

must be looked upon as a possibly non-commutative operation. We have to

f The methods by which wave mechanics is adapted to treat additive properties instead
of multiplicative properties are explained in Chapter xvr.
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treat
"
ordered sums

"
of matrices as we treat ordered products. An integral

may also require to be ordered. I do not propose to use the algebra of non-

commutative addition, which is even less familiarthan the non-commutative

multiplication which we have employed; I mention it in order to show the

type of mathematical complication in which we should be involved if we

attempted to follow the common outlook more closely.

Our first task is to study the double wave tensors which are formed when

we multiply the simple wave tensors specifying the probabilities and con-

figurations of two independent systems.

10*2. Double Frames .

By multiplying two wave vectors a ,
<f>p belonging to two independent

systems we obtain a 16-valued quantity *F
aj8

which we call a double wave

vector. Formally it resembles a wave tensor of the second rank (mixed or

covariant) obtained by multiplying wave vectors ^, Xp belonging to the

same system; but it has a wider field of transformation. In a wave tensor a

transformation of x *s locked to the transformation of ^r; but in a double

wave vector there is no such restriction. If T is a covariant wave tensor and

*F a double wave vector, their most general transformations are

the former involving 16 coefficients gaj3
, and the latter 256 coefficients

For example, let the objects described by the wave vectors 0, ^ be the

earth and moon. We may use different axes of reference for the momenta,

spins, etc., of the earth and moon. If we change the axes, there is no need to

apply the same transformation to those used for the earth and those used

for the moon. It is true that we do not usually avail ourselves of this liberty,

and a transformation of axes would ordinarily apply to both bodies; but

that is because we contemplate an earth-moon system, which is not

merely a mental association of the earth and moon, but comprises physical

relations between the two bodies not to be found in either body separately.

More usually we are interested in the other aspect of a relativity trans-

formation, in which it is regarded as a displacement without intrinsic change

ofa physical system, the frame being kept fixed. In the case ofthe earth and

moon, this implies the introduction of two sets of vectors ^a , fy capable of

being rotated independently.

To provide for independent transformations of^ and ^ we must introduce

two symbolic frames. We have therefore two complete orthogonal sets

Ep, Fp. Inthematrixrepresentationofthe symbols we take (forconvenience)

Ep and F^ to correspond to the same matrix; but in chain multiplication

EH is connected with the first suffix ofa preceding or following double vector,
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and Fp with the second. Ifmore than one EorF symbol appears in a product,
the jE's are in chain with the JE

9

s and the F'a with the F's. The order of

writing E'B and F'B is of no importance; that is to say, every E^ commutes

with every F^ . As usual E^= i, -F16
= i.

Unless the contrary is stated we shall suppose that E^ and F^ are right-

handed sets. It may sometimes be more appropriate to use a right-handed
and a left-handed set; in this case the matrices Ep and F^ cannot be identical,

JF16 and one ofthe pentads being reversed in sign as compared with the corre-

sponding JS?-inatrices. The corresponding modification of the various

formulae is easily found.

Since (for right-handed sets) the letters E, F merely indicate the chain

connection, there is no need to distinguish them when row-and-column

suffixes are inserted. The EF notation is a device for extending the matrix

notation, which omits suffixes, to expressions of the fourth rank such as

The 256 double symbols EpFv (^, v= 1, 2, ... 16) constitute a complete set;

that is to say, if a linear function of these symbols with algebraic coefficients

is called an 2?.F-number, the operations of addition, subtraction and multi-

plication applied to JfjP-numbers always yield ^J^-numbers. In matrix

representation every EJ'-number is a fourfold matrix of the fourth rank,

and conversely. A matrix of the fourth rank T^ps is resolved into com-

ponents according to the formula

(10-221)

or, without suffixes, T= S t E Fv . (10-222)
/*"

The definition of pure wave tensors is extended to double wave tensors.

A pure double tensor J is the product of two double wave vectors T, X*,
and we have

j.TO-E^Vr . (10-223)

A convention as to the order of suffixes in T or J is necessary. It is defined

by (10-221). We write the product of the double vectors xF
ajff

,
X

yg*
as /

ay,0s
.

The comma separates "first" suffixes (in chain with E^) from "second"

suffixes in chain with F^ .

To determine j^v9 multiply both sides of (10-223) by EaFr and take the

spur. The spur is formed by identifying the last suffix of each chain with the

first suffix; thus the two chains contract separately. In particular we have

spur (EpFJ^spm J^xspur Fv . Hence, by (3-32),

spur EuFv
= if a or v^ 16)M

. \ (10-231)= ~16if/Lt= v=16. J
v '

Hence spurp^J^F^FJ = spur (j^E^F^)- !#. (10-232)
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By (10-223) this can be written

Thus the formula corresponding to (3*37) is

j^&X'E.F^. (10-24)

Let the symbols E^FV in some conventional order be denoted by Ka
(or
=

1, 2, ... 266). Then Ka
2= E^F*= 1, andK ,

Kr either commute or anti-

commute according to a fixed scheme. There are also multiplicative relations

ofthe formKaKr
= K^ or iK^ . These properties constitute the structure ofthe

symbolic frame K^ ,
and any other set of symbols with the same structure is

an equivalent frame. Equivalent frames are obtained by the transformation

where q is any non-singular X-number. For, as shown in 2-7, this trans-

formation does not change multiplicative relations.

The theory of double frames K^, double wave tensors jF
ay 0$,

double

strain vectors 5
ax,0g, etc., follows on similar lines to those of simple frames,

tensors and vectors. Since q now contains 256 components, we have 256

independent relativity rotations, i.e. transformations without intrinsic

change. The double space vectors are outer products of two complete space

vectors, or sums ofsuch products. We may call them complete space tensors

of the second rank; but besides containing the ordinary components of a

symmetrical tensor of the second rank, they include components of tensors

of the third or fourth rank with some degree of antisymmetry (just as a

complete space vector includes an antisymmetrical tensor of the second

rank).

We notice that the new matrices K^ given by (10-25) are not in general

simple products of JF-matrices and .F-matrices. For example, if q= **!* 9
9

This is evidently necessary because the K transformation has 256 coeffi-

cients, whereas separate transformations of E^ and F^ are defined by 32

coefficients.

Considering a system described by a double wave tensor T, the trans-

formation Tf = qTq~l
, where q is a A-number, will represent displacement

without intrinsic change. For, as in 2-9, the new system could have been

obtained by carrying out the same construction in a different but equiva-
lent frame K'qKq-*. This extension of the relativity principle is rather



158 Wave-tensor Calculus [10-2

difficult to grasp, because at first sight it seems to conflict with our ex-

perience. If we rotate the moon without rotating the earth, we create an

observable difference in the angle between their axes, which must surely be

counted as an intrinsic change of the double system. The earth and moon is

scarcely a fair illustration; but it is tempting to think that there would be

an analogous intrinsic change in a system of two elementary particles

(protons or electrons), since these possess planes of spin. Now it is clear

that, if there is anything in the double system which is intrinsically changed

by the transformation, it is unrepresented in the symbolic tensor T.f It

signifies therefore that the conceptual process of combining systems is

something other than a pure multiplication; in other words it introduces an

interaction. We have alreadyhad a hint as to the nature ofthis modification,

namely that in a combined system we contemplate only "simultaneous"

configurations of the particles. In this chapter we shall not consider inter-

action. Our point of view may be expressed by saying that we shall treat

double systems as a preliminary to introducing the cementing interaction

which will make them into combined systems.

It has to be remembered that particles described by simple stream vectors

have an even probability distribution throughout spherical space. Relations

between them are therefore not very comparable with the relations between

localised objects such as the earth and moon. It is one of the features of

interaction that it renders possible a more localised probability distribution,

as is illustrated in the theory of the states of a hydrogen atom.

10*3. The Interchange Operator.
Since the complete sets E^, F^ commute, they come under Case (6) of 2-7.

They are therefore connected by a transformation

, P2 =l, (10-31)

16

and P= JSjE7M^. (10-32)
i

Since P2 =l, PE^P^PE^P.PF^^F^. (10-33)

And quite generally the operation P(...)P interchanges E and F within

the bracket.

Let y^-t(Vr+ *r'|.). ^=4(V,-^). (10-34)

Since P (E^FV E9FJ P=E^ E^FV
on multiplying by final P, we have

so that PY^=Y^P> PC|W--{ WP. (10-35)

t It may be expressed in the matrix representation of T9 since matrices have the property
of symmetry or antisymmetry which is not invariant for transformations. We have seen

( 7*3) that this discrimination corresponds to laying down planes of simultaneity.
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We can write, instead of (10-222),

27=r-f27a=S^/y/iV
+ S/MV ^v , (10-361)

where V^+
'rfi* V"^ ""*** (10-362)

Then PT=T*P, PTa=-TP. (10-363)

That is to say T is divided into symmetrical and antisymmetrical parts
T8

, Ta
, which respectively commute and anticommute with the interchange

operator P.

There are 136 independent matrices y^ in the symmetrical part, and 120

independent matrices^ in the antisymmetrical part.

Setting as usual Taj3=T^a , we can show that

PT=-f, Y*P=~T*. (10-37)

By (10-31), PS^PV^F^V. That is to say, instead of applying tho matrix

operator F^ to the second suffix of T, we can first apply the change repre-

sented by P, apply the matrix operator to the first suffix, and then undo the

change P (since P~1 = P). Evidently the operation P interchanges the two

suffixes. It may include in addition a self-reciprocal operation Q which

commutes with E^, so that QEpQ Ep. But since we may substitute any
other J57-symbol or jP-symbol for E^ in the foregoing argument, Q must

commute with all the symbols and therefore be algebraic. Thus Q= 1,

since these are the only self-reciprocal algebraic operators.

To determine the sign, consider the special caseY^= 8a ,
where S^ is the

substitution operator. Then by (10-32)

Using four-point matrices, the ten symmetrical matrices give

V^=V=-^
and the six antisymmetrical matrices give E^E^ = 1. Hence

SJ^^= -10+ 6= -4;

so that P8=-l=:-8.

Accordingly the sign in (10-37) is verified.

The operator P can be factorised. Let

We easily find
i

Alan P* 1 P21 PP PPxxIBO Xj *, -*2
"~"

' 12""" 2 1*



160 Wave-tensor Calculus [10-3

This factorisation is based on conjugate triads ( 3-8), and the factors

P! , JP2 are the interchange operators for the two minor complete sets. The

operator Pl is commonly written!

A= -i(<W +<W + *s*s' + l)s (10-385)

a form obtained by writing cr^
= t M in (3-87). Pl is then treated as the whole

interchange operator, the factor P2 being replaced by its eigenvalue 1.

This is legitimate in the more elementary types ofproblem for which a single

set of Pauli matrices suffices.

We can extend the theory of interchange to double sets. Let K^ L^
(JLI= 1, 2, ... 256) be two double frames arranged in corresponding order, so

that Lp,
Lv commute or anticommute according as K^, Kv commute or

anticommute. By the method of 2-7, 2-8, we can find an interchange

operator PKL , such that L^Pj^K^P^1
. ^ ^e ^ are new symbols

commuting with the JCM , the operator is

256

I %Vv <
10 '39

)

If, on the other hand, the L^ are If-numbers, the factor^ is replaced by an

adjustable algebraic coefficient a; also the singular case may arise, requiring
us to substitute another reflection of K^ .

10-4. Duality.

Consider a matrix of the fourth rank which is the product of four wave

V6Ct0rst ^-^Xr"*. (10-411)

Since a and y are "first
"
suffixes, ^ and x are wave vectors in the frame E ;

^ and o> are wave vectors in the frame F^ . Let
xF = 0o>*, X= fo*, C7 = ^x*, F= ^o>*. (10-412)

Then U and V are tensors of the second rank in the frames E and F
respectively;

XF and X, being composed of one vector from each frame, are

double wave vectors. We have

(10-413)

We can associate *F and X with new frames
Cj/ and D^' in the same way

that U and V are associated with the frames E^ and F^ . When the "crossed

frames" G^ and D^ are adopted, Y and X become wave tensors of the

second rank and 17 and V become double wave vectors.

This gives two alternative resolutions of T into matrix components, viz.

T=S^J^PV=SV/

C'
/1

/

JD; (10-421)

t Dirac, Quantum Mechanics, 2nd ed., p. 226, equation (35). Dirac uses Pauli matrices
whose square is + 1.

| It is not necessary that the factorisation should be actually possible; the theory in this
section will apply to symbolic factors ( 3-3).

Unaccented frames C9 D are introduced later.
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or, with suffixes,

2^8 = S fa(E^Y (Ew)p
- SV'

(Z^U <jyfr . (10-422)

The distinctive notation C", D', E, F is not required when suffixes are

inserted.

Evidently a double matrix E^FV is a linear function of the 256 symbols

Cp'ty, and vice versa. We shall determine this function explicitly. Let

Or, With SUffixeS, (^)ay (JFJ
/
M = Sa-T VW (^rU(^r)jiy- (

10 '432
)

Multiply both sides by (^\)8 (EP)yp The right-hand side is

The left-hand side is

(^W
Hence

^AP
=TVspr(^^^SA). (10-44)

As an important example, consider J516Fw . Let

or, with suffixes, -(l)ay (l)^
= S

ff.T ^ar(^)8(^r)fr. (10-452)

Then, by (10-44),
'= -&spur(ETEff) (10-46)

o that v'aa
=

J, v'er
=

(cj^ T). Hence

where POD
'
is the interchange operator of the frames C^'

and
/}/. Similarly

OJD^-Pn. (10-472)

Thus by crossing the frames, algebraic quantities in the frame C'D'

become multiples of the interchange operator of the frame EF, and vice

versa.

We find similarly that E
tL
F

fl

= Za(Ca'Da'), (10-48)

where the minus sign is to be taken ifEa anticommutes with E^ .

A slight variation of the foregoing process is obtained by taking frames

Op , Dp such that the connection

27=S^ V̂
= SVC^Z)V (10-491)

stands for Ta p -S fa(E^ (Ev)& Sv (^) aj3 (^)y8
. (10-492)

This "straight cross" is easier to manipulate analytically, and we shall

generally use it; though it is perhaps less physically significant than the

"inverted croBs". If j^=S V>OT<7 Z>T

we obtain, by the same method as before,

Jr^r). (10-493)
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where, as usual, (jET) aj8 =(JST)^a
. Hence

the minus sign applying to the six antisymmetrical (time-like) matrices.

Ah V45
- IS ( CM (

10 '495)

the minus sign applying to the six electrical matrices a= 01, 02, 03, 04, 05, 16.

The same formulae hold if EF and CD are interchanged.

We call the tensor r^ the dual of the tensor
t^v

.

Denoting the double matrices E^FV9 C^DV by Ka ,
La (<r= 1, 2, ... 256), the

equivalent frames Ka and La are connected by a transformation

La=qKaq~i. (10-496)

It should not be difficult to evaluate q as an EjF-number or CD-number; but

I have not succeeded in doing so. The calculation is complicated because it

is found to come under the singular case; the value ofPKL calculated from

(10-39) is zero, so that q^PKL - *&*& same applies to the transformation

connecting EtL
Fv and C^DJ.

Without actually evaluating q, we see that the crossing of frames is

included in the relativity transformations of the double frame. We can

regard the transformation as a continuous one, giving a sequence of double

frames intermediate between EF and CD.

10*5. Significance of the Grossed Frames .

According to the uncertainty principle there are two extreme ways of

specifying a particle: (a) the momentum factor may be specified exactly,

so that the position vector is entirely uncertain, and (b) the position vector

may be specified exactly, so that the momentum vector is entirely uncertain.

Wo shall find that the effect of crossing frames is to transform specification

(a) into specification (b). That is to say, a particle which has the specification

(a) in the EF frame has the specification (b) in the CD frame, and vice versa.

Double frames enable us to express symmetrical space tensors of the

second rank in wave tensor form. (A single frame provides only for the anti-

symmetrical tensors of the second rank.) Consider, for example, the outer

square p^p,,
of a momentum vector jpM

. We call Ppp the energy tensor,f

or more precisely the self-energy tensor ofthe particle. In ordinary relativity

theory the energy tensor of a particle is j^Pv/w; but the factor m belongs to

a later stage in the adaptation of our equations to practical conditions, and

can be omitted for the present. By (6-51) the four-dimensional momentum

vector is represented by EE^p^ and the energy tensor is therefore repre-

sented by ZXffrtpp, Oi, v= 1, 2, 3, 4). (10-51)

t Both the momentum vector and the energy tensor include momentum and energy. It

is an accident of current nomenclature that they are named differently.
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If the momentum vector is exact, we may take its direction as our time

axis. The energy tensor (10-51) then reduces to a single component
aJS?45*45- (10-521)

To represent an entirely uncertain momentum we must distribute the pro-

bability evenly over momentum vectors in all directions in space-time. The
resultant momentum will be zero, but the resultant energy tensor will be

definite. "Entire uncertainty" implies that there is no preference for any
direction in space-time; the resultant energy tensor must therefore be of a

form invariant for rotations and Lorentz transformations. The only in-

variant tensor of the second rank is S^. Hence

s^^-jsy,
where j8

is an invariant, and the summation extends over all the vectors

which compose the probability distribution. Then by (10-51) the resultant

energy tensor is
fi ^ .,

P (
Ai6*i5+ #25*25+ ^35*35 + ^45*45)- (10-522)

To extend this from simple space vectors to complete space vectors, we
define the complete self-energy tensor to be the outer square of the complete
stream vector. If the complete stream vector is exact, it can be reduced
to the form a* (El+ E2^+ 46+ Eu), and the complete energy tensor is

a (^+ EM+ #46+Eu ) (1\ + JFM + F^ + JP
16). (10-523)

This refers to an elementary charged particle; for a neutral particle the

complete tensor is still of the form (10-521).

If the stream vector is entirely uncertain, the distribution must be such
that the resultant energy tensor is invariant for all appropriate relativity
rotations. The natural generalisation of (10-522) in

10

02^*;. (10-524)

But this corresponds to a probability distribution which is symmetrical
with respect to an electrically saturated space-time. To obtain symmetry
with respect to neutral space-time, we must substitute neutral sets (6-412).

Distinguishing kinematical and electrical matrices by suffixes k and e, the
resultant complete energy tensor is then

^(SA^^~Se^^) =
4j8(745 jD45 (10-525)

by (10-495). Comparing with (10-521) we see that this corresponds to a
neutral particlef with definite stream vector in the CD fiame.

This establishes the important result that for a neutral particle an entirely
uncertain distribution of momentum in the EF frame corresponds to an
exact momentum in the CD frame. (The momentum is here understood
to include energy, spin and magnetic moment.)

t When the complete uncertainty extends to all components of the stream vector, the
charge must be completely uncertain.
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We see also that the straight cross CD is involved because we take a

neutral frame as standard. The theoretically simpler inverted cross C'D'

corresponds to a saturated EF frame.

The position vector can be treated similarly. We can define a complete

position vector which includes, for example, the angular coordinates con-

jugate to the spin momenta. For a neutral particle it reduces to the ordinary
four-dimensional position vector, since there is no spin or magnetic moment
to be described. The outer square of the position vector will be called the

position tensor; it plays an analogous part to the energy tensor in the fore-

going theory.

The energy tensor and the position tensor have definite values even

when the corresponding vectors are uncertain; but for brevity we shall

call those of type (10-521) "exact", and those of type (10-525) "uncertain".

If a particle is represented by an exact energy tensor and an uncertain

position tensor in the EF frame, it is represented by an uncertain energy
tensor and an exact position tensor in the CD frame. If the scale relation

is appropriately chosen, the exact energy tensor ofthe EF frame is identical

with the exact position tensor of the CD frame; and similarly the two un-

certain tensors are identical. In short the position space of the EF frame

is the momentum space of the CD frame and vice versa.

We have here adopted the four-dimensional point of view, in which the

position vector is measured from an origin in space-time. This was necessary

in order to compare our formulae with the ordinary form of the uncertainty

principle; but it slurs over the effect of curvature of space-time.t In five-

dimensional representation the position vector is measured from an origin

at the centre of curvature of space-time; and in the standard notation an

exact position tensor has the form

a 5̂ 6̂
= JaS(C'/A Z{i ), (10-53)

where the minus sign refers to p= 04, 14, 24, 34, 54, 16, by applying (10-493).

The connection between the position space and the momentum space is, as

it were, rotated by the matrix JSJ4 . The connection is expressed more simply

by correlating the four-dimensional density of the position vector to the

three-dimensional density of the momentum vector. Each of these gives a

second-rank tensor of the formJ

*tfi6*i0= i (S.C^-S^Zp, (10-64)

t If the position were entirely uncertain in infinite space, the position tensor would be

infinite. In assuming it to be finite, we have in a sense taken account of curvature of space-

time; but it has not been necessary to introduce the curvature in any other way.

% Multiplying the position vector (matrix E6 ) by iE6 to obtain its four-dimensional

density, and multiplying the momentum vector (matrix Et6) by iE^ to obtain its three-

dimensional density, the result is in each case an algebraic quantity (matrix Eu ); so that

the corresponding second rank tensor is &EUF16 .
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where s and t refer to the space-like and time-like matrices. It is these

densities which become interchanged in the transformation EF-> CD.

Formally an energy tensor t̂E
tL
FvpVLpv refers to two particles or systems,

since it introduces two frames. It is a special case of a mutual energy tensor

oftwo particles ^E^Fyp^p^ formed by multiplication oftheirstream vectors

SJS^pp, I,Fvpv', as the combination of probabilities requires. A self-energy

tensor is obtained by imposing the constraint p^ 'p^' (or alternatively

PH~ JP//);
this constraint greatly limits the number of relativity trans-

formations applicable. There are two possible interpretations of such a

constraint; either the second particle is a fictitious duplication of the first,

introduced for formal purposes, or the centroid of the two particles is

deemed to be fixed so that their stream vectors are automatically made

equal and opposite.

This study of a double frame throws considerable light on the relation of

position and momentum in the matrix theory. But it is only a step towards

the actual conditions in which position and momentum are known obser-

vationally; and further progress will be made in Chapter xi.

10-6. The 136-dimensional Phase Space.

When four-point matrices are used, the frames
JE^, F^ each contain ten

imaginary and six real matrices. Hence the frame E^FV contains

(10 x 10) + (6 x 6)
= 136 real matrices

and (6 x 10) -f (10 x 6)
= 120 imaginary matrices.

Since (E
fl
Fv )

2 =l
9
the eigenvalues of E^FV are real. Accordingly, by the

definition in 7-3, the 136 real matrices are space-like and the 120 imaginary
matrices are time-like.

The general infinitesimal transformations for covariant final and contra-

variant initial double wave vectors are

T'-e^T, X*' = X*e-*, (10-61)

where d&^^K^O^. Considering a single term 0^, the two transforma-

tions in (10-61) are the same if

exp&(^)r(Ev)M.V^^
That is, if -

(jyya (E9)y
- (E^y (Ev)p8

or -KpF^EpF,. (10-62)

This requires that E^FV should be imaginary or time-like. Thus when E^Fv

is time-like, a covariant wave vector transforms like a contravariant wave

vector, and a covariant wave tensor transforms like a mixed wave tensor.

Proceeding as in 7-2 we obtain double strain vectors (covariant double

wave tensors), which behave like double space vectors for time-like trans-

formations and substitute antiperpendicular rotations for relativity



166 Wave-tensor Calculus [10-6

rotations in space-like transformations. The latter generate a 136-dimen-

sional phase space.

The theory of ten-dimensional phase space applies without important
modification to 136 dimensions. Stereographic coordinates can be intro-

duced; and the result corresponding to (7-59) is

V^7= .R-136 (1 + r2/4JR
2
)-

136
. (10-63)

Since (EpFv )

2 =l, the circular rotations are of the form eiE^fvU^, where

UpV is real. Thus the matrix d 8 for real displacements in phase space is

imaginary, as in simple phase space (7-31); but the coefficients 0^ (unlike

the
0^)

are imaginary.

The condition E^Fv
= E^FV satisfied by the space-like matrices means that

they are symmetrical for an interchange of the suffixes a, )8 with y, 8 in

(10-492). There is another kind ofsymmetry which corresponds to the inter-

change of a, y with j8, 8, i.e. interchange of first suffixes with second suffixes.

The double matrices y^v introduced in 10-3 have this kind of symmetry,
and the ^ have the corresponding antisymmetry. It is inconvenient to

work with y^v and J^, since they have no simple commutative properties

and their squares are not algebraic. But the two kinds of symmetry are

interchanged by crossing the frames as in (10-492); hence the space-like and

time-like matrices of the CD frame have the same symmetry and anti-

symmetry as the y^v and l^v . It is easily seen that the 136 y^v are linear

functions of the 136 space-like matrices of the CD frame and the 120

are linear functions of the 120 time-like matrices.

Thus the separation of T into T8 + Ta in the EF frame (10-361) is the

same as the separation into space-like and time-like parts in the CD frame.

For any double system we have two alternative phase spaces according
as we adopt the EF frame or the CD frame. If one of them corresponds to

classification of configuration by position, the other will correspond to

classification by momentum. If a simple E or F phase space gives a classi-

fication by position, the EF phase space will give the position configurations,
and the CD phase space will give the momentum configurations. For

example, an algebraic displacement in EF space represents change of time,

and in the CD space represents change of energy. Since the points of CD
space represent distributions with fixed momentum, generally called

elementary states, we may regard the CD space as composed of states and

the EF space as composed of configurations.

It is perhaps not self-evident that the EF space gives the same kind of

classification as the simple E and F spaces.t For a crucial test consider

an electrical displacement with matrix El for the space vector or j 23 for the

strain vector. To give this displacement to both particles we must apply

t It had occurred to me that the process of amalgamating two simple systems to form a
combined system might involve crossing their frames. The test here given dispels this idea.
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the transformation q**eto*+**t
9 to the double strain vector. Since this is

a y23,ie
rotation it gives displacement in CD space; there is no displacement

in EF phase space (or in the separate E and F phase spaces) since the

matrices E2S9 FZ3 (or HnFM9 Sl9Fn) are time-like. It can scarcely be sup-

posed that we create a positional displacement ofthe double system without

displacing the simple systems positionally; but the displacement in CD
space can well be interpreted as a change of electrical energy, which has no

counterpart in a simple system. This indicates that the EF phase space in

which no change occurs is the positional space, and the CD phase space is

the momentum space.

The following property of CD phase space is of interest. If we divide a

double wave vector into symmetrical and antisymmetrical parts
1
F*,

XF, so

that XF = Y*, Y= -Y, we have, by (10-37),

H*= i(l-P)Y, Y*=H1 + P)Y. (10-64)

Consider a transformationV = <f. If q commutes with P, we obtain

(

x
F')*= g

x
F, (')=}. (10-65)

But for a non-commuting g, say q= 1 +
^,,0,

(10-60)

Thus *F* and ^ a are kept distinct in the y^v transformations but not in

the
Jp,,

transformations. The former comprise all the displacements in CD

phase space. Thus CD phase space has the distinctive property that a strain

vector of the form Y*O* remains of the same form at all points of phase

space; similarly for the forms xF"Oa,
*p<I>a . Thus states determined by

symmetrical and antisymmetrical wave vectors X
F*, *Fa form distinct sys-

tems not transformable into one another by strain.

This separation of symmetrical and antisymmetrical wave functions plays

a prominent part in the current treatment of double systems, as developed

by Fermi and Dirac. Since it applies to CD space but not to EF space, it

applies to states not to configurations. Since this is in accordance with the

current interpretation, it confirms our identification ofthe two phase spaces.

10*7. Representations of Two Charges .

The strain vectors representing elementary charged particles have been

given in (6-64). Using the matrix representation in (3-61), we resolve them

into their wave vector factors

8C =m (1,
-

1, -i, i) (1,
-

1, i, -i),

5jm(l, -
1, i, -i) (1,

-
1, -*, i). (10-71)
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First consider two charges of opposite sign and the same spin, whose

wave tensors may be taken to be

so that (omitting the masses m, m') we have

= w = (l, 1, -i 9 -i), Xss j= (i 9
i f t,i).

The double vectors, obtained by a straight cross, are therefore

T=^* = ^, X = Xo>* = ^. (10-72)

If the masses are inserted,T andX can be given any coefficients m", m'" such

that ra"w'" = mw'.

As another example take two charges of the same sign and spin, with

Then Y =^* =
(l, 1, -i, -)(!, 1, -i, -i)

=1 i -i -;

1 1 -i -i

so that the double wave vectors are degenerate (5- 56).

A combination oftwo charges oflike sign and opposite spin, or of opposite

sign and spin, likewise gives degenerate double wave vectors.

We see that there is a simplicity in the combination of charges of opposite

sign with like spin, which is not exhibited by any other combination. The
CD and the EF representations are interchangeable, and the double wave
vectors are non-degenerate. The physical interpretation of this peculiarity
is that when charges of opposite sign with like spin are superposed, their

electric and magnetic fields cancel. They thus constitute a self-contained

unit which can be inserted in a background of neutral space-time without

disturbing its neutrality. Other combinations cannot be treated as isolated

units for they disturb by their external fields the surrounding matter. In

their case we must take into account, in calculating probabilities for the

purposes of statistical theory, not only the probability of the configuration
of the two particles, but the probability ofthe polarised configuration of the

rest of the universe.

If then we wish to treat what is strictly a two-body problem, we must
confine ourselves to particles of opposite sign and like spin.

To understand the nature of the superposition referred to above, we must
recall that the momentum vectors of the two charges are given definitely
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by Sa and Sb . Hence, by the uncertainty principle, their positions are

entirely indeterminate. We are therefore superposing two probability

distributions which extend uniformly over the universe. It is not a question

of superposing localised particles; they would be disturbed by interaction

effects which we have not yet studied; and their exact superposition is, in

fact, inhibited. The theory of this chapter is limited to the combination of

independent probabilities.

It will be seen from (10-71), or directly from (tf-64), that

By making an inverted cross we obtain double vectors l
l'" = 0w*,

X' = <x*. These are non-degenerate if the two charges are of like sign

and spin, and are degenerate for all other combinations. We have already

noticed that the inverted cross bears the same relation to electrically

saturated space that the straight cross bears to neutral space; and the

non-degenerate combination of two charges of like sign and spin would

evidently fit saturated space in the same way that two charges of opposite

sign and like spin fit neutral space.

10-75. Importance of Double Tensors.

The fundamental tensors of relativity theory are symmetrical space tensors

of the second rank, viz. the metrical tensor g^v and the energy tensor

G^- Ig^O. These must appear as double wave tensors in the wave-tensor

calculus; and it is clear that any serious attempt to unify relativity theory

with wave mechanics must be based on double wave tensors. In macro-

scopic relativity theory the interval ds between two points is regarded as

the fundamental observable; correspondingly in relativistic wave mechanics

the double wave tensor of two particles is the basis of description.

In treating a system ofn particles, we naturally introduce a corresponding

n-tuple wave tensor. But the step from a double to an ra-tuple wave tensor

is not comparable with the step from a single to a double wave tensor. In

relativity theory we do not recognise any relation between three points

analogous to the interval between two points; nor are there any space

tensors of the nth rank analogous to the metrical tensor and the energy

tensor. In proceeding from simple to double wave tensors we approach the

meeting point with ordinary relativity theory; in proceeding to treble and

n-tuple wave tensors we diverge again. Quantum physicists have them-

selves recognised that the specification ofa system ofn particles cannot well

be left in the form of an w-tuple wave tensor, and have introduced another

method ofspecifying such systems by a sum (not product) ofJordan-Wigner

wave functions, which will be used in Chapter xvi.

The number 136, being the number of dimensions of double phase space,

will be prominent in our formulae for the principal constants ofnature. This
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does not imply that their application has special reference to systems con-

sisting of two particles. It implies that in wave mechanics, as in relativity

theory, the study ofa complex system is based on the relations between pairs

of particles contained in it, and on the tensors of the second rank which

embody these relations. The number of dimensions of double phase space

occurs in the formula for the mass of an electron or proton, because mass is

by definition contained in a space tensor of the second rank equivalent to

a double wave tensor.

The quadruple tensor also plays a rather special part in the theory. If a

primitive entity or relatum is represented by a simple wave tensor, we require

two relata in order to provide an observable relation. To assign measure to

this relation we require another observable relation with which to compare
it. Thus a measure involves four relata two to provide a quantity to be

measured and two to provide a unit of comparison. It therefore depends on

a quadruple wave tensor. This coincides with our conclusion in general

relativity theory :f

Thus four points is the minimum number for which an assertion of absolute

structural relation can be made. The ultimate elements of structure are thus

four-point elements.

Thus simple, double and quadruple wave tensors appear in the theory;

but there is no occasion for introducing any other combination for the

purposes of fundamental study. For systems of more than four particles

(or two particles plus a "comparison fluid") we abandon the method of

multiplication of probabilities, and develop a procedure (formally investi-

gated in Chapter xvi) which is in a sense intermediate between macroscopic

theory and elementary wave mechanics.

Generally the quadruple wave tensor remains in the background of the

theory; we need only occasionally remind ourselves that the double wave

tensors, which we employ, require such a background. We shall generally

regard the quantities described by double wave tensors as observables, in the

same way that the interval ds is usually regarded as an observable although

any numerical value that is attached to it expresses its relation to another

interval.

10-8. Relative Coordinates .

Let Xp, Xp be the coordinates of two points in four dimensions, associated

respectively with symbolic frames E^, F^ . We make the transformation

which gives x^
=
A^ + f^ , x^= XM

-^ . (10-812)

t Mathematical Theory of Relativity, 98.
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Then the x^ are coordinates of the centroid, and 2
M are the coordinates

of one point relative to the other. The corresponding formulae for the

derivatives are
a a 9 a 3 a

a^-gi'
+
aV' K^T'top top"

fix nl^_. ' i + It -3 /~nl3,- 3 f (lU-0 w)

We are going to find two new complete sets G^ , H^ which, we shall show,

are associated with x^, ^ in the same way that E^, F^ are associated with

x
n>

xu> so ^at IL is the frame whose rotations determine the vector

transformations of the relative coordinates 2^ .

Let P be the interchange operator ( 10-3) of E^ and
J5J,

,
and let

for p,= 1, 2, 3, 4. We here write V for an algebraic square root of 1, not

necessarily the same square root as E1B and J 1̂6 . Solving (10-831) for E^ 9 F^

we find p p

^rS^-*"7^' ^-fr?^-^- (10>832)

Then

Similarly 0^0,
= (1/2*0

(10-841)

Since ^, v are restricted to the values 1, 2, 3, 4, the right-hand side is anti-

symmetrical in p.and v. ThereforeG^Gv
=-GvGfA

. Similarly H^Hv
= - HvH^ .

Also

(10-842)
These two expressions are equal, so that O^H^ I^G^.

These results show that Gl9 2J G39 C?4 and 15^ ,
//2 9 H.^H^ are tetrads, and

that the H'B commute with the (?'s. From these tetrads we construct two

complete sets 0^, jfi^ (fi= 1, 2, ... 16) which commute with one another. By

(10-842) GHl2if

)(F. + i
fEA)^E l

FA (10-843)

for p,
= 1, 2, 3, 4. This result can be extended to all values of ^; e.g.

G^H^G^^H^G^.G^^E^.E.F^E^F^.
Hence by (10-32) the interchange operator P for E^ and J^ is also the inter-

change operator for G^ and H^ .
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The Gp and H^ not belonging to the original tetrad do not obey (10-831).

In general they have no simple connection with the corresponding E^ and

F^\ but the result for Gb ,
#5 is of interest. We have

\iP (Ei+ VPJ P (E2+ t'

2 EM\-i'EiFi-EuFu-i'EuFu-EsFs-...). (10-861)

The bracket contains 16 terms. We have given one specimen of each type
of term . All terms of the same type have the same coefficient ; the verification

of this is an interesting study of the operation of the permutations. We
obtain similarly from (10-8.5)

(10-862)

Multiplying (10-861) by E$ and (10-862) by i'Fb and adding, we obtain

Hence, multiplying initially by P and finally by G5 ,

#5= -(J^ + t'JU- -Gf', (10-863)

where G5
'

is the symbol defined analogously to Ol9 G2 ,
G3 ,

6?4 by putting

ft
= 5 in (10-831). A similar result is obtained for H5 .

Thus we can, if we wish, extend the present investigation to relative

coordinates in five dimensions, defining 6?^,
ff

/x (/x= 1, 2, 3, 4, 5) by (10-831);

but in that case if E^, F^ are right-handed sets we must construct G^, H^
as left-handed sets. Since we have at present no use for this extension, we

keep to right-handed sets, and accordingly define 6?5 as i6r1 6r
2 (73 6r4 .

By (10-811) and (10-831) we have

4 4

Or writing x=SE^ , x = S G^x^ , etc.,

(10-871)

(10-872)

For example, if we have two non-interacting particles of proper mass m
which satisfy the wave equation (8-262) without electromagnetic field, viz.

Similarly, if Va=2^3/9^, Vi==2^9/3^, etc.,
i

^
i

op
'
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the product wave functionT satisfies both equations, and therefore satisfies

Hence, multiplying by 2P/(1 + i'),

0. (10-88)

A noteworthy point is that the vectors x, x', and also the vectors x, 5,

have to be combined with a quarter period difference of phase represented

by i'. There is evidently no other way of obtaining a transformation of

the kind required. If we try to combine them without phase difference,

we have

The trouble then arises that E^ + F^, E^-F^ are singular symbols with

eigenvalues and 2i. The product of two vectors (E + -P\) x^ , (E -
1\)&

in the same direction in the absolute and relative spaces is identically zero.

This means that we have made a singular transformation, so that either the

external (absolute) configurations or the internal (relative) configurations

have shrunk to a point in our representation.

In the transformation here found
A-^

and ^ are referred to symbolic

frames which are equivalent to one another and to the original frames of

x and x'. Thus the relative coordinates can be treated in the same way as

the absolute coordinates hitherto treated. It would be more logical to say
that the absolute coordinates can be treated in the same way as relative

coordinates, for all our experience is concerned with relative positions. But

to render the representations similar we have had to measure the co-

ordinates in various complex units. This is seen by writing (10-871) in the

form -

There does not seem to be any way ofextending the foregoing transforma-

tion to particles ofunequal mass. On reflection we see that no such extension

could be expected. The integrated mass of a particle distributed uniformly

all over the universe is a highly artificial conception, and has no clone

relation to the concentrated masses of classical particles. Particles with

different masses (protons and electrons) do not appear in the theory until

a later stage ofdevelopment than that which we have now reached, and their

wave functions are not the primitive relativistic wave functions, introduced

by Dirac's equation, which we are at present studying.!

In the next section we treat a more familiar transformation ofa somewhat

different character which concerns particles of unequal mass.

t See 11-6.
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10*9. Relative Coordinates Unequal Masses.

For two particles of proper mass m, m', the coordinates x^ of the centroid

and the relative coordinates f^ are given by

Hence m 38 m' 3___d_ no.Q12 \

l '

Writing M=*m + m', p,
=mm'/(m+m

f

), (10-92)

we obtain from (10-912) the well-known formula

IJL+JL^I^.+AJL (10-93)

Introducing momenta,^= id/dx^,
m =

idfi^, etc., this becomes

In the transformation (10-911), the jacobian

|i5f^=l (10-95)

so that the transformation x^ , x^-^x^ , ^ does not alter volume elements.

Normally (10-911) applies to space-coordinates only, the time being the

same for the two particles. We can, if occasion arises, extend it formally to

four coordinates; but it must then be remembered that the relative time

r= t t' is not the time which is ordinarily associated with relative co-

ordinates f^ .

We notice especially that

mm' = Mp.=M , say. (10-96)

We have seen
( 10-1) that a system is to be regarded as the product, rather

than as the sum, of its parts; and from this point of view the product mass

M is its leading dynamical characteristic. The two ways of factorising M
lead to two modes ofdividing the system either into two ordinary particles

m, m', or into an external particle M and an internal particle p. These two

modes of factorising M are familiar in classical mechanics, especially in

celestial mechanics, where p is called the reduced mass associated with the

relative orbit.

Ifp2=sPi
2
+p2

2
+Pa*> etc., we obtain by summing (10-94)

p2
/m +p'

2
/m' = P*IM+ t&

2
//*. ( 10-97)

For simple plane waves the energy was found in (5-251) to be

/n *?) /^/ //>* 2 _L /yi2\i _o_ <**i _L i/n2//*yi /lO*Qfil\

The conditions described by plane progressive waves are, however, highly

abstract, and (10-981) has no immediate interpretation in terms of obser-
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vation.f All observed motion is relative motion, and the energies with

which we are concerned observationally correspond to relative coordinates

1^. Clearly energy must be defined in such a way that either mode of

division of the system gives the same total energy. By (10-97) the function

of p, which is conserved in the transformation from P, w to p, p', is p2
/ra;

the variable part of the energy must be equal or proportional to this. We
therefore set the energies equal to

,

where a is a constant coefficient. These satisfy

(10-983)

We notice in (10-982) that the relative energy e does not include any rest-

energy.

It has commonly been supposed that the energy m + op
2
/w is merely an

approximation to (m
2 + jp

2
)*, the value of a being \ . That is not so

;
m + ojj*/m

is the exact expression in the conditions with which we are here concerned,

and (10-981) is irrelevant. According to the common assumption tho

variable part of the energy is {(m
2+p2

)l m}, and it is taken for granted
that the relative energy is also of this form, viz. {(p

2 + iD
2
)^ //,}.

The latter

expression is the one which concerns us observationally, since we can only

observe relative positions and energies. But

{(m
2+#2

)*
- m} + {(m

/2+y^
Thus the sum of the internal and external energies of the system is not

equal to the sum of the energies of the constituent particles ;
and it is

clear that the form used is inadmissible.

We shall have more to say on this point in Chapter xni. Meanwhile the

following explanation must suffice. The expression for the energy operator

in terms of the momentum operators pl9 p2 , p3 (the three-dimensional

hamiltonian) is a leading dynamical characteristic of a system. What we
here find is that the two parts into which we divide a system have not the

same dynamical characteristic as the set of plane waves studied in 5-2.

It was scarcely likely that they would; for our first investigations were

concerned with abstract conditions, and it is only with the introduction of

double wave functions that we begin to make some approach to actuality.

In order that the wave equation #0= of a simple wave vector may be

invariant for rotations of space-time, H must be a space vector. Corre-

spondingly, if the wave equation of a double wave vector is //2 *F= 0, //2

f Its application to the observed change of mass with velocity of an electron cannot be

described as immediate, since the mass is distributed over an infinite wave front. To connect

this with the change of mass of an approximately classical particle it is necessary to in-

vestigate the transformation of the normalising conditions.
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must be a space tensor of the second rank. If we divide H2 into two parts
H2

' +H referring to the two particles, H2
' and H% may or may not be

tensors separately; but at any rate they will not be space vectors. Thus the

vector form of H, which yields pQ
= (m

a
-f jp

2
)*, is not applicable to the con-

stituents of a double system; and p*/m occurs in (10-982) in its own right as

a component of a tensor of the second rank, not as an approximation to a

component of a vector.
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CHAPTER XI

THE RIEMANN-CHRISTOFFEL TENSOR

11-1. The Comparison Fluid.

When the position of a body is determined by observation it is referred to

landmarks furnished by material objects; but in theoretical formulae the

position is supposed to be specified relatively to a geometrical frame. In

macroscopic physics the geometrical frame is an admissible substitute for

material reference marks; and there is no inconsistency in assuming that

the position, momentum, etc., defined by reference to points ofa geometrical

frame, satisfy the same equations as the position, momentum, etc., measured

from material landmarks. But it is not so in wave mechanics. A material

frame of reference cannot be equivalent to a geometrical frame. For the

material system is specified by a wave function which describes a pro-

bability distribution of its observable landmarks relative to a geometrical
frame. To identify the position and motion of the landmarks with the

position and motion of a geometrical frame contradicts the uncertainty

principle.

Thus in so far as the equations of wave mechanics relate to anything
observable, they contemplate (a) a geometrical frame, (6) a physical refer-

ence object or system of objects, and (c) the particular particle or system
under discussion. The geometrical frame cannot be omitted without aban-

doning the whole method ofwave mechanics, but it is only an intermediary
and not the final reference system for our observations; (6) and (c) are neces-

sary in order to furnish observable phenomena for measurement. For

simplicity the casual reference objects (6) used in actual experiments are

replaced by an ideal standardised reference object. The fundamental

equations of physics necessarily contemplate highly idealised systems in

highly idealised conditions; and they select a reference object with simple
and symmetrical properties, just as they select for investigation very

elementary systems (c). But the idealisation must not be carried so far as

to substitute something which 'has not the same relation to our sensory

experience. Idealisation is permissible; abstraction is not. The practice in

current quantum theory of substituting a sharp geometrical frame for a

probability distribution of observable landmarks is clearly indefensible.

Probably it has been thought that the difference between (a) and (6)

would be made insensible by using very massive material landmarks. But
a massive system causes curvature of space. Current quantum theory

neglects curvature of space, and therefore falls into error either way: either

it postulates that a light reference object is used and wrongly neglects its

X2-2
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uncertainty of position and velocity, or it postulates a heavy reference

object and wrongly neglects the resulting curvature of space. Perhaps the

most important insight, obtained through a combination of relativity

theory and wave mechanics, is a realisation that the two alternatives are

different forms of the same error.

The magnitude ofthe error introduced by failing to distinguish (a) and (6)

is a matter for detailed calculation, and will be found in due course. We need

only say here that the common impression that it is likely to be trivial is

very far from the truth.

The idealised physical reference object, which is implied in current

quantum theory, is a fluid permeating all space like an aether. Such an

aether is in a sense a materialisation of space; or better, space (the geo-

metrical background or metrical field) should be looked upon as a de-

materialised abstraction of the adopted comparison aether.
"
Dematerial-

isation" is represented analytically by replacing a probability distribution

by a sharp configuration. The uncertainty principle does not allow such

replacement until we have removed from the comparison fluid those

characteristics which make it accessible to observation so that it no

longer serves the purpose of a reference mark for observational measure-

ments.

We shall call the three constituents of any problem (a) the frame, (6) the

comparison fluid, (c) the object system.

In future developments frequent reference will be made to the com-

parison fluid.t It must be understood that the comparison fluid is not a

hypothesis. Still less is it an ascertained feature of the universe. The com-

parison fluid is a datum of the elementary problems which we treat like

the "frictionless constraints" so often specified as data in problems in

elementary mechanics. There is no suggestion that a comparison aether

actually exists throughout the universe. But, instead of a comparison

aether, irregular distributions of matter exist and furnish landmarks for

our observational measurements; the comparison fluid takes the place of

these in our elementary equations. From these we can, if necessary, proceed
to more complicated equations which take account ofthe irregularity of the

background of our actual experiments.
If anyone is disposed to offer criticism of this view of the equations of

wave mechanics, it is necessary that he should state what (in his view) is the

physical reference object intended by writers on wave mechanics when they
mention positions, momenta, etc. For, if he believes the quantum equations
to be true observationally, he must surely be prepared to state what observ-

able system he believes them to be true of. We would remind him that a

t The "
standard environment*' occasionally referred to in earlier chapters is now replaced

by the comparison fluid.
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geometrical frame is not observable; nor is it a simplified representation

of anything observable ; its sharpness is, according to the principles of wave

mechanics, incompatible with observability.

The axiom of relativity is that we can only observe relations between

physical entities. A relation implies two systems or two parts of a system;
it can therefore occur only in connection with a double wave function, the

duplicity corresponding to the two ends of the relation.

It is therefore evident that the union of wave mechanics with relativity

theory must be based on the theory of double wave tensors. As we pointed
out in 10-75, the recognition that the simple wave tensor is an abstraction,

and that the double wave tensor is the primary physical concept, is the

counterpart in relativistic wave mechanics of the recognition in macro-

scopic relativity theory that the interval is the primary physical concept.

This conclusion is emphasised by the fact that the fundamental tensors in

relativity theory are symmetrical tensors of the second rank, namely, the

metrical tensor g^v and the energy tensor T^v . In symbolic notation these

yield double wave tensors ^g^E^F^ and SIJ^JB^JJ,. On account of its

antisymmetrical properties the Riemann-Christoffel tensor (although it is

of the fourth rank) can also be expressed as a double wave tensor

In the more elementary problems, the double wave tensors refer to the

object system and comparison fluid, and specify the probability distribution

of their combined configurations. What are ordinarily described as pro-

perties of the object system must be understood to mean properties of the

combination object system 4- comparison fluid.

11*2. Linked Rotations.

In general relativity theory, a vector A^ carried by parallel displacement
round the perimeter of a surface element d8va receives an incrementf

dA^V^&lB^A'dS", (11-21)

where B is the Riemann-Christoffel tensor. We have changed the usual

order of writing the suffixes (which would have been B^VOf ), since it is found

to be very inconvenient in the present theory. We shall adopt local Galilean

coordinates (natural coordinates); since real time is used, it is necessary to

pay attention to the upper and lower positions of the suffixes.

Let dSva be a circle of infinitesimal radius r in the plane xvxa , described

in the direction xv ->xa . A vector A along the x axis, by receiving an incre-

ment dAp along the x^ axis, is rotated in the x^x plane through an angle

so that by (11-21) ^/= -iir1^^. (11-22)

t Mathematical Theory of Relativity, equation (84-1).
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The factor \ has disappeared because the surface element has two com-

ponents dSva= -d/Sff"= 7rr
2

.

The components ofB therefore specify a linkage oftwo rotations, the one

in the va plane and the other in the /*e plane, the first being a rotation ofthe

position vector ofthe point considered and the second being a rotation ofan

arbitrary vector situated at the point considered. In physical applications

we regard the point as occupied by an object system, and the rotations refer

respectively to the position vector of the object system and to a vector

regarded as intrinsic in the object system. We shall call the two vectors the

position vector and the intrinsic vector.

In
( 11-22) the angle of rotation of the position vector is va= 27T. The

ratio of the linked rotations is therefore

Or, expressing both angles contravariantly,

0> /0"-=
-
\r*Bt"va . (1 1-232)

In
"
de Sitter space-time ", i.e. space-time spherical in its space dimensions

and hyperbolic in the time dimension, the Ricmann-Christoffel tensor is

^%a=(W-SaMS/)/7?
2

. (11-233)

This vanishes unless the planes /xc, va coincide. If
/*, e = v, a the value is

1/jR
2

. Hence, in de Sitter space-time the two rotations are in the same

plane, and their ratio is

e'vff
/0

Vff= -
ir

2
/JR

2
, (11-234)

r being the length of the position vector (treated as infinitesimal) and E the

radius of space-time.

An illuminating point ofview is obtained by interpreting 0' as the rotation

of a comparison fluid. The intrinsic vector A^ has been parallelly displaced;

this implies that, although its mathematical specification is altered, it has

in some physical sense suffered no real change. It is still open to us to define

the observational significance of the concept "real change"; this definition

will decide the way in which the analytical theory of parallel displacement

is to be utilised in the study of physical phenomena. We shall define real

change to mean observable change. The orientation of the vector A in the

geometrical frame is not observable; what we observe is its orientation in

the comparison fluid which is the idealised substitute for material landmarks.

Thus Ap will suffer no observable change if its direction remains fixed in the

comparison fluid. Being fixed in the fluid it undergoes the same rotation 0'

as the comparison fluid relative to the (unobservable) frame.

The linkage of a rotation 0' of the comparison fluid to a rotation of the

position vector of the object system is conceived dynamically as a recoil of

the comparison fluid. If the fluid is assigned a moment of inertia 2w-ff2
,
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(11-234) expresses that when the object system is given an angular momen-

tum mr^ddfdt the comparison fluid recoils with equal and opposite angular

momentum 2mR2d6' jdt. In non-uniform space-time the comparison fluid

has (as we should expect) a momental ellipsoid with unequal axes, so that

the recoil angular velocity dO'/dt is not necessarily in the same plane as the

recoil angular momentum, and therefore not necessarily in the same plane

as de/dt. Thus components of
^ va for which /z,

c ^ v, a are introduced. But

we need not unduly stress this dynamical model. The R.C. tensor specifies

directly the kinematical recoil of the comparison fluid corresponding to

every possible cyclic displacement of the object system. If we introduce

dynamical conceptions, we must attribute to the comparison fluid whatever

dynamical characteristics are necessary to satisfy this specification, whether

they are illustrated by familiar dynamical models or not.

It may be noticed that a completely arbitrary connection between 0^'
and v<r cannot be represented by an R.C. tensor; the arbitrary connection

would have 36 disposable constants, whereas the R.C. tensor has 20 in-

dependent components, t

From the standpoint of macroscopic theory the foregoing is a highly

speculative interpretation ofthe R.C. tensor. There is in fact an insuperable

objection to adopting it in macroscopic relativity theory, which will be

explained in 11 '3. But in microscopic theory we approach it in a different

way; the speculative taint is removed; and the aforementioned objection

disappears as soon as we substitute displacement by wave propagation for

the classical conception of displacement.

In wave mechanics the comparison fluid presents itself as a datum of the

problem; without it the mathematical equations could have no relation to

observable phenomena. We observe displacements of the object system
relative to the comparison fluid; but the methods of mathematical physics

require that we should use in our equations displacements relative to a

geometrical frame. For convenience we call displacements relative to the

frame absolute (i.e. conceived as absolute). We have therefore to analyse an

observed relative displacement into absolute displacements of the object

system and comparison fluid, before we can apply the theoretical equations.

This partition can only be decided by convention. The convention is arbi-

trary in the first place; but it may later be limited so as to fulfil conditions

which simplify the resulting formulae.

We have therefore to draw up a scheme of partition specifying the two

absolute motions which correspond to any given relative motion; or equi-

valently the scheme will specify the absolute motion ofthe comparison fluid

corresponding to any given absolute motion of the object system. We have

f We confine ourselves to Riemannian geometry. In affine geometry a generalised cur-

vature tensor with 36 independent constants is substituted.
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seen that (for rotational displacements) such a scheme of linkage can be

expressed by a R.C. tensor B^ V<r
.

Defined in this way as a scheme of partition, B^ va has no immediate

relevance to curvature of space. But the analysis at the beginning of this

section shows that, if we ascribe to the unobservable frame a metric whose

B.C. tensor is B
ftt909

the partition represented by B^^ becomes automatic

on the understanding that displacement without observable change is

represented geometrically by parallel displacement. "Observable", of

course, means observable under the ideal conditions ofthe problem, namely
that the only physical systems present are the object system and the

comparison fluid.

This double aspect of B^ va is the most essential link between relativity

theory and wave mechanics. By it energy, momentum and mass, which

appear in relativity theory as components of curvature of space-time,

become identified with coefficients involved in the partition of relative

displacements into absolute displacements, and therefore in the analysis of

the double wave functions (which contain observational information) into

the abstract simple wave functions which form the ordinary starting point

of wave mechanics. In this way energy, momentum and mass get their

footing in wave mechanics.

The double interpretation of B^ va also exhibits the way in which the

geometrical conception of mass as curvature becomes translated into a

dynamical conception. The coefficients of the scheme of partition determine

the recoil of the comparison fluid. An object particle whose displacements

produce a large recoil is regarded dynamically as having a large mass. We
see from.( 1 1-231) that ifthe B.C. tensor, and therefore the mass, is multiplied

by any factor the recoil is multiplied by the same factor.

11*3. Displacement by Wave Propagation.

In obtaining (11-231) we assumed that the change dA^ recognised at the

end ofa complete cycle had occurred evenly during the cycle. In macroscopic

physics it is impossible to admit this. When the object system receives a

displacement dx , we do not know whether the infinitesimal displacement
is going to form part of a circuit in the x^x^ plane or the x^x3 plane, and it is

therefore impossible to assign the plane of the recoil dO' of the comparison
fluid. General relativity theory has therefore adopted a different represen-

tation. It admits a rotation (usually accompanied by strain) of a vector

parallelly displaced through dx\ but the rotation is described by a non-

tensor quantity a 3-index symbol. The change assigned is thus dependent
on the coordinate system employed; it cannot be pictured absolutely, or

attributed to an objective rotation of the comparison fluid.

This difficulty does not arise in wave mechanics, because we do not con-
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template displacements of the classical type. The nearest approximation to

classical displacement is propagation ofa wave packet. But the wave packet
is analysed into elementary waves, each of which fills the whole of space.

An elementary displacement corresponds to the propagation of one of these

waves. To each elementary wave there is a corresponding recoil of the com-

parison fluid, and the recoil due to the propagation ofthe wave packet is the

resultant of these.

Wave analysis removes all ambiguity as to the plane of rotation, because

it is a wave front, not a point, which is displaced. The free motion ofa particle

or wave packet is commonly analysed into "infinite plane waves
"

; but these

must be modified to fit finite space. In spherical space-time we can mark the

wave front on the sphere, and obtain the wave propagation by rotating the

sphere in the plane defined by the wave normal and the radius of curvature

of space-time. For particles bound in an atom the analysis into elementary
states gives waves representing angular motion; these correspond to

rotations in three-dimensional space.

It would be difficult to extend to all kinds of irregular space the con-

ception of wave propagation as a simple rotation. In general the normal to

space-time is six-dimensional. But wave mechanics evades all such com-

plications by analysing physical systems into steady states in which the

motion is characterised by constant angular momentum. Changes of

distribution which cannot be represented by rotation (in the most generalised

sense, i.e. displacement without intrinsic change in any of the planes of the

symbolic frame) are treated by perturbation methods, and are not recognised

as spatio-temporal displacements. If wave mechanics is unable to describe

the change from configuration A to configuration B in terms of rotation, it

represents the change as spatially discontinuous; that is to say, it examines

the transfer of probability from A to B without representing the system as

having passed through configurations intermediate between A and B.

Such changes are called transitions, not displacements.

The result is that every spatio-temporal displacement contemplated in

wave mechanics is a rotation, or is analysed into rotations. Indeed the theory

developed in the previous chapters makes no provision for displacements

which are not the manifestation of rotation; and every continuous trans-

formation or change of configuration is associated with a symbol defining

a plane in a symbolic frame. Since we always know the plane of rotation

associated with a displacement, the difficulty encountered in macroscopic

physics does not arise.

The obvious example in microscopic physics ofan object system describing

a small circle dSva is furnished by the electron in a hydrogen atom. We can

contemplate the displacement of the electron during a time short compared
with the time of revolution; but the displacement can only be described by
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an angle d0va , not by a line element dxv , because the position angle of the

electron at any instant is indeterminate.

If then we consider an electron with constant angular momentum in the

plane va9

the recoil of the comparison fluid in the plane vo will be, by (11-232),

dt

or, assuming spherical space,
dg/_ nh m.W

"*""SS3P' (1133)

It is desirable to meet at this stage the criticism that an effect ofthe order

(11-33) is utterly trivial. The recoil dO'/dt applies to a comparison fluid

filling the whole universe. There are, say, N other electrons in the universe,

whose contributions to the total recoil must be added together. If (as seems

to be generally implied in the elementary formulae) these are all supposed to

be doing the same thing, the total recoil is

where R' = R/VN-3 . 10"13 cm. (11-35)

according to the value of N found in Chapter xiv. This is by no means

trivial; and outside the region of the nucleus (r > 10~12 cm.), dO'/dtis greater

than d6/dt.

If, on the other hand, we suppose that (11-31) refers to one electron only,

it is right that the recoil (11-33) should be ofthe same order of observational

insignificance as the motion which occasions it. To detect that one of the

N electrons in the universe has acquired a rotation dO/dt can scarcely be said

to be within reach of practical observation. It is true that we might observe

a reasonably large effect, but the chances are N to 1 that we shall observe

nothing; for there is nothing in the mathematical formulation to indicate

that the electron referred to in (11-31) is the one which the observer is

watching.

In natural coordinates the continuum of space and imaginary time is

isotropic. We have found that, for a spatial displacement of the object

system, the comparison fluid recoils in the opposite direction; and the same

holds for an imaginary time displacement. If we substitute real time, the

sign of the corresponding components ofthe B.C. tensor is reversed; and the

real time displacement of the comparison fluid is in the same direction as

that ofthe object system. In our ordinary outlook, objects travel forward in

time together. More particularly in a measurement involving an object
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system and physical reference system, it is implied that both systems are

observed simultaneously in the time reckoning adopted. We have seen that

the scheme of linkage of displacements is initially an arbitrary convention,

and for the present we shall treat it as arbitrary; but at the appropriate stage
we shall specialise it so that the time displacements (in the time reckoning

adopted) of the object system and comparison fluid are equal, as the

ordinary outlook assumes.

11-4. The Riemann-Christoffel Matrix.

We shall now express the R.C. tensor as a wave tensor. In order to utilise

the relation between wave tensors and space tensors found in our previous

work, we must take the fourth coordinate to be imaginary time. Accordingly
we use local rectangular coordinates with g^= 8^";

and there is no longer

any distinction between B* va and i^tev<r
.

We define the Riemann-Christoffel Matrix to bef

)y8- (11-41)

Since the suffixes of the ^/-symbols run from to 5, we require components
of Bp va additional to those which make up the ordinary R.C. tensor. The

physical interpretation ofthe extra components will be found in due course;

but their primary significance is that they specify linkages of the rotations

of the object system and comparison fluid in the corresponding planes as

in 11-2.

Consider a factorisable matrix (as in (10-413))

Treating U and F as double vectors in the CD frame, we have by (10-24)

By the symmetry property of the R.C. tensor, B^^^B^^. It follows

from (11-41) that (-B) yj3s=()y Sj8>
so that, by (11-421),

ZVfc-V*
or UV=UV. This is satisfied if U and V are both symmetrical or both anti-

symmetrical. We shall assume for the present that both are symmetrical;

the antisymmetrical case is treated in 11-5.

There is a simple generalisation of the identity (5-41), which extends it to

any two four-valued quantities 0, #, namely
<75
S

t It will be seen that the suffixes are so arranged that the B.C. tensor is represented in a

CD frame ( 10*4). This has a slight advantage in certain later developments.
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This is proved in the same way as (5-41 ),f and holds for the six pentads given

by M= 0, 1, 2, 3, 4, 5. Let
tf
ay ==0aXy+ Xa y

. (11-441)
Then (11-43) becomes

{Sa (J^a )aj8 (^ta)yS
~~

(^ie)a]8 (^leJyS) ^08
= ^' ( * 1*442)

Multiplying initially by Fay and using (11-422), we obtain

2<7JW-i6i8 = 0- (11-451)

Also, multiplying initially by V y (J^v ) a , we obtain

SA/ur^O 0^")- (11-452)

This lastreductiondepends onthe rule(^?ft>,) a (JS?
/[1(r

)ajg

= (Eva ) p
whena^ v.The

term for which a= v reduces to V
y ( 1)^ (E^)^ U^ ,

which cancels the last

term V
y (iE^)^ (i)y U^ , owing to the symmetrical property of U and V.

We now express the results (11-451), (11-452) in terms of the Einstein

tensor O^v and invariant 0. Since ^MV= 8^,
? 4-7? 1

p3 T -"^4^4 >
/ 1 i 4 i \

j-
(11-4O1J

We use the above definition of G^v to define new components (?56 and G^QQ.

Then (11-451) becomes r n 1-
V
A A

or, by the antisymmetrical properties oFBllVa9
-

G/iii
+5

5/i5,*
+

^Ofio^t
=

^leie (1 1-463)

Summing (11-463) for /*,= 1, 2, 3, 4, we obtain

0-055-0w= 4fl1616 . (11-464)
But by (11-462)

Hence, writing 6060
= JS0505

= A (11-466)

we obtain from (11-464) and (11-465)

*i6i6
= !(#-2A). (11-47)

Thus (11-451) and (11-452) become

Whence, by (11-461),

^v-^v(Gf

-2A) (11-48)

by the usual relativity formula for the energy tensor T^v . J

t The reader who wishes to check the calculation may find it helpful to refer to a later

result, (11-54), (11-551).

J Mathematical Theory of Relativity, equation (54*71). The constant A is at our disposal,
and its value must be fixed by a convention (see 13*1). Here the value of A is chosen

so that the macroscopic energy tensor may have a simple connection with the energy, etc.

defined in wave mechanics; it will, in fact, appear as we proceed, that the mechanical

identifications adopted in current wave mechanics presuppose that energy, etc. are
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If the axes 5 and are treated as invariant, (11-48) is a tensor equation,

and therefore holds for any orientation of the axes in four dimensions.

We have proved (11-48) for a factorisable R.C. matrix, but owing to the

linearity of the equations the proof can be immediately extended to non-

factorisable matrices, which must be expressed as the sum of a number of

products UV in (11-421). As already stated, it is postulated that U and V
are symmetrical matrices; when they are antisymmetrical some additional

terms appear which will be investigated in 11-5.

By (11-48) the energy tensor is composed of two parts, which we shall

distinguish as a kinematical part (T^)k and an electrical part (T^v )e , namely,

Considering the kinematical part, the component T^v determines the rota-

tion ofthe comparison fluid in the /x5 plane linked to a rotation ofthe position
vector of the object system in the v5 plane. These are the rotations which

correspond to translations in space-time (6-2). Accordingly:

The kinematical energy tensor consists of those components of the whole

Riemann-Christoffel tensor which specify linkages of translations in four
dimensions.

It is this part of the tensor which is used in dissecting a relative motion of

translation into separate absolute motions of the object system and

comparison fluid.

We now see why this part of the R.C. tensor is sufficient for macroscopic
mechanics. The "

continuous matter" treated in macroscopic relativity

theory is supposed to be such that.its kinematics can be described by macro-

scopically continuous displacements in four dimensions. The theory makes

110 provision for microscopic vorticity. Atomic physics, on the other hand,

is intimately concerned with vorticity or angular momentum on a micro-

scopic scale. Relativity theory can take account of microscopic motions

(e.g. heat energy of a gas), but only as signless quantities mean-square
values. If the atoms were spinning preponderantly in one direction, there

would be no indication of this in the motions as averaged for macroscopic

purposes.

Thus the mechanics of the atom cannot be treated on the basis of the

energy tensor T^v alone. The complete R.C. tensor B
fAva9 including com-

ponents with suffixes and 5, plays the part of a general mechanical tensor

applicable to atomic as well as macroscopic problems. The macroscopic

energy tensor forms part of it, B^v6 . In atomic problems it is generally

measured from the zero defined by the values of A given here and in 11*5. In cosmical

problems the value is fixed by another independent convention which has secured general

recognition; this cosmical value will not necessarily agree with the value here used, as we
shall find in (11-592) and (11-593).
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more convenient to handle the complete tensor in its wave tensor form,

i.e. as the R.C. matrix (B)^^.
It has always been difficult to see the physical significance of the process

of contraction used in obtaining the energy tensor from the B.C. tensor.

We have no physical insight into what we are doing when we add together

^1212 + ^1313 + ^1414 * f rm ~~
^11 We now see that from the physical point

of view the energy tensor Tn is not specially related to this sum, but is

another component #1515 of the same tensor. The summation is part (but

only part) ofa process ofcalculatingTu when other components are known

depending on an identitysatisfied bythe components. ButequallyjB1212could

be calculated from the same identity if the other components were known.

In the generalised field theoryf I have derived the fundamental tensor

*BpVa from the theory of relation structure. Since only a portion of the

tensor (viz. the part preserved in the contracted tensor *O^V )
was actually

used in specifying the electromagnetic-gravitational field, we seemed to

have
"
dragged up from below a certain amount of apparently useless

lumber" (loc. cit. 99). It was natural to hope that the unused part might

ultimately be needed in the representation of microscopic structure;

though at the time 110 progress could be made in this direction. We now see

that this hope is fulfilled, and the full tensor *-B
/4W

e
is utilised in microscopic

theory. (*/^lV(7
differs from B^va in providing for a macroscopic electro-

magnetic field, which would be an unnecessary complication at this stage
of our investigation.) There is accordingly thorough continuity between

the present theory and the field theory developed in my earlier book.

Field theories which are based on "five-dimensional relativity", i.e.

theories which introduce a curvature tensor in five dimensions, have not

so simple a connection with the present theory. B^ va has the double

aspect of a partition tensor and a curvature tensor; as a partition tensor

it includes components corresponding to two additional suffixes 5, 0; but

the identification with a curvature tensor applies only to the suffixes

1, 2, 3, 4, and in the present theory we do not extend this identification.

For such an extension it would be necessary to introduce a fictitious

extension of the distribution over a fifth or sixth dimension, so as to

provide corresponding Christoffel brackets and components of curvature.

Even if this were formally possible, it would be a retrograde development,

undoing the advance made in 6-3, 6-4. Whether the number of suffixes

is four or six, B^ va is a function of four coordinates only. It is to be

remembered that wave mechanics is a statistical theory. If we introduce

fictitious dimensions, the generalised formulae will determine steady states

in five or six dimensions
;
but these are not the states with which we are

concerned in physics.

t Mathematical Theory of Relativity, Chapter vn, Pt. II.
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As an elementary example, let the object system be a particle with an
exact momentum. Let us choose the time direction so that it is at rest. Its

energy tensor then reduces to a single component T^p^ where
/>

is the

proper density of its probability distribution. By (11-231) a time displace-

ment 8046 of the object particle corresponds to a time displacement 8045
'

of

the comparison fluid, given by

S045. (11-495)

For any other direction of displacement SO' = 0.

It may seem surprising that in this case the displacement of the particle

in spatial directions causes no recoil of the comparison fluid. But it must be

remembered that the conditions are highly idealised. By taking the momen-
tum vector to be exact the position ofthe particle becomes entirely unobaerv-

able. Therefore the problem of analysing an observed spatial displacement
into absolute displacements of the object particle and comparison fluid does

not arise. To represent observed position in space we must introduce a wave

packet; the momentum then ceases to be wholly in one direction, and we

cannot choose the time direction so that T^v reduces to a single component.
There will accordingly be components Tn , etc., specifying the way in which

the observed spatial displacement is to be partitioned.

Returning to a particle with an exact momentum vector, the particle is

distributed with even probability over the wave front of its waves. Dis-

placement in the wave front is merely a transfer of our attention from one

point to another, which has no dynamical reaction on the comparison fluid.

Displacement normal to the wave front (relative to the frame) is a physical

change of the conditions, involving a linked displacement of the comparison
fluid. We see from (11-495) that, when the object particle moves forward in

time, the comparison fluid moves in the same direction. We have pointed

out that the usual outlook, which has become incorporated in the equations

of physics, requires that an object system and its physical reference objects

should always move together in time that the reference system should be

a simultaneous one.f We have therefore the condition

.ffS045
' = r8045 , (11-496)

where J28045
'
is the displacement of the comparison fluid in linear measure.

By (11-495) and (11-496) ^ y^Er (u .

497)

Whenwe said above that a time displacement ofthe particlewas a physical

change of the conditions, we regarded the displacement as being applied to

f This refers primarily to coordinate time, and so depends on the choice of coordinates.

But, in the present simple example, if the two systems agree in coordinate time they will

agree in proper time.
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the particle and not to anything else just as one regards space displace-

ments. But it is a rooted habit of thought that a time displacement applied

to one particle automatically applies to the rest of the universe so that

time displacement also is a mere transfer of our attention from the present

to a future moment. We here reach the same outlook in a more legitimate

way by so choosing the linkage of displacement that the object particle

automatically carries the comparison fluid with it in the time direction.

As another elementary example, suppose that the object system is

identical with the comparison fluid; so that the object is its own standard of

reference. Since the object cannot change relatively to its simultaneous self,

it will be described observationally as uniform and unchanging. But a

uniform unchanging distribution of matter is an Einstein universe. Setting

8045
' = 8045 in (11-495) to express that the object is always compared with

its simultaneous self, we have
=1/4777-2 (11-498)

which is a well-known formula for the density in an Einstein universe of

radius r.

1 1-5. The Dual Riemann-Christoffel Tensor.

By 10-4 the R.C. matrix can be resolved in alternative ways. Let

(*)^=Sfi^(^ (11-51)

or, in the notation of 10-4,

^. (11-52)

We call
b^ va the dual R.C. tensor.

An interesting case is when the dual B.C. tensor consists of a single

component 61616= 6. Then, by (10-494),

(B) = bElsFu=bX(C D
) 9 (11-531)

the minus sign applying to time-like matrices. Hence, by (11-52),

the minus sign applying when E^ is time-like.

Our first impression is that (11-532) is the R.C. tensor for de Sitter space-

time (11-233), whose quadratic curvature Jt~2 is positive for space dimen-

sions and negative for time dimensions. But in our present coordinate

system a:4 is imaginary time; the ambiguity of sign in (11-532) is eliminated

when we substitute real time rotations for imaginary time rotations; so that

(11-532) represents a world completely isotropic in space and real time.

De Sitter space-time is obtained by taking the dual R.C. tensor to consist

of a single component 64545=6; so that

(B) 6^45^45- J6S ( CyU (1 1-533)

the minus sign applying to a= 01, 02, 03, 04, 05, 16 by (10-495). The plus

sign applies to all the components of the ordinary four-dimensional R.C.
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tensor; these accordingly agree with the values for a de Sitter space-time of

radius given by J6 = -R~2 .

By (11-421), (11-51) and (11-533)

Thus U and V in this case consist of single components ^45^45, $45^45,

(^45^45= b). Since J^45 is an antisymmetrical matrix, U and F are anti-

symmetrical.

Before proceeding further with the investigation of de Sitter space-time,

it is necessary to extend the theory given in 11-4 which treats only the

symmetrical case. Let

According to (11-43) QOLY
= #ya . Using the standard matrices (3-27) for

the pentad E0a , we find by direct calculation that |(?ay
is the matrix

p"* &sXi-<AiX2 ^2X4-^4X2 ^4X1- ^1X4

* ^1X2-^2X1 ^3X2-^2X3 0iX3-0sXi

^4X2-^2X4 ^2X3-^3X2 ^4X3-^3X4

This is equivalent to

where ?7 = -- Since

the result is iQay= ây -H^45)cjf
7
cJ-(^45)ay

- (11-551)

If T is another antisymmetrical matrix, we obtain a corresponding R.C.

matrix
(

JB).^-C^^W.X^+ K^A-^o)^^. (H'M2)

Since ?7 and F are both antisymmetrical, (5)ay0s ^s antisymmetrical in a

and y and in j8 and 8. Hence, by (11-51), &Mwr
= unless jE7

Me
and JSfw are both

time-like. The dual R.C. tensor thus has at most 36 components. We have

U
ay
F
ay
= S buva(E^ (Eva)ay

=Sb^ spur (JE^
Jw)

= 426^^ = 47, (11-553)

where 7= 62323+ 63isi+ ^1212 + ^0404+ ^osos+ ^4545 (1 1-554)

Also we have

)e U l ( 4̂6)ay
F
ay
= S b

vuno spur (J45^ ) spur (

Hence, setting j8,8
= a,y in (11-552),

(11-56)
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The term 64646 is distinguished by the fact that J046 is the product of the two

time-like matrices in the pentad E0a . This rule enables us to write down the

corresponding term for other pentads.

The left-hand side of (11-56) is the quantity which was treated in 11-4,

yielding the equation (11-451). In the symmetrical case it vanishes identic-

ally. The right-hand side of (11-56) therefore gives the additional terms

which must be included in (11-451) when U and V are antisymmetrical. In

place of (11-462), we have the following equations for the diagonal com-

ponenteof^ -011+ 1616+ 1010+2&MM=51616+r (11-57)

~
#22+ ^2625+ -B2020+ 2&3131

- JS1616+ 7
-

<?33+ fi3536+ -B3030+ 261212=Buu+ T
+ 4049+ 260806=Buu+ Y

+ 2&0404
-
#1616+ 7

-Gw+BOS06 + 264546=516ie+ 7

Adding the first four and subtracting the last two, we have

So that, setting 51616+ F= i (0-2A), (11-581)

we obtain A=#0505 + 260404+ 26464B
- Y. (11-582)

The result differs from the symmetrical case in two ways: (1) the value of

A is changed, and (2) the energy tensor G
flv %gtJiV

(G 2X) now has three

constituents. If
T^(Tflv)k+ (T^v)e+ (T^)a9 (11-583)

the four diagonal elements of the new constituent are

(^)a= (
-

I/**) (&2323 , ftilll. &1212, &0505)- (H'584)

The non-diagonal elements will contain the non-diagonal terms of b
jtva

.

We return now to the dual R.C. tensor with a single component
64545

= b = 4jR~2
,
which gives de Sitter space-time. Then (11-584) vanishes,

and the energy tensor consists of kinematical components #^5 and elec-

trical components U^ovo as
*n^e symmetrical case. Herewe haveB^^= E~2

and B^Q= - JR2, by (11-533); so that T^v
= 0, as it should be in a de Sitter

"empty" world. By (11-582), A= 35~2
, which agrees with the usual result.f

The "emptiness" of the de Sitter world is here represented as due to a

cancelling of two energy tensors
(TpV )k and (T^. This is because the sim-

plest kind of space is an electrically saturated space. To obtain a metric

agreeing with that of neutral space we have to cancel the electrical energy.

It is therefore appropriate that the formulae should exhibit the zero energy
as the result of cancellation. Another way of obtaining the de Sitter world is

to take a dual R.C. tensor with two components 64546
= 60404

= 6. Since the

suffixes and 5 are interchanged in the two components, the four-dimen-

t Mathematical Theory of Relativity, equation (69-12).
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sional part of B
/[4eva

is unaltered; but the energies B^^ 9 B^^ are found to

be zero.

An Einstein world is obtained by taking a dual R.C. tensor with two

components
64545

=
&0505

= 2^"2
- (11-591)

We then find #2323 ,
-B3m Bm2> Si6i5> B*m> ^3535= B

~2
'

#0404* ^1618
= ~^~2

-

The other components vanish. These agree with the values in a space-time

spherical in three dimensions and cylindrical in the fourth, namely /?2323>

^3131 ^1212=^~2
J -Bl414 ^2424 > ^3434 0- ^Or ^e energy tenSOr W6 obtalll

(remembering that there is a component (244)0= (V^^osos)

87ry^
= (-l, -1, ~1, -3)B-a. (11-592)

By (11-582), A = 0. This is a possible specification of an Einstein world,

though it is not the one which has usually been given in general relativity

theory. The energy tensor ordinarily adopted isf

' =
(0, 0, 0,

-
2) JB-2 (11-593)

where A' = R~2
. That is to say, (

1 1-593) is obtained from (
1 1-592) by changing

the constant A (the cosmical constant) in the formula

In other words we reckon energy and pressure from a different zero. This

change of zero reckoning will be explained in 14-3.

11-6. Metric and " a priori" Probability.

Let fcr^Jo- -(fl^- ty.,0), (H-611)

87r(^v)c
=A^v , (11-612)

so that ^= (^)o-(^)c- (11-613)

We shall suppose tentatively that (T^ and (T^ are the absolute energy
tensors of the object system and comparison fluid referred to the frame. J
The ordinary relative energy tensor T^v of the object system is thus the

difference of the two absolute tensors.

In macroscopic relativity theory g^v is defined by the condition that

SpvdXpdXy ( =efo
2
) is a quantity measurable in a definite way by scales and

clocks. This definition is clearly unsuitable for microscopic theory. We must

adopt a definition of g^v in terms of more primitive conceptions, and show

later, when the theory is sufficiently developed to treat the extension of

macroscopic aggregations (scales and clocks), that the macroscopic definition

is equivalent. We therefore regard (11-612) as the definition ofg^.

t For real time the last component becomes 87rT44'= +2R~*9 giving p

{ The absolute energy tensor referred to the frame (self-energy tensor) is defined in 10*5.
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Apart from a numerical scale factor A/STT, the metrical tensor g^v is simply
the energy tensor of the adopted comparison fluid.

We have seen that the geometrical frame of coordinates must be filled

with a comparison fluid in order to form an ideally observable background
of reference for the object systems that we study. The comparison fluid

consists of a probability distribution of particles which might be specified

in detail; but macroscopically it is sufficiently described by specifying its

energy tensor (relative to the frame) as a function of the coordinates. This

energy tensor constitutes a metrical tensor for the frame and is more

familiar to us under that name. Having thus defined g^v9 we can transform

the coordinates locally to rectangular coordinates. Then (11-612) becomes,

on raising a suffix,
(r/)c

=
(A/87r) S/. (11-614)

That is to say, the comparison fluid turns out to be uniform and isotropic at

every point so far as the gross characteristics described by the mixed

energy tensor are concerned. We do not choose an isotropic comparison fluid .

Whatever comparison fluid is chosen turns out to be isotropic, because,

being the comparison fluid, it is the standard of isotropy .

In elementary problems we consider only one or two particles. It is not

intended that there shall be no other particles in the universe. It is implicitly

assumed that there is some innocuous way of distributing the other particles

so that the results of our investigation will not be entirely invalidated by
their presence. Formally what is known as "the problem of two particles"

should be described as the problem ofN particles, of which two are studied

in detail whilst the remaining N 2 are supposed to have some standard

average distribution which remains undisturbed by the behaviour of the

two particles. We shall call the N 2 particles unspecified particles. A par-

ticle is specified by giving it a wave function describing a particular pro-

bability distribution of position or momentum; so long as its probability

distribution is the standard average distribution there is no need to mention

it in the problem.
It would be redundant to surround the object system with a double

environment of (a) unspecified particles waiting to be introduced into the

analysis as the treatment grows more comprehensive, and (6) the particles

constituting the comparison fluid. We therefore adopt a comparison fluid

consisting of all the unspecified particles in the universe. Let the number

be N. It is convenient also to define a partial comparisonfluid having 1/^th
ofthe density ofthe actual comparison fluid, and therefore corresponding to

thestandardprobabilitydistributionofone unspecified particle . The absolute

energy tensor of a partial comparison fluid is, by (11-612),

(^-(A/SidOfiW- (11-615)

Whilst it is permissible to speak of the energy tensor T^v belonging to a
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particular object particle, we must not use the formulae equating it to

curvature of space-time, unless the object particle is the sole occupant of

the region considered. Since the probability distributions of a number of

object particles may overlap, we must write (11-611) more generally as

87^(2^)0= -(G^-^,0). (n-621)

Here S extends over all the particles in the universe treated in turn as

object particles, although in practice the main contribution comes from a

few particles specified as being present in the region we are considering.

(The combined density in any region of all the unspecified particles is

probably less than 10~28
gm. per cu. cm.)

We have therefore for the whole energy tensor in any region

2I

^=S(r^-(rM>p)e L{(2'^-(2'M,y, (11-622)

there being N terms in the summation. Thus each object particle has the

relative energy tensor
(T̂ . (T̂ . (11

.

623)

When an object particle is unspecified, it has the standard probability

distribution, and its absolute energy tensor
(IJ^Jo

is equal to (T^ . Thus
its relative energy tensor vanishes. It follows that for a specified object

particle:

The relative (observable) energy tensor is measured from the standard

probability distribution as zero, and not from a hypothetical state of noii-

existence. The conception of creating a particle does not enter into our

theory. Energy is furnished to a particle by specifying it, not by creating it.

The result (11-623) is the justification of the tentative procedure which
we have been following in this section. It is necessary in order to conform
to the general outlook of wave mechanics, which allows us to discuss a

system of a few particles without explicit recognition of the vast number of

other particles in the universe. If T^v were merely a tensor involved in the

inner mechanics of the system, it would not matter much from what zero

it was reckoned. But in unified theory T^ is to be identified with the

relativity tensor (-l/87r){G
[

flJ/-^ lf (G-2A)}; and for this it is essential

that all the particles in the region, specified or not, shall be included. If in

the formulation of the
"
problem of two particles" it is intended that there

shall be no unspecified particles overlapping the system, this should be
stated explicitly; the appropriate terms must then be introduced into the

equation to represent the energy employed in creating a vacant space

among the JV - 2 unspecified particles; in fact the unspecified particles must
be specified as absent from the region. Since this is not the procedure
followed, we must adopt the alternative given by (1 1-623), namely we must
choose the zero of energy in such a way that the unspecified particles make
no contribution to 2^'BO that we may ignore them without harm.
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Our results up to this point are:

(a) The adopted comparison fluid consists of the unspecified particles of

the universe.

(6) The absolute energy tensor of the comparison fluid is the A-term

(generally known as the cosmical term) in the relative energy tensor.

(c) The absolute energy tensor of the comparison fluid is the metrical

tensor of the frame.

If a different comparison fluid were used it would be necessary to

"specify", either individually or macroscopically, the particles .composing
it. The macroscopic reference objects used in particular observations can

be regarded as a specified comparison fluid. But it is simpler to treat these

as additional object systems; so that the same comparison fluid (a) is used

as intermediary in all problems, and the observed relations between object

systems are resolved into relations (unobserved, but nevertheless ideally

observable) between each object system and a common comparison fluid.

The probability distribution which applies in the absence of special

information is commonly called the a priori probability distribution. The

unspecified particles are those as to which we have no special information.

The probability distribution of an unspecified particle, which we have

identified with a partial comparison fluid, is therefore the a priori pro-

bability distribution. The identification

A priori probability distribution= partial comparison fluid

helps to connect our theory with current terminology; but it must be under-

stood that we reject emphatically the conception of a priori probability.

The distribution is uniform and isotropic not for a priori reasons, but for

the reason already given, namely that it determines the tensor g^v . It is,

I think, generally admitted that the need for a conception of a priori

probability is a logical weakness in statistical mechanics as ordinarily

developed. We need not discuss here attempts to defend it on a metaphysical
basis, and to deduce from a

' '

Principle of Indifference
' '

that it has a uniform

and isotropic distribution. Probably few theorists would accept such views

today. But it is not generally realised that relativity theory has rendered

the conception of a priori probability entirely unnecessary,f

The so-called apriori probability distribution used in statistical mechanics

is essentially an unobservable; for as soon as we have any observational

information, the a priori probability ceases to apply, and a modified (actual)

probability is substituted. A priori probability is to be treated therefore as

other unobservables (introduced for mathematical convenience) are treated

in relativity theory, e.g. frames of space and time. The a priori probability

distribution is sometimes called a "basis of statistics"; that is to say, it is

f New Pathways in Science, pp. 129 ff.
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a standard of reference for statistical enumerations in the same way that a

frame of space and time is a standard of reference for measurements of

extension. Observable results are invariant for all transformations of these

reference frames; they must equally be invariant for changes of the adopted
a priori probability distribution. The common appellation is therefore a

misnomer; the a priori probability distribution is not anything that is

given apriori; it is an arbitrary comparison distribution whichwe can change
as we please.

The reason why it is not ordinarily recognised that observable phenomena
are invariant for transformations of the a priori probability distribution, is

that the transformation is not pursued to the end. Ifthe change ofreference

distribution changes the equations of an electron and proton, it will change
also the equations determining the behaviour of the measuring appliances

composed of electrons and protons. When the transformation is applied

both to the measuring appliance and the object measured, the result of the

measurement is invariant. But if we apply the transformation only to the

microscopic systems which are being measured and not to the macroscopic

measuring apparatus, we fail to notice this invariance. That was the mistake

originally made in interpreting the Michelson-Morley experiment; the

transformation representing change of motion was at first applied only to

the optical factors in the experiment, the mechanical or metrical factors

being overlooked.

This invariance is provided for in the usual way by a tensor relation

between the quantities concerned in the microscopic and macroscopic parts

of the theory. In the microscopic equations the change of a priori pro-

bability is formulated as a change of the energy tensor
(3^^)c

of the com-

parison fluid; in the macroscopic equations (which determine the behaviour

of the measuring appliances) the same change is expressed as a change of

the metrical tensor g^v .

The linkage ofthe changes ofg^v and (T^c ,
so as to produce no observable

result, is provided for by their description as tensors of the same kind. In

(11-612) we have gone further, and identified them. The importance of this

step is that if the frame and the comparison fluid are both described by the

same tensor called in one case the metrical tensor and the other case the

energy tensor it minimises the error of current quantum theory in con-

fusing them. To give meaning to the ordinary equations of current quantum
theory we have to suppose that a particular physical reference object is

intended, and we have to discover what this reference object is. If, on being

challenged, the quantum physicist were to reply that he intended the

reference object to be an atom of carbon travelling at 150 km. per sec. in

the z-direction, it would be preposterously misleading not to have stated

this. If, however, he replies that he has not distinguished between the frame
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and the comparison fluid, so that when he said that the tensor g^v of the

frame was isotropic (i.e. that his coordinates were rectangular) he also meant

that the comparison fluid was isotropic, his omission is a minor inadvertence.

He might perhaps accuse us of stupidity if we did not supply the omission

for ourselves. Having regard to this, our identification ofg^v with the energy
tensor of the comparison fluid is an obvious rectification of an omission in

current quantum theory.

Locally any change of (2^v)c or g^v is a tensor transformation; but over an

extended region we have to distinguish between tensor transformations

and absolute changes. From the second derivatives of the g^ we obtain

certain characteristics of the comparison fluid, which we shall call hyper-

characteristics, which must be specified definitely in any problem and must

not be changed in any transformation. These hypercharacteristics corre-

spond to irreducible gravitational fields, or to the distributions of matter

causing such fields. Either an assurance that the field is zero, or a specifica-

tion of the invariants of the field, is an essential datum of any problem con-

cerning an object system which covers an extended region. The observable

results are not invariant for transformations of the probability distribution

of the unspecified particles which would create a change of irreducible

gravitational field; and when, as usual, the comparison fluid is not mentioned

explicitly as a datum of the problem, it is obviously implied that its cha-

racteristics are not incompatible with the other data furnished, that is to

say with the invariants of the gravitational field.

Accordingly the statement that any distribution may be chosen as an

a priori probability distribution requires qualification when an extended

region is considered. It must be remembered that we are not defending
a priori probability. In our theory the partial comparison fluid takes its

place. Therefore we are not led into a discussion as to what kind of field

should be assumed as probable a priori, if no observational information is

furnished. If we are not told what the field is, we have no idea what will

happen, or what is likely to happen and there is no more to be said.

By (
1 1-623) the unspecified particles ofthe universe make no contribution

to TpV , and can therefore be neglected in elementary problems at any rate

so far as this part of the theory is concerned. But there are other ways in

which the treatment of a system of a few particles as if they were the only

particles in the universe is liable to be misleading. It is natural to discuss

the effect of spatial displacement of a single particle, the other particles in

the universe being unchanged. It is possible also to discuss a temporal

displacement of a single particle, the other particles being unchanged. This

conception is used frequently and legitimately in relativity theory; indeed

it would be contrary to the fundamental principle of relativity theory to

discriminate between space and time displacements. But in quantum
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physics the notion of temporal displacement has been employed less care-

fully. Usually when reference is made to a displacement (da?, dy, dz, dt) of

a particle, it seems to be intended that (dx, dy, dz) applies to that particle,

and dt applies to all the particles in the universe. Obviously, when this

interpretation is intended, Lorentz transformations are not applicable to

(dx, dy, dz, dt). Thus the common form of the "problem of one particle"

combines spatial displacement of one particle with temporal displacement
of N particles. The "one" particle is thus a hybrid whose time displace-

ments areN times as effective as its space displacements in producing recoil

of the comparison fluid; and the corresponding Riemann-Christoffel tensor

has its time component 4545 magnified N times relatively to its space

components B1515 , etc. The corresponding radius of curvature is therefore

R in the space directions, but R' = R/^/N in the time direction. Since N is

about 1079
, the geometrical picture has become too extravagant to be

retained; but we express the same analytical relation by ascribing to the

intrinsic vectors of the object particle the appropriate rotation 80', linked

by .64545 to the rotation 8tfR of its position vector in space-time. This very

rapid rotation of the intrinsic vectors (e.g. the stream vector) is interpreted

as a periodic wave. The wave length should be 27TJR', which is of order

1C"12 cm., and is comparable with the wave length of the de Broglie waves

of elementary particles. The precise calculation of the wave lengths for

protons and electrons involves additional considerations which will be

treated in due course.

The waves attributed to an electron in current wave mechanics belong to

it, not individually, but because it is one of N particles; and their wave

length is dependent on the number N. Considered by itself, a particle has

no other periodicity than that due to the connectivity of the space in which

it is situated. The wave length of its "waves" is the circumference of space.

11-7. Microscopic and Macroscopic Theory.

In the most general formulation of the problems of physics the particles are

divided into three groups:

(a) One or more particles specified individually.

(6) Collections of particles specified macroscopically.

(c) The "rest of the universe
"
consisting of unspecified particles.

In mathematical treatment the subject is divided into a number of idealised

problems in which one of the groups may be absent.

In general the particles ofgroup (c) far outnumber all the others, and most

of our formulae are developed on this understanding. There is, however, a

class of problems, namely, cosmical problems, in which the whole universe

is specified macroscopically, e.g. an Einstein universe; there are then no
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particles ofgroup (c), and special precautions must be taken in applying the

formulae (Chapter xiv).

By (11-623) the energy tensor of the unspecified particles vanishes. But

there is no such condition for the other components of their B.C. matrix;

and the four-dimensional R.C. tensor of the unspecified particles is the

foundation of the R.C. tensor of space-time. We shall call this the cosmical

E.G. tensor. If it exists alone it gives a de Sitter space-time; for that is well

known to be the only solution (without singularities) of the equation

a
tlv-$gfJLV

(G-2X) = satisfied by space-time containing only unspecified

particles.

Notwithstanding the overwhelming preponderance of unspecified par-

ticles, the effect of group (6) is often more important. This is because the

effect is more localised. As part of their macroscopic specification, the

position of these collections of particles is closely defined; and they con-

tribute an R.C. tensor which locally far outweighs the cosmical R.C. tensor.

Consequently the latter is commonly neglected in the local problems of

general relativity theory, e.g. the theory of planetary motion.

Quantum theory deals primarily with problems involving (a) and (c) only.

The influence of macroscopic objects, if any, on these problems is attributed

to gravitational or electromagnetic fields emanating from them. We may
therefore call problems which do not involve group (6), directly or indirectly,

field-freeproblems. In field-free conditions space-time is ofthe de Sitter type.

The specified particles (a) are represented by wave-functions, and the un-

specified particles (c) are represented by the cosmical R.C. tensor, or

equivalently by the g^v which correspond to it.

It might be thought that the individually specified particles, like those

of group (6), would contribute a-local R.C. tensor very much greater than

the cosmical tensor. For example, the average density in the space occupied

by an atom is very much greater than the density (
~ 10~28) due to un-

specified particles. But this is a confusion of ideas. We must make up our

minds whether the R.C. matrix of a particle is to be absorbed into the R.C.

tensor of space-time, or reserved for more detailed treatment by quantum

theory. We cannot have it both ways. A particle specified individually is one

of those reserved for detailed treatment. Its interaction with its surround-

ings is expressed by wave functions. We must not at the same time insert

a duplicate in the R.C. tensor, and so obtain another (cruder) representation

of its interaction by the changes of g^v which would result.

We shall find laterthat thewavefunctions ofa specified particle, employed

in current theory, are defined in such a way that they represent an addition

to, not a substitution for, the characteristics belonging to it as an unspecified

particle. In that sense the specified particle is represented in the R.C. tensor

as well as in the wave functions. But that merely secures that the cosmical
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tensor is not disturbed when the particle is specified. If it were not for this

provision, the R.C. tensor of space-time would be reduced by about 1 part
in 1079 for every particle specified. As it is, we may regard the number of

unspecified particles as a fixed constant N, giving a constant B.C. tensor

however many particles may be specified individually.

It is important to realise that the individual atoms and electrons, whose

energy and momentum are given by their wave functions, do not disturb

the curvature ofthe space-timeinwhich theirwave functions are represented .

Reciprocally the macroscopic objects, whose energy and momentum are

represented by components of curvature of space-time, have no wave

functions.f For the purpose of investigating the connection of microscopic

and macroscopic theories, we can represent macroscopic objects by com-

plicated wave functions; but such wave functions occupy a space-time which

has no more than the cosmical curvature. In 11-1 we referred to the error

of confusing the frame with the physical comparison system, and remarked

that the neglect of uncertainty of position and momentum of light com-

parison objects and the neglect of curvature of space-time produced by

heavy comparison objects were different forms of the same error. The error

takes one form or the other according as the comparison objects are specified

microscopically or macroscopically.

Using the notation of 10-4, the R.C. matrix can be expressed in the

various forms:

(11-711)

(H-712)

^(E^. (11-713)

Let us consider in particular the cosmical R.C. matrix which gives a metric

of the de Sitter form. By (11-533) this isj

(B^^^E^F^B^^C.D^^C^}. (11-721)

This is the space tensor; the corresponding strain tensor is

(ntraln= 4tf~2Vl6=^ (H'722)

as in (10-54). By 10-5 this represents an "uncertain" momentum in the

CD-frame, or an "exact" momei^tum in the JEJjF-frame.

Consider first the GjD-frame. By (11-712) the R.C. tensor B^vo , which

constitutes the complete energy tensor, has been constructed in the CD-

frame; and it would therefore seem that the uncertain energy tensor is the

true cosmical energy tensor. But in that case the position tensor is exact;

t Or we may use wave functions which represent the kinetic energy and pressure of the

particles of a gas, but not their rest energy; in that case the curvature of the space-time in

which these functions are represented corresponds to the rest energy, but not the kinetic

energy.

% The suffixes k, e, s, t refer to kinematical, electrical, space-like and time-like matrices.
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that is to say the cosmical R.C. tensor is wholly concentrated at one point

of space. This, of course, does not correspond to the actual conditions of de

Sitter space-time. The failure is easily explained; we cannot do more than

we have done with one double frame. The cosmical R.C. tensor is made up
of contributions from some 1079 unspecified particles, each of which has its

own double frame. If we attribute to them uncertain momenta, they will

have exact positions; but between them they will cover all space, giving

a practically continuous R.C. tensor.

Since (-B)Btraln is algebraic in the J^JP-frame, we can write, instead of

(11-722),

(*)strain=~^-M4^^
(11-73)

introducingN double frames instead ofone. Ifthe frames commute (Case (b)

in 2-7) they have no relation of orientation to one another. The method

of imposing a uniform distribution of orientation belongs to the type of

treatment of the many particle problem introduced in Chapter xvi. Here it

is sufficient to recognise that the difficulty of avoiding concentration of the

R.C. tensor at one point will disappear when we take account of its highly

composite nature.

But we have a great deal more to learn from the double frame, before

proceeding to the many particle problem. We consider the simplest of all

problems an elementary object particle in de Sitter space-time. The un-

specified particles, which provide the de Sitter metric, form the comparison
fluid for the particle. To bring the problem within range of treatment by
double wave functions, we use a partial comparison fluid consisting of one

unspecified particle. The object particle, being specified microscopically,

does not contribute to the curvature ofthe space-time in which we represent

its wave function. The cosmical R.C. tensor at any point corresponds to a

uniform distribution of momentum vectors in all directions. We could

suppose that this was a superposition of exact momentum vectors of a

great number of unspecified particles; but it is evidently more convenient

to take it to be the entirely uncertain momentum of one unspecified

particle a partial comparison fluid. This will have definite position in the

small region we are considering; but the other unspecified particles will

provide similar R.C. tensors at other points. (We take advantage of our

liberty to choose any convenient way of analysing the unspecified matter of

the universe into "particles", i.e. wave systems.) The cosmical R.C. tensor

at the point is the complete self-energytensorofthe partialcomparison fluid.

We have represented it in a CD-frame. By transforming to the J57JP-frame

(so that the R.C. tensor is transformed into its dual 6
/ACva) we change it

into an exact energy tensor 6^45^45. We then readily recognise it as the
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outer square of the stream vector of a neutral particle which was identified

with the self energy tensor in 10-5. The unspecified particle is neutral,

for otherwise it would not give the R.C. tensor characteristic of neutral

space-time; also when the "entire uncertainty" applies to all components
of a complete stream vector the sign of the charge necessarily shares in the

uncertainty.

Turning to the elementary object particle, since we are considering only

a point, or small region, we must for consistency suppose it to have exact

position and uncertain momentum. This condition is not easy to formulate

since we do not want the charge and spin to be uncertain. It is simplest to

start with an elementary particle and its partial comparison fluid defined as

having exact momentum in the UjF-frame. We can afterwards transpose

the results to the CD-frame. The product ofthe stream vectors of the object

particle and of the partial comparison fluid will give the mutual energy
tensor. This when transposed to the 6yD-frame will give the R.C. matrix of

the object particle. The portion Biav^+BllXM
will give the ordinary energy

tensor of the object particle. This as we have seen is the observable relative

energy. Thus the relative energy defined by T^v is the same as the mutual

energy defined in 1O5 as the product of the stream vectors; except that

the latter is expressed as a complete tensor and exhibits the kinematical

and electrical energies separately, whereas T^v gives their sum. We can

separate the part corresponding to the self energy of the comparison fluid,

as in (11-613), the remainder being regarded as an energy of the object

particle.t For consistency this should agree with the self energy of the

object particle defined directly in (10-51). This condition is investigated

in 12-6.

1 1-8. Neutral Comparison Fluid.

By working in the J5?JF-frame we are able to use particles with exact stream

vectors. Consider an object particle with stream vector C7 = SJK
/i
%

fi

= ^x*
and a comparison particle with stream vector F = SjK

ft
v
ft
= ^eo*. The com-

bined system is described by double wave vectors Y, X, where

T=^*, X= xo>*. (11-81)

The microscopic treatment will depend on the use ofthese wave functions ;

but the connection with macroscopic theory is given by the identification

t Since the object particle and comparison fluid move in opposite directions relative to

the frame in our coordinates (space and imaginary time), the self energy of the partial com-

parison fluid should be taken to be minus the square of the stream vector in order that it

may be comparable with a mutual energy. An unspecified particle treated as object particle

would produce a recoil of a similar unspecified particle treated as its partial comparison fluid.

This explains why the total energy in (11-613) is the difference, not the sum, of the energies
of the object particle and comparison fluid.
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(comparing (11-711) and (11-713))

where 6
/iv(r

is the dual R.C. tensor of the object particle with the other

particle as comparison fluid, together with the condition that the dual

cosmical R.C. tensor b
jMtr

f which determines the metric is given by

VV"= *fitwr'-
(11-822)

We have been mainly using space tensors, because we wished to connect our

results with the space tensors of general relativity theory; but for the

special purposes of wave mechanics strain vectors are more useful. We shall

therefore take $, x> #> <*> * be covariant wave vectors forming a strain

tensor 6
jltW

.

In this simple formulation we have taken the comparison particle (or

partial comparison fluid) to be an elementary charged particle. Our standard

equations, however, postulate a neutral comparison fluid. We wish now to

direct special attention to the step by which we pass from a charged particle

to a neutral particle as comparison fluid. The relation between the stream

strain vectors F, V$ of an elementary and a neutral particle is

TJ
= qsF (11-83)

This follows at once from (6-64), the strain vector of the neutral particle

(equally likely to be in any one of the four states) being J (8a+8b + SC+ Sd).

We can therefore pass from an electrically saturated to a neutral com-

parison fluid by contracting the suffixes of^ and w. The change is expressed

by the transformation . , , ,
, m j.\

7fOL <rBXv*lt*8'~*'iTOtYBXv***B (JLJi'o*)

or, in terms of wave functions,

Y^X^JY^Xrf. (11-85)

In (11-85) we need no longer assume that Y and X are factorisable. A state

ofa double system is regarded as elementary if it is pure as regards factorisa-

tion into Y and X, irrespective of whether there is a UV factorisation. The

formula (11-85) is of great importance in Chapter xn.

We have at last reached the solution of what might be called the initial

problem of electron and proton theory. The microscopic complete relative

(or mutual) energy strain tensor of an elementary charged particle together

with a neutral comparison fluid has the form Ya0Xy
. As the importance of

this may not be obvious, we make the following comments:

(1) The elementary charged particle is usually described by simple wave

functions ^, #, and the energy and momentum are contained in a simple

stream vector 0x*- By introducing an empirical mass constant (different

for the proton and electron) these simple wave functions are made to serve

the ordinary purposes of quantum theory and yield correct results. But if
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we are not content to accept the mass as an empirical characteristic peculiar

to wave mechanics, and wish to trace its connection with the macroscopic
mass identified with a component of space-time curvature, we are met with

the difficulty that all the measurable characteristics of a charged particle

are contained in double wave functions of the particle and a physical com-

parison system. The conditions ofreplacement ofthe double wave functions

by single wave functions is the central problem in the unification of rela-

tivity theory and current quantum theory. We take a large step towards

the solution when we find that, adopting a neutral comparison fluid, the

double wave functions are of the specialised kind Yap,
X

yp,
the second

suffixes being "contractible".

(2) Unlike $ and #, the wave functions T, X are directly connected with

the fundamental tensors of relativity theory. Taking the energy tensors of

a number of particles (such that the components ignored in macroscopic

theory cancel out) we can calculate the curvature of space-time equivalent

to them, and hence translate the energy, etc., into macroscopic units.

(3) The replacement of the energy tensor TX* by an energy vector ^x*
occurs by contraction ofthe suffixes j8, 8, which is the usual method in tensor

calculus of reducing the rank of a tensor.

(4) We have taken the comparison fluid to consist of one neutral particle,

that being all that we can provide for with one double frame. It is therefore

a partial comparison fluid according to our previous terminology. The

passage to the actual comparison fluid consisting ofN unspecified particles

is, however, quite simple. The analysis in (11-73) represents the energy
tensor as the sum of independent tensors in different frames; so that each

object particle affects only its own partial comparison fluid. The average
recoil of the total comparison fluid is therefore 1/Nth of the amount of the

recoil of the partial comparison fluid. The Riemann-Christoffel tensor is

thereby lessened in the ratio 1/N.

(5) The ideal conditions postulated in these equations correspond to

de Sitter space-time containing no macroscopically specified matter. It

should be remembered that de Sitter space-time is, according to ordinary

standards, an expanding universe. It will be necessary later to treat the

modifications involved in using a static frame of reference (Einstein space-

time) but this involves introducing macroscopically specified matter,

We shall now show that the contractible double wave vectors Ya0,
X

yp
can (for practical purposes) be replaced by simple wave vectors a , xy The
observational significance ofwave functions is that they determine expecta-

tion values for the system of operators P which represent observable

relations. Ordinarily for double wave vectors (appropriately normalised)

the expectation value is XagPaytpTy8;
but in the present application the
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contraction of the second suffixes restricts P to the form P
ay , and the

expectation value is X P *F (11'86)

Introduce eight simple wave vectors 0#>, rf (j8= 1, 2, 3, 4) defined by

W-Ytf. x.W-X.0.
Then (11-86) becomes

X.
W^y*y

n)+X^ (
ll '87

>

This is the expectation value of P with respect to an impure simple wave

tensor 22) 33
4). (

1 1-88)

By using symbolic factors of T the expectation value may be written

FPTasin (3-35).

Thus, for the purpose of calculating expectation values, the pure (con-

tractible) double tensor *FX* can be replaced by the impure simple tensor T.

The reduction of double wave tensors to simple wave tensors is therefore

legitimate, but involves a re-analysis into pure elementary states.

We have considered the reduction of an isolated (discrete) wave tensor.

There still remains the question of replacing the phase space of the double

wave tensor by that of a simple wave tensor. We shall see in the 'next

chapter that this transformation of the phase space has important con-

sequences.

11-9. Retrospect.

In this chapter a gulf between macroscopic relativity theory arid micro-

scopic quantum theory has been bridged. We have found how to construct

a Riemann-Christoffel matrix, (a) out of the tensors employed in general

relativity theory, and (b) out of the wave functions employed in quantum

theory. The mechanical quantities, energy, momentum, etc. referred to in

the two theories are thus reduced to a common form. We can, for example,
add the R.C. matrices corresponding to the wave functions of a large

number of particles and derive the energy tensor which describes the

aggregation macroscopically.

Whereas the construction of the R.C. matrix out of macroscopic tensors

is straightforward, the theory of its construction out of wave functions is

perhaps unexpectedly intricate. It is natural to put the question, What
is the R.C. matrix corresponding to a proton or electron with an exact

momentum vector? The question is not so elementary as it seems, because

the properties ascribed to the particle are really combined properties of

the particle and a standard comparison fluid; and although the particle

is elementary, the standard comparison fluid is not. If we consider

instead an object particle referred to a single comparison particle, both

having exact momentum vectors, the answer is simple. The R.C. matrix
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is the outer product of their stream vectors. Already in Chapter x, the

portion of this R.C. matrix which specifies linkage of translations, viz. the

kinematical energy tensor, has been called the "mutual energy tensor"

ofthe two particles ; but this was merely a development ofthe nomenclature

of current quantum theory. The connection with energy as classically,

i.e. macroscopically, defined appears for the first time in the present Chapter.
The standard comparison fluid has an isotropy in space and time which

can be defined by the condition that its energy tensor (referred to the

frame) is invariant for rotations and Lorentz transformations, or equi-

valently by the condition that its energy tensorf is to be identified with

the metrical tensor g^. To pass from an elementary comparison particle

to this standard comparison fluid, it is not sufficient to integrate over

a symmetrical distribution of stream vectors of the comparison particle.

The symmetry is disturbed by the recoil due to the motion of the object

particle (specified by its exact stream vector). To neglect this recoil would
be to neglect the very thing we are investigating, namely the mechanical

specification of the object particle ; for in the idealised universe consisting
of an object particle and comparison fluid, the only manifestation of the

mass of the object particle is in its mechanical reaction on the com-

parison fluid.

In treating the construction of the R.C. matrix, and the connection of

mass and momentum in quantum theory with the corresponding macro-

scopic tensors, it is essential to bear in mind that displacement of the

object particle disturbs the comparison fluid, the combination of action

and reaction being expressed by double wave functions. But in applying
this theory to the elementary wave functions of quantum theory, the

complication arises that these are adapted to a different point of view.

These simple wave functions are intended to describe self-contained

systems superposed on an undisturbed environment. The conception of

such detached systems is essentially non-relativistic, but it can be justified

up to a point as a practical procedure. It is evidently necessary that the

energy and momentum associated with the simple wave functions should

include, not only that which properly belongs to the object particle,

but also the recoil energy and momentum communicated to the comparison
fluid. We have therefore to separate out from the whole R.C. matrix the

constant portion which corresponds to the undisturbed comparison fluid

(and provides a constant metric) ; the remainder is then regarded as the

self energy of entities which have been added to the comparison fluid

without disturbing it. The actual calculation of this self energy, for an

elementary particle added to the standard comparison fluid, will be treated

in Chapter xn.

| More precisely, its kinematical self energy tensor.

ETP 14
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A much easier problem is that of an object particle with an entirely

uncertain momentum vector, whose recoil accordingly does not disturb

the symmetry of the comparison fluid. Complete uncertainty involves

uncertainty of charge and spin, so that the particle is necessarily neutral.

To calculate the corresponding E.G. matrix we project the uncertain

stream vectors of the object particle and comparison fluid from the

EF frame to the CD frame. In the latter frame the stream vectors

become exact; we therefore form their outer product, and project back

into the EF frame. The resulting R.C. matrix is of the form (11-721), and

gives a R.C. tensor which represents de Sitter space-time.

We can regard the standard comparison fluid as composed of N neutral

particles with uncertain momentum vectors, and with exact position

vectors uniformly distributed in space and time.f Generally in treating

a single object particle we use only one of these particles as comparison

fluid a partial comparison fluid. In any problem relating to the actual

universe the N particles of the comparison fluid must be present as object

particles, although only a few of them are mentioned explicitly; the

remainder are either unspecified or specified macroscopically. It is there-

fore convenient to pair the particles, and treat each object particle as

disturbing only its allotted comparison particle. The substitution of a

partial for a total comparison fluid magnifies the recoil, and therefore the

apparent mass, in the ratio N] this factor is absorbed into the ratio of

the units used respectively in macroscopic theory and quantum theory,

the elementary equations and definitions of the latter theory being, as it

were, based on the assumption that the particle under consideration is

the only particle in the universe. We shall find later that more precisely

the factor is fJV; the modification is due to the exclusion effect of the

particles of the comparison fluid on one another.

When all the particles are unspecified we obtain the cosmical R.C.

matrix. Extracting from it the macroscopic R.C. tensor, we find that it

corresponds to de Sitter metric. The energy tensor T^v vanishes; this

is the relative tensor of the aggregation treated as object system referred

to the same aggregation treated as comparison fluid. The relative energy

tensor is closely related to the mutual energy tensor (which in this case

becomes a self energy tensor) ;
but in the mutual or self energy tensor

the kinematical and electrical components are kept distinct, and the

former constitute the energy components in the more limited sense. The

kinematical self-energy B^ does not vanish, and, as already explained,

it is identified with g^v
.

To obtain any other than a de Sitter metric it is necessary to specify

f This is for analytical convenience; the actual distribution in position is, of course,

continuous.
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some particles macroscopically. The only important alternative metric is

that of an Einstein universe ; this will be treated in Chapter xiv. Irregular
metrics are important in general relativity theory, but it seems un-

profitable to combine them with microscopic problems, e.g. to investigate

the behaviour of a hydrogen atom in an irreducible gravitational field.

Practically the perturbation would be exceedingly minute; and if we
retain such small quantities, it is presumably illegitimate to employ a

macroscopic specification of the perturbing system. In any case the

problem is concerned with a special kind of perturbation of the atom and

it would be out of place to deal with it in general theory. For the

purposes of quantum mechanics we are therefore limited to the two

possible uniform metrics, viz. the de Sitter and Einstein universes.

The prominence of the de Sitter metric in our investigations is due to

the fact that, following Dirac, we have developed the theory from Lorentz-

invariant equations. Lorentz transformations are not applicable to an

Einstein universe. So long as we treat free particles, with exact momentum
vectors and therefore distributed uniformly throughout the universe,

a Lorentz-invariant frame of de Sitter type is required. When we come

to less abstract problems, and treat steady states, represented by internal

wave functions to which Lorentz transformations are inapplicable, an

Einstein metric becomes admissible; and it is to be preferred because

(unlike the de Sitter metric) it forms a static reference system. Current

quantum theory in its more abstract formulae presupposes a de Sitter

background, and in its more practical formulae presupposes an Einstein

background. Perhaps the most difficult part of the present investigation

has been the sorting of these two influences.



CHAPTER XII

THE MASS-RATIO OF THE PROTON AND ELECTRON

12* 1 . Contraction of a Volume Element.

This chapter deals with a point which arises when the double strain vector,

<S-Z7F-*B^ Xr 8 , (12-111)

of an elementary particle, with another elementary particle as comparison

fluid, is contracted to form the simple strain vector,

which represents the same particle with a neutral particle as comparison
fluid (H-84).t

We may remind ourselves how this process arises. From an observational

point of view, it is meaningless to describe a particle without some physical
reference object (11-1); and the observable characteristics which we
measure are properties of the combined system of the particle and reference

object. The wave functions containing observable characteristics, such as

the mass of the particle, must therefore be double wave functions Y, X, of

the particle and an idealised standard reference object which we call the

comparison fluid. But in current quantum theory the mass and other

characteristics of the particle are assumed to be contained in simple wave
functions 0, x- How comes it that double wave functions Y, X can be

replaced in practice by simple wave functions 0, #, apparently without

much harm? The first part of the answer was reached in 11-8, when we
found that, by adopting the probability distribution of a neutral particle as

comparison fluid, the double wave vectors Y =
a<0, X = XywS are con~

tracted with respect to the suffixes j8 and 8 which refer to the comparison

fluid; so that, for some purposes at least, we can ignore the second suffix

and treat Y and X as simple wave vectors. In particular the double strain

vector S is contracted to {/S}, and becomes the product (actual or symbolic)

of two simple wave vectors
ifi, #, together with a merely algebraic factor

<f>pa>p.

It is not our business to supply a complete defence of this substitution of

simple wave vectors for double wave vectors. It is a substitution which

current theory has inadvertently made; and we have to trace how its con-

sequences appear in the formulae of current theory. For our own part we
shall be continually going back to the double wave vectors to see what

current theory has missed by this substitution.

t The factorisation in (12-111) and (12-112) need only be symbolic.
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The strain vector (12-111) specifies an elementary configuration of the

combined system represented by a single point in its phase space. The

actual state is specified by probability factors attached to a number of such

configurations, or more generally by a continuous probability distribution

over the phase space. In the latter case S is normalised so that Sda)jfl is

(apart from a unitary factor containing the phases) the probability of a

range of configurations dw ( 7-7).

The question that we have to consider is, What happens to dw when we

contract (12-111)?

Our procedure is based on the law of multiplication of probabilities. The

intention is that, leaving out the unitary phase factors, S=UV shall

express the law that the probability of a configuration of the double system
described by 8 is the product of the probabilities of the corresponding

configurations of the simple systems described by C7 and V. But SUV
does not express this unless volume elements are inserted on both sides.

The formulae as they stand postulate that the different configurations

are represented by discrete wave functions; they can only be extended to

continuous wave functions if it is assumed (or arranged) that the volume

elements take care of themselves.

It will now be convenient to change the notation. Let /S, $', 8Q be the

strain vectors ofthe object system, comparison fluid and combined systemjf

and let dw, da>', da>Q be volume elements in their respective phase spaces.

To neutralise the comparison fluid we add together four elements da>Q which

yield the required balance of charge and spin; and we equate the probability

contained in these four elements to the product of the probabilities in the

corresponding elements of the phase spaces of 8 and S'. Denoting the

summation of four elements by { },
this gives (disregarding unitary factors)

{S }dW"o= (Sda>l&) (S'dw'IV). (12-12)

In order that this may reduce to {$ }
= 88' as currently assumed, we must

have dwQ =kda>dw' 9 (12-13)

where k is the constant i2 /i22'.

The point at which the assumption {$ }
= 88' enters fundamentally into

current theory is in the dynamical equations (8-4). As explained in 9-1,

the significance of these is that they give "steady states" distinguished by
the constancy of some observable characteristic. Primarily therefore the

dynamical equations apply to the double space vectors T of a particle and

comparison fluid, since the particle alone has no observable characteristics.

But in practice we substitute the simple space vectors T, T' which express

(unobservable) relations ofthe two systems to a geometrical frame. Whether

these will satisfy the equations, i.e. whether T and T' will be parallelly

f For brevity, the system whose strain vector is 8 will be called "the system S".
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displaced when the double vector T containing the recognisable character-

istic is parallelly displaced, depends on their relation to TQ . If T = TT'
9

parallel displacement of T and Tr

involves parallel displacement of TQ .

But this is not in general true if T do> = TT'da>da>', since volume elements

are not transformed by parallel displacement in the same way as space
vectors. The dynamical equations currently adopted therefore impose an

additional condition TT' =T , or in the present application TT' = {T }. The

corresponding strain vectors therefore satisfy SS' = {S }.

Equation (12- 13) results from a comparison of two conditions,

{SQ}da> = kSdto . S'da>', {SQ} = SS'. (12-14)

The first is imposed by the law of multiplication of probabilities, and the

second by the dynamical equations.

We can now define more narrowly the circumstances in which (12*13) has

to be satisfied. Since it represents an assumption in the dynamical equations,

it applies to displacement in the dynamical coordinates. Further, since the

dynamical equations are differential equations of the second order (9-2),

we have to retain squares of the coordinates in the investigation. Local

orthogonal coordinates in phase space are insufficient; and it will be neces-

sary to use a more extended system such as stereographic coordinates.

Before applying (12-13) we must set forth certain general considerations

which arise in combining two systems. For purposes of exposition it is more

convenient to consider two elementary particles S 9
S'

;
but S' will ultimately

be replaced by a neutral particle.

12-2. Combination of Two Systems.

As an approach to the more general theory, let us first consider the com-

bination of two particles S, S' into a single system S according to the

elementary wave mechanics of de Broglie and Schrodinger, in which each

particle has only one phase variable. Let 0, 0' be the phase variables, so that

the wave functions of S and S' are

<A
= e**V , 0'

=e*^ '. (12-211)

These are combined by multiplication, so that, setting *F =
^r ^r ', the wave

function of the double system is

T= e**< '+*'>%. (12-212)

As in 7-4, we introduce linear variables by setting

ds = Rde, d8
f = R'd8'. (12-213)

Then, writing m 1/21?, m' = 1/25', (12-214)

we have T=e******^ . (12-215)

In this form the phase angle ms + m's' can be interpreted as action, the

action of a system being Jracfo.



12-2] The Mass-ratio of the Proton and Electron 215

We have describedY as the wave function of a double system. That is not

quite the same thing as the wave function of a combined system. To obtain

the wave function of the combined system, the time coordinates t, t' of the

two particles must be equated. Consider, for example, the sun-earth system.
That does not comprise a combination of the earth today with the sun a

week ago; no reference to the "orbit" ofsuch a combination will be found in

astronomical textbooks. The essence of the process of "combining" is the

substitution of a single time coordinate for the whole system instead of

independent time coordinates for its separate parts ( 7-8).

We are not arguing that there would be anything illegitimate in the con-

ception of 8 and 8' as a double system, i.e. with two independent time

variables. Our point is that there are two possible conceptions whicli must

be carefully distinguished, and that the usual description of a composite

system refers to the conception of it as a combined system, i.e. with a single

time variable. When we speak of the orbit of a planet or the quantum state

of an atom we are referring to the combined system, not the double system.
When s and s' are expressed as functions of the coordinates, the wave

function T of the double system is a function of eight coordinates x, y, z 9 1,

a?', y', z', t'. The wave function ofthe combined system SQ is (*F)r_,, a function

of seven variables. The mass or energy of S is the value of the operator

-idfit, which by (12-215) is

mdsldt + m'(d8'ldt')t
,H .

This is the sum of the masses of S and S' at a simultaneous instant, the

factors ds/dt, ds'/dt' being the FitzGerald factors representing change ofmass

with velocity.

In the general theory the simple algebraic phases 0, 0' are replaced by

space-like matrices with ten components (7-3) which, for a range of con-

figurations small enough to be referred to local orthogonal coordinates, may
be denoted by = SJEf0=SJ5?a;/-R, 1s n

n^

t p p/ I

(12-221)

and the wave functions (within the above small range) are

0=e**0 , 0' = e**'0 '. (12-222)

For the wave function representing a combined system SQ we have similarly

T=c**T , (12-231)

where t^^^E^O^^^E^x^B^. (12-232)

In forming a combined system out of S and S' we equate their times t and

t', and this common time is also the time t of the combined system S .

Since the time in phase space is represented by the algebraic coordinate, the

identification t= t' = J becomes, in the above notation,

(12-24)
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We notice that, whereas in Schrodinger's theory the algebraic phase

variable represents s, in the general theory it represents t. The difference is

not surprising, since in the former theory one variable has to do the work of

ten. In the matrix theory the strains of the system corresponding to dis-

placements along x, y, z are provided for more precisely by separate non-

algebraic phase variables, and therefore no longer enter into the algebraic

phase. A possible misunderstanding may be caused by the fact that in matrix

theory just as in Schrodinger's theory the wave function for plane waves is

i//
= e(m8

*//Q ; but here ims is the eigenvalue of a matrix expression representing

the phases (i/r having been specially chosen as an eigensymbol), and is not

to be identified with the algebraic phase Ji016 .

It may be well to state again the reason why the time is represented by
the algebraic coordinate in phase space. Progress in time corresponds to

rotation (about the centre ofcurvature ofspace-time) in the plane associated

with jB45 . Hence energy conjugate to the time is the 45 component of the

complete space vector which comprises the mechanical properties of the

particle. The space vector is multiplied by iE^ to form the associated strain

vector; energy is therefore theEIB component ofthe strain vector. The trans-

formation g = ei fcliA applied to the strain vectors in phase space, which

causes displacement in the algebraic coordinate, is therefore a displacement

conjugate to the energy, i.e. displacement in time.

The phase space of $ contains 136 coordinates v . It may be suggested
that since the configurations of S and S' are each completely specified by
ten coordinates, one ofwhich they have in common, we shall require a phase

space of 19 dimensions at most to specify the combined system $ . But that

is to begin at the wrong end of the problem. Our observational data relate

to complex systems. We do not construct SQ to represent data which have

been ascertained about S and S'', we construct 8 and S' to represent data

which have been ascertained about $ . We have to take a system repre-

sented by a double wave vector in any combination of its 136 phases, all

combinations being relativistically equivalent, and determine the conditions

under which it can be dissected into two systems each with ten phases,

or into a ten-phase system and a neutral comparison fluid with a single

phase.

Initially the probability of $ is distributed uniformly over its 136-

dimensional phase space. We replace it by two initial probability distribu-

tions uniform over the ten-dimensional phase spaces of S and S'. A great

variety of configurations regarded as potentially distinguishable in the first

representation must be classed as indistinguishable in the second representa-
tion. That is to say, there is an alteration of the basis of statistics. It will be

found that this alteration has important consequences.
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12*3. The Augmented Phase Space.

In combining 8 and S' we drop a time coordinate. Accordingly before

dissecting $ we must insert an additional time coordinate and treat S as

having an infinitesimal uniform extension in this extra time. Let

so that dtQdtf =dtdt'. (12-32)

Reducing to angular measure with the respective scale constants of the

three phase spaces, (12*32) becomes

RQ*dOQdOr=RR'dOlBddlB'. (12-33)

By this augmentation the phase space of SQ contains two algebraic

phases (
=

16 16) and r . Owing to their commutative property we can

treat the probability distribution in the algebraic phases independently of

the distribution in the other phases (cf. 7-7). For example, in ten-dimen-

sional phase space the volume element in local orthogonal coordinates

daj = d01d02 . . . contains an amount of probability do>/2, whereQ is the whole

volume of phase space which we have shown to be finite
( 7-4). Writing dajc

and lc for the corresponding volumes without the algebraic dimension, we

haVe
dco = d016do>c ,

Q = 27riic , (12-34)

and the probability dw/Q is the product of the independent probabilities

d016/27T and do>e/!ic that 16 is in the range d016 and that the other coordinates

are in the range da)c .

Hence the initial probability associated with the range d016d016
'

is

(d016/27r) (dOlB'/2Tr) and the initial probability associated with the range

d0 d0r is (d0 /27r) (dOr/27r). These must be equal, since rf016d016
' and d0 d0r

represent the same range described in different ways. Hence by (12-33)

R*=RR'. (12-35)

The new variable r must, like the other phases, correspond to a circular

(not hyperbolic) transformation, since it is essential that phase space shall

be closed (7-3). We cannot begin the process of dissection of S unless this

condition is satisfied. It is, however, desirable to examine an argument
which seems to suggest that tr should be represented by a hyperbolic

transformation.

The definition r
=

r/JR refers to local orthogonal coordinates, and for

extended coordinate systems the relation of tr and r becomes non-linear.

Adopting stereographic coordinates and considering variations of tr only,

we have, by (7-58),

so that r
= 2tan-1

( r/2JB ). Thus, as r increases, tr increases without limit,
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provided that Or is real. If, however, r is an imaginary quantity iur+ we

replace tr by itr and obtain

so that wr ==2tanh~
1
(^/2JZ ). Then as wr ->oo, r->2JR . Accordingly

-' is

not greater than 2R . It suggests itselfthat 2R should be identified with the

distance between S and 8', and therefore with the light-time (the velocity of

light being unity). The result t t' > 2R then means that two systems cannot

be combined at instants such that one is in the absolute future of the other.

The variable ur is found to be important in another problem which arises

in the combination of two particles ( 15-5), but here it is irrelevant. The

radius R of phase space is a scale constant applicable to all configurations

represented in phase space. If we equate 2JR to the distance between the

particles, the phase space can contain only those configurations for which the

distance is a fixed constant. That is not the problem here treated.

12-4. The Fundamental Quadratic Equation.

Writing da) =V g.dr as in (7*422), the relation (12-13) becomes

(12-41)

The formula now applies to any system of coordinates.

We adopt stereographic coordinates. It has been shown in 7-5 that when

a transformation (not necessarily infinitesimal, but not involving anti-

perpendicular components) is applied, each point of phase space in the

infinitesimal neighbourhood of the origin receives the same increment of its

stereographic coordinates. That is to say, when a volume element is dis-

placed in phase space dr remains constant. Hence for such displacements
in the three phase spaces we must have

V^= CV^.V^V, (12-42)

where C is a constant. By (7-59)

where r2 is the square of the length of the displacement, and n is the number
of dimensions of the phase space. Inserting this in (12*42), we have

(1 + r 2
/4#

2
)-o= (i + r2/4#

2
)-* (1 + r'2^'2

)-"' (12-43)

together with JB
-W = CR"nR'~n'.

Consider a displacement in time, so that r, r', r are #16 , #16', #16>16 , and

are all equal by (12*24). Then, expanding (12*43) and equating coefficients

of r2
,
we have n /Itf=n/IP+n'/Il'*. (12*44)

By (12*35) and (12*214), 1Z 2= BR', and R/R'= m'/m. Hence

'*=0. (12-45)
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For an elementary particle and a neutral comparison fluid, the dimensions
of the phase spaces are

'!. (12-46)

(The strain vector of a neutral particle, being algebraic, has only one phase

variable.) Hence we obtain the fundamental quadratic equation

10w2-136ww' + m'2= 0. (12-47)

Its two solutions give two possible masses m for an elementary charged
particle in terms of the mass m' of a neutral particle. These accordingly will

be the masses ofthe proton and electron. The ratio ofthe two roots is 1847-6.

This is the ratio of the masses of the proton and electron, when mass or

energy is defined as in quantum theory by the operator (
-

iA/2?r) 3/3*, or

equivalently by E= hv. We shall find in 15-9, that this deviates somewhat
from the classical definition of mass and energy; and that, adopting the

classical definition, the theoretical mass-ratio is 1834-1. Since all our

formulae imply the quantum definition, we must adhere to the value

1847-6 in the developments which follow.

12*5. Notes on the Solution.

One or two steps in the foregoing proof require fuller discussion.

Should we take MO
= 136 (original phase space) or 137 (augmented phase

space)? Equation (12-42) was obtained by considering parallel displace-
ment of a volume element dr conformably with the dynamical equations.
The angular element dOr is not a range dynamically transferred from the

origin by parallel displacement; it is a constant infinitesimal thickness

assigned to phase space, and hence equal for all volume elements considered.

The value w = 136 is therefore correct.

Is it legitimate to satisfy (12-43) as far as r2
, leaving a discrepancy in the

higher powers of r? Equation (12-43) is not valid beyond r2
; its exact form

1

', (12-51)

where J , t, t' are corresponding times in the three systems measured in

stereographic coordinates. The times are equal in some system of reckoning,
but there is no reason to suppose that that reckoning is stereographic. In

fact for large values of t the stereographic reckoning becomes absurd. The
substitution t t t' =r is only valid to the first order of small quantities,
and therefore (12-43) is only valid to the second order. To the first order

(corresponding to natural coordinates) the reckoning of t is fixed by the

scale constant R, and there is no ambiguity as to what is meant by the

three systems being simultaneous. In short, having found m/m' from the

terms in t
2

, the higher powers merely tell us howwe must define simultaneity
of the three systems for large values of t.
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By obtaining a formula correct as far as r2
,
we obtain exact values of the

second derivatives at the origin; so that we achieve our aim of providing for

the second order differential equations which express the laws of physics.

Results obtained in a special coordinate system, such as stereographic

coordinates, are of no great interest in themselves. We use them to extract

the invariants, in particular the curvature invariants which correspond to

mass and density. For this purpose it is only necessary to expand as far as r2 .

We come to a more difficult point. The displacement which we have con-

sidered is along the algebraic coordinate; but the algebraic coordinate is

very much alooffrom the others; and although we have used the same stereo-

graphic projection for it as for the others, there is no obvious need to do

so. It is not possible in an extended region to use natural measure for all

coordinates; but it is possible to use natural measure for the algebraic co-

ordinate and stereographic measure for the rest. Geometrically the distinc-

tion is that the algebraic dimension has cylindrical curvature, whereas the

others by their non-commutative relations determine a spherical curvature.

Spherical curvature is an invariant; and on the assumption that E, R, RQ

are radii of spherical curvature, the result (12-44) is independent of the

special system of coordinates used in obtaining it. Unfortunately, in the

equation as derived, they are radii of cylindrical curvature. To validate the

proofwe must show that there is some condition (not yet mentioned) which

requires the algebraic coordinate to be represented uniformly with the

others.

The fact is that we have not explicitly introduced the condition that the

particle whose mass we are seeking is a pure elementary particle, having
therefore a singular strain vector. As shown in 7-9 such a particle will have,

associatedwith it, a singular line in phasespacegiven byd 8
=

(
E

l + J5716 ) d<f>.

This provides an absolute scale comparison of lengths in the A\ and the E16

directions just as in four-dimensional space-time a singular line (con-

stituting a light track) provides an absolute scale comparison between

intervals of space and time.

To go back to the first principles ofmeasurement magnitudes in different

directions are compared on the basis that "equivalent" magnitudes (which
can be transformed into one another by relativity rotations) are equal

magnitudes. This enables us to compare magnitudes in perpendicular
directions immediately, and magnitudes in antiperpendicular directions

indirectly, using for the latter a direction perpendicular to both as inter-

mediary. But this does not apply to the algebraic direction which has no

direction perpendicular to it. The measurement of proper mass, proper

energy, proper time, in terms of the standards used for measuring momenta
and lengths in other directions, must depend on a different principle of com-

parison. This is supplied by the formula (6-64) for the strain vector of a pure
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particle. Its momenta in four antiperpendicular directions El9 /?23 , J5?45 ,
j 16

are equal. This enables us to compare the momenta in the E1Q direction with

the momenta in other directions. If, as suggested above, a different scale

constant J? were employed for the J?16 direction, a stream vector which is

pure in angular measure would not be pure hi linear measure; and our whole

treatment of the analysis of matter into pure wave functions representing

elementary particles would have to be revised.

We may put the result in another way. An elementary particle possesses

spin. We can measure time by the spin coordinate of the particle as time

is in fact measured by the spin coordinate of the earth. Thus xl9 xn can be

substituted for #16 , #i6,i6 in our previous deduction; and the difficulties

arising from the peculiar character of the algebraic coordinate are then

evaded.f This brings out the fact that the mass which we have determined

is that of an elementary particle. A distinctive feature of the elementary

particle is that it has four dynamical coordinates all of which measure the

time; but two of them are not shown in phase space.

12-6. Energy Invariants.

The primary operation of wave mechanics is multiplication; and in the

combination of two systems the product of the masses m^m^ is more funda-

mental than the sum m^m^. This was illustrated in the transformation to

relative coordinates, in which the original particles are replaced by external

w i internal particles whose masses Ji/, p, satisfy M/Z=m1m2 .

We shall call m^m^ the mutual pressure invariant of the two particles.

Correspondingly mx
2 is called a self-pressure invariant.

Let us provisionally interpret the term
"
pressure

"
literally. In statistical

mechanics the pressure is the energy associated with one degree offreedom.J

If there is equipartition between n degrees of freedom, the energy is nmlm2 .

We shall callnmm2 the mutual energy invariant. The self-energy invariant is

defined similarly.

The fundamental equation (12-45)

n^mm' =nm2+ n'm'2

expresses that the mutual energy invariant of the system $ is the sum of

the self-energy invariants of the two parts composing it. We thus get a kind

of physical picture of the significance of the fundamental quadratic. In

particular the equation I36mmo== iom2 +m a
(12-61)

t The algebraic coordinate was employed because we knew what were
fct

corresponding"

displacements of the three systems in that coordinate but not in any other coordinate.

But the above argument shows that, besides (12-24), we have xl
= xll .

J We have in mind waves in which the energy is half kinetic and half potential. If kinetic

energy alone is present a factor is introduced.

We shall in future denote the mass of the neutral comparison particle by m instead of

m' since m' seems a rather unsuitable notation for an important constant of nature.
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means that the introduction of the elementary particle ra can be regarded
either as replacing a neutral unspecified particlem by a double system with

136-dimensional phase space or as adding a simple system with ten-dimen-

sional phase space. Both interpretations give the same total energy in-

variant. From this point of view the number of dimensions of phase space
is involved, because in the steady state represented by the initial probability

distribution, each dimension shares in the equipartition of energy.
Let us extend this to a static system formed by two elementary particles

with a neutral comparison fluid. We know that two protons or two electrons

cannot form a static system; and we may therefore anticipate that the two

particles will be a proton and electron. In short, our system is a hydrogen
atom (or possibly a neutron).

We resolve the hydrogen atom as in 10-9 into an external and internal

particle, described by external and internal wave functions, with masses

M=mp +me , p.
=mpme/(mp +me). (12-62)

Since mp , me are the roots of 10m2- 136wm +w 2= 0, we have

A/= (136/10)w , ^=(1/136),,.

Writing these in the form

136jiw =10*f2
, 136^wi =m 2

, (12-63)

we see that for an external particle the mutual energy invariant of the

particle and its comparison fluid is equal to the self-energy invariant of the

particle; but for the internal particle the mutual energy invariant is eq
to the self-energy invariant of the comparison fluid. The two particles have
therefore a very different type of relationship to the comparison fluid.

We can extend the foregoing definition of pressure and energy invariants

to conditions in which the energy is represented by a symbolic operator W.
The self-energy invariant of a particle in phase space of n dimensions is

then nW2
. If the wave functions representing steady states satisfy Dirac's

equation W$ = m[i 9
it follows that (JP/ra)^= ra0. Thus we have two oper-

ational forms of the energy w, namely the linear hamiltonian W and the

second order hamiltonian W2
/m. For the external particle

(external particle), (12-641)

where ye is the natural constant 136m
, and n is the number of dimensions

of the phase space of the external particle. For the internal particle

136F2

(internal particle), (12-642)

where yi
= ye/136

2

and n is unity. Thus yi9 ye are the factors which convert energy invariants

into energies on the ordinary scale.
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For an electron or proton, the fundamental quadratic can be written as

so that the operational form of the energy is

- (nW2+ 2
) (elementary particle). (12-643)

7e

It is interesting to compare (12-643) and (12-641).

I think that for theoretical purposes the energy invariant is to be pre-

ferred to the energy; that is to say, we should replace the quadratic energy

operator JF2/w by nW2
/y. In the following chapters I have not used the

energy invariants as much as I might have done, fearing that it would be

a stumbling-block to the reader. When the form W2
/m is used, it should

be realised that m is a combination of the universal constant ra with a

geometrical factor of the problem, the latter introducing the number of

degrees of freedom. It is also particularly important to notice that m
is not necessarily the rest energy; for internal wave functions (which
are those most concerned in practical problems) the rest energy is zero

(10-982).

12*7. The Association of Mass and Charge.

We have found that an elementary particle must have one of two masses

mp , me . We shall now show that in static conditions the particles of mass

mp are of one sign (arbitrarily called positive), and the particles of mass

m
e are of the other sign; also that the positive and negative charges are

equal.

To test the sign of the charge we introduce a field of uniform electrostatic

potential *4 . If we can show that the effect of the field is to make the mass

m* of an elementary particle at rest satisfy the modified equation

0, (12-71)

where a is a function of /c4 , the required conclusion follows. For then

mp* +me*=^mQ
=mp +me , (12-72)

so that we may write mp
* =mp + c, me

* =me , (12-73)

showing that the part of the mass or energy due to the existence of the field

is equal and opposite for the two types of particle. Our problem therefore

reduces to showing that *4 affects only the last term of the quadratic.

By 8-8 the constant potential *4 can be removed by applying the gauge
transformation 0' = eilf

**4^ to wave vectors of index 1. The strain vector

of index 2 generating phase space then undergoes the transformation
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g> = e2tK.x4 s= c-2ic4 /# g aiready contains the time factor e*
e*= e***; so that

the time factor of S' is eii>IR , where

4 lZ)
= (l-2ic JK). (12-74)

Thus the field-disturbed environment of the object system is converted

into the standard environment (neutral space-time) by antedating our

description of it.f In analysing ( 12-4) the double wave functions, which
contain the observable relations, into a simple wave function of the particle
and a one-phase wave function of the comparison fluid, we gave to all three

functions the same time t\ if, however, we give the one-phase wave function

a time t', it will equally represent a neutral comparison fluid at time t' or

the actual field-disturbed environment at time t. With this modification

(12-43) becomes

(1 + *
2
/4JR

2
)-
w =

(1 + *
2
/4jR

2
)-'

1

(1 +fi/4/Z'
1
)-*' (12-75)

and gives the condition for analysis ofthe double wave functions, containing
the observable relations of the particle to its field-disturbed environment
at time t, into a simple wave function of the particle and a one-phase wave
function of its field-disturbed environment at the same time t. The change
only affects the last term of the quadratic equation, which becomes

nra2-n ram' + (e7$)
2 m'2= 0. (12-76)

This is the result we required.

We do not apply the gauge transformation to the double wave function,
because that contains the observable relations, and it is understood that

the energy of the particle is to be determined from observation precisely as

if the actual environment were the standard environment. As we should

ordinarily say, the change from m to m* is an apparent change of mass,
due to the difference between the comparison fluid actually present and
available for our observations and the ideal comparison fluid referred to in

the definition of m.

The value of a in (12-71) is (l-2/cOJR'); or, since ll'2R
f =m9 (formerly

Call6dm/ >' a=l-K /m . (12-771)

Using (12-73), we derive the relation

-AWiM2

. (12
.

772)
>e) \ /

'

Thus a is real for a physically real electrostatic potential, and (for electro-

magnetic fields which are not too extravagantly great) is also real. By a

happy accident, positive electric potential corresponds to positive * .

The numerical value ofa does not much concern us; but ifany application

t The reader may perhaps be inclined to object that, if (as usual) the comparison fluid

is at rest, antedating makes no difference. But there is a phase angle which changes with
the time; and we see above that it is this phase angle which exhibits the antedating.
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is made of (12-771), we should notice that /c is not there measured in the

same units as in the ordinary wave equation since it refers to a gauge
transformation of the comparison fluid.

It is interesting to consider the physical basis of the dissymmetry of

positive and negative charges. Formally they are correlated to the two

square roots of 1. This can only give rise to observable dissymmetry (such

as a difference ofmass) if, elsewhere in the theory, the two square roots have

been allotted unsymmetrical roles in the description of phenomena. In the

expression for a physically real interval Elxi + Ezx2 -{- E^x^ + E^it we have

to select one of the square roots of 1, which we shall denote by iy,
such

that Etijt represents displacement towards the future when t is positive.

Then any other square root of 1 occurring in our formulae is distinguished

as
if

or
ij

.

The irreversibility oftime is manifested in three ways: (a) in consciousness,

(6) in the laws of entropy, (c) in the cosmic expansion. Consciousness must

be regarded as the ultimate source ofthe irreversibility, at any rate from the

point of view of physical theory. Owing to the curious fact that our minds

are acquainted by sensory mechanism with the past but not the future,

observational knowledge has the form of an integral over past time up to

the present moment t. Since probability is relative to knowledge, a formula-

tion of the universe in terms of probability distributions is exceedingly

unsymmetrical with respect to past and future time; and this irreversibility

is shown in the manifestations (b) and (c). It is also shown in wave mechanics

in a more elementary way by the concentrated wave packets, which are

formed discontinuously by our observations and diffuse continuously as t

increases towards the future.

For the distinction of protons and electrons the most relevant mani-

festation is the cosmic expansion. I do not mean the actual "expansion of

the universe", which might perhaps have been reversed by altering the

initial conditions. But a region of space with de Sitter metric necessarily

expands relatively to our standards of measurement. We generally treat a

small region ofspace isolated from the rest by artificial boundary conditions;

but the dilemma, first pointed out by de Sitter, always appears either we
must take it to be a portion of static spherical space (an Einstein universe),

in which case Lorentz transformations are inapplicable; or we must take

it to be a portion of de Sitter space-time, in which case geodesies that are

initially parallel proceed to diverge. Since we have introduced space-time

by Lorentz transformations, our method follows the latter alternative.

Correspondingly we have an expanding comparison fluid, which is un-

symmetrically related to past and future time.- In particular, elementary

particles symmetrically related to the expanding comparison fluid are not

symmetrically related to past and future time.



226 Physical Applications [12-8

12-8. The Stern-Gerlach Effect.

We shall now calculate the energy of a hydrogen atom in an external

macroscopic electromagnetic field. Representing the atom by external and

internal wave functions, we have to calculate the effect of the field on these

separately. An essential point in the investigation is that the external wave

functions are continuous and the internal wave functions are discrete.

We use the method of gauge transformations explained in 8-8. Let us

introduce a field of electromagnetic potential by changing the local unit of

length, so that the scale constants R, Rr

of the phase spaces of a particle

and its comparison fluid become in the new measure j8~
1
JJ, /J-

1
./?', where j8

is a unitary complex factor. The coefficient V g in the reduction from co-

ordinate volume to natural volume will be changed to ]8
10V g for the ten-

dimensional phase space and j8V gr for the one-dimensional phase space.

We do not recognise complex measures of volume; accordingly the factors

are transferred to the strain vectors which become /J
10
$, pS'. The transfer

means that the change of probability distribution due to the electro-

magnetic field is incorporated in the modifying factor instead of in the

initial probability distribution.

The masses of the particles are such as to validate the usual assumption
that the volume elements can be ignored in the dynamical equations; that

is to say, 8 and S' can be treated as discrete strain vectors in the dynamical

equations. But they do not behave as discrete wave vectors for gauge

transformations, and consequently the electromagnetic terms in the

dynamical equations are not the same. Let us now consider the gauge
transformation for a discrete strain vector.

A discrete wave function exists only for discrete values of its parameters;
but it is a continuous function of coordinates, so that it is affected by the

gauge transformation of the volume element of coordinates. By the theory
of Chapter vm a discrete wave function has four dynamical coordinates;

whence it follows that the transformation of the strain vector is S->/3*S.
We obtain the same result more directly from the ordinary expression

W+V^gdXtdxidXi (12-81)

for the probability in an element dx:dx2dx3 of three-dimensional space.

Here V g is the four-dimensional factor, defined in ordinary tensor

calculus, which varies as ]8
4
.t The factor ]8

4 is therefore attached to the

discrete strain vector function ^*.
We have therefore the following result. Although the external wave

function is continuous, it is permissible to treat it as discrete for the ordinary

purposes ofwave mechanics, the massM assigned to it having been expressly
chosen so as to validate this practice. But if a gauge transformation is

f Mathematical Theory of Relativity, equation (85-44).
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applied, the strain vector will be changed in the ratio J3
10 whereas the

change for a discrete wave function would have been in the ratio j8
4

. The

wave functions $, <f>
are therefore changed in the ratio j3

6
,
as compared with j3

2
.

Applying the theory of 8-8 with A= j8
2

, j8
5

,
if the potentials in the wave

equation for a discrete wave function are
K^,

those in the equation for the

external wave function are
f/c^.

Thus for the same electromagnetic field

we have g
p = - i - + ic (discrete wave functions), (12-821)

^'li

JP
= i h fK (continuous wave functions). (12-822)

o*i>

The hamiltonian of the external particle is therefore

-O < = S*' (12-831)
i

^

which gives the second order hamiltonian

If the field consists of a magnetic force eH = 3/c2/3#3
- 3K3/3#2 *n the ^

direction, the last term becomes (fie/^/3/) E^ . To the classical approxima-
tion this term is twice the mutual energy ofthe particle and electromagnetic
field. The mutual energy is thus

*
^-l.jiJS^. (12-84)

The factor UE23 is the spin momentum of the external particle in the plane
normal toH and has eigenvalues J. The factor fe/M, or in the usual units

|/MC, is the effective magnetic moment per unit angular momentum.
The corresponding result for the internal particle is

-^.Z, (12-85)

where the operator Z includes, besides the spin momentum, half the orbital

momentum.f The factor f is now omitted because the internal wave func-

tions are discrete. But it is necessary to consider whether they are the

standard discrete wave functions infour dimensions referred to in (12-821),

or whether the fact that internal space is three-dimensional will not give
K

' = f* , and an energy o
AJJ
.~-Z. (12-86)

I think that for the theory ofthe atom, so far as it is developed in Chapter

ix, (12-86) is the correct result, the factor f being essentially the same as

that which will occur later in (14-153). It is true that the internal wave
function has the standard number of dynamical coordinates, and appears

f The factor & is the well-known magnetic anomaly.

15-2
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in 9-2, 9-3 to be a function of t as well as of the space coordinates. But

although t is used in Chapter ix in order to agree with the usual notation, t is

not the time; it will be shown in Chapter xv that it is an interchange co-

ordinate. Now the interchange coordinate is by its nature gauge-invariant.

Thus for internal space, V g varies as j3
3 instead of

j8
4
, and the factor f is

required.

But it is well known that, when a magnetic field is applied to an atom, we
have to distinguish between weak and strong fields. A strong field cannot be

treated as a perturbation ofthe normal states, but involves a re-analysis into

elementary states. The particle is, as it were, torn in its allegiance between

the planes of simultaneity determined by the external momentum vector

and those determined by H^ (with time direction so chosen that the field is

purely magnetic). This effect of strong fields is generally described as an

"uncoupling" of spins. The magnetically determined planes ofsimultaneity

introduce a genuine time coordinate into the internal state additional to the

proper time s correlated to the external momentum vector; the original t

(interchange coordinate) is then relegated to the role of argument for small

perturbations, and the states are re-analysed with respect to the genuine

time coordinate. It appears therefore that (12-85) is right for strong fields;

but it will be replaced by (12-86) in weak fields, where a gauge-invariant

interchange coordinate takes the place of the genuine time coordinate.

It is to be understood that in our equationsH is not necessarily a measure

of the field in absolute units; it is used to connect (12*84) alternatively (but

not simultaneously) with (12-85) or (12-86). Actually in passing from (12-85)

to (12-86) we should change the unit of energy in proportion to the number

of degrees of freedom, so that they represent the same absolute energy.

By suitable arrangements a stream of particles, projected in a strong

inhomogeneous magnetic field, can be made to divide itself according to the

different combinations of eigenvalues of (12-84) and (12-85). From the

measured deflections the ratio ofthefactors fe/Jifcand e/fjLC canbedetermined.

The generally accepted results give the numerical coefficient f , agreeing

with our theory. Since M and
//,

are very nearly equal to mp and me , the

magnetic energies are generally attributed to the proton and electron,

respectively. But it is clear from the foregoing investigation that they

properly belong to the external and internal motions, respectively.

The result for weak fields also appears to be confirmed by experiment

(Babi, Kellogg and Zacharias, Physical Review, 46, 157 (1934)). In this case

the ratio is fe/jfc : fe//uc, so that the numerical coefficient is \-. The

experimental result is stated to be 3-25 0-3.

Whilst the result for strong fields is a simple consequence of the theory,

the theory for weak fields may perhaps require a closer scrutiny than I have

been able to give.
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STANDING WAVES

13-1. Scalar Wave Functions .

Vector wave functions have superseded the scalar wave functions of

Schrodinger in the problems ofatomic physics; but there are certain applica-

tions of wave mechanics in which scalar wave functions are still needed.

These will now occupy us for two chapters. We shall develop the theory of

scalar wave functions independently, and afterwards show how the vector

wave functions hitherto treated are connected to them.

We have seen that a neutral particle (neutral both as regards charge and

spin) has an algebraic strain vector ( 6-6); in this case the strain vector S
becomes a strain scalar. Following the general procedure in wave mechanics,
we represent it as the product of two scalar wave functions 0^. We may
expect that scalar wave functions will suffice to represent any macroscopic
distribution which is neutral as regards charge and spin in fact, such

distributions as are fully specified by an energy tensor T^v . If T^ is inade-

quate and the distribution is of a type represented by a general Riemann-

Christoffel matrix (11-4), vector wave functions will be required. The

general theory of the representation of T^v by scalar wave functions is given
in 13-7. However, it is not of primary importance to ascertain the precise

limits of the application of scalar wave functions; the main consideration is

that they occur in certain problems of great importance in connecting

relativity theory with quantum theory.

In macroscopic theory, energy-density, momentum-density and pressure

are components of an energy tensor T^p . It is part of the definition of these

quantities that they satisfy the law of conservation (T*P)p
= 0; and by this

property Tap is identified with a geometrical tensor

-87r/c2
T

a/,
= C?

a]5 ~j9faj8 ((?-2A), (13-11)

which satisfies the law of conservation identically. We insert the constant K

(constant of gravitation) in order that we may be free to use the unit of

mass, defined by jpft
=

id/dx^,
which simplifies the formulae of wave

mechanics.

Here A may be any constant, a change ofA being a change ofthe zero from

which energy and pressure are reckoned. But the zero condition, 2^= 0,

should not be taken to correspond to entire absence ofmatter and radiation

(or in wave mechanics to zero probability of the presence of particles and

photons). For if we adopt this as the zero condition everywhere, we are

comparing the actual universe with a universe completely devoid of matter
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and radiation and therefore without observable properties. We cannot adopt
as a reference standard for physical measurements a system in which all

such measurements become indeterminate. We shall later consider the

convention adopted for fixing A in current practice.

To make a transition to wave mechanics, T^ must be interpreted as the

expectation value of an operator Ta . The only appropriate operation is

covariant differentiation, and to satisfy tensor conditions we adopt

where 8 stands for covariant differentiation, andm is an invariant. We shall

be concerned only with scalar wave functions and natural coordinates; so

that in our applications the covariant derivatives can be replacedby ordinary

derivatives.

No hypothesis is implied in (13-12). It defines the wave functions which

will be used for the description of macroscopic systems, viz. they are to be

such as to give at each point an expectation value of Ta^
which agrees with

the tensor defined in (13-11). The information contained in T^p is thereby

transferred to a pair ofwave functions and made available for treatment by
the methods of wave mechanics.f

Equation (13-12) is consistent with the usual definitions of momentum

pa=-i8/S#a , pv^rndx^ds. (13-131)

For, substituting in (13-12), we have

T
a)3
= p

j
8Pa/m, (13-132)

so that, when the momenta reduce to eigenvalues,

*. (13-133)m da ds
v '

which is a well-known form of the energy tensor of a system of particles

when the right-hand side is summed in an appropriate invariant way.J

Here, however, we regard (13-12) as the fundamental formula, not implying

analysis into particles with eigenmomenta, but directly translating the

curvature invariants of macroscopic theory into the operational forms of

wave mechanics.

The coefficient m should not be prematurely identified with the proper
mass of the system represented by the wave functions. As it is of the dimen-

sions of mass, we may call it the mass-constant of the system. In most

applications the units are adjusted so that, for an elementary wave system,
m is the proper mass of the corresponding particle. For a composite wave

f In 13-7 we shall follow the inverse procedure. The wave functions are defined directly,
and the operational form Ta(3 required to represent Ta(3

is deduced.

J Mathematical Theory of Relativity, equation (53-1).



13-1] Standing Waves 231

system m can be interpreted as the proper mass of a single equivalent

particle which is by no means the same thing as the sum of the masses of

the particles. For the purposes of general theory the division by m is rather

inappropriate, and it would be better to write (13-12) as

wT
aj5
=

-S*/S&0&ca , (13-125)

defining a pressure invariant operator mT^p (cf. 12-6).

The expectation value is formed in the usual way, namely,

Z!0
=fr^. (13-141)

Thus tensor conditions are satisfied if
<f>
and

\f>
are invariants. For a small

three-dimensional volume dV

T^pdV^^T^dV. (13-142)

If a component Tup
reduces to an eigenvalue t^p,

we have

T^pdV^t^p.^dV. (13-143)

This is conveniently regarded as expressing that the oc/J-component of the

energy in dV is due to a probability </>^dV that an entity with energy com-

ponent ^p is within the volume. We call this entity a scalar particle. It will

be found later that an elementary scalar particle is equivalent to four

elementary charged particles.

Ifthe wave functions ofthe distribution are analysed into a set ofelemen-

tary orthogonal wave functions, each of which is a discrete eigenfunction

of certain components of Tap (in practice, the diagonal components)
sufficient in number for the eigenfunction to be defined uniquely by their

eigenvalues, we can introduce an exclusion principle. The exclusion prin-

ciple states that in the whole domain of V there is not more than one scalar

particle for each eigenfunction; so that the whole probability attached to

any set of eigenvalues is not greater than 1. Using normalised eigen-

functions $ny (f>n which satisfy
*

(13-144)

$n and
<f>n will occur in the general wave functions San n , San'^n with

coefficients not exceeding 1. Or, if w
' = aw n , ^w

' = ttn'^w >

(13-145)

The foundation of this exclusion principle will be investigated in Chapter
xvi. Meanwhile we accept the general idea of such a principle from current

quantum theory.

The important point now arises that, since
ifin , <f>n are invariants, the con-

dition (13-145) is not invariant for Lorentz transformations or other

relativity transformations which change dV. Thus, if it applies at all, it
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applies to a special time axis. The particle interpretation is subject to the

drawback, that by changing the time axis, the probability of the particle's

existence in the domain V may become greater than unity ! This has been

urged as an objection to the use of scalar wave functions; and Schrodinger's

development of them has been condemned as non-relativistic. Briefly the

criticism is that, in order that the probability <f>^dV ofthe particle being in a

specified three-dimensional volume may be invariant for transformations

of the coordinates, </>i[i
must be a vector in the direction normal to dV.

Therefore
</>
and

ifi
cannot be scalar quantities, but must be wave vectors

whose product yields a space vector.

Much of Schrodinger's theory is non-relativistic; but in this instance

the condemnation is not justified. The criticism overlooks that, whereas

(13*142) is a tensor equation, invariant for all relativity transformations,

(13-143) is definitely not invariant for any continuous transformation, since

it is restricted by the non-invariant condition that $ corresponds to the

eigenvalue t^. By hypothesis the eigenvalues defining $ are discrete;

otherwise no question of an exclusion principle arises. If we make an in-

finitesimal transformation of the coordinate system, the adjacent values of

tap
are impossible as eigenvalues, and $ does not exist. It is a consequence

ofthe discreteness of the eigenvalues that (13-143) can apply only to special

orientations of the axes.

The physical reason is evident. Discrete eigenvalues arise from boundary

conditions; and the components of the energy tensor which are quantised

are those which have a special relation to the characteristics ofthe boundary.
In particular, if the boundary is of constant form, it determines a space-time
frame with respect to which it is at rest. The time component of the energy
tensor thus becomes separated from the other components.
We have said that (for the present) we base the general idea ofan exclusion

principle on current quantum theory. As formulated for atomic systems it is

amply confirmed by experiment. Undoubtedly an exclusion principle of

some kind is obeyed by macroscopic distributions, and it is important to

discover its precise formulation. There has not been the same opportunity
for experimental test,f and formulae are current which have not been

quantitatively verified. It is therefore necessary to examine the principle

critically.

It is agreed that the unit wave functions (commonly regarded as repre-

senting individual particles) are eigenfunctions of a certain number of in-

dependent operators U^,
and that the function is determined uniquely

when the eigenvalues u^ are specified. Also the eigenvalues are discrete,

f I think that the calculation, which we shall make later, of the constant of gravitation
and the cosmical constant provides the first quantitative observational test. A qualitative
test has been provided by the phenomenon of white dwarf stars.
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although in some applications they may be very numerous and fall close

together. It is therefore impossible to vary an eigenstate continuously;
and if the distribution is given a small velocity, as in a Lorentz transforma-

tion, it must cease to be an eigenstate. It is therefore a necessary condition

for an exclusion principle that it shall not satisfy the Lorentz transformation.

Effectively this means that it applies to the relative or internal coordinates

of a system as is illustrated in the application to the hydrogen atom. For

a neutral macroscopic distribution the choice of operators U^ is very limited,

since the only recognised characteristic ofthe distribution is T^ . In familiar

applications <f>
and are taken to be eigensymbols of the four diagonal

components of T^\ so far as 1 can see, the only other possibility would be to

employ derivatives (more especially curls) of Tap .

For the most part, what we have said about Lorentz transformations

applies also to ordinary rotations. But when, owing to the symmetry of a

system, it is impossible to distinguish its orientation with respect to its

surroundings a degeneracy occurs; and the discrete set of eigenfunctions

<f>, ^ is defined by operators U^ which include angular momenta.

There is no ground for supposing that an exclusion principle applies when
the distribution is not in a steady state; and it seems evident that it does not

apply. The energy concentrated in one elementary state of an organ pipe

may (temporarily) be very much greater than hv ( 13-5). Consequently the

principle cannot be extended from discrete to continuous wave functions,

since the latter postulate an unbounded region in which equilibrium cannot

be realised. When the eigenstates are very close together we may, for mathe-

matical convenience, treat them as continuous, e.g. the states of a hydrogen
atom just below ionisation; but this statistical continuity must be dis-

tinguished from the genuine continuity of the eigenstates which begins just

above the ionisation level. If the ionised hydrogen atom is in a finite en-

closure, the free electron can attain a steady probability distribution; but

the eigenstates have again become discontinuous owing to the boundary
conditions imposed by the enclosure.

The exclusion principle is often stated in the form that there is not more

thanoneelectronperunitcell(A
3
)
ofphase space. This is the most convenient

form for statistical purposes, feut since it no longer explicitly requires the

wave functions to be discontinuous, many physicists have assumed that it

applies to systems represented by progressive waves, which are not in

statistical equilibrium. Any proposal to extend formulae relating to statis-

tical equilibrium to non-equilibrium conditions requires justification; but

no such justification has been attempted, and there is neither theoretical

nor experimental ground for the assumption.

We add a comment on the association of particles with the unit wave

functions. We are not attempting to analyse the macroscopic distribution
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into the elementary particles, or even the neutral particles, treated in micro-

scopic theory. Any particles which we now introduce are average particles,

having composite individuality; and as such they have different properties

from the elementary particles. It is permissible to regard an electron of

composite individuality as an electron, in the same sense in which it is per-

missible to regard the Prime Minister as a human being although he is

subject to changes of size and appearance impossible in a human being as

biologically defined, and might undergo displacement from Lossiemouth to

Bewdley without traversing any intermediate region. An average particle

is the particle which is fulfilling a particular role; and the conception arises

when there is in the assemblage always one particle, or a probability of one

particle, playing that role; but the identity of the particle is continually

(and, for statistical purposes, continuously) changing. We shall find later

that it is impossible even in microscopic theory to assign identity to particles

at different times in ah absolute way. But it is here unimportant whether

the continuous identity which we assign to a microscopic particle is absolute

or relative; adopting the microscopic particle as standard, the identity of

the average particle associated with a macroscopic eigenfunction is com-

posite and continuously changing. Naturally therefore it does not obey the

same laws as a microscopic particle, in so far as the laws involve d/dt. Since

d/dt gives the mass and energy, the mass and hamiltonian are different.

There are, however, well-known theorems concerning the density of distri-

bution ofeigensolutions, which normally secure that the number ofparticles
found in different modes of dissection is invariant. We are therefore able to

state the number of elementary particles corresponding to a given number

of average particles.

13-2. The Box Problem.

Consider a rectangular block of matter (e.g. in the interior of a star) of

dimensions Zx x Z2 x Z3 ,
and containing al^LJi^ electrons. We wish to deter-

mine theminimum electron pressureP as a function ofthe electron densitya .

We take axes such that the block as a whole is at rest, and we analyse the

internal state of the block into standing waves in the relative coordinates

i & fa- This is done by resolving the scalar wave function (within the

block) into Fourier components, so that ^ ^^nvnvn^ where

(13-21)
"2

n n -n cos -^ COSnvnv-n8 ^ j

etc., and nl9 n29 n$ are integers (positive in (13*21)). The factors canbe cosines

or sines, and (as a convention) we distinguish sine factors by negative values
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of 7i. The condition governing this analysis is that the wave functions

defining the elementary states must form a complete set of orthogonal
functions capable of representing any distribution of $ within the block.

Let s*a =27raa/Ja , w*= w^ + wf + tu3
2

. (13-22)

Taking wl9 w%, w3 as rectangular coordinates, each elementary wave is

represented by a point in ro-space. The points form a rectangular lattice

with intervals 27r/Za ; and their density in to-space is /1 Z2 /3/(27r)
8

. By the

exclusion principle there are not more than two electrons (and two protons)

to an elementary scalar wave.f Hence we shall require 0^/2^3 waves,

which will occupy a minimum volume i (27r)
3a in ro-space. If this volume

forms a sphere of radius r, 4^3= | (27r)3a . (13
.23)

The pressure is given by the operator

P = J (Tu + T22 + T33)
= -V2

/3w (13-24)

by (13-12). For an elementary wave *l>nvnvn^
^^is reduces to an eigenvalue

by (13-21) and (13-22). Hence

Py2 Z3
= S w*/3m = oi^Zg .o*/3m, (13-25)

where ra2 is the mean value of to
2

. We have therefore to select the waves

which give the minimum value of w*. This is obtained by packing them in

the sphere of radius r above mentioned. Then

(13-26)

by (13-23). Hence, by (13-25),

D _l/3\t(fcr)i

In C.G.S. units the factor (27r)
2 in the numerator is replaced by A2

, our

present units being such that A/2?r is unity. (The coefficient of the momen-
tum operator is A/2?r, not A/TT, since $ is an internal wave function.) The
constant m is identified with me .

This is called the ordinary degeneracy formula. It was first applied by
R. H. FowlerJ in his investigation ofthe state ofmatter in white dwarf stars

in 1926. But for many years it has been discarded by astronomers in favour

ofa supposed relativistic degeneracy formula. The "
relativistic

"
degeneracy

formula appears to be without foundation. The difference is important in

the theory of evolution of white dwarf stars; and it was the paradoxical
results of the "relativistic" formula, disclosed in an investigation by
S. Chandrasekhar, which led me to examine its validity. ||

t We take this result from current theory.

i Monthly Notices, R.A.S. 87, 114.

Ibid. 95, 207.

||
Ibid. 95, 194; 96, 20. See also 13-8.
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From a theoretical standpoint it is of greater interest to take the material

to be ionised hydrogen, and calculate the whole pressure including proton

pressure. The separation of the electron pressure from the proton pressure

is somewhat artificial, since the electrons could not exist alone. If a is the

number of scalar particles per unit volume, and ra the mass-constant of a

scalar particle, i.e. the constant ra in (13-12), the minimum pressure is found

by the foregoing method to be

Suppose that I ==^ ==2
( + ) (13-291)^ ra ra \mp mj

by (12-63). Then (13-28) becomes

Since the electron density is now 2<j, this agrees with (13-27) supplemented

by a corresponding proton term.

We therefore conclude that the coefficient ra for a scalar wave function

is as given in (13-291). This is in the system of units with A= 2rr. We recall

that when the relativistic double valued wave vectors are employed, the

units are such that h = TT ( 9-6). In that case

ra= 2ra /136. (13-293)

The factor 136 is a transformation factor due to our normal reckoning of

mass being determined by double vector wave functions with a phase space

of 136 dimensions, whereas the double scalar wave function has a phase

space of one dimension. We could eliminate it by assigning appropriate

indices to scalar and vector wave functions (8-65). The factor 2 occurs

because here the internal coordinates f^
are relative to the centre of mass,

whereas in the simple transformation (10-911) ^ is the coordinate of one

particle relative to another.

13-3. The Energy of Standing Waves.

The domain of the internal coordinates ^ is three-dimensional, there being

no relative time coordinate. Consequently T^ for standing waves consists

of spatial components only. This is not the whole energy tensor; the re-

mainder is provided by the external wave function which represents the

motion of the block as a whole. The rest-mass is contained in the external

wave function. In the present coordinate system (chosen so that the block

as a whole is at rest) the external energy tensor consists of a single com-

ponent 2V Since f^T^^T, we have in our coordinate system (with real

time) Tu-T+ Tu + TB+ Ta, ( 13
'31 )

which is also written as />=p + 3P. (13-32)
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Consider now a different set of standing waves in the material of the

block, so that the pressure P is changed. One or both of the quantities />, p
must be changed. Let8

(13-33)

where
/>

'
is constant, and /? may be zero or constant or a function of P. The

usual point of view is that it is more appropriate to divide the whole energy
tensor into a constant external part T^p^, and group together the part

(P, P, P, (3 + j3) P) which comprises the whole effect of the standing waves.

To provide for the energy (3 + /?) P we must insert a time factor e iki in the

functions
*ffn t n % n ,

k being dependent on (nl9 n2 , n3 ) or equivalently on

(wl9 m2 , iu3). Owing to our special choice of axes t is identical with the

dynamical coordinate s of the internal state; so it is not so incongruous as

it might seem, to mix it with the internal coordinates
f^.

There are no

boundary conditions for determining k, and it must be determined from the

energy density (3 + j8) P; but this requires a knowledge of
/?.

The problem of finding the hamiltonian of the standing waves, i.e. the

expression for the energy operator idfit in terms of the momentum

operators id/dg^,
thus resolves itself into determining the constant or

function j8. We wish to find the change of energy density or mass density
85P44 , when energy is added to the system in the form of standing waves

producing a pressure STU .

It is commonly taken for granted that the answer to this problem can be

checked by observation. No such test is possible; and any answer we may
adopt must rest on convention, not observation. Consider a vessel con-

taining gas. I do not doubt that when the pressure is increased by raising

the temperature of the gas, the mass (measured in the ordinary way by the

acceleration of the vessel under a given applied force) is increased by the

amount of the heat energy that is added. Further, if the gas is monatomic,
its heat energy is fully represented by standing waves. But for our purpose
the experiment is illusory. The integrated pressure of the gas is precisely

balanced by the integrated tension of the walls of the vessel. The observed

change of mass (integral of 8jP44) is therefore not associated with any net

change of TU9 but with a differential effect depending on whether Tn is in

a gas or a cohesive solid. The complication in the solid is that there are inter-

atomic forces of cohesion, of a type which can only be represented by the

use ofvectorwave functions. We can make an arbitrary addition ST^= o&Tn
(a= const.) to the density at each point in the gas and vessel, since it is

onlypossible to test observationallysystems in which pressures and tensions

balance. Accordingly, ^8Tn= 0; and the addition cancels out on integration

over the system.
It may seem more hopeful to examine a steady system without a con-

straining boundary, e.g. a star cluster, or a star composed ofmonatomic gas.
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But has a star greater or less mass than the sum of the rest masses of its

particles? It has more kinetic energy but less total energy. Which of these

corresponds to the mass? Or, more precisely, which is represented by the

integrated value of 5P44 ? The answer to the latter question is neither ;
for

jP44 cannot be integrated in an absolute way in a curved space. In trying

to avoid a constraining boundary we have used curvature of space-time

(gravitational force and potential energy) to keep the system steady; and

the same indeterminacy now appears in the form of non-integrability .

This observational indeterminacy is provided for in the initial formula

(13-11). TpV is indeterminate to the extent of an additive constant
Agr^/,

and

the relation of S!F44 to 8Tn will depend on the arbitrary choice of a corre-

sponding 8A.

We have therefore to fix the relation between 8jP44and8P by a convention.

For reasons, which we shall presently explain, the convention is taken to be

ST= 0, (13-34)

so that j8= 0. This will fix the change (if any) of the gauge constant A, and

it can therefore be regarded as a gauging equation. It is here asserted only

for changes of standing waves; in particular it does not hold for regions in

which there is unbalanced angular momentum. But it happens that it

includes Maxwellian electromagnetic fields since these have a proper density

T which is identically zero.

The invariant T is the Action ofthe material system. The action ofelectro-

magnetic waves (but not of aperiodic electromagnetic fields) is zero. Hence

(13-34) secures that there is no change of action when radiation is absorbed

and converted into standing waves in a material system. It may therefore

be interpreted as a Principle of Stationary Action for variations of the equi-

librium state ofmatter and radiation. It is in the form ofan action principle

that the convention (13-34) has become incorporated fundamentally in the

current scheme of physics.

We must therefore accept (13-34) as the current convention. Then j8=0;

and, by (13-32) and (13-33), the energy density T44 of matter whose internal

state is represented by standing waves is

(13-35)
where p is constant.

In the classical theory of gases, and in elementary quantum theory,

only the kinetic energy, which is approximately fP, is considered; and

the energy density is taken to be p=/> +fP. But changes of pressure

cannot be produced without changes of the gravitational field
;
and it is

disastrous to introduce relativistic refinements without taking into account

the changes of potential energy.



13-4] Standing Waves 239

13-4. The Use of an Action Principle.

Wave mechanics is a statistical theory and its results refer primarily to

systems in statistical equilibrium. Its procedure is to investigate the pos-

sible steady distributions of probability, postulating an ideal environment

of the system considered. Its dynamical equations are derived from the

condition that a recognisable characteristic of the system remains steady
this being taken as the criterion of a steady state. Herein lies the essence of

the statisticalmethod. For the complexions ofasystem originallyregarded as

distinct are regrouped according to the values of the selected characteristic;

and the probability distribution of its components takes the place ofthe pro-

bability distribution ofthe original classification. In particular, it is possible

to find attributes for which, on the original basis of statistics, some values

are infinitely more probable than others corresponding to singularities

in the transformation from the old to the new classification of complexions.
But how can a theory of steady conditions provide anything for obser-

vation to get a grip on? Those influences from the external world which

reach our senses are due to change and transition.

We have made provision for perturbation ofand by these steady systems.
The first step is to introduce steadyperturbations. These are found by treating

the perturbed and perturbing system as a combined system in statistical

equilibrium, and therefore falling within the scope of the statistical theory.

We then derive an equivalent representation as two separate systems each

ofwhich is uniformly perturbing the other. The perturbations are expressed
as changes of the probability factors attached to the steady states of the

two systems.
But it would seem that ultimately there must be some limit to the treat-

ment of phenomena by methods based on the postulate of statistical equi-

librium. The universe is far from statistical equilibrium; so that sooner or

later we are bound to overstep the limits of the theory. I am not sure that

this conclusion is logically sound. According to our usual outlook the

universe is far from statistical equilibrium; but it may depend on how we
choose the basis of statistical enumeration. The "recognisable character-

istic
" J ofthe universe is that it conforms in every detail to our accumulated

knowledge of what has actually occurred during a period of a few thousand

years. We can at least say that J is constant for changes of the dynamical
time coordinate 8 except in so far as subjective influences (discovery that

certain information is false) may cause
"
perturbations". But it is perhaps

unlikely that the number of symbols Ul9 U2 , ... commuting with J is suffi-

cient to justify an analogy with the theory of 9-1.

Be that as itmay, physics does not attempt to press the equilibrium theory
to such an extreme, but breaks off in a new direction. We must make clear

the nature of this fundamental departure.
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A simple illustration is afforded by the historical development of the law

of gravitation. First the steady states of a combined system the sun and

a planet were discovered, leading to the formulation of Kepler's laws.

Then an equivalent representation as two simple systems, one perturbing
the other, was found; and the perturbations were expressed in the form of

the inverse-square law of gravitation. The next step was to assume that

the same law ofperturbation applies, whether the bodiesform a steady system or

not. The Newtonian and Einsteinian pictures of gravitation are such that it

seems pedantic to emphasise the arbitrariness ofthe last step. What possible

bearing can the steadiness of the system have on the matter? But our point
is (1) that an analogous step must always be taken in developing the general

laws of nature from the study of steady states, and (2) it is an exceedingly

dangerous kind of generalisation to apply to statistical formulae. We know
well the many fallacies which have arisen from applying to non-equilibrium

distributions the laws found for statistical equilibrium.

We have therefore to recognise that, woven into the method of physics,

and forming an indispensable part of it, there is a hypothesis or an assump-
tion or a convention (we leave the appropriate term for further consideration)

that results obtained for systems in statistical equilibrium can, in certain

circumstances which must be strictly defined, be applied to non-equilibrium

systems.

The hypothesis or assumption or convention is the Principle of Stationary

Action. This asserts that a certain characteristic (action) of the combined

system in statistical equilibrium remains stationary for small deviations

from equilibrium. This gives, as it were, a slight play at the joints of our

systems, by which we can extricate them from the bondage of statistical

equilibrium. After analysing a distribution in statistical equilibrium into a

number of separate, but mutually perturbing, systems, we can give those

systems a freedom which they did not possess as components of an equi-

librium distribution.

The introduction of some such principle is not a wholly arbitrary pro-

cedure. Some such "loosening of the joints" is inseparable from the con-

ception of the analysis of a whole into its parts.f It is meaningless to write

a= b + c unless we contemplate the possibility that b may have a significance

when c is not added to it. As a condition for detaching b from c, we must

recognise a definite distribution of the characters of a between 6 and c.

Thus an important aspect of the principle of stationary action is a localisa-

tion of the characteristics energy, spin, etc. of the combined system.
Let us return to the problem of determining observationally the change

t Of. the introduction of an infinitesimal element of relative time dtr in 12-3. It is there

postulated that the probability distribution of the combined system in phase space is

stationary for such a variation.
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ofenergy with pressure ofa gas. To render the conditions static and thereby
amenable to treatment by the statistical theory which contains our funda-
mental definitions, it was necessary to enclose the gas in a vessel. But the

enclosure introduced compensating tensions which frustrated us. Having
introduced the envelope, we were unable to detach the gas from its envelope.
As an alternative we may consider a small volume of gas in the interior of

a star, and seek to determine by ideal observations how its energy would be

changed by a change of pressure. The question is absurd; we cannot change
the pressure at one point in a star (in steady conditions) without altering the

whole star. Observation will not tell us what part of the whole change of

energy is located in the particular volume considered.

To attach an observational meaning to a local association of energy
density and pressure, we must be able to produce a change whose effects are

confined to the locality. Such a change is provided by the conversion of

radiation into molecular motion of matter. According to (13-34), if the

radiant energy is converted wholly into standing waves, as in an ideal mon-
atomic gas, there is no change of energy density or pressure;! 8O that the

effects are confined to the locality. In particular the gravitational field

emanating from the region is unaltered, so that there is no cause of readjust-
ment of the matter outside. But there is the preliminary objection that the

existence of radiation in any other than its equilibrium proportion pre-

supposes a highly disturbed state of the star. Thus even the conversion of

radiation into molecular motion is not a strictly local phenomenon. Its

effects are local, but its causes are not local. It cannot occur independently
of a general settling down of the star, implying similar conversions in other

regions.

It is here that the principle of stationary action, which must now have
the definite form (13-34), steps in. It asserts that 8T= applies to the local

conversion of radiation into material energy, independently of the con-

versions occurring in other parts of the star. Although the rest of the star

could not actually be in statistical equilibrium, it may be treated as if it

were in statistical equilibrium; because the property with which we are

concerned is stationary for small deviations from statistical equilibrium.
The mathematical form ofthe action principle shows quite explicitly that

it is a means of localising the characteristics of the universe. The quantity
to be varied is an integrated quantity covering a large volume; the quan-

t This appears to be inconsistent with the elementary formulae, which predict a change
of pressure if the volume is unchanged; hut in our problem we have to admit whatever change
of volume is necessary in order that the effect of conversion may be strictly localised, i.e.

that there may be no change of the gravitational field outside the region. But a real change
of volume would displace the surrounding matter outwards or inwards; the change must
therefore be represented as a change of reckoning of volume, implying a change SA of the

gauge-constant.

ETP 16
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titles determined or defined by the variation are functions of position so

that each minute part of the system is described separately. Localisation is

an artificial conception in an interrelated universe, where the influence ofany
one part extends through the whole. To detach one part from the rest is

impossible. The action principle reassures us by asserting that (with suitable

safeguards) a mild impossibility is a permissible idealisation. Its ill effects

are of the second order of small quantities.

Like many of the "principles" in science, the genesis of the action prin-

ciple is that, having realised that we ought not to make a tempting assump-

tion, we erect a principle to say that we may make it. I shall not attempt to

defend the principle of stationary action as a physical assumption; there is

no need to do that. Its defence is that it is the basis of our definitions. A
principle of localisation must precede the definition of any localised entity,

e.g. the g^v or F^ of field theory. By definitions I here mean, not the mathe-

matical definitions as symbols in a deductive theory, but the definitions by
which they are recognised and measured in observational science. The action

principle is not a physical hypothesis; it is a means of defining localised

quantities. Thus in the application in 13*3 we had an undefined disposible

constant A. By adopting the action principle (
1 3- 34) we remove the arbitrari-

ness of 8A, and changes of energy and pressure are defined precisely.

In considering the action principle as a vehicle of definition, it is desirable

to distinguish between :

(a) Weak action principles. Referring to conditions in empty space, with

or without weak electromagnetic fields.

(6) Strong action principles. Referring to conditions in continuous matter,

intense electromagnetic fields, the interior of a nucleus or electron, etc.

The difference arises because, although an investigator has a certain

amount of freedom in adopting definitions of the terms which he employs,
he must have regard to established usage. In regard to (a) established usage
dictates the form of the action principle. There is no difference of opinion
as to how the kernel of the action invariant is constituted, to the order of

accuracy required in weak conditions; for it has to lead to definitions already

recognised. In regard to (6) an investigator has entire freedom in his choice

of action invariant and consequent definitions ofg^v and F^, provided only
that it converges to the weak action invariant as weak conditions are

approached. Current literature shows that full advantage is taken of this

freedom !

Observational measurements are only made under weak conditions. The
"distance between two points" in field-free conditions is what it is deter-

mined to be by measurement; the distance between two points in an intense

magnetic field is whatever (within reason) a theorist chooses to call it. No
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experimental physicist would attempt accurate measurement of distance

in an intense magnetic field; he would mistrust his scales or other apparatus.
In practice he does not measure the curvature of the track of an electron

in an intense magnetic field; he measures the curvature of a track on a

photographic plate placed outside the field. Intervals, and the corresponding

g^, are only defined observationally in field-free conditions, or when theory

(that is to say, the accepted action invariant) assures us that the electro-

magnetic field is not strong enough to introduce sensible error. When once

we begin to suspect that our measured distances need correction, we turn

to theory to tell us what the measures ought to have been. Naturally the

corrected measures will confirm the theory used for determining the cor-

rections, whatever form that theory may take.

The literature of mathematical physics abounds in proposals of universal

action principles covering strong as well as weak conditions. I think it is not

unfair to summarise the majority of such proposals as follows:

(1) A geometry based on a new set of axioms is outlined.

(2) A fundamental invariant of the new geometry is selected as action

invariant.

(3) It is shown that the action principle leads to the usual equations for

weak fields.

(4) Second order terms, sensible in strong electromagnetic fields, are

found, which it is suggested may provide an observational test ofthe theory.

(5) A hope that something further may come of it.

Our comment is: (1) We may choose any kind of space we please for the

purpose of graphical representation of physical quantities without com-

mitting ourselves to anything,f (2) The quantities g^, Jf^ are to be used in

strong conditions in which there is no agreed definition as to how they are

to be measured. The action invariant embodies the definition selected in the

new theory. (3) This shows that the definition is not in conflict with any
established usage. (4) The result of the test will inevitably be a triumphant
verification of the new theory, provided that the observations are correctly

reduced. By correctly we mean that, for measurements with apparatus

actually located in the intense fields, the readings of the apparatus (which

are, of course, affected by the field) are corrected to accord with the readings
of ideal apparatus which conforms to the equations of the new theory; and

for measurements made outside the fields, the inference as to what is

happening within the field is calculated according to the equations of the

new theory.

The trouble about unified field theories is that there are so many of them,
and all of them are right. The various action principles are various plans of

t Mathematical Theory of Relativity, 83.

lC-2
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localising the characteristics of the interrelated conditions which the

universe presents to us. The procedure of localising an entity is inseparable
from the procedure of defining a local entity. It all reduces to a question of

definitions. The difference between the rival theories really rests on (5)

as to which opinions will naturally differ.

13-5. Potential Energy.

Let us return to the problem of the rectangular block. In order to avoid

inessential complications, we shall at first suppose the density to be very

low, so that collisions of the particles can be neglected. From one aspect the

block is occupied by the set of standing waves introduced in 13-2. From
another aspect it is occupied by n elementary particles moving in diverse

directions; these are represented by progressive waves which combine into

an w-tuple wave function. I think it will save much confusion of thought if

we notice that the standing wave function represents a system in equi-

librium, and the n-tuple wave function represents a rapidly dispersing

system. If we insert in the n-tuple wave function a later value of the time,

it gives the distribution which would be reached if each particle continued

to move with its present momentum.
Let us then take a somewhat modified ra-tuple wave function Y, which at

every time t represents the n particles occupying the block at that time.

This will represent a statistically steady system, just as the standing wave
function does. Every time a particle crosses the boundary T changes dis-

continuously.t We must replace the discontinuities by continuous change;
otherwise the function is not differentiate and is useless for computing

energy. But the energy id/dt of this smoothed wave function will be

altogether different from that of the instantaneous n-tuple wave function.

The general effect of smoothing out the discontinuities can be seen by

considering the combined wave function of the rectangular volume A and

the surrounding matter B which holds it in equilibrium. The steady state

(represented by standing waves) results from the fact that on the average

for every particle passing fromA to B9 a similar particle passes from B to A .

In the combined wave function of A and B this is merely a nominal inter-

change. The coordinates xp of the pth particle of system A have become

inappropriate to system A, and the coordinates x
q

r

of the qth particle of

system B have become inappropriate to system B\ we therefore re-label the

particle at xp as the qth particle of system B, and the particle at x
q

'

as the

pth particle of system A. By the well-known Fermi-Dirac rule this inter-

change of labels reverses the sign of the wave function in this case the

t Since we are supposed to have approximate knowledge of the momenta of the particles,

we cannot know their positions exactly. Thus the time of crossing the boundary is indefinite

to a slight extent; and the change of T though erratic is not strictly discontinuous.
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combined wave function of A and B. In time-averaging the succession of

reversals of sign is replaced by a continuous factor e'^', which reverses

the sign at regular intervals irjpv . When we form the energy -i9/9f,

the factor eip** gives an additional energy pv . This interchange energy
does not appear in the instantaneous n-tuple wave function which repre-

sents a dispersing system; but it belongs inalienably to the steady system

represented by the modified function Y or alternatively by standing wave

functions.

Interchange energy is evidently potential energy. (I may add that so far

as we know all potential energy is interchange energy.) The system occupy-

ing the rectangular block may be kept in equilibrium, either by interchange
ofparticles at the boundary, as described above, or by a force exerted by the

matter beyond the boundary turning back the particles as they reach it.

But the two processes are the same. For, since the particles are indistin-

guishable individually, it is meaningless to discriminate between an old

particle being turned back and a new particle coming in. Thus the inter-

change effect and the force are identical. Ifwe happen to take one view we
call the energy interchange energy; if we take the other view we call it

potential energy in the field of force.

The rectangular block, which we have been contemplating, must not be

too small to be treated macroscopically. In many applications the free path
of the particles will be small compared with 119 12 , 1B . The collisions are then

the main instrument in preventing the particles from straying outside the

block; the reduced number which hover about the boundary are deemed to

be turned back by interchange as before. We shall find in Chapter xv that

the electrical forces controlling the encounters of protons or electrons are

attributable to interchange. For our purposes it is unimportant whether

the potential energy included in !T44 is due to collision interchange or to

boundary interchange. The formal difference is that collision interchange is

provided for in the equations and definitions of electromagnetic theory, so

that it is an intrinsic property of electrons and protons as currently defined;

boundary interchange is an averaging adjustment which enables us to treat

a dispersing system as a static system. We may say that when the free path
is small compared with a macroscopic volume element, the volume element

is genuinely in equilibrium; when the free path is long, it can be treated as in

equilibrium.

When the velocities ofthe particles are not too great, and at the same time

the density is too low to give rise to degeneracy, the classical theory applies

and the density ofthe kinetic energy is fP. To make up the total p + 3P, the

potential energy must be fP. Thus the kinetic and potential energies are

equal. The fact is that the waves represented by scalar wave functions are

the ordinary elastic vibrations or sound waves of the material. The only
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point at which we go beyond classical dynamics is when we apply the exclu-

sion principle.

The exclusion principle sets an upper limit to the amplitude of any

particular wave, such that its energy cannot exceed one quantum. In non-

equilibrium conditions the amplitude ofa particularwave can greatly exceed

this limit, e.g. when an organ pipe is sounding its fundamental note. This

emphasises the fact that there is no justification for applying the exclusion

principle in non-equilibrium conditions. It is intimately connected with the

interchange forces which maintain equilibrium, as will be seen in Chapter xv.

In extreme conditions the kinetic and potential energies are no longer

equal. For constant density, it appears that the energy 3P is wholly poten-

tial at absolute zero (complete degeneracy) and tends to become wholly
kinetic at very high temperatures. We should first make sure that this

separation into kinetic and potential energy has an observational meaning.
Certain phenomena, e.g. the rate of disruption of nuclei by protons, evi-

dently depend on the kinetic energy of the elementary particles (not the

composite average particles); and since the rate of disruption increases

rapidly with the speed ofthe protons, the distribution law ofkinetic energies

of the individual protons is involved, and doubtless will in due time be

ascertained from observations of this kind. The problem of finding this

distribution law theoretically should be soluble; but apparently it has not

yet been solved. The individual protons and electrons correspond to pro-

gressive waves; the present investigation treats only the composite particles

represented by standing waves, and is not relevant.

Reference must be made to the current formulae (associated with the

"relativistic
"
degeneracy theory) which profess to give the distribution law

ofthe kinetic energies and momenta of the individual protons and electrons

at all temperatures. So far as I know, they may be right at high tem-

peratures; but it is impossible to trust them, not only because they rest on

a false conception of relativity, but because they are clearly wrong at low

temperatures. In these investigations the minimum pressure P which

corresponds to absolute zero is attributed to kinetic energy ofthe elementary

particles. Ifthat were so the protons would, ifthe density were great enough,
still have large velocities at absolute zero, and continue to disrupt the

atomic nuclei. This surely is a contradiction of thermodynamical principles.

Our own investigation does not discriminate between kinetic and potential

energies; but coupled with the general physical principle that processes of

the nature of ionisation or transmutation must cease at absolute zero, we
infer that the energy 3P must be wholly potential.

It may be urged in defence of the current formulae that the energies and

momenta to which they refer are not to be taken as the energies and

momenta for the purpose of calculating collision effects that they are not
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to be interpreted according to the classical conception of motion. To this

we reply: (1) Then the distinction between kinetic and potential energy
loses all observational meaning; and we lose nothing by treating them

together in our own theory. But the question still remains unanswered,

What is the distribution law of the energies and momenta concerned in

collision effects? (2) Our criticism of the current theory is that it does

interpret the energy |P according to the classical conception of motion; it

treats the corresponding velocity ormomentum as a vector to which Lorentz

transformations may be applied, and thereby introduces change ofmass with

velocity. If the particle has one velocity for the purpose of Lorentz trans-

formations and another velocity for the purpose of collision phenomena,
what becomes of the principle of relativity?

13-6. Transition to Vector Wave Functions.
b

For the problem of the rectangular block we have used a form of wave

mechanics much simpler than that which has been developed in previous

chapters for the treatment of microscopic problems. If it is asked why the

simple form does not apply to an atom, we answer that it does not even

apply to a macroscopic distribution of matter in a smooth spherical vessel.

In addition to the modification of the elementary orthogonal functions

^n
lf
w

2,w 8
to correspond to a spherical boundary, a new feature appears.

There are steady states in which the distribution has a resultant angular
momentum.
With a spherical boundary unidirectional motion is no longer inconsistent

with a steady state. In rectangular coordinates there must be on the

average as much motion in one direction as in the other direction of fa , and

the state of motion is accordingly represented by standing waves; but in

polar coordinates it is not necessary that there should be as much motion

in one direction as in the other direction of 0, so that we may have pro-

gressive waves in an angular coordinate 0. Such waves are not essentially

different from the progressive waves representing a particle moving freely

in space, i.e. revolving unidirectionally about the centre of curvature of

space.

The advent of progressive waves into a problem depends on the existence

ofrelativity transformations ofthe coordinates, which occasion a degeneracy
of the ordinary steady state solutions. In the problem of the rectangular

block there are no relativity transformations of the internal coordinates

M ; taking account of boundary conditions, no other axes are "equivalent"
to those which are parallel to the edges ofthe block. In the spherical problem
all orientations of the internal rectangular axes are equivalent; so that

rotations in the three coordinate planes are relativity rotations. The time

direction must be chosen so that the spherical boundary is at rest; it is
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therefore still unique, and there are no Lorentz transformations of the

internal coordinates.

The machinery for dealing with relativity transformations has been

developed in our early chapters; and in order to provide for the relativity

transformations of the internal coordinates we must introduce it into the

internal wave functions. But for three-dimensional relativity it is un-

necessary to resort to Dirac's fourfold wave vectors. We can take $, <f>
to be

wave vectors with two components (2-vectors), and associate the coordinate

planes with Pauli matrices 1? 2 , 3 . As explained in 3-8, 19 2 , 3 , i form

a minor complete set, and are a simplified representation of the symbols

E12 , E23 , EM, E19 when the other symbols are not being used.

Considering an elementary scalar wave, let a be the particle density, or

the probability that the particle belonging to the wave is within a unit

volume at the point considered. If 0, <f>
are normalised in accordance with

the exclusion principle (13-144), <r= 0<. Thus scalar wave functions relate

to the special case in which the stream strain vector /S= ^&* consists of a

single algebraic component a. But when $ and are 2-vectors, an algebraic

quantity a cannot be a simple product ^*; a is the sum of two pure com-

P nent8

where L is the Pauli matrix associated with an arbitrary plane. The two

expressions in (13-61) are idempotent when normalised (so that the halfspur

=
); hence they can be factorised ( 5-6).

Accordingly the "particle" corresponding to an elementary scalar wave

is replaced by two sub-particles with the non-algebraic stream vectors

(13-61). The components Jo- and ^icr^ correspond to energy and angular

momentum. Thus the sub-particles have opposite spin in the^ plane. When
the boundary conditions are such that the angular momentum in a steady

state is zero, the oppositely spinning particles are constrained to occur

together; they can be regarded as together constituting an indivisible unit

a scalar particle; and we are only concerned with the sum of their strain

vectors which, being an algebraic quantity, is represented by scalar wave

functions. But when, as in the spherical problem, integrals of angular

momentum exist, the oppositely spinning particles have independent

probability distributions and are represented by separate 2-vector wave

functions.

The analysis of a system into elementary states has to be considered in

conjunction with the perturbations anticipated. The elementary state is a

unit which requires a separate probability factor in perturbation theory.

In earlier chapterswe have had in mind well-isolated systems, whose reaction

with other systems is limited to weak or occasional perturbations. But in

these macroscopic problems the "system" described by the wave functions
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is usually a volume more or less arbitrarily carved out from its surroundings,
and the viscous forcesf at the boundary constitute a strong permanent

perturbing influence. We have different elementary states of a gas con-

tained in a sphericalvessel according asthesphere isroughorsmooth, because

in the rough sphere the permanent perturbation is such as to prevent any
persistence of probability in one direction of spin as compared with the

other; there is no occasion to give them separate probability factors.

The choice of elementary states depends on the approximate rather than

on the exact boundary conditions. A vessel cannot be perfectly smooth; and
if we paid attention to the exact boundary conditions, we should conclude

(correctly) that the only state of statistical equilibrium was one of zero

angular momentum. But the gas may take a long while to reach this state;

and we learn more by utilising the complete series of states in an ideally

smooth vessel, treating the small friction as a perturbation which slowly
transfers the excess probability of one direction of spin to the opposite

direction.

The problem of a smooth spherical vessel is a half-way stage between the

rectangular block and a particle moving freely in space-time. For the free

particle the relativity transformations are extended to include Lorentz

transformations. This additional degeneracy must be provided for by a

second set of Pauli matrices
0^, commuting with the

^.
The two com-

ponents of opposite spin ^<r(li^) are in turn analysed into two com-

ponents of opposite electrical sign

ior(lig(li^). (13-62)

The wave vectors are now 4-vectors, and the double set of Pauli matrices

is more conveniently replaced by a set of Dirac matrices with the same

commutative relations (3-8). The four components (13-62) then become

the spectral components given in (6-64).

It is of interest to consider whether (13-62) has any application to macro-

scopic systems. We might start with
0^

instead of
^,

and divide the scalar

density a into two components of opposite electrical sign Jo*(l tfljj.
The

scalar wave function postulates that these are constrained to have equal

probability so that they need not be considered separately. Can the

boundary conditions be modified so that they have independent probabili-

ties? I think so. The necessary condition is that the system shall be in-

sulated. With an insulated boundary, there are steady states having an

excess of components of one electrical sign; just as with a smooth spherical

boundary there are steady states having an excess of components with one

direction of spin.

t The boundary pressure (interchange force) is allowed for by including potential energy
in the system, so that we avoid treating it as an extraneous perturbation.
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If the substance is permanently magnetisable it is also possible to have

steady states with a preponderance in one direction of the magnetic stream

vector.

These states of electric or magnetic excess may also be induced by

permanent perturbation from outside, i.e. by steady electric or magnetic
fields. Thus the general problem of statistical equilibrium of a macroscopic

system, when the angular momentum is not constrained to be zero and

electric and magnetic fields are not excluded, will involve Dirac's vector

wave functions.

When the spins and charges are not balanced, the state of the material is

only imperfectly described by the ordinary energy tensor. For a full

descriptionwe require the Riemann-Christoffel matrix ( 11-4). But it should

be remembered that the electric and magnetic fields which occur in practice

in macroscopic systems correspond to an entirely trivial excess of com-

ponents of one sign. So that whilst these phenomena are important on their

own account, there is very little to represent them in the statistics. It is

therefore more suitable for ordinary purposes to represent the electro-

magnetic field separately by potential theory, rather than to merge it in

the general statistical formulation where it would be almost lost.

If we apply the energy operator (13- 12) to vector wave functions, the

covariant differentiation will introduce matrices ( 8-3). Each component of

the energy tensor therefore becomes a matrix, and we obtain altogether
256 components as when the Riemann-Christoffel matrix is used. It appears
therefore that the theory of the energy of distributions which involve vector

wave functions, treated in Chapter xi, could be reached by starting with the

energy operator (13-12).

13-7. Origin of the Energy Operator.f

In this section we shall obtain the formal connection between the energy

and the energy operator

T
aj8

By contracting the energy tensor we have

T= (1/8

Using this to eliminate A, we obtain J

t As this section is occupied with ordinary tensor calculus the summation convention is

used unrestrictedly.

J I was led to consider #p J0ap# through correspondence with Dr J. Ghosh.
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Consider the gauge-invariant curvature tensorf

*#tf
=
#*/*- 3 (*J0+(^

which is invariant for the transformation

9*fi=Pffafi>
Ka

' = *a+ a0/a*a , (13-722)

where j8 is any scalar function of the coordinates, and

= logj8. (13-723)

Multiplying (13-721) by gr
a
#, we obtain

*G=a-6(K*)e + 6K Ke
. (13-724)

Hence ^~^^=*^-^*^+ 2K^-^aj3^^ )

+ 2{(Oj-iM JC*)> + *
l

*' (13-725)
where

âj8
=

(/ca)^~(/c]3)a
.

Take *a=0 initially; and let A denote an increment produced by the

gauge transformation. Then, since *#a fa/ap*
& + &&$

is invariant for the

transformation, (13-725) gives

Wtf-tartW-WJt-tartW + WJfi-tatfP).}, (13-731)

where a denotes dO/dx^.

If 8 denotes covariant differentiation

l

p

so that (O/J-^W&fcfcgjB-fyfl.. (13-732)

(i3>74)

so that (0Jj8
+ da^=-47rK.)8-

1T
a/,/9 (13-751)

and, by contraction, (0
e
)e+ fl0,

= - 4 . jS^T/S. (13-752)

Then, by (13-71), (13-731), (13-751), (13-752),

A(?
T

aj8 -|gra^) =
]8-

1

(T^-i^T) j
8. (13-753)

We now introduce wave functions

*-jB, X= J8-S

'

(13-76)

representing an addition to, or modification of, the distribution whose

energy tensor is T^ . Our result shows that instead of expressing the modi-

fication as a change of curvature ofspace-time (which would involve altering

the metrical tensor
graj8

to jS
2
^), we can express the change of T^ ^g^T

as the expectation value of an operator Ta^-|gra^T, the operator being
defined by (13-74).

This is the most primitive connection between the wave functions and

t Mathematical Theory of Relativity, equation (87-5); the suffixes after the brackets denote

covariant differentiation. Although this tensor is generally studied in connection with Weyl's

geometry, we do not here apply it in that way. We use only the well-known analytical

property of invariance of the tensor.
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operational momenta of wave mechanics and the curvature tensors which

represent momenta, etc., in general relativity theory.

Equation (13-753) can be resolved into separate equations:

Afy= XT^f Ato*T)-j^. xTfc (13-77)

provided that the change AA of the arbitrary constant A is suitably chosen.

The two equations are consistent since

A((^T) = A(<7a^
<7a0gr being unaltered by change of gauge. The second equation of (13-77)

is therefore derivable from the first.

The wave functions employed in practical applications of wave-

mechanics are an adaptation of these primitive wave functions to specially

simple conditions. In particular a modified energy operator is used, defined

by V 32
' (13

'

78)

whose eigenvalue is the integrated energy over a three-dimensional domain

of volume V. Instead of
^r, x we take two equal wave functions

A=H0.
The product \^<j>

bears the same kind of relation to ^^ that a strain vector

bears to a space vector. Instead of (13-77) we have

If now
<f>
and

\f>
are normalised so that f<f>ifidV= 1, we have

and V . AT^ is regarded as the energy ofa single particle distributed through-
out V with a probability density <fn/t.

Further light on the connection between wave functions and gauge
transformations will be found in 14-1, where a special case is treated.

Although we do not normally employ Weyl's representation of the

electromagnetic field in wave mechanics, it is of some interest to extend the

foregoing investigation to his theory. The difference is that we can no longer

put *a= initially, since the electromagnetic force JPa^,
which is invariant

for the gauge transformation, is represented by curl /ca . The term

in (13-725), being non-linear, will give cross terms

2(
or, in operational form,

), (13-79)

representing a mutual energy of the waves and the electromagnetic field,

which is not included in (13-74).
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13*8. The Degeneracy Formula.

Since the formula (13*27) for the minimum pressure differs from the so-called

relativistic degeneracy formula which has been widely but uncritically

accepted, we shall here explain the origin of the difference.

Ifa particle ofproper massm has a velocity vector dx^/ds, its "integrated

energy tensor" is defined to be

Uv>-i&^-. (13-811)ds da
v '

Suppose that there is a discrete set of values of UPV
, and that there are nr

particles with energy Iff in a three-dimensional volume V. A fractional

value ofnr is to be interpreted as a probability. The resultant energy tensor

(reckoned as usual per unit volume) is

Tfiv= Z>rnrUsv
IV. (13-812)

Let Nr
= nr (dtlds)r . (13-82)

Then Nr/V is the proper density of distribution of the particles with suffix r

as contrasted with the relative density nf/V. The energy tensor can also

where M
The exclusion principle provides an upper limit to the number nr or Nr .

The difference between the two theories is

Present theory nr < 1,
j

Current theory Nr ^l.]~
(

'

'

It will be seen that, if V= 1, the maximum contribution of any one state to

TPV is on the present theory m (dx^/ds) (dxv/ds), and on the current theory
m

(dXp/ds) (dxv/dt); or in terms of momenta the contributions are ppp
v
/m

andP^P
V
!PQ . In particular the contributions to the energy are, respectively,

It is clear that Nr has been used in current theory under the impression

that (13-812) is a tensor equation. If each term on the right-hand side were

a tensor, nr/V would be invariant for Lorentz transformations, andNr would

be invariant. But the eigenvalues Uf ofa tensor operator do not constitute

a tensor, and (13-812) is not transformable.

When once it is realised that the calculation of P is concerned with the

random internal motions relative to the centre of gravity of the whole

block, so that the time-axis is prescribed, it is difficult to see any reason at

all for the introduction of Nr . For standing waves the momentum does not

reduce to an eigenvalue, so that the number Nr does not exist.

Since Nrm=nrM, the substitution ofNr for nr is from one point of view

equivalent to introducing change of mass with velocity. The pressure in a
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star is oforder ofmagnitude p(f>,
where

<f>
isthegravitationpotentialmeasured

from the boundary. If all the particles are ofthe same mass, v2 is ofthe same

order as ^; and the change ofmass with velocity |mv
2
/c

2 is ofthe same order

of magnitude as the gravitational potential energy m^/c
2

,
whose effect on

the mass is neglected. It is, however, assumed in the current theory that,

although v2 is of order
<f>

for protons and ions, it is very much higher for

electrons, which thereby contribute the bulk of the pressure. But there is

no reason to suppose that in the degenerate state the electrons have higher

speeds than the protons. Equipartition ofenergy refers only to transferable

energy.

Investigators seem to have been misled by trusting to the classical picture

ofmoving particles. When a particle is forced up into a state of high energy

by the occupation ofthe lower states, the current theory pictures the energy
in the classical way as translation with high velocity. It accepts this so

literally that it supposes that the particle could be reduced to rest by a

Lorentz transformation, and thereby calculates its change of mass with

velocity. But non-transferable energy cannot logically be represented that

way. We take it that the degeneracy energy is potential energy. There is

then no correction for change of mass with the (non-existent) velocity; and

the exclusion principle must be nr < 1, since Nr is undefined.

The exclusion principle was first recognised in the atom where it applies

to the internal motion of a system in a steady state. In generalising it to

macroscopic systems it would be unsafe to disregard this restriction. In

any case the problem to which we here apply it relates to an internal system
in a steady state. Ifwe are not obsessed with the idea that the formulae must

somehow be capable ofextension to dispersing systems represented by plane

progressive waves, or that they must be invariant for transformations of

axes which would change the nature of the problem, the procedure is

straightforward and unambiguous. The steady state distribution is repre-

sented by standing waves. The choice between nr and Nr is settled by the

fact that Nr is not only irrelevant but non-algebraic. As shown in 13-5 the

steady condition involves a potential energy due to interchange, and for

complete degeneracy the energy is wholly potential. Finally, we shall be

able to test the theory in Chapters xiv and xvi, by using it to calculate the

constant of gravitation and the cosmical constant.

Originally my choice of nr was derived from the investigation in 10-9,

where it was shown that the relative energy of a particle is not pQ but

a ( jpj
2+p2

2
+2>3

2
)/m. Since the law connecting pressure and density in a gas

depends only on the internal motions, which must be separated from the

mass motion of the gas as a whole, I could not feel satisfied with the current

theory which took the energy contribution due to one occupied state to
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The present theory gives PQ oc or* at all densities. The current theory gives
P oc/ (a), where/ (a) changes gradually from or* to <r* as the density increases.

This is especially important in the theory of white dwarf stars (in which the

degeneracy pressure becomes large), because it can be shown rigorously
that the pressure in a star cannot exceed Bp*, where B is a constant depend-

ing only on the star's mass.f The curve P = Kv* giving a minimum pressure

must, as a and p increase, eventually cross the curve P=JB/>^ giving a

maximum pressure. The crossing point is an extreme upper limit to the

density in a star of given mass; this limit is of order 107
gm. cm.-3 for the

sun's mass. The current theory on the other hand gives an upper limit to p

only in the smaller stars; above a certain mass the curves no longer cross,

and it would seem that as the star's energy supply gives out, it must go on

contracting to ever higher density until the space becomes so much curved

that the terms "contraction" and "density" lose all meaning.

t Monthly Notices, R.A.S. 91, 444 (1931). We may take the density p to be an approxi

mately known multiple of the electron density a.



CHAPTER XIV

THE COSMICAL PROBLEM

14-1. Waves and Curvature.

Without appealing to the detailed investigations in Chapters xi and xin, it

is evident that the curvature of space-time introduced in relativity theory
and the waves of "0" introduced in wave mechanics are equivalent. Both

devices are used for the same purpose, to represent the distribution of mass

and momentum of physical systems. Both are devices] it is not suggested
that either the curvature or the waves exist in a literal objective sense. The
method of waves gives the finer analysis, and is essential if we are treating

systems on the atomic scale; but for the mechanics of ordinary macroscopic

objects, and for astronomical and cosmical systems, either method is

available, and either method should give the same result.

But the result will be expressed in terms of different natural constants.

When the relativity method is used, the principal constant involved is the

gravitational constant /c. Wave mechanics does not introduce K, but uses

Planck's constant h and the masses mp ,
me of elementary particles. If we

can find one problem tractable enough to be solved by both methods, we

shall, by comparing the two answers, obtain a relation between the natural

constants. I cannot but think that the realisation that a hitherto un-

recognised relation exists that there will be at least one redundant con-

stant when the theories are brought together is scarcely less important
than the ascertainment of its precise numerical form.

In this chapter we shall solve one problem by both methods, and so

ascertain the relation between the natural constants. The system which we
shall consider is a self-contained static distribution of material particles

(protons and electrons) without radiation. By "self-contained" we mean
that it requires nothing external to itself to hold it in equilibrium. In

relativity theory the only completely static self-contained system is an
Einstein universe. In quantum theory a system, which is static and radia-

tionless, must be in its ground state. We shall therefore treat an Einstein

universe, (a) by the ordinary relativity theory, and (6) by wave mechanics

applied to a system of particles in the ground state.

As in the preceding chapter, we represent matter in equilibrium by
standing waves. But there will now be no artificial boundaries, and the

waves extend throughout the universe.

In stereographic coordinates the line element of an Einstein universe isf

<fo2= -(i+ r*/4R*)-*(dx*+dy*+ dz*) + dt* (14-11)

t Tolman, Relativity, Thermodynamics and Cosmology, equations (138-4), (139-3), (139-4).
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and the pressure and density are found by the usual method to be

(14-13)

Instead of treating jR as a radius of curvature, we treat ft as a gauge factor.

That is to say, we treat the stereographic projection as the true configuration ;

the curvature is abolished, and #, y, z are rectangular coordinates in a flat

space. The "true" element of length is then ids = (dx
2+ dy

2
+dz*)l, which

is j8 times the measured length ids. Hence the true volume is j3
3 times the

measured volume, and the true particle density a is /?~
3 times the measured

particle density a. The measured density of distribution of particles in an

Einstein universe is uniform; in the new reckoning this uniform density a

is replaced by GPO
=

/J~
3
<7.

Expressing the particle density cr in the flat space as the product of two

equal scalar wave functions 0, 0, we have

Prom this we calculate the eigenvalue of V2 at the origin

V2=-9/4K2
(14-141)

so that, by (13-24), P = %lR*m. (14-142)

To obtain the expectation value P, we must multiply the eigenvalue (at the

origin) by the probability that the entity represented by 0, is in unit

volume at the origin. The whole volume of space in natural measure is

F=27r2J23 . (14-143)

Since the distribution is uniform, the probability associated with any unit

natural volume is 1/F. At the origin j8= 1, and the two reckonings ofvolume

agree. Hence
p8/4RmF, P = 9/4#

2mF, (14-144)

by (13-35).

Since we have represented the whole density cr by one pair ofwave func-

tions, we have treated it as the probability distribution of a single scalar

particle. The formulae may be regarded as referring to an ideal one-particle

universe; or, if applied to the actual universe, m is the mass-constant of the

equivalent single particle. The extension to a system consisting of N
particles which obey the exclusion principle will be treated in 14-2.

In Chapter xni only part of the energy was represented by standing

waves, the rest energy being taken care of by the external wave function.

But here the whole curvature of the Einstein universe has been replaced by
ETP 17
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wave functions
i/f,

< in a flat space-time. Thus the density p= 3P in (14- 144)

is the whole of the density.

Setting p= 3P in (14-12) we obtain

A = f#-2
, 87rKp

= fJ&-
2

. (14-151)

Let us now revert to the usual standpoint, and regard JB as a radius of

curvature. The waves are then abolished; they were a representation of

the projection factor j3
which is no longer used. Since there are no standing

waves, P= 0. Inserting P= in (14-12) we obtain

A' = J2-2, STTKP'
= 2JR-2, (14-152)

accents being used to distinguish this from the previous reckoning. We have

. p'=$P- (14-153)

The change of reckoning from
/>

to p' depends on the change of the

arbitrary constant in the energy tensor from A to A'. We have seen
( 13-1)

that this signifies a change of zero point from which energy and pressure

are reckoned. When we represent the curvature by waves we introduce a

pressure, uniform throughout the universe, which (according to our usual

outlook) is fictitious. The change of zero point gets rid of this pressure, and

at the same time changes p to p.

The pressure (in ordinary reckoning) is not necessarily zero in an Einstein

universe. Static universes with non-vanishing pressure are obtained by

taking A slightly greater than J?-2 . But we are here treating a radiationless

universe, which is accordingly at zero temperature, so that the pressure

is zero.f

By (14-144) and (14-163), />'
= 3/72^7. The total mass or energy of the

Einstein universe in ordinary reckoning is therefore

M'=p'V=*IR*m. (14-161)

There is furtherthewell-knownrelation, obtainedfrom (14* 152) and (14- 143),

Thus if M' or R is given we can determine the mass-constant w, which

occurs in the definition of the energy operator.

If there are two reckonings of m as there are of p and M9 viz. m 1 = fw,

(14-161) can also be written ^ _ 4/^2^ (14-162)

The origin of the factor f is that, since we are treating static conditions,

the gauge transformation is applied in three dimensions only. The gauge

transformation in 13-7, which gave the most straightforward formal

f According to (13*27) the pressure at zero temperature is not strictly zero. For the

Einstein universe this residual (degeneracy) pressure is found to be of order 10~26
p, and could

be neglected. It is, however, the formula (13*27) which should be corrected by this small

amount (to allow for the cosmical curvature); and the degeneracy pressure in the Einstein

universe is strictly zero.
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connection between waves and curvature, was in four dimensions. Con-

sequently the four-dimensional volume element is changed in the ratio j8
3

in this section, whereas it was changed in the ratio jS
4 in 13'7. Another

example of this factor occurs in the two modes ofreckoning magnetic energy

(12-85) and (12-86), according as the field is strong enough to render it

necessary to treat the problem in four dimensions or weak enough to be

treated as a perturbing effect in a three-dimensional problem.

14-2. Analysis into Particles.

In the foregoing calculation we have treated the uniform density p of an

Einstein universe as though it were the probability distribution of a single

particle of mass-constant m. We shall now suppose that the space of radius

B is occupied by N' elementary scalar particles. By the exclusion principle

these will be represented by orthogonal wave functions, each particle having
a separate wave function. To obtain the ground state of the distribution

we must select the wave functions of lowest energy.

The wave functions can be classified similarly to those of an atom, except

that we are not troubled by the duplication of states due to opposite direc-

tions of spin. (That is taken care of automatically when the N r

scalar

particles are replaced by 4JV' elementary vector particles.) In the atom the

waves are concentrated into small volume by a controlling Coulomb field.

Here the gauge factor /? plays the part of a concentrating force; or, what

comes to the same thing, the waves spread to the natural limit imposed by
the finitude of space. In the stereographic projection of the uniform sphere

we have a concentration of density towards the origin and a thinning out at

great distances, just as in the atom; we may look on it as an illusion of

projection, but mathematically the effect is the same as if the distribution

were being held together by a central force.

The lowest state (K state) is the projection of a uniform^ spherical dis-

tribution; and the investigation of 14- 1 is directly applicable to it. We need

not treat in detail the successively higher states, which will be projections of

spherical harmonics in four dimensions. We proceed at once to the highest

of the N1

occupied states, which we shall call the limit state. We denote the

energy of the limit state by w2 . For the actual universe the limit state

corresponds to very high quantum number (about 1026
), so that the energy

levels have there become practically continuous. For the ordinary problems
ofphysics (excluding cosmical problems) there is an inexhaustible supply of

particles with energies practically equal to the limit energy m2 .

The mean energy of a particle is

m=fw2 . (14-21)

This is a general formula applying to all systems of orthogonal functions in

three dimensions. For the rectangular waves, treated in the box problem,

17-2
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it is contained in the formula S2= fr
2
(13-26); it there follows from the fact

that the elementary wave functions form a lattice of uniform density in

to-space. It is well known that the density of the lattice remains invariant

when other orthogonal functions are used instead of Fourier functions, and

when the controlling field ofpotential is varied; or, as it is usually expressed,

each eigenfunction occupies a cell of phase space of volume A3
. The only

addition we need make here is that, since p = 3P for standing waves, the

ratio between the mean contribution and the limit contribution to the

pressure applies also to the energy density.

In treating the energy levels in an atom, recourse is had to a device known
as the selj'-consistentfield. The electrons are put one by one, not into the field

ofthe nucleus alone, but into the field provided by the averaged distribution

of the whole system. We use the same principle in analysing the universe

into particles. The whole distribution determines the radius R of the space,

into which we put the particles one by one; and the controlling field j8 9

which depends on R, is likewise determined by the complete distribution.

Let us glance at the alternative of building up the Einstein universe

synthetically. The first particle takes up a distribution of self-equilibrium

a miniature Einstein universe consisting of one particle. We can calculate

its energy by (14-162), since in this case Jf' = m'. But the calculation is of

little value, since theK state in the completed system will have an altogether

different energy. Each particle that is added, not only contributes its own

energy, but modifies the energies of all the preceding particles.

By the use of the self-consistent field the energies of the particles are

defined in such a way that they are precisely additive. This is important in

connection with the question, whether the whole density of the distribution

is represented by X iftk <f>k or by (S $k ) (S </>k), $k and </>k being elementary wave

functions. In ordinary applications, such as the problem of the rectangular

block, it does not matter; because, owing to the orthogonality of the wave

functions, the cross terms yield zero integrals over the small volume that is

being considered. But when the waves extend over the whole universe, the

vanishing ofthe integral over the whole universe is not a sufficient reason for

neglecting the cross terms locally. When we use the self-consistent field the

density is
fc

<
fc

. For the wave functions, and the energy derived from them,
are calculated on the supposition that all the particles are present and

producing the field
j8.

The cross-energy with all the other particles, as well

as the self-energy of the kth particle, is already incorporated in $k <f>k \
and

we do not require additional terms
iftk <f>k> to represent it.

This is the same outlook as in 12*6, where the mutual energy invariant

of two systems is replaced by self-energy invariants. In fact the energy
attributed to a particle must necessarily originate as a mutual energy ofsome

kind. It is only when the distribution of the other particles differs from the
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standard distribution used in calculating the supposed self-energy, that the

mutual energy terms have to be recognised explicitly .f

A precaution is necessary is using the self-consistent field, if we are to

avoid counting the energy twice over. In a field of fixed potential < the

energy of a particle is reckoned as m^\ but in a field produced by other

particles the energy is reckoned as Jw^, the other half being allotted to the

particles producing the field.

We may summarise the progress of ideas as follows. The mechanical

properties of macroscopic matter forming an Einstein universe are usually

represented by curvature of space-time; but we can, if we prefer, analyse
it into particles and embody the mechanical properties in wave functions.

Energy and pressure represented by wave functions must be omitted from

the curvature (11-7); thus the complete wave representation consists of

wave functions in flat space-time. We therefore consider an alternative

representation in flat space-time obtained by stereographic projection of

the distribution. In this representation there is a concentration towards the

origin, as though a controlling force prevented the matter from spreading

away to infinity. We analyse this density distribution into orthogonal wave

functions, representing particles which obey the exclusion principle. All the

particles must be fully present in the distribution, up to a limiting energy
determined by the number of particles; otherwise there would be a conflict

between the relativity conditions and the wave mechanical conditions for

a static or ground state. Conceptually each wave function or state could be

occupied or not; but actually the decision that the states shall all be occupied
was taken at the beginning when we chose a radiationless static universe

for projection. Thus the disturbance ofa particle by the particles occupying
other states has been taken into account from the beginning. The test of

consistency is that the sum of the densities corresponding to each state shall

reproduce the density originally postulated.

14-3. Threshold Energy.

In elementary quantum theory the system under discussion is always treated

as an independent addition to the rest of the universe. If the quantum phy-
sicist ever remembers that there is a "rest ofthe universe ", he treats it as an

ideal background which will not interfere with his system. He does not

picture it as consisting ofN' other particles competing with his own particles

for the states oflowest energy; nor does he contemplate the possibility ofhis

own particles dropping into vacant levels in the background. The back-

ground is treated as impermeable.

This is equivalent to assuming that the "rest of the universe" is in the

t Thus perturbation theory will involve (2tyft) (S#A ) since it deals with deviations from the

distribution which furnishes the adopted self-consistent field.



262 Physical Applications [14-3

ground state; so that there are no excited particles to drop into the vacant

levels in the added system, and no vacancies for the added particles to fall

into.

When another (scalar) particle is added to the system of N' particles in

the ground state, the lowest vacant energy level is at the limit energy m2 .

The added particle must be endowed with an energy w2 in addition to any

transferable energy it may possess. Thusw2 , which is the limit energy ofthe

background particles, is the threshold energy of the added system. There is

thus no interference between the added particles and the rest ofthe universe.

The energy levels in the added system begin at w2 ;
the particles forming the

rest of the universe are all placed below this threshold level.

The threshold energyw2 is the rest energy orproper mass ofan addedparticle.

This applies to scalar particles; it is modified in accordance with the theory

of Chapter xn when we substitute charged particles. The added particle

may be excited above the threshold level, and so possess additional (kinetic)

energy. The transferable energy ofa particle is really its energy ofexcitation

in the universe-atom; though it is, of course, not usually regarded that way.

Although the elementary equations of quantum theory postulate that the

particles forming the rest of the universe are in the ground state, that does

not mean that the theory is only applicable if the universe is an Einstein

universe. Of necessity an elementary equation refers to idealised con-

ditions. The ground state is the fixed standard background; and any devia-

tion from the ground state must be explicitly described as an addition to

the fixed background, and as such taken account of as part of the added

system. Usually these additions are called "fields".

For example, let the added system consist ofparticles in thermodynamical

equilibrium at temperature T. Clearly there must be statistical equilibrium

between the added particles and the background particles, so that the back-

ground particles will be excited. But the excited background is not treated

as such. It is described as a fixed impermeable background plus a field of

radiation. Exchanges of energy between the added particles and the

excited background are described as exchanges between the added particles

and a field of radiation.

Radiation is the name under which vacancies in the sub-threshold levels

are taken into account in current theory. I can see no possible doubt about

this identification. For in problems of this type radiation is the only entity,

besides the particles, that is mentioned as an addition to the fixed back-

ground. So that, if the vacancies are not taken into account as radiation,

they are not taken into account at all which would clearly be a gross error

rendering agreement with observation impossible.

I think that this is the natural approach to a quantum-relativistic theory

of radiation. But as radiation is rather apart from the main subject of these
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investigations, I have not found time to develop the theory. I do not suppose
that progress will be easy; for it is a long step from radiation in an Einstein

universe to radiation in the concentrated systems where it is studied in

practice. That radiation is the positive aspect of the vacancies caused by
excitation of the unspecified (scalar) particles seems to me indubitable; but

what I now add is an unchecked first impression.

Presumably a single vacant level constitutes a photon. The energy of the

photon is that which is released when the photon is abolished by a limit

particle falling into the vacancy, i.e. the depth ofthe vacant level below the

limit energy. Since the.energy levels are practically continuous near w2 , a

photon can have practically any energy up tow2 . I doubt if ra2 is a genuine

upper limit; further investigation would be required to ascertain whether it

still applies in less idealised conditions.

In non-equilibrium conditions the added particles may be localised as

wave packets-, similarly the vacancies may be localised as voave pockets. The
wave pocket seems to be nothing more than the partial localisation of a

photon, manifested, for example, in the observation of individual X-ray
effects in an expansion chamber.

The particles which should have occupied the vacant levels will exist at

or above the limit level. (A vacancy, in the sense ofannihilation ofa particle,

is not a photon but an impossibility.) If a photon forming part of a field of

radiation is absorbed by an atom, we can picture it as continuing its exist-

ence in the same form inside the atom, namely, as a vacancy at one of the

lower levels in the atom. In such exchanges the energy of the photon,
measured by the depth ofthe vacancy below the limit up to which the levels

are occupied, does not remain constant, since the ejected particle may carry
off some of the energy.

Leaving the subject of radiation,f we return to the added particles. The
added system is formed by specifying certain particles either by wave
functions or macroscopically. The particles to be specified must always be

taken from the uppermost level, so as to leave no hole in the background.
Since the levels near m2 are exceedingly close together, there is for ordinary

purposes a practically unlimited supply of particles of rest massma ; and the

specified particles will have this proper mass. But when we extend the

formulae to cosmical systems, we must ultimately come to the deeper
strata. Finally, when we apply our calculations to the whole Einstein

universe, and specify the whole of the N1

particles (macroscopically), the

total rest energy instead of being N'm2 is

M=N'ffi=%N'mt (14-31)

by (14-21).

t For a deduction that photons (as here identified) obey Einstein-Bose statistics, see

16-3.
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The deficit fN'm% is the (negative) gravitational potential energy.

Gravitational energy is therefore the exclusion effect treated in 14-2,

but viewed from the highest level instead of from the zero level. Remem-

bering that the unspecified particles have to form an impermeable system,

each successive particle that is transferred to the specified system must be

taken from a slightly deeper level. The rest energy of n particles is slightly

less than n times the rest energy of one particle. When we come across this

phenomenon observationally we attribute it to gravitational energy. We
have here considered only the simple case of an Einstein universe, and have

not entered into the complications due to concentrating the specified

particles. That is scarcely necessary; for we are not putting forward a new

"explanation" of gravitational energy. The relativity representation of a

gravitational field as curvature of space-time was the starting point of the

whole investigation. What we have now reached is the same phenomenon
viewed from the topsy-turvy outlook of elementary quantum theory.

Exclusion energy, interchange energy, potential energy are different ways
ofregarding the same thing. Up to the present we have been concerned only
with gravitational potential energy; but in Chapter xv we shall find that

electrical potential energy has the same origin.

There is reason to think that our expanding universe is rather far removed

from the Einstein state and that a de Sitter universe would be a better

approximation. It may be suggested that this, whilst not invalidating the

use of an Einstein universe as a standard background, may cause it to be

inconvenient in practice. But the local conditions ofour experiments always
differ much more widely from those of an Einstein or a de Sitter universe

than these do from one another. The density in an Einstein universe is

3-32. 10~27 gm. cm.~3 The use of an Einstein universe as the standard con-

dition, to which the exact equations refer, means that gravitation corre-

sponding to this density has been allowed for in the equations. The actual

field in any practical problem is always very much greater, and it is unim-

portant whether the standard field is deducted or not.

14-4. Positrons and Negatrons.

The scalar wave functions, which we have been considering, can each be

analysed into four vector wave functions representing protons and electrons.

We may therefore have at any level a vacancy due to the absence ofa proton
or electron, instead ofthe absence ofthe whole scalar particle. We have seen

that the absence of a scalar particle is represented as the addition of a

photon. According to Dirac the absence of an electron is represented as the

addition of a positron.

I think that the present investigation throws new light on the meaning
of the vast number of occupied negative energy levels, which Dirac postu-
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lated in his theory of the positron. The levels are described as negative,

because energy is now reckoned from the threshold energy as zero.f This is

in accordance with the outlook of elementary quantum theory described

in 14*3; the systems which it treats are additions to the fixed background,
and the zero ofenergy is therefore transferred to the threshold level at which

the additions start. Of these negative energy states, Dirac saysf

These assumptions require there to be a distribution of electrons of infinite

density everywhere in the world. A perfect vacuum is a region where all the

states of positive energy are unoccupied and all those of negative energy are

occupied The infinite distribution of negative-energy electrons doea not

contribute to the electric field.

We have reached an altogether different view of the way in which the

negative energy levels are filled. They are occupied by the large amount of

matter of the universe not specifically mentioned in the equations which

Dirac was developing and applying. This matter is ignored, i.e. treated as a

fixed background, in the idealised equations; and such treatment auto-

matically relegates it to the levels below the threshold which it must fill

completely. Of course, in the actual universe this is far from true; but the

idealised equations are a far from complete representation of the conditions,

and must be supplemented by terms representing fields of radiation, etc.

The chiefpoints on which we go beyond Dirac's theory of the positron are :

(1) Our negative energy levels are occupied by protons and electrons

equally. Dirac supposes them to be occupied by electrons only, with the

result that there is an infinite negative charge to be suppressed in an

arbitrary way.

(2) Our theory places protons and electrons on the same footing, and

therefore definitely predicts the existence of negatrons or negative protons,

unless there is some unforeseen limit ( < 2mp ) to the amount of energy that

can be expended in a single process of excitation.

(3) The number of negative energy levels is not infinite; it is known

precisely ( 14-7, 16-8).

When an electron annihilates a positron, the sum of their energies

( ^ 2rne) is emitted as radiation; In Dirac's theory it is assumed that this

is equal to the difference of energy level, as though the falling of the

electron into the vacant level were the same kind of transition as that

which gives a spectral line of an atom. But in the annihilation of an

electron and positron in free space, two photons are emitted. The process

t This, however, is not the negative energy to which Dirac refers. A positron has rest

energy me , and he therefore supposes that the particle whose absence it represents would

have had rest energy m
e

. As explained at the end of this section, we do not accept
this conclusion.

J Quantum Mechanics, 2nd ed., p. 271.
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is therefore not comparable with an ordinary transition in which the whole

energy is emitted as one photon.
In our theory the depth of the vacant level below the zero level gives

only the excess of the energy of the positron above its rest energy me .

A vacancy just below the limit level corresponds to a positron almost at

rest. We have seen ( 6-7) that owing to the idempotency of the stream

vector of an elementary particle, the vector J representing charge, current,

etc., is often confused with the vector J2
representing energy, momentum,

etc. The absence of an electron whose stream vector would have been J

is equivalent to the presence of a positron with stream vector J\ the

reversal of the charge and current is thus duly indicated. But the energy

and momentum of the electron and positron are J2 and ( 7)
2

,
so that

they are the same; in particular, the quarterspur which represents the

proper mass is the same. Our later developments of the theory of the

origin of mass have thrown some more light on this point. We recall that

energy is furnished to a system by specifying it (11-6), and that the

energies mp9 me are additions made at one stage of the specification,

viz. when a neutral particle is specified as a particle with definite charge

and spin. So far as this addition is concerned, it makes no difference

whether the original neutral particle had a positive or a negative existence,

14*5. Masses of the Added Particles.

It is useful to distinguish two systems of application of wave mechanics:

A. Cosmical System. This treats the specified and unspecified particles

as one great system of N' particles. Owing to the exclusion principle the

particles occupy various energy levels; and in the ground state their energies

extend up to a limit m2 .

B. Local System. The zero ofenergy is moved up to the levelm2 ,
and the

local system is an addition above that level. On the negative side ofthe new

zero there remains the completely filled set of levels (now negative) which is

never disturbed. This is variously regarded as a comparison fluid, an im-

permeable background, a pure inertial field, or a static spherical space, on

or in which to erect system B.

A disturbance of system A from its ground state necessarily involves

defect below the limit level as well as excess above it. But nevertheless in

system B the levels are always assumed to be completely filled; and the

defect as well as the excess is represented as an addition above the new zero.

Suitable entities, such as radiation, positrons, electromagnetic potential,

are introduced to represent the defects when considered as additions. In

Newtonian theory an irregular gravitational field is also regarded as an

addition to the fixed background. Ifwe follow Einstein's theory, it is not an

addition to but an abandonment ofthe fixed background.A space ofvariable,
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and in general non-static, metric is substituted for the uniform static

background. System B is then inapplicable and it is necessary to revert to

system A.

We shall now consider more closely how the electrons and protons of the

local system are created as an addition to the fixed background. We take

a neutral particle (a quarter of a scalar particle of system A) at the limit

energy, and "specify" it. That is to say, we assign to it wave functions

giving its probability distribution as modified by incorporating observa-

tional information as to its charge, spin, momentum, position, etc. As a

neutral particle it was equally likely to be a proton or an electron; we now

specify it definitely as an electron, say. This involves the use of vector wave

functions. The vector wave functions also make the particle mobile in the

ordinary sense, i.e. characterised by a stream vector to which Lorentz

transformations are applicable. The scalar wave functions can only express

mobility of the type represented by standing waves.

Let us now regard spherical space as the frame, the original probability

distribution of the neutral particle as the partial comparison fluid, and the

specified distribution as the object particle. The observable relations are

contained in the double wave vectors T, X of the combined system. It is

in these that the observational information is directly incorporated; for

example, our observations create wave packets in *F, X. Current wave

mechanics replaces these by simple wave vectors ^, x for the object particle

and scalars ^, o> for the comparison fluid. As shown in Chapter xn this

imposes the relation a ,,,*,, v* 10m2-136ww +m 2=0 (14-51)

between the massm of a proton or electron in the local system and the mass

m of the neutral particle.

Remembering that the addition of two systems is represented by multi-

plication of their wave functions, we notice that whereas V describes a

modification of the distribution, $ describes what has been added by the

modification. The reduction fromT to is really a casting out ofthe original

background particle. If we define an electron or proton to be the entity re-

presented by ^r, it is a pure addition to the background. Accordingly the

simple wave vectors are the appropriate representation in system 5. This

may be more easily seen ifwe use energy invariants as in 1 2- 6. By specifying

with double wave functions a neutral particle of system A which had an

energy invariant w 2
, we obtain a particle, also in system A, with energy

invariant 136wm . This is depicted in system B as having an energy in-

variant 10m2
. By (14-51) there is left an amount m 2 to provide for the

original particle which remains in the background. Thus the procedure of

specification, besides providing a particle in system , stops up the hole in

the background.
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Our result that the rest mass of a particle is to be identified with the

threshold energyw2 applies to scalar particles. The mass becomes multiplied

by i(wp + ra
c)/w = 136/20 when the scalar particles are replaced, as they

eventually must be, by protons and electrons. We may regard the factor

136/20 as a transformation of the scale of reckoning in passing from system
A to system B.

We can now see the complete connection between the masses of the

elementary particles in quantum theory and the conception of mass as

curvature in relativity theory. In quantum theory piass corresponds to the

periodicity of the waves. The only direct connection of periodicity and

curvature is the periodicity which arises from "going round the world",

the corresponding wave length being 2?rJ?. The corresponding mass in c.o.s.

units is A/27TJSc. At first sight this seems far too small to be important. But

we have to remember that there can be only one scalar particle to which this

applies; and the exclusion principle forces succeeding particles to have

periodicities corresponding to the higher harmonics. The result is that an

average particle has a mass comparable with that of an electron or proton.

But there is still the factor 136/20 to be applied before we reach the masses

ordinarily recognised. It is not necessary to go over again the explanation
of its occurrence in Chapter xu. We may note, however, that since the rest

mass is not an intrinsic attribute of the particle but represents the energy
of the particle in an assembly in statistical equilibrium, it depends on the

number of degrees of freedom which share in the equipartition of energy.

The factor is really a compensation for adopting (in current theory) a

simplified representation in which the recognised number of degrees of

freedom is greatly reduced by the substitution of simple for double wave

functions.

14-6. The Standard Mass m .

It is perhaps necessary to remind ourselves that we are not putting forward

a new theory of natural phenomena; we are comparing two mathematical

methods of treating the same system. Primarily we are treating an Einstein

universe, i.e. a uniform static distribution of matter extending indefinitely;

but in order to compare our scale ofmeasurement with that used in quantum

theory we insert in it a microscopic "added system". From the ordinary

point of view (system B) the added system is the centre of attention; the

equations used to describe it in elementary quantum theory take it for

granted that its surroundings are uniform and static, as here supposed. The

surroundings are normally represented by a metrical field g^, which in the

uniform conditions postulated corresponds to a spherical space of radius It.

The value ofB is involved because, by the macroscopic theory, the material

standard of length used in actual experiments on the added system takes up
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an extension which is in a definite ratio to the radius of curvature of the

corresponding three-dimensional section of space-time.f Thus we have to

treat an added system represented by waves in surroundings represented by
curvature. We now introduce a mathematical transformation of the pro-

blem, which represents them both together by waves (system A). We first

represent the uniform surroundings, or Einstein universe, by waves. The
added system is then formed primarily by a modification of these waves
a specification by double wave functions. But the modification can also be

represented by the original waves together with additional waves; and the

additional waves form the usual description of the added system.
It is important to realise that the physical system studied in this

chapter is precisely the physical system which a quantum physicist treats

at the beginning of his subject. We are treating an Einstein universe;
that is all exceptthatwe forgot to mention that one of its particles must be

excited (one will be enough) in order that the natural constants h, me , etc.

may appear in the problem. The quantum physicist takes as his most

elementary problem one particle in free space ;
that is all except that he

forgot to mention that there are some 1079 other particles present in an

equilibrium state. (For he believes that his formulae can be experimentally
verified without destroying all the particles in the universe except one.)
Our problems are identical; but our respective forms of absent-mindedness

show that we view them from a different outlook. The two outlooks

correspond to system A and system B.

We must notice one point in the transformation which will be important
in the numerical calculations about to be made. The limit state of system A
becomes the K state of system B. We define the K state as that in which a

particle has uniform probability distribution over spherical space. The
threshold energy mz is that of a particle definitely at rest in system B and
therefore having entirely uncertain position. The added particles in system
B do not exclude one another, except for the slight negative exclusion effect

represented by gravitational potential energy; thus, except in so far as the

position is specified, any reasonable number of them can occupy the K state

of uniform distribution. This change of K state occurs when we pass from
the universe with p = 3P to the universe with P= the change which
introduces the factor (14-153). In abolishing the pressure, the energy

previously represented by standing waves is replaced by curvature. We
must not duplicate the representation by waves and curvature. Energy up
to the threshold energy being represented by curvature, only the excess

remains to be represented by waves. Thus in system B a particle at rest is

represented by a uniform distribution of probability, instead of by standing
waves corresponding to a spherical harmonic of high order.

t Maihematioal Theory of Relativity, 66.
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The connecting link between systems A and B is the mass ra of the

neutral particle. In system B it has been defined as the mass belonging to a

simple (progressive) wave function which possesses only an algebraic phase;

equation (14-51) was derived as the necessary relation between the mass w
of such a wave function and the mass m (

=mp or me )
of a vector wave func-

tion both referred to the geometrical frame. In system A our elementary
scalar wave functions have mass w2 ; but the waves are of a somewhat

different character, being standing waves in three dimensions instead of

progressive waves in one dimension. It would not have been possible to

amalgamate progressive waves in three dimensions without introducing

matrix phases.

We already know that the scalar particle mi corresponds to four neutral

particles ra
,
which on specification yield two protons and two electrons.

There is an apparent discrepancy between the four particles and the three

dimensions of the standing waves. This is rectified by the factor f found in

(14-153). It is true that W =|w2 ; but in ordinary reckoning wa is replaced

1* <-*.. "that ^^ (14<61)

It is convenient to get rid of the factor f by introducing an intermediate

system A', which is the same as system A except that all masses are multi-

plied by $.

Similarly we introduce an intermediate system B' consisting of neutral

particles with one-phase wave functions. The multiplication of the mass by

136/20 then occurs in passing from system B' to system JB.

We have then four systems defined as follows. SystemA is the direct result

of the analysis of the curvature into elementary scalar wave functions

constituting standing waves in three dimensions. In system A' we convert

the Einstein universe with p = 3P into an Einstein universe with P=0,
thereby increasing all energies in the ratio f ; this increase is the same as if

the energy had been calculated for standing waves in four dimensions instead

of three, and we shall regard it in that way. In system B' some of the limit

particles of system A' with energy ra2
'

are taken as the basis of an added

system; the scalar particle with (effectively) four degrees of freedom is for

this purpose divided into four neutral particles with one-phase wave

functions and energy w =|w2'. In system B the ordinary vector wave

functions are introduced and the total mass becomes multiplied by 136/20.

In system JB' the coefficient m in the energy operator m-*8*l8xp8xa can

be identified with m . This follows from the elementary formula for the

plane waves of a neutral particle

m = id/ds= mo"
1

This must also apply to system A
9

. But in system A the unit of mass is
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altered so that m=|m . Thus (14*144), which refers to system A, becomes

P-l/JIXF, p-S/JZXF. (14-621)

Hence the corresponding total mass in system A' is

JT-fJlf-ipF-4/lZX, (14-622)

which is the more explicit form of (14-162). This is the expression for the

energy of a scalar particle forming a uniform distribution in spherical space

of radius jR, i.e. it is the energy oftheK state. We shall therefore change the

notation M' to mK . It is convenient at this stage to insert the factor A/TT

required to reduce masses to c.o.s. units.f We therefore write (14-622) as

* mQR2
\7rf

As we shall not further use system A, we shall omit the accents previously

used to distinguish quantities referred to system A'.

Consider first a universe which consists of one scalar particle. There can

be no absolute comparison of standards in different universes; we shall

therefore arbitrarily define the corresponding units to be such that m and

R are the same as in the actual universe. The masses m2 , mp ,
me which are

numerically connected with m will also be the same. But the natural con-

stants K, h may be different. We denote their values in the one-particle

universe by /cx , hl .

In the one-particle universe, the K energy, the limit energy, and the total

energy coincide, so that mK=m2
= M. Hence, by (14-63),

(14-641)

so that Wo^/TrJZ. (14-642)

Returning to the actual universe, let

P= ?
SN'.

Then by (14-31) wa
= M/p. That is to say, the wave function representing a

single scalar particle uniformly distributed over the sphereJ will have only

1/pth of the energy required to produce the curvature 1/-B. In (14-641) a

single particle produced the curvature 1/12, and the coefficient mrl of the

energy operator was then m^1
(At/Tr)

2
; we must therefore take the co-

efficient to be 1/pth of this, namely mQ
"1

(A/w)
2

, where

tf^p-ihi*. (14-66)
From (14-642) and (14-65)

(14-66)

f We still omit the constant c. For the factor h/ir, see 9-6.

j As explained earlier in this section the threshold energy wa corresponds to uniform

probability distribution over the sphere in system B. System B corresponds to the ordinary

equations of elementary quantum theory which define the constant h.
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We may note also that ic1 =^/c, since the well-known condition for an

Einstein universe, applied firstly to the one-particle and secondly to the

tf'-particle universe, gives Kim^^R= Kpm^ (14-67)

Thus K/h* is independent of N'.

14*7. Numerical Solution.

Since each scalar particle corresponds to four elementary particles, the

total number of protons and electrons is N= N f

. Inserting the constant c

to reduce to C.G.S. units, (14-66) becomes

mQ
= hV%N/27rRc. (14-71)

We have also, by the ordinary relativity formula for an Einstein universe,

\<nE = >cJ//c
2= \KN (mp +me)/c* (14-72)

together with mp +me
=

( 136/10)m (14-73)

by (14-51).

From (14-71) and (14-72)

N 7TC
2

whence V^= _ = _- _ Q4-74)*
~2KmQ (mp +me)

10 2K (mp +wc )
2 v }

by (14-73). We shall find in Chapter xv that Ac/27re
2= 137; so that the result

can also be written as

10 ic(

Formula (14-75) is the most suitable for an accurate determination ofN
from observation. As suggested byW. N . Bond the so-called

' '

observational
' '

values of e/me are (from the point of view ofwave mechanics) erroneous by
a factor ^|f ; but the "observational" values of mp/me are also in error by
the same factor, so that the observational values for ejmp can be accepted as

correct. I adopt the values given by W. N. Bondf from recent deter-

minations:

e//wec= 1-7574. 107
(uncorrected); 1-7703. 107

(corrected),

so that e/mpc= 1-7703. 107~ 1847-6 = 9582.

For K the generally accepted value appears to be 6-664.10~8, but it is

uncertain to 1 part in 1000. Inserting these values in (14-75), we obtain

JV
P= 3-1454.1079 .

Following a suggestion by R. Fiirth that the core of the large number N
is 2256 , we can express the number %N of electrons or protons as

#= 135-82. 2256 .

t Nature, 135, 825 (1935).
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Since N is an integer by definition, no irrational factors can enter into its

composition; and the possible hypotheses as to its constitution are very
limited. In view of the close association of the numbers 136 and 256 in the

theory of the double wave function, our result makes it probable that the

exact value is JV= 136. 2256 . In Chapter xvi we shall obtain this number

independently from theory.

Conversely, assuming JJV= 136 . 2266 , and using the observational values of

e/mp and c, we can calculate K. The result obtained by Bondf is

*= (6-659 -0012). 1C-
8

.

Ifthe ratio ofthe electrical to the gravitational force between a proton and

electron (calculated according to classical theory) is denoted by F, we have

F==
& = 1362 g2~

*cw,nw
~

10 *c(w

| QO _
Hence ( 14-75) gives F= -VN.

( 14-76)

14-8. Alternative Treatment.

If the scalar wave functions
^r, <f>

contain a time factor eikt, the particle

density a contains a time factor e2?7f/
. The volume is therefore expanding as

e-2iM} an(j fae linear scale as e~$ ikt
. We can therefore connect the represent-

ation of mass by waves with the theory of the expanding universe.

Consider an expanding spherical universe whose radius at time t is

R= KQef. The line element is J .

x
9 y, z being the stereographic coordinates at time t. The pressure and

density are found to be

To represent the above imaginary expansion of linear scale, we must take

(14-825)
so that (14-82) becomes

^P=-^2 -*2

V '

), J

which is a generalisation of (14*12).

t Nature, 137, 317 (1936).

% Tolman, Relativity, Thermodynamics and Cosmology, equations (150-2), (150-7), (150-8).

ETP 18
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As in 14-1, we replace the curvature by standing waves in flat space, so

that p= 3P. Inserting this condition in (14-83) we have

f&
2+ A= fJB-*= Sine/), (14-84)

which is a generalisation of (14-151).

The meaning of (14-84) is that, by adopting a slightly lower value of the

arbitrary constant A, we can reserve a portion of Sirup to be represented by
wave functions with a time factor eikt. The reservation of a portion of the

whole energy tensor or matrix for representation by waves has been dis-

cussed in 11-7. Let l/pth of the energy tensor be thus reserved, so that

|Jfc
2=

3/2jpJZ
2

. (14-85)

There are two ways of viewing (14-84). The macroscopic view is that

A= SlTKip, %k
2 = &irK2p,

so that the energy of the wave is provided by a general weakening of the

gravitation constant involving a decrease of the gravitational mass ofevery

particle in the distribution. But in that case the factor eiki belongs to a

collective wave function of the whole particle density, and not to an in-

dividual particle. The alternative view is that

A= SlTKp! , ^fc
2=

&7TKp2 .

In particular, ifp = fN', the reserved density p2 amounts to just one scalar

particle in the K state. This corresponds to the elementary conception of

a single particle represented by waves, with an impermeable background

represented macroscopically.

The mass corresponding to a time factor eikt is

In the case of a collective wave function, every particle has this amount of

mass represented by waves; for its own particle density (equal to the

product of its individual wave functions) changes with the expansion of R
in the same proportion as the whole particle density. The total mass repre-

sented bythe waves is therefore hpk/7T. f Thismass isnowreplaced bya single

reserved particle whose individual wave function must accordingly be given
a time factor eipki. In ordinary reckoning (system A') the mass of the

particle is multiplied by f,
and becomes

Hence, by (14-85), m'2=
* }'

(14-86)

This result must, however, be divided by 2, because the energy density p2

here attributed to the particle is a mutual energy ofthe particle and the rest

t That is to say, if the individual wave functions are of index 1, the collective wave
function is of index l/p.
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of the system; so that if we sum it for all the particles we obtain twice the

total energy. It will be seen from (14*84) that ifwe reserve in succession the

p equal amounts of density /t>2 , the unreserved portion of -R~2 (which is left

to be represented in system A' as curvature) diminishes by equal steps, so

that m'2 decreases regularly from (14-86) to zero. The corrected result

(giving the energy reckoned according to the method of the self-consistent

field) is therefore

(14
'

87)

The mass mf

here found is to be identified with m . It is perhaps rather

difficult to see that it is ra rather than wa . But it is to be remembered that

the mass constant both for the scalar particle and the neutral particle is ra ;

and the fourfold energy of the former comes from its additional degrees of

freedom. We are here treating the progressive waves in one dimension t\ and

(14-87) applies to one particle with one degree offreedom. Ifwe represented
the four neutral particles by separate wave functions, each of them would
have the time factor eipki and the corresponding energy; just as, when earlier

we divided the collective wave function into p individual wave functions,
each of them had the energy corresponding to the time factor.

The result (14-87) is accordingly an alternative derivation of (14-66); and
the solution in 14-7 then follows.

If we are not seeking the exact result, it is comparatively easy to obtain

a solution of the cosmical problem sufficient to confirm the order of magni-
tude of the recession of the spiral nebulae.

Consider an object system and N unspecified particles. Observational

determinations of the position of the object system must be relative to a

physical frame of reference provided by the unspecified particles. Since

they are unspecified, they have random positions in the hypersphere of

radius R which constitutes space. The mean square deviation of a particle
from the centre of the sphere is %R in each of the four coordinates; so that

the mean square deviation of their centroid is ^R^N. Thus the physical
frame of reference provided by the unspecified particles is such that its

origin has a standard deviation %R/\fN compared with an ideally fixed

geometrical frame. By the uncertainty principle the associated standard

deviation ofmomentum is of order 2h^/N/Ry
or in mass units 2h\^N/Rc.

Equivalently, the motion of each particle is a rotation about the centre

of curvature of space and its wave function has a half-quantum h/2n of

angularmomentum in the plane ofrotation, or a linearmomentum hfirrR,
the resultant of N such momenta in random directions is h^/Nf^trR. By
either method we deduce a mass m^ of order hi/N/Rc as in (14-71), giving
the energy of the physical reference frame referred to the geometrical
reference frame. The observed relative motion of a particle referred to the

l8-2
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physical frame is then apportioned between the particle and the frame

according to the principles worked out in Chapters xi and xn, and the mass

mp or me attributed to the particle is given by the fundamental quadratic

(14-51).

It may be objected that by this procedure what is really the same com-

parison mass ra is used over and over again for each particle in the universe.

Quite so. That is the secret of the unexpectedly large masses attributed to

the particles in quantum theory unexpected because the constant h which

connectsmassand curvaturein quantum theory is at first sightmuchtoolarge .

In the exact determination of m in (14-71), several numerical factors,

which might easily have been overlooked, have been introduced. We add

some further remarks on these.

The factor f arises as we have seen from the exclusion energy or gravi-

tational potential energy of the particles, reckoned negative because the

maximum exclusion energy or limit energy is our ordinary standard. For

the present purposes N' excluding particles are equivalent to fN' non-

excluding particles. The only point that arises is whether the same correc-

tion should not have been used in (14-72). The answer is that (14-72) is a

standard equation of relativity theory, here used to express our results in

terms of the observed constant K. On referring to the derivation of this

formula in general relativity theory, we find thatM is the sum ofthe masses

of the particles without deduction of gravitational potential energy (which

is a non-tensor quantity). As we said at the beginning, our plan has been to

solve the problem of a static distribution by two methods; (14-71) is the

result of the solution by wave mechanics, and (14-72) the result of the

solution by relativity theory.

The factor f,
introduced in passing from systemA to system A', is perhaps

less troublesome than the others, because it appears analytically and we
are not directly concerned with its physical significance. We have seen,

however, that it is due to the adaptation of the formulae to static problems
in which the time dimension has specialised treatment, whereas the more

elementary formulae are based on four coordinates to which Lorentz

transformations are applicable. Alternatively we can regard it as due to the

condition that, by considering a spherical space affixed radius JR, we have

suppressed all waves in the radial direction. The actual R of the universe

(referred either to an ideal geometrical frame or to a physical comparison

standard) is, like all observables, subject to the uncertainty principle, and

has a probability spread. But it is treated as fixed because, being the sole

linear characteristic of the universe in its ground state, it is the standard by
which all other lengths are measured directly or indirectly. This posterior

fixity, conferred on R by its adoption as standard, conceals its intrinsic

variability.
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As soon as the static condition is relaxed, the variability of R (the local

radius of curvature) forces itselfon our attention; it is duly exhibited in the

formulae ofgeneral relativity theory. In other dimensions, we pass from the

non-static to the static condition by substituting constant standing waves

for irregular wave motion. In the R dimension irregular wave motion is

simply dropped, and is not replaced by standing waves. I do not suggest

that this is an erroneous treatment; but we see how the fourth degree of

freedom has come to be suppressed.

To use four-dimensional waves in the present problem would defeat our

purpose. The Einstein universe is unstable.! It is in statistical equilibrium

only on the understanding that transfer of the energy of the three-dimen-

sional waves into the radial dimension is inhibited. If transfer occurs, we
have an expanding or contracting universe; presumably this is a state of

pursuit of equipartition of energy an equipartition which can never be

attained, since expansion of scale corresponds to a hyperbolic phase, and

the wave functions in the radial dimension are exponentials instead of sines

and cosines.

Clearly it is more than a happy coincidence that the energy is multiplied

by a factor f in passing from system A to system A' . So that before the

division ofthe scalar particle into four elementary particles is actually made,
a transformation equivalent to the substitution of four for three dimensions

occurs. Perhaps it is better to express it the converse way; the four particles

are effectively reduced to three before being packed into the static scalar

wave function in three dimensions.

Very difficult questions arise in regard to a factor 2 or 4; and it is only by
the closest attention to the physical meaning of the analysis that we can

hope to get this factor right. It is complicated at the outset because an

erroneous factor 2 occurs in Dirac's theory through a confusion between

double-valued and single-valued wave functions. It may be noticed that

in the solution of the box problem (13-27) we take the momentum factor to

be ife/27r whereas for the apparently similar standing waves here used we
take it to be iA/7r. But in the box problem is an internal wave function

describing relative motion as in the theory ofthe hydrogen atom; whereas

here the scalar wave functions are referred to a geometrical frame. Further

subtleties arise in the relation of scalar to neutral particles, in the repre-

sentation ofthe particles ofsystem B as an addition to, instead ofa modifica-

tion of, the particles of systemA (so that when all the particles are specified

we duplicate the universe), and in the liability to count the mutual energy of

the particles twice over. The last correction was required in our second

derivation ofw
,
but not in the first derivation. I can only offer the solution

here obtained as the best effort I can make to avoid these pitfalls with the

t Perhaps the term "metastable" expresses the condition more precisely.
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feeling that it will be something ofa miracle ifI have really escapedthem all.

It is reassuring that the same value ofN is obtained by an entirely inde-

pendent investigation in Chapter xvi though even there a question of a

factor 2 arises which is not easy to decide.

Considerable light is thrown on these factors by a comparison with the

theory of the Stern-Gerlach effect for which the corresponding factors

can be checked observationally ( 12-8). In particular, the internal wave

functions with four dynamical coordinates (comparable therefore with

standing waves in four dimensions) are found to have a magnetic energy

^ of that of a corresponding external wave function, whereas the single-

phase wave function which defines m would (by the same treatment)

have j
1
^ of the energy. The 4 : 1 ratio is shown more directly in the

magnetic energy than in the dynamical energy, because the masses assigned

to the particles are such as to eliminate these factors and validate the

current dynamical formulae which ignore them. The factor f shown in

(12-86), which corresponds to the transition from strong to weak magnetic

fields, is equivalent to that introduced in the present problem in the

transition from disturbed to static conditions.

I may add an explanation why it is necessary to treat the universe as

composed ofNf

scalar particles rather than of 4JV' neutral particles in the

main part of the investigation. A neutral particle has an equal probability

of being positive or negativej^collection
of 4JV' neutral particles has there-

fore a probable charge eVW'. This is a large charge which would give

a potential throughout the universe of the order 104 electrostatic units or

106 volts. We cannot trust to probability to provide a neutral universe; we

have to build it of units whose charge is definitely zero, i.e. scalar particles.

It is worth noticing that in (14-74) the numerical factor J.-^f on the right

has a simple relation to the numerical factor |.^(=|) on the left. The

numbers 3, 10, 136 are the numbers of symmetrical components in 2-fold,

4-fold and 16-fold matrices, respectively. I think it might be possible to

exhibit the factor on the left as arising in the reduction of Dirac wave

vectors to Pauli vectors (which are adequate for describing a static dis-

tribution), in the sameway that the factor on the right arises in the reduction

from double wave vectors to simple wave vectors.

14-9. The Recession of the Nebulae.

Having found N, we can determine the Einstein radius B of the universe

by (14-72). The result is

jR= 1-234 . 1027 cm. = 400-3 megaparsecs.

The total mass and density in the Einstein state are

M= 2-61. 1055 gm. =* 1-32 . 1022 x sun's mass,

pe
= 3-32. 10~27 gm. = 1 hydrogen atom per 500 cu. cm.
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The limiting speed of recession of distant objects is c/J?\/3 per unit

distance. We obtain

Speed of recession= 432 km. per sec. per megaparsec.

The observational value of the speed of recession of the extra-galactic

nebulae (usually given in round numbers as 500 km. per sec. per mp.) is in

as close agreement as could be expected.

In terms of the cosmical constant A the radius and mass of an Einstein

universe are ~*

In the mathematical theory of the expanding universe, it has been usual to

treat three cases according as the actual mass M is greater than, equal to,

or less thanMe . The present theory leads to a different outlook; M is neces-

sarily equal toMe . Ifwe pay attention to relativity theory only, we have no

ground for supposing that any static configuration of the matter of the

universe can be found; therefore universes possessing no static configura-

tions, i.e. with Jf> Jfe , have been considered possible. But when we treat

the universe as a collection of N particles obeying the exclusion principle,

we see that such a system necessarily possesses a ground state and therefore

a static configuration; thus the universes without static configurations are

inadmissible.

I suppose that the ground state ofthe universe has hitherto been pictured

as a highly concentrated "atom" with radius negligible compared to the

present dimensions ofthe universe; so that it scarcely came to be considered

in connection with the Friedman-Lemaitre theory. Our calculation shows

that, on the contrary, it has a radius of 400 megaparsecs, and a density

equivalent to 2 hydrogen atoms per litre.

We thus discard the naive idea that in the beginning there was a cosmical

constant; and that when the universe was made, the Creator had to decide

whether the amount of matter created should be greater than, less than, or

equal to the standard massMe fixed by it. In the present theory A is of the

nature of a constant of integration adjusted according to the actual mass of

the universe.

According to the Friedman-Lemaitre theory, if the universe started from

the Einstein state of unstable (or metastable) equilibrium, it might either

expand or contract. But since the Einstein state is the ground state, con-

traction seems paradoxical. It would be interesting ifa contracting universe

could be ruled out in this way. But at present I cannot see that contraction

definitely conflicts with wave mechanics; in comparing the ground state of

the universe with the ground state of an atom we must bear in mind that

the former is unstable and the latter stable. On the other hand, it seems

impossible thai the contraction should continue indefinitely; and, if it

cannot continue, it should somehow be prevented from starting. Formerly
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one supposed that the contraction might come to a natural end through

quantum complications setting in when the particles became closely packed;
but we now see that the

"
quantum complications" are already in full play

in the Einstein universe.

Although the relations between the natural constants have here been

calculated for a special distribution of matter, they must hold for the

irregular distribution in the actual universe. In determining the constant

of gravitation experimentally, the physicist is not forbidden to arrange the

matter in his laboratory in any way that suits the experiment; similarly the

theoretical physicist is not forbidden to arrange the matter of the universe

in any way that makes his calculation easier. In either case the value found

for the constant will apply to all distributions, however widely they may
differ from those used in the experiment or the calculation. Only we must

take note that, in rearranging the matter to suit his purpose, the experi-

menter cannot, and the theorist must not, violate any law of nature. Thus

we have had to defend our rearrangement of the universe as a static con-

figuration, by showing that the matter of the universe is necessarily such

that it possesses a static configuration.

These arguments would be complicated if we took note of the fact that,

in addition to matter, the actual universe contains a certain amount of

radiation. Since the amount is changing, it cannot be regarded as an essen-

tial feature of the problem. It can, I think, be eliminated in the permissible

"rearrangement" referred to in the last paragraph; but in any case the

amount of radiant energy is trivial compared with the whole energy of the

universe.



CHAPTER XV

ELECTRIC CHARGE

15-1. Interaction .

In classical physics an interaction between two particles means a difference

in the behaviour of one due to the presence ofthe other. In wave mechanics

we study probability distributions, and determine only probable behaviour.

Interaction is therefore a difference in the probability of behaviour. The

probability distribution ofelectronA , which specifies its chance ofoccupying
a particular position or possessing a particular momentum, is modified by
the presence of electron B.

There are two ways of treating these changes of probability distribution.

We represent the actual probability as the product of two factors: (1) the

initial probability, or
"
basis of statistics", and (2) a modifying factor which

incorporates any special information supplied. Analytically, the initial

probability is the volume of the element of phase space containing the

configurations considered; and the modifying factor is given by the product
of the wave functions 0, <j>.

The effect of the presence of electron B can be

introduced either in (1) or (2). If we treat the presence of electron B as

special information, its interaction is incorporated in the modifying factor.

Alternatively we may regard it as a normal circumstance that the electron

A, which we are considering, is one of several present in the region; we then

incorporate the interaction in the initial probability and adopt a "new
statistics'" for systems of two or more electrons.

Both alternatives have been commonly employed in describing the inter-

action of electrons. It is postulated that they repel one another with a

Coulomb force. This tends to keep them apart, and thereby modifies the

probability distribution which would have been attributed to them as

independent systems whose probabilities combine by simple multiplication.

It is also postulated that a system ofseveral electrons obeys a new statistics,

called Fermi-Dirac statistics.

Both the Coulomb force and the Fermi-Dirac statistics describe an inter-

action; that is to say, they assign to the electrons a probability distribution

of position, momentum and spin different from the distribution for non-

interacting particles, whose probabilities are independent and therefore

combine by simple multiplication. But the Coulomb interaction is in-

corporated in the modifying factor, and the Fermi-Dirac interaction is

incorporated in the initial probability or basis of statistics. The Coulomb

force changes the wave functions, so that they satisfy a modified wave

equation containing an extra term called the Coulomb energy. The Fermi-
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Dirac interaction gives zero probability to the symmetrical wave functions;

these are therefore omitted from the beginning, and the initial probability

distribution of momentum is limited to such parts of phase space as corre-

spond to antisymmetrical wave functions. Even ifthe two interactions were

of independent origin it would be desirable to express them in more com-

parable form. But I think it is obvious that current theory, by treating the

interaction of electrons in this piecemeal way, has arbitrarily divided into

two compartments a subject which is really one. It cannot seriously be

maintained that the Coulomb force, which prevents two slow moving
electrons from approaching one another, is an altogether distinct pheno-
menon from the exclusion principle (contained in Fermi-Dirac statistics)

which achieves the same result by forbidding 'them to occupy the same

phase cell.

It is not as though Fermi-Dirac statistics were intended to be a first

approximation, giving the probability distribution in the limit when the

electrons are so far apart that their Coulomb forces are negligible. The

difference between classical and Fermi-Dirac statistics is only important
when the electrons are crowded together; and the conditions in which we

apply Fermi-Dirac statistics are precisely those in which the Coulomb forces

are large. The attitude of current theory is altogether bewildering. It sets

up an ideal scheme of statistics only to repudiate it (by introducing a large

modification) in the very circumstances for which it is designed.

This separation of the interaction of electrons into two effects strongly
resembles the separation ofgravitation and inertia inNewtonian mechanics.

The latter taught that a body tends to move uniformly in a straight line

by its inertia, but is pulled into a different path by the gravitational field.

Similarly today quantum physics teaches that electrons tend to take up the

probability distribution corresponding to Fermi-Dirac statistics, but are

forced into a different distribution by their electrical repulsions. There is

need for the same kind ofunification oftreatment that has proved so success-

ful in the unification of gravitation and inertia.

It is well known that Fermi-Dirac statistics arise from the indistinguish-

ability ofthe particles concerned. Ifwe are right in believing that Coulomb

force is another aspect of the same interaction, it must also arise from the

indistinguishability of the particles. To test this we must investigate the

precise way in which indistinguishability modifies the enumeration of

probabilities; so that we can determine its effect on the wave tensors, and

hence on the wave equations which the tensors satisfy. The investigation

is carried out in this chapter. We shall find that the effect of the indistin-

guishability is to introduce an additional term in the wave equation, which

turns out to be identical with that which has been adopted empirically to

represent the Coulomb energy.
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The leading idea in the investigation is that the equations must be in-

variant for interchange of the indistinguishable particles. Consequently we
have a new kind of relativity transformation or "rotation" of the system,

bringing about interchange. The interchange can be performed continuously

a gradual transfer of probability from one identification to the opposite

identification. The argument of the new transformation is called the per-

mutation coordinate, and its conjugate momentum is called the interchange

energy. On calculating the interchange energy, we find that it agrees with

the observational value of the Coulomb energy.

The foregoing argument was the actual starting point of the theory of

protons and electrons developed in this book.f It was, I believe, the first

introduction of the permutation coordinate and its conjugate interchange

energy in wave mechanics. Now that interchange energy is regularly used

in practical problems, it is difficult to see why the author's theory of the

Coulomb energy of electric charges is still looked upon as a dubious excres-

cence on wave mechanics. In the equations in current use the identity of

interchange energy and Coulomb energy is accepted.J I do not understand

why an investigation whose results have come to be admitted without

question in the formulae in regular use is still commonly alluded to as a
' *

bold speculation
' '

.

15*2. Interchange .

The initial difficulty in calculating the effect of interchangeability is that

interchangeseemstobea discontinuous transformation. Butwavemechanics

has been successful in replacing quantum "jumps" by continuous analysis,

and the same methods are available for treating the jump of interchange.

Denote the coordinates, including suffix coordinates, of two particles

(not necessarily indistinguishable particles) collectively by x, x'\ and let

Y (x, x') be a wave function of the combined system. Let the operation of

interchanging x and x' be denoted by Q, so that

*V(x',x) = QW(xi x'). (15-21)

If T is single-valued, $2= 1. But the ordinary relativistic wave function

has ambiguous sign ( 9-6). For wlien the corresponding space vectors *FX*

are rotated through 360, so that all observable characteristics ofthe system

t "The Charge of an Electron
1

', Proc. Ray. Soc. A, 122, 358 (1929).

j Dirao, Quantum Mechanics, 2nd ed., p. 228, equation (38). The interchange energy is

given as JFff {1 + (ar , a,)}, whose eigenvalue is the Coulomb energy VTB . The unitary matrix

factor depends on the circumstances of the problem to be treated, and does not affect the

identification.

When T
aj| (x^ 9 a/) is written as T (a?M , a; #/, j3), we call a, suffix coordinates. Suffix

coordinates can take only the four values 1, 2, 3, 4. They are sometimes called spin co-

ordinates; but this name should be reserved for angular coordinates conjugate to spin mo-
menta.
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are unchanged, Y and X rotate through 180 and become Y, X. If the

operation ofinterchange is treated as a rotation, repetition of the operation

will bring us to the other branch ofthe double-valued wave function, so that

Q2T= _Y Hence Q2=-l.
We introduce an "extended wave function" denned by

T(*,*',x) =e4xT (*,*') (15-22)

Then, since #2=-l,

'H*. *', x)
= (cos |x+ <2 sin

In particular T (x, x', n) =T (x' t x); and

V(x,x')X+ *) = V(x',x, x). (15-24)

Thus the particles are interchanged by increasing x by IT. Intermediate

values ofx have a simple interpretation. By the usual rule (15-23) represents

a superposition of the state Y (#, x') with probability cos2 \x an(^ ^he state

Y (a/, a) with probability sin2 #. The interchange is therefore represented,

not as a sudden jump, but as a gradual transfer of probability from the

original to the interchanged state, as x increases from to IT. This is the

recognised method of treating transitions between discrete states in wave

mechanics.

Suppose that we are describing the distribution of a red particle and a

blue particle. We use probability distributions to express our inexact

knowledge of their positions. It is appropriate to provide in the same way
for inexact knowledge of their colour. To take another example two golf

balls have been driven at a short hole; there is a certain probability that

there will be one ball on the green and one in the bunker; there is also an

(unequal) probability that the one on the green will be your ball or mine.

Therefore, besides stating the probability that there are particles at two

points x, x', we can state the probability^ that the particle at x is the red

one, or the probability 1 p that it is the blue one. This is provided for in

the extended wave function Y (#,#', x) which includes a permutation

coordinate x such that cos^x^JP- I*1 general we treat a state represented,

not by one value of #, but by a probability distribution over the coordinate

X so that we have a probability distribution of what is itself interpreted

as a probability.

The wave function *F (x, x', x) primarily applies to the general case in

which the two particles are distinguished with more or less uncertainty. In

practice we confine attention to two limiting cases, namely definitely dis-

tinguished, and entirely undistinguished particles. If the particles are

definitely distinguished, #= or TT, and we can arrange that x shall always
be 0. If the particles are indistinguishable observationally, x is an un-

observable. In other words the rotation g= e*Gx is a relativity transforma-
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tion to a different but equivalent frame of reference. This is an altogether
new type of relativity transformation, which appears for the first time in

double systems. But analytically it is of the same form as the well-known

relativity rotations, and it has the same consequences. When x *s un~

observable, the hamiltonian cannot contain x explicitly, but it will contain

the momentum (if any) conjugate to #. That is to say, x is an ignorable
coordinate.

There is nothing mystical about the effects of indistinguishability. We
do not suppose that an electron knows that it will not be distinguished from
other electrons, and on that account conducts itself differently. We can

imagine a being more gifted than ourselves who identifies each individual

electron. He applies the ordinary equations of distinguishable particles to

them, and his results are right; but his solutions do not interest us, because

we can never obtain the observational data which he uses, and have no

opportunity to apply or test his deductions. He observes, let us say, a red

particle and a blue particle; he finds that the red particle is at xl at time ^ ,

and at #2 at time t2 , and deduces that it had a velocity (#2
-

1 )/(^2
-

$1) and
a momentum w (#2

--
a^)/^-^). We observe a particle at xl at time *lf and

a particle at x2 at time t2 , but we do not know whether it is the same particle.

Velocities of particles (and the corresponding kinematical momenta) are

not observational data for us; and a system of dynamics which manipulates
such data is useless for our purposes.
The dynamical equations therefore depend, not on whether the particles

are intrinsically distinguishable or indistinguishable, but on whether and
to what extent they are in fact distinguished.
We must distinguish the general wave function ^'(x.x'.x) which may

be any function of its arguments from the particular wave function

*(X>*'>X) defined in (15-22). The latter represents a uniform probability
distribution in #. If the states corresponding to different values of x have
different probabilities px , their combined wave function is p^^(x9

x'
9 x)l

or more generally we can form a combination with different probabilities
of different states T (x, x') for each permutation angle.

Returning to the problem of the red and blue particles, the operators
idfix, -idfix' do not give the momenta of the red and blue particles

which are the momenta referred to in the dynamical equations for dis-

tinguished particles. We can, if we like, regard -id/dx as the momentum of

a composite particle, which has certain probabilities of being the red or blue

particle. We have not the data required for applying ordinary dynamics,
which does not profess to treat particles composite in this sense. But we
can construct a formally similar dynamics by treating x as an additional

coordinate; so that the whole momentum of the system includes, besides

the momenta of two composite particles, a momentum of interchange.
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We have then to consider distributions of probability over the domain of

x, x', x, and more especially to determine distributions which represent

steady states. When account is taken of the spin components of the stream

vector, the distribution is represented in phase space; and the ordinary

136-dimensional phase space of a double system is extended to 137 dimen-

sions by the addition of a dimension representing change of g. We shall see

later that the 137-dimensional phase space is a development of the "aug-
mented phase space" used in 12-3; so that from this point of view the

permutation coordinate appears as compensation for the dropping of the

relative time coordinate 2 ~*i when two systems are combined into one. If

we have observational information e.g. an observation of colour which

at any time distinguishes the particles with fairly strong probability, this

will be represented as a wave packet in #; just as observational information

as to their position is represented by a wave packet in x, x'. The wave packet
will gradually disperse not because the particle is liable to change colour,

but because we cannot trace definitely which of the particles whose colour

we observed is the one which is now at x.

From the general problem we pass to the two special cases. Firstly, when
the particles are entirely undistinguished, the equations are simplified by
the fact that x i8 an ignorable coordinate and can be eliminated, leaving

only a term in the hamiltonian which represents its conjugate momentum.

Secondly, when the particles are completely distinguished, the equations
are again simplified because x ^ constrained to be 0. This is more than a

limiting case; it is a change in our point ofview. We could not in an ordinary

way prevent the wave packet concentrated at x= from dispersing. The
constraint involves a change in the basis of statistics. An astronomer may
inadvertently interchange the two components of a double star which he is

observing; but he treats this as a mistake. He does not expect the laws of

celestial mechanics to predict his
"
observational result". The constraint

X= is imposed by stigmatising any other value of x as a blunder. We have

seen that the dynamics of distinguishable particles cannot from its very
nature be applied to indistinguishable particles; but why should not the

dynamics of indistinguishable particles apply (so far as it goes) to dis-

tinguishable particles? The answer is that theoretical physics is intended

to agree with the experience ofan observer who does not make mistakes, and

will take varying forms according to the definition of what constitutes a

mistake.

Analytically, the probability distribution of distinguishable particles is

limited to the 136-dimensional section # = of the 137-dimensional phase

space. A change of the basis of statistics is made by limiting the initial

probability distribution to 136 instead of 137 dimensions. Neglect of this

distinction between the dynamics of distinguishable and indistinguishable
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particles has caused an error of a factor ff in many of the currently

accepted formulae of quantum theory.

From the present point ofviewprotons are indistinguishablefrom electrons.

It might be thought that the greater mass of the proton would be a dis-

tinction impossible to overlook. But the mass is determined by the operator

id/dt. We cannot differentiate the probability distribution of a particular

particle until we have settled how to identify that particle at different times.

Thus mass can never be used as a criterion for distinguishing particles; it

presupposes that they have already been distinguished.

The Principle of the Blank Sheet requires that at the start we should

recognise no intrinsic distribution between the particles which we con-

template, in order that we may trace to their very source the origin of those

distinctions which we recognise in practical observation. The fundamental

dynamics is the dynamics of indistinguishable particles; the dynamics of

distinguishable particles is a practical adaptation to be used when we do

not wish to analyse the phenomena so deeply.

15*3. The Fermi-Dirac Law.

In current theory it is usual to take the wave function Y of two particles to

be single-valued. Then, if Q is the interchange operator, Q2= 1. In place of

(15*22) we take an extended wave function

T (x, x', x)
=

Then e*i7* = cos fr+ iQ sin \TT
= iQ

and T (x, x', x+ w) =Y (x' 9 x, x) as before.

Consider the tensor transformation

(15-32)

where P is the interchange operator ofthe frames E^ , F^ ofthe two particles.

Let their coordinates in three dimensions be x^ , x^',
the time t being common

to these and other particles. Their combined position is specified by a

position vector

) (15-33)

in the double frame. We use the strain vector form of X, since the time is to

be treated as invariant. A wave function of the two particles will be denoted

indifferently byT (Xfl , */) orY (X).

When the transformation (15-32) is applied, we have to consider, as in

8-3, not only the direct change of T but the change of its argument X.

Usually the transformation will introduce new matrices into X, so that

*P (X) ceases to represent a distribution in the original 3-space. But when
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X= TT, we have g= P; and the transformation of the strain vector X is

(since P is space-like)

by (10-33). Thus we return to the original 3-space, but x^ and x^'
are inter-

changed. The transformed value ofY is

by (10-37). Hence the combined result is

*F' referring to the transformed distribution and *F to the original distribu-

tion. Using the permutation coordinate, we can also write (15-34) as

T (x, x', 0) = *F (x, x', IT)
=e^-1)T (a, *', 0) (15-35)

by (15-31).

Thus, in a sense, Q 1 = P- 1; so that we have found a possible form

for the hitherto unidentified symbol Q. The actual relation is

eiix?-D^
|-
etfc<-p-i)] f (15-36)

where the right-hand side is construed not as a simple multiplier but as a

tensor transformation applied to the function which follows. (It is therefore

not permissible to cancel out e~* fx on each side.)

Let us now treat ^ as a dynamical coordinate, so that the transformation

q gives an extended wave function representing a probability distribution

over the seven-dimensional domain (x, x', #). The six-dimensional sections

= 0, X= TT coincide with ordinary space (repeated for the two particles).

If the wave function is single valued in ordinary space, Y (x, x', 0) and

^(#,#',77) must agree; so that by (15-35),
" = T. Hence, by (15-34),

Thus the wave function is symmetrical for interchange of the particles.

An antiaymmetrical wave function is obtained by the transformation

g= ei fx(-^i)
(15-37)

which leads similarly to

In this case (15-35) is replaced by Y' (x, x', 0) = -*F(o;,a;',7r); so that the

transformation (15-37) is not a simple rotation in #. Belativistic rotation,

or parallel displacement, in x generates a special wave function, which we
have called the extended wave function; this is symmetrical. But, as we
have pointed out (p. 285), the general wave function may be any function

of the coordinates x, x'
9 #, subject to the usual conditions of single-valued-

ness; and the antisymmetrical wave function is one ofthe general functions.

Since it is not generated by parallel displacement in #, its covariant de-
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rivative with respect to x does not vanish. Denoting the antisymmetrical
wave function generated by (15-37) by T, and distinguishing transforma-

tion operators from multiplying operators by square brackets, we have

(x, x' 9 x)
= &*<-*+]T (x, x')

(a:,a

, x')

a;
/

, x). (15-38)t

The covariant derivative ofYa with respect to x *8 contained in the factor

[e**], since the covariant derivative of Y (x, x', x), which denotes as before

the extended wave function formed by parallel displacement ofY (xt x') t

is zero.

The following remarks will perhaps make the significance of the

mathematical procedure clearer. Consider a series of six-dimensional

states V(x, x', a), distinguished from one another by a parameter a.

In the special case in which a is unobservable this mode of division into

states becomes degenerate, and the series can only be contemplated as

a whole, i.e. as a seven-dimensional state. If a is promoted to the rank
of coordinate, Y (x, x', a) is one such seven-dimensional state; but we can

form other states p (a) X (x, x', a) by combining six-dimensional distri-

butions with different (algebraic) probability coefficients P(OL). In the

seven-dimensional state the probability fluid
( 81) is no longer restricted

to flow in the planes a= const., and there will in general be a probability
flux along the coordinate a, determined by the covariant derivative

operator i8/Sa and therefore depending on jp(oc). This flux was not

allowed for in the original equation of continuity of the probability fluid

in six dimensions; thus X will not satisfy the same differential wave

equation as XF. For given a, T (x, x', a) is a self-contained six-dimensional

state, but X(#, x' 9 a) is not. In our application a is the permutation
coordinate x

' and the primary object of the investigation is to find the

term in the wave equation for X, arising from flux in the x direction

and depending on p(x)> which does not appear in the wave equation
for MP

1

. To obtain its value we must determine p(x)- For an arbitrary

angular coordinate a, the only limitatfan on p (a) would be that it must
be periodic in a with period 2?r; but exceptionally p (x) has also to fulfil

conditions at the half-period. We can interchange the particles, either by
changing x to X+ ^ *^e wave function p (x)X (x, x', x) of the seven-

dimensional state, or by interchanging x and x' in a six-dimensional

section, and the two results must agree. Our analysis of this condition

t The analytical part of the investigation is interrupted at this point. There is a direct

continuation of it, starting from (15*38), in 15*7.
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can be put in the following form. We first ensure by our definition of

X (x9
x'

9 x) that its covariant derivative with respect to x vanishes ; that

is to say, a change of the argument x represents only the effect of the

relativity rotation provided by the indistinguishability of the particles.

The test at the half-period then shows that, if X (x, x', 0) is a symmetrical
function of x, x', no additional factor p(%) is required; but if it is anti-

symmetrical, we must insert p (x)
=

[e*x]. Although p (x) is here expressed
as an operator, we shall find later that it reduces to an eigenvalue e*x/187 ;

so that the result is not inconsistent with our original limitation of p (a)

to algebraic values.

Our inability to distinguish observationally the separate six-dimensional

states permits the probability to flow freely between them a flux which,

if they could be distinguished, would be represented in a different manner,
viz. by transitions. We do not here attempt to predict to what extent

advantage will be taken of this freedom ; but we discover that the existence

of a cyclic flux in the new direction will betray itself by its effect on the

wave function for any of the six-dimensional sections. In particular, we
have calculated the cyclic flux which is indicated when the flow in a six-

dimensional section is that represented by an antisymmetrical wave
function.

It should be added that we have here adopted the solutions which give

the smallest covariant derivative. There exist also solutions p (x)
=

[e
2ni

*]

for symmetric wave functions, and p(x) [d
2n+***x

] for antisymmetric
wave functions. The ultimate effect of taking w= is that we shall deter-

mine the minimum charge of a particle.

According to the principle of Fermi and Dirac, the wave function of two

elementary particles is antisymmetrical. Their theoretical treatment only

went so far as to show that it must be either symmetrical or antisymmetrical;

the choice of an antisymmetrical function depends on empirical considera-

tions. We cannot at the moment go further than they did. Accepting their

conclusion, the wave function for a pair of elementary particles must be

taken to be T.
We must now consider the "relativity of identity ". We have stressed the

fact that a simple wave function $ (x) yields nothing observable, since it

contains no reference to any comparison object for measuring x. This

objection is removed in the double wave functionT (a?, #'), since one particle

can serve as comparison object for the other. But the objection reappears

in Y (x, x', x)> since there is no comparison object for x- Just as we require

two particles to provide observable differences x^x^, we require four

particles a quadruple wave function to provide observable differences

X #'. An absolute permutation coordinate referred to an abstract frame

has no observational meaning, even when the particles are distinguishable.
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We may observe certain distinctions, but the interpretation which we place
on these distinctions is not a matter of observation. We have temporarily
shelved this difficulty by identifying the particles by a characteristic

(colour) recognised in some supernatural manner; but actually colour might
be changed by Doppler effects, and it is no more an absolute criterion of

identity than position.f All we can do is to lay down a scheme of equations
to be conventionally adopted as a criterion that x *s constant, and then

measure changes of x relative to this standard.

Standing waves and progressive waves aflford an example of the relativity

of identity. We have seen that the particle represented by a standing wave
is of composite identity (13*1). That depends on the usual view that a

progressive wave represents a particle with single identity throughout all

time. But it is equally possible to define the particles represented by
standing waves as the real individual particles; then the progressive waves

represent composite particles.

Accordingly a system of two particles must be referred to a comparison
fluid described by double wave functions and involving a comparable

permutation coordinate XQ The angles x &nd XQ being referred to an abstract

"frame of identity" are unobservable; but the probability distribution of

the relative angles x XQ >
contained in the quadruple wave function of the

double object system and double comparison fluid, may have observable

characteristics. The partition of the relative permutation angle into
"
absolute

"
permutation angles referred to a frame is an analogous problem

to that which led to the theory of the Biemann-Christoffel tensor.

From this point our investigation bifurcates into two problems. Firstly

(15-4-1 5- 6), we calculate the interaction of two particles forming a hy-

drogen atom. Secondly ( 16-7), we calculate the interaction between pairs

of particles in any assemblage.J There is a considerable difference between

the methods used; and the fact that both lead to the same value of the

Coulomb energy is a useful check on the details of the calculation.

15-4. Interaction in the Hydrogen Atom,

We shall now determine the interaction between two undistinguished

elementary particles which form a steady system.We know that, for a steady
state to be possible, the particles must be of opposite sign. The system is

therefore identified with a hydrogen atom.

f Consider a double star with equal components, having a very large orbital velocity in

the line of sight. We can distinguish the two components by observing that one is red

and the other blue. Half a period later we can again distinguish the red star and the

blue star. But the stars thus identified do not obey the accepted laws of celestial

mechanics. The accepted laws are obtained by identifying the blue star at time t with
the red star half a period earlier.

J Atomic nuclei are not considered.

19-2



292 Physical Applications [15-4

As in 12-6, we re-resolve the hydrogen atom into an external and an

internal particle of masses

.i/-^
fl-m

, /t=ii6m . (15-41)

The time direction is as usual taken to agree with the momentum vector of

the external particle. Interchange of the proton and electron does not

affect the external particle. We therefore confine attention to the internal

particle of mass p. Its coordinates fl9 2 , 3 are the relative coordinates of

the proton and electron, and are reversed in sign by interchanging them.

The change is most simply described by using angular coordinates, so that

the displacements and momenta are
rdO^, id/rdO^.

Radial displacement
and momentum are treated in the same way by Letting 6f= log r . The inter-

change is then equivalent to reversing the sign of r, leaving the angular
variables unchanged.

It may be well to repeat that the interchange is purely subjective as

when an astronomer inadvertently interchanges the two components of a

double star, and so publishes a position angle wrong by 180. By such a

mistake relative coordinates are given the wrong sign; only in treating

indistinguishable particles we do not count it as a mistake, since there is no

criterion for deciding which is the right sign.

Continuous interchange is represented by taking r= r e**; or if necessary

we may take r= r ett
x, where Q is any symbolic square root of 1.

The states of the internal particle will consist of probability distributions

over the space coordinates fl9 f2 , 3 and the permutation coordinate x-

There is no time coordinate in an internal state.

It would not be illegitimate to treat states in which the distribution is over

i> 2* fa> onty> with x a constant for the state. It is purely a question of

practical application. As explained in 15-2 the resulting system of

dynamics would be true, but useless to an observer who (owing to inability

to distinguish the particles) could not obtain the data required for its

application. Every angular coordinate has to be treated as we here treat ^;

if the conditions are such that it becomes unobservable, a degeneracy is

introduced, and the states which would have been distinguished by different

values of 6 are run together into a single state. The ultimate reason for this

is that in physical applications we have to take account of transitions (due

to external perturbations) between the states given by different values of 0;

as 6 approaches degeneracy these transitions become more frequent and the

calculation becomes unmanageable; for completely degenerate 6 an in-

finitesimal perturbation is sufficient to cause transitions, and the states can

only be treated as a combined whole. Conversely, the transition causes only

an infinitesimal perturbation of external systems and is therefore un-

observable; ifwe cannot detect a transition, we cannot distinguish the states.
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We have to picture, or represent symbolically, a rotation which changes
r continuously into r. For a picture we require an extra-spatial dimension

a through which r can turn. For symbolic treatment a matrix or symbol Ea

must be associated with a in the same way thatEl9 E2 ,
E3 are associated with

fi > f2 > fs Owing to the absence ofa time coordinate, a symbol J 4 is standing

idle; this is available to represent a dimension perpendicular to E^E^E^,
and we therefore set Ea=E^. The question whether E is really the missing

EI does not arise; it is sufficient that its commutation relations with all

other symbols in the formulae are identical with those of JS?4 .f If Er is the

matrix associated with the direction of r when x= 0, a point in the four

dimensions will be represented vectorially by Err+ E^a, and the x rotation

The spread of the probability distribution over the additional coordinate

a introduces a corresponding term E^ d/da in the differential wave equation.

Or, using the standard form (8-631) for a strain vector, we have

" - (15>42)

The extra permutation dimension thus plays the same part in an internal

state as the time dimension plays in an external state.

Except that we see that the energy of an internal state arises from inter-

change, being conjugate to the linear interchange coordinate or, our only
result thus far is to obtain the form of wave equation, already familiar for

external particles. The equation expresses the conservation of probability;

but the coordinates, etc., contained in it are unobservable, being referred

to the frame and not to the comparison fluid. We have next to derive from

it an equation suitable for practical use.

15-5. The Fine Structure Constant.

It is necessary to consider the internal particle in conjunction with its com-

parison fluid. Since m =
136/x, the observable angular displacements 0' are

analysed into a displacement = \\\0' of the particle and a recoil = ^9'
of the partial comparison fluid. The question now arises whether the same

partition applies to displacements of the permutation coordinate #. We see

immediately that the partition of x is governed by quite different consider-

ations from the partition of 6 which is based on the theory of the Biemann-

Christoffel tensor.

In the first place there is no need to admit any recoil of x- The comparison
fluid is an idealised substitute for actual reference objects; andwe are free to

choose either a "distinguishable" or an "indistinguishable" comparison

f The use of rectangular relative coordinates implies that the region considered is small

enough to be treated as flat, so that E6 also is idle. But this absence of E6 is a casual feature

of a special problem; it is not comparable with the enforced absence of Eit arising from the

definition of an internal state as a simultaneous state.
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fluid, i.e. fluids whose constituent particles are respectively distinguishable

or indistinguishable. Inasmuch as the fluid replaces distinguishable macro-

scopic bodies, it is a less violent distortion of the natural conditions to use a

distinguishable comparison fluid. Then #0 is constrained to be zero, and

there is no recoil.

There is no breach with our previous conventions and definitions in

admitting this exception, though it will complicate subsequent applications.

Initially we were free to specify the recoil in each coordinate arbitrarily;

but later we introduced the condition that the (negative) recoil in the time

direction is such that the object particle and the comparison fluid move

forward together in time. Relativity conditions then determine the recoil

in any other direction which can be connected with the time direction by a

relativity rotation. But the direction x & defined by a tensor of different

rank, and is not connected with the other directions by a relativity rotation, f

It would be more of a breach with our previous conventions to admit an

indistinguishable comparison fluid; for in all previous references to the

comparison fluidwe have treated it as composed ofdistinguishable particles.

In particular its connection with the metrical tensor g^v has been fixed on

that basis. To substitute an indistinguishable comparison fluid at this stage

would derange the metric, and upset our standard equations.

Nevertheless it is instructive to consider what would be the result of

employing an indistinguishable comparison fluid. In actual phenomena,
shown by a comparison of the microscopic object particles with macroscopic
reference objects, the comparison fluid is eliminated, and the final results are

unaffected. The use ofan indistinguishable comparison fluid as intermediary
will simplify the microscopic part of the theory at the expense of complicat-

ing the macroscopic part of the theory of these phenomena. The macro-

scopic theory is affected because the energy tensor of the comparison fluid

determines the metric to which the actual measures of length are supposed
to be referred. We have seen that continuous interchange is represented by
the transformation r->rex. This transformation may be attributed to an

absolute change of r, or to an absolute change of the standard of length.

(Since the other variables are angular, r is the only quantity affected by a

change of the standard of length.) The standard of length for the object

system is contained in the comparison fluid the idealised substitute for

metre rods, etc. Hence the partition of x' into x and Xo corresponds to a

partition of the apparent change of r into absolute changes of r and of the

standard gauge. That is to say, the "recoil" of the change of r is a gauge
transformation.

f We now propose to represent it as relativistically connected in a four-dimensional

picture, assigning to it the matrix E^Er ; but the condition of admissibility of this repre-
sentation is the point we are now considering.
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For a recoil Xoiirx'f the gauge is modified by the factor e *'187 and

becomes complex (ifQ = i) or matricised. Ifwe are to pursue this method we
must abandon Riemannian space and adopt WeyPs geometry which admits

complex gauge transformations, or the author's extension ofit which admits

more general transformations ofgaugeequivalentto matrix transformations.

In wave mechanics we prefer to keep to Riemannian space; then x can have

no recoil; and the equations of the microscopic theory are complicated by
the fact that x behaves differently from the other angular coordinates in

this respect. Before studying the phenomena which result, we notice two

points of interest:

(a) The equivalent complex gauge transformation corresponds to an

electromagnetic field (8*8). Thus the phenomena will be of electro-

magnetic character.

(6) The gauge would have been changed by a factor eWis? (or by a matrix

having this eigenvalue); thus a coefficient 137 is introduced. This coefficient

is known empirically as the fine-structure constant.

We have seen that formally a takes the place of an imaginary relative

time f4 . We shall try to elucidate this connection. Let (xl9 x2 , xz , t),

($1, x2', #3', *') be the coordinates of the proton and electron, and let

(fi > f2 9 3 > T) be the differences x xl , etc. By the definition of a combined

system r is constrained to be zero. We may, however, regard a displacement
dr as a transformation to a frame of reference with a different reckoning of

simultaneity. Consider the transformation

The interval from the origin to the point considered is (r
2 r2)*=r ;

and we
can show easily that the intervals between all other pairs of points are like-

wise independent of u. Thus a physical system occupying the domain

(i> &> fa) *s intrinsically unaltered by the transformation. Apparently all

distances in it are expanded in the ratio coshw; but this is accounted for by
the fact that a new reckoning of simultaneity has been introduced, which

antedates each particle by a time r= r tanhw, proportional to its distance

from the origin.

The corresponding transformation for imaginary relative time q is

r= r ex, a= r

For small displacements from the zero state (u= 0, x = 0) we have

Thus far our formulae refer to changes of the system of reference real

or imaginary changes of reckoning of simultaneity. But we can employ the

transformation in the usual way to define a series ofstates ofa system in the

same frame ofreference. The states will represent the same system ( 19 2 , ,)
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expanded in the ratios coshu and e*x respectively, the latter expansion being

interpreted as in 15-1, as a change of relative probability of the direct and

interchanged states. The u series of states is unclosed (hyperbolic trans-

formation) and a distribution ofprobability over it could not be represented

in phase space. That is to say, in analysing the total distribution of pro-

bability over the domain (fl , f2 , 3) , into the sum of a number ofelementary

distributions, we cannot accept a dissection into a series of states con-

tinuously varying in scale. The corresponding expansion of the wave func-

tion in a series of elementary wave functions would not be convergent. For

that reason, when once we have fixed our frame of reference, the u trans-

formation is excluded, and r is identically zero. But in saying that an internal

state is formed by the simultaneous configuration of two particles, we refer

to simultaneity in real time; they may be non-simultaneous in imaginary
time ifwe can find a meaning for such a phrase. Thus the % series of states

is admissible (as a mode of dissection of the total probability distribution);

and since it is a closed series (circular transformation) a distribution of

probability over it can be represented in phase space.

This clears up a point which personally I have found most difficult. It

had seemed to me that for a real displacement dr, just as for a displacement

dx> there would be no recoil of the comparison fluid.f An increase of r to

r+ drmight be attributedtoan absolute change ofr orto an absolute changeof

the standard oflength, the latter constituting the "recoil" ofthe change of r.

But since Riemannian geometry excludes changes of gauge, we can admit

no such recoil. The argument is the same as that which led us to exclude

recoil of x which would represent imaginary change of gauge. In short,

Riemannian geometry requires a comparison fluid rotatable in every direc-

tion, but not expansible or subject to interchange of its particles.

To see the fallacy of this argument, we must recall that the same dis-

placement dgp may be produced by a variety ofrotations in different planes,

corresponding to different transformations of the wave vector. Therefore

when we treat a displacement dr or a momentum i djdr, we must not jump
to the conclusion that it corresponds to a u transformation. By reference

to the mode of formation of the wave equation, we see that the r-momen-

tum which appears in it is the Er5 component of a space vector, and corre-

sponds to rotation about the centre of curvature of space-time; this, of

course, produces the usual recoil of the comparison fluid as provided for in

the R.C. tensor.

The nature of a displacement d^ at any point whether it is a rotation

about the centre of space-time, or about an origin in the domain (^ , 2 , 3) ,

or an expansion of scale cannot be immediately seen by inspection. It

t If the argument were correct, the Coulomb energy term found in 15*6 would be

duplicated.
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depends on the system of analysis into elementary states furnished by the

four commuting operators W, Ul9 U2 ,
Z73 . But without entering into the

details of this analysis, we can show that there will be only one coordinate x
which produces no recoil. The argument above was that whatever applies

to the imaginary transformation of r should also apply to the real trans-

formation of r
;
but this is forestalled by the earlier result that of two anti-

thetic transformations one will be circular and the other hyperbolic, and

only the circular transformation is admitted in our system of analysis into

elementary states. Thus we can only be concerned with one of the two

transformations.

We may recall that an E^ transformation displaces positive and negative

charges in opposite directions in neutral space-time, and is therefore asso-

ciated with polarisation rather than simple translation (6*3). It is this

aspect of the r displacement as a change of separation of positive and

negative charges which is handled in the internal wave equation.

15*6. The Coulomb Energy.

In the wave equation (15-42) the internal particle is represented by a simple
wave vector $. The justification for separating \ft

from the double wave vector

of the particle and comparison fluid, and treating it as an independent

distribution, depends on the theory of Chapter xn; but no account was then

taken of the permutation coordinate. To rectify this we must go back to the

quadruple wave function of the proton and electron and the corresponding

unspecified particles which form their comparison fluid. This is resolved

into two interchangeable double wave functions; or into a double wave

function of an external particle (without permutation coordinate) and

comparison fluid, and a double wave function of an internal particle (with

permutation coordinate) and comparison fluid. Considering the latter, the

permutation coordinate raises the number of dimensions of the phase space
to 137. Ifit behaves symmetrically with the other dimensions (which implies
that there is the same recoil in x as in the other coordinates) the same theory
of resolution into simple wave vectors applies, except that the ratio of the

mass [L of the internal particle to the mass w of the comparison fluid is

now given by 137/ =m (15-61)

instead of 136/x=m .

Hence, if the comparison fluid recoils in #, the wave vector r satisfies the

wave equation of the form (15*42)

'=o- (15>62)

But our standard comparison fluid does not recoil in x, and we wish to find

the wave equation of the corresponding wave vector 0.
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In
(
1 5-62) a displacementda= irdx is accompanied by a recoil d^o

of the comparison fluid, in accordance with the relation w ^Xo= //^X- To
eliminate this recoil we must transform the frame of reference so that the

permutation coordinate of the comparison fluid in the new frame remains

constant. The required rotation of the frame is in the forward direction of

Xo, since the "recoil" is really an advance (owing to the time-like character

of the matrix associated with it). The transformation due to the rotation of

the frame is therefore

for small values of a. (15-63)

The transformation matrix is properly the matrixFr4c associated with the Xo

rotation ofthe comparison fluid in its own frame F^\ but, since _Fr4 commutes

with all the symbols in (15-62), it is for our purposes an algebraic square
root of 1. Substituting in (15-62), we have

so that (putting a=0 after the differentiation)

-' (16
'

64)

which is the required wave equation.

Comparing with (9-64), we have

Hence the value of the fine structure constant is determined as

(15-65)

15*7. Interaction in Systems of Particles.

We turn now to the general problem of interaction in an assemblage of

elementary particles. The total interchange energy of a particle will arise

from interchange with every other particle. The difference from the previous

investigation is that, since the particle has to be paired with more than one

other particle, the special coordinates x^ ,^ are inappropriate; and we have
to obtain expressions in terms of the coordinates x^ , x^ referred to an arbi-

trary origin.

Considering a wave function T of two particles, we resume the investiga-
tion in 15-3 at equation (15-38), where it was broken off. In that equation
the operator etow-D Or [e^x(-^-] gives the change of T due to parallel

displacement in x- (Displacement in x is, for indistinguishable particles, a

relativistic rotation of the frame of identification, and these operators give
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the nominal change ofT due to its being referred to the rotated frame.) For

antisymmetrical wave functions there is by (15-38) also a "real change" of

Y represented by the operator [e*x]. The covariant derivative 8/8^ measures

the real change; that is to say, 8/8# forY is equal to dfix for [e*x]. But [ft*] is

not a simple multiplier; it turnsY (X) into e'xY (e
2i
*X). We shall show that

the change of argument eliminates ^|fths of the factor e*x.

When X-+e2i*X, the coordinates become e1**^, e2'*^'. Since Y repre-

sents a probability distribution over real coordinates, its interpretation for

a complex argument requires definition. We are interested only in the

covariant derivative of [e**]; therefore any part of it which represents

parallel displacement of the function Y (z, x' 9 x) on which it operates may
be ignored. A parallel displacement is produced by applying a tensor trans-

formation q= ei(* to all the symbols concerned; this yields

where x' is the transformed value of #, whose tensor character we leave for

the moment undetermined. We therefore define Y for a complex argument
oftheforme2

*X:by
ei*^(&i*x,e,K*x',x') = ^(x>x'>X)> (15-71)

since the two expressions are in any case equivalent for the purpose required.

We want, however, to find Y(e2*a
#,e

2l
'

a
a;

/

, ^); for a will ultimately be put

equal to x> and we naturally do not apply the transformation to the argu-
ment which defines the transformation.!

The transformation of the double strain vector of the distribution can be

treated as a uniform gauge transformation JR-> Retf of the radius of the

137-dimensional phase space. Denoting the strain vector YO* by S, the

first effect of the transformation is to multiply S by e137*0 on account of the

change of measure of the volume element attached to it; and the second

effect is to multiply it by e~18W on account of the renormalisation necessary

through the whole volume of phase space becoming e187#Q. These are

equivalent to the two compensating changes in (15-71). It does not much
matter which way round we identify them; but presumably the first is the

result of the change of coordinates in the argument, and the second is the

direct tensor transformation ofY andO by a factor e*
a

, which gives a factor

e2ia in 8. Thus 2a= - 1370.

If we exempt the coordinate x fr m ^e transformation, so that the

volume element contains dx instead of e*Pdx, *^e ^ra^ factor becomes e138#.

The exemption is a simple matter, because the interchange matrix P com-

mutes with all the space-like matrices in the (?Z>-frame, i.e. the frame in

t That would lead to the same confusion as the statement "every number on this page
should be divided by 2", which (being amended in accordance with its own instruction)

implies that the numbers should be divided by 1, and therefore that they should be divided

by 2, etc.
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which the symmetrical and antisymmetrical wave functions are separated

( 10-6). The second factor e~137l
'

is unaffected. The complete cancelling only
occurs when the transformation (parallel displacement) is applied to all the

quantities concerned; in withdrawing one ofthem from the transformation,

we do not have to introduce any compensating change elsewhere. The

resultant change of S is therefore ei36tf. e-i37tf ^ta/ia? The change ofT or

O is e a/i37
. Accordingly, putting a= x,

[e'*]
= e*x/

137
. (15-72)

Hence the angular momentum is

-iS/8x= 1/137. (15-73)

To summarise the argument from the beginning: Indistinguishability of

two particles causes a degeneracy, which is treated (like other cases of

degeneracy) by introducing a dynamical coordinate #. The angular momen-
tum i 8fix is quantised bythe condition thatY shall be single-valued. The

change ofT with x may be simple parallel displacement, in which case there

is no angular momentum;! or there may be an additional real change. But

unlike other cases of quantisation, the condition of single-valuedness is

applied after a half-period when the original distribution has reappeared
with the particles interchanged; and the Fermi-Dirac condition determines

the real change to be that expressed by the transformation operator [e**].

If a transformation [e
/a

] were applied to *(X, x), X being transformed in

accordance with its tensor character as well asT and X, the result would be

a parallel displacement which contributes nothing to the angular momen-
tum. In the present case the transformation [e

l

'x] is not applied to the co-

ordinate x whose value it fixes. Consequently, instead ofthe factor efx being

completely neutralised by the change of argument of Y, 1 out of the 137

coordinates of phase space is left untransformed, and fails to do its share

in neutralising elX Thus a factor e**/137 survives.

We have now to insert in the wave equation an extra term representing
the linear momentum which corresponds to (15-73). We recall that the

linear coordinate a corresponding to the x rotation is the imaginary relative

time of the two particles. So that, if r is the distance between the two par-

ticles, dardx- Let iKr be the matrix (in the double frame) associated with

the direction of r.% It will be a y matrix, which by (10-35) commutes with P,

and is therefore unaltered by interchanging the particles and measuring r

in the reverse direction. The matrix of the x rotation, given by (15-32), is

i(P+l). The matrix of the direction of a is the product Kr (P+l).

t Other than the quantum, which is added in our usual non-relativistic treatment, and

dropped again when the angular momentum is converted into linear momentum.

J We take iK, so that the direction may be associated with a symbol whose square is 1,

as in a simple frame. It is understood that the strain vector representation isused throughout.



15-7] Electric Charge 301

The new momentum to be inserted in the wave equation is therefore

(of. (8-37))

This is divided into two parts. The term Krj\yir embodies the reduction

from the metric naturally associated with indistinguishable particles, whose

initial probability distribution extends over 137 dimensions, to the standard

metric associated with distinguishable reference objects. If there are two

particles only, one of which is taken as the origin of polar coordinates, so

that the hamiltonian contains a term (iKr)( id/dr), we can amalgamate
jfirr (3/ar+l/137r)into#r 8/8r by settingY= r~1/137''Y

/

, and taking Y' as the

new wave function (cf. the treatment of (8-38)). But since we have already

treated the case of two particles more directly, it is unnecessary to pursue
this further. It is sufficient to notice that the term Kr/I31r is the equivalent

in the general formula ofthe change ofmass from /A
to

/x'
in the internal wave

equation of the hydrogen atom, which will be considered further in the

next section. The remaining term represents the Coulomb energy:

K P
Coulomb energy= --

. (15-75)

The main additional result is that the matrix associated with the Coulomb

energy is Kr P. We naturally associate the Coulomb energy (or more strictly

the Coulomb momentum) with the direction of r; we now see that it is

necessary to multiply the matrix giving the direction of r by the symbol P
in order to obtain the direction of the Coulomb momentum. We may there-

fore describe the Coulomb momentum as equal to P/137r in the direction

of r. In current perturbation theory it is taken to be P
x/137r, where Pl is

given by (10-385), the other factor ofP being omitted. How far this omission

is justified will depend on the nature of the application.

Light is thrown on the occurrence of P by the transformation investi-

gated in 10' 8. On multiplying matrices in the UP-frame by P, we obtain

matrices in the G^-frame. Thus the factor P disappears when we adopt the

GtfMrame, i.e. when we divide the system oftwo particles into external and

internal wave functions. Conversely we might have anticipated that the

purely algebraic Coulomb energy, found in the internal wave equation of

the hydrogen atom, would acquire a matrix P when referred to the frame

of the coordinates #
,
x'.

The previous investigation treated the interaction between particles of

unlike sign; the present investigation applies most obviously to particles of

like sign. We must suppose that E^ and F^ are both right-handed or both

left-handed frames; otherwise there is no interchange operator P. But since

no assumption has been made as to the nature of the stream vectors of the

two particles, they may well have charges ofopposite sign. It would, I think,
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require deeper analysis toshowthatthesignoftheenergydependsonwhether

the charges are like or unlike. In this section we have been content to use the

Fermi-Dirac principle (partly theoretical and partly empirical) to obtain

the operator \ffx\\ the principle is equally consistent with [>-**], so that the

sign ofthe energy is left undetermined. It is possible, however, to go behind

the Fermi-Dirac principle and, by investigating the quadruple wave func-

tion, trace the Coulomb energy to the absence of recoil of the x coordinate

in the comparison fluid, as we have done in the special case of a hydrogen

atom. I think it would not be difficult to verify in this way the dependence

of the energy on the sign of the charges.

15-8. The Factor -JfJ.

A new point brought out in this investigation is that the mass concerned in

the internal wave equation is not p, but ft', where, by (15-61),

In considering the consequences of this, we must remember that
//,
does not

represent an energy actually present. The mass of a hydrogen atom on the

verge of ionisation is M ;
and although, for the purposes of analysis, an

internal mass p. or p! is added, it is subtracted again at the end of the in-

vestigation. When the atom is in a lower quantum state, ft is involved as a

coefficient in the energy tensor ft-^/S^S^ of the internal wave function.

When ft is reduced to ft' the energy tensor is increased, and the energy

differences between the different states are increased. The actual energy

differences are therefore ^f| times greater than those calculated in the usual

way from Sommerfeld's formula (9-372), which ignores this factor. f

It will be seen that the decrease of ft
has just the opposite effect to that

whichwe should at first have expected. The explanation is that ft is not under

any circumstances a rest mass, but occurs only as a divisor in the expression

(w^ + w2
2+ ro3

2
)//i for the kinetic energy. In particular it is not permissible

merely to substitute ft' for ft
in Sommerfeld's formula.

The following alternative treatment leads to the same result. Consider a

proton and electron confined within a rectangular boundary, so that there

is no angular momentum, and the steady state can be analysed into standing

waves in three perpendicular directions. We take the energy to be either

positive or so slightly negative that the size of the atom is comparable with

the dimensions of the enclosure. Equating the energies of the proton and

electron to the energies of the external and internal particles, we have, by

The Coulomb energy is omitted.

t In (9-372) the symbol /* is used for a quantum number, and the internal mass

v+mt) is denoted by m.
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Subtract from each term the energy m of a comparison particle, so as to

leave only the energy due to specification. Then

(15-822)

where W ' =w +/i=ffw (15-83)

by (15-41).

Thus in order that the external and internal energies may be treated as

additive in the same way as the energies of the proton and electron, the

internal energy must be referred to a comparison massm f

which is |f times

the comparison mass for External wave functions. The current treatment

replaces (/*-f ci2/^-w ') by a linear hamiltonian, taking it for granted that

the theory developed for external wave functions applies. We have seen

that it is necessary to decrease /z to ^', which is equivalent to increasing the

comparison standard from ra to ra ', so far as the internal state is concerned.

But when we introduce the condition that the energy of specification of the

atom shall be the sum of the energies of specification of its internal and

external states, (15*822) shows that the right course is, not to diminish
ju,

to p in the current (Sommerfeld) formula, but to treat the formula as

expressing the energy in a unit which is W '/w times the unit used for the

external energy.

Ideally we can measure experimentally the energy e /x of a particular

quantum state of the hydrogen atom, and hence determine the mass /u by
Sommerfeld's formula. The external mass M can be found experimentally

by some procedure equivalent to counting the number of atoms in a quan-

tity great enough to be weighed macroscopically. From M and /x, mp and

me can be calculated. But the ordinary determination of the masses by this

method, which omits the factor ^ff , will be incorrect. The observed energies

-/*, or the observed energy differences between different quantum levels,

must be decreased in the ratio f|f before being compared with Sommer-
feld's formula.

Since M is very nearly the mass ofthe proton and p, is very nearly the mass
of an electron, the practical effect of neglecting the factor is that the so-

called observed mass of the electron is ff| times too great, that of the

proton being correct. It was first pointed out by W. N. Bondf that the

observed values of the various constants would come into line with the

author's theory, ifit could be assumed that the observational determinations

of e/me really determined Hf e/me- At that time I was aware that a

factor ||f would be involved, but had not been able to determine its precise

incidence.

t Nature, 133, 327 (1934).
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More precisely the uncorrected observed determinations of mp and me

should be the roots of

10m2- 136wm +Hw 2= 0. (15-84)

Their ratio is 1834-1.

We cannot assume that the factor ff will occur in, or have the same
incidence in, all methods of determining mp/me or e/me . The theory of each

method should be examined in detail in the light of what we have learned.

In the next section, we shall express our result in a different form, which
shows the range of its observational consequences more clearly.

15-9. Revision of the Constants e, m^^m^h.
In saying that 1847-6 is the correct value of the mass-ratio, and that the

"observational value" 1834-1 is in error through neglect of a factor in the

reductions, we are employing the definition of mass or energy which has
been regarded as fundamental in wave mechanics, namely as the value of

the operator (
-

ih/27r) 3/3J, h being a universal constant. Naturally we do
not guarantee that 1847-6 will be the correct value ifmass is defined in some
other legitimate, and perhaps preferable, way. It appears that the deter-

mination of e\me by the deflection method leads to the mass-ratio 1834-1.

It cannot well be supposed that the factor j|f is concerned in this case. But
the deflection method determines a mass which satisfies the classical

definition. It is therefore not necessarily in conflict with our determination

of the mass-ratio according to the quantum definition; though it has an

important bearing on the larger question whether for general purposes the

quantum definition of mass is the best to adopt.
The discovery of the factor J|f creates a new situation; and there can,

I think, be no doubt that the most satisfactory way of restoring order is to

admit two constants A, h' to be used in connection with internal and external

wave functions respectively. The remaining constants e, me ,
mp have unique

values. This is a radical change. Prom our first introduction to quantum
theory we have been taught to regard E = hv as its most inviolable principle.
But we did, in fact, tacitly abandon it, when we were forced to recognise
that the momentum operator depends on the index of the wave function,
and that the index of Dirac's Lorentz-invariant wave function is not the

same as that of the commonly used wave function of the hydrogen atom.

Moreover, ifany definition has to be altered, h is the obvious victim
; because,

unlike e, mp,me , it does not occur in classical theory.

We take A'

Then, ifthe double-valued internal wave function with operator ( tH/TT) 3/3a?

is taken to be of index 1, the double-valued external wave function with

operator (
-

ih'lir) 3/3^ is of index j| .
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The two fine-structurfe constants axe

a=:*c/27re
a= 137, a'^A'c/2^2 ** 136.

The fine-structure constant is merely a name for the number of dimensions

of the double phase space concerned.

As compared with our previous results, external masses will be reduced in

the ratio jff, and internal masses will be unchanged. Counting ra as an

external mass, our previous results become

Hencemp ,
me satisfy ( 15-84), and the mass-ratio is 1834- 1 . Bond's correction

has been eliminated by the change in the definition ofmass. It was originally

required to reduce internal energies to the unit which was used for external

energies; butwe have now redefined external energies in a way equivalent to

changing the unit.

Let us consider the deflection method of determining mass. It would

ideally be possible to determine the ratiompjme by comparing the deflections

of a proton and electron projected with known energy in the same magnetic
field. The motion will be in accordance with the wave equation

(S#A-m)0 = 0, with pIA

= (~ih'l27T)dldx(A
+ K

lA
,

the wave functions being external. As h' will not appear in the ratio of the

two deflections, thefact that it differsfromhwillnot berevealed. Theordinary
calculation will therefore give the correct mass-ratio, which on the new

system is 1834-1.

So far as radiation is concerned, the normal constant h is applicable; for,

in absorption and emission, radiation is connected with the quantised, i.e.

internal, states of material systems.
Thus in general the unconnected observational determinations of the

natural constants should be consistent with a= 137, mp/me 1834-1. Either

they depend only on classical theory, and do not introduce A; or they depend
on internal wave functions or radiation frequencies. To introduce h' we

require an experiment determining the absolute wave length ofthe external

wave functions of electrons or protons. Presumably the diffraction of

electrons by matter involves A'; arid the ordinary calculation will give the

scale of the diffraction pattern ff-J times too large, unless the effect is

concealed by a compensating factor. At present it is not possible to attain

this accuracy. It is difficult to devise any other experiment in which the

factor could manifest itself.

Summarising our conclusions we find that the definition of energy in

wave mechanics by the formula E=hvis not in all cases consistent with the

established meaning ofthe term "energy" in classical theory. In this section

we restore the classical reckoning with e, mp,me a& fundamental constants.

We calculate the ratio mp/me to be 1834-1. The ratio e/mp or e/me must be
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found experimentally since it involves our arbitral^ standards of mass and

length. It can be found from the Faraday constant, by the oil-drop method,

or by deflection methods, none ofwhich involve h. We must further consider

how results that have been expressed in terms of h are to be reduced to

determinations of e, mp9 me . We first, by using a=Ac/27re
2
, express them in

terms of a instead of h. Then a denotes the number of dimensions of the

double phase space ofthe wave function concerned and its comparison fluid,

and may be either 137 or 136. In the experiments which furnish the most

accurate values of the constants the value is 137; but the theory of each

experiment should be scrutinised with this point in view.

This summary covers most experimental determinations of the con-

stants; but there is one important experiment "which introduces new con-

siderations. We shall treat it in the next section.

15*95. The Crystal Grating.

It is now considered by leading authorities that the various observational

methods of determining e, mp9 me ,
h cannot be completely reconciled by

current theory. The discrepancy, as usually stated, is that the value of e

found by the crystal grating method is definitely greater than that found by
other methods. To put the blame on e is merely conventional; the dis-

crepancy is in the relations of the constants, and can equally well be attri-

buted to mp . The question naturally arises whether this discrepancy has

anything to do with the factor jff.

We must first exhibit the disagreement in a form free from irrelevancies.

The crystal experiment consists in comparing the diffraction of the same

X-rays by (a) a ruled diffraction grating, and (b) a natural diffraction grating
formed by the lattice structure of a crystal. The comparison determines the

lattice interval in terms of the known interval between the lines of the

ruled grating. Thus we obtain the dimensions of the lattice in centimetres,

and hence the number of lattice cells in unit volume, or in unit mass of the

crystal. Since the lattice is formed by molecules, this gives the number of

molecules in unit mass of the crystal. Using the known relative atomic

weights, we deduce the mass M of a hydrogen atom in grams.
This appears to be the only practical way of determining M without

introducing e or h. But we can make another determination via e. A theo-

retically simple way of finding e is to measure macroscopically the charge
2ne provided by a large number of a particles; the number n of particles,

whose charges are collected, is ascertained by actually counting them.

Further, e/M can be found by an electrolytic method equivalent to accumu-

lating the charges ofaknown mass ofhydrogen until an amount large enough
to measure macroscopically is obtained. By combining e and e/M, a value of

M is obtained which is less than that found by the crystal grating method.
The observed ratio agrees with f|f within the limits of observational error.
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There appears to be gnly one vulnerable link in this chain of connection,

namely the assumption that in the crystal there is one molecule to a lattice

cell. That depends on a classical picture of the particles in the crystal. In

wave mechanics the structure of the crystal is represented by standing
waves. It is not necessary to suppose that the "particles of composite

identity", which are more or less located at the lattice points, represent an

equal number ofpure particles. In more elementary problems the invariance

of the density of eigenfunctions secures that different modes of analysis into

particles yield the same total number of particles; but this does not apply
when the number of dimensions of the phase space is different in the two

analyses. A crystal is a typical example of a system composed of indis-

tinguishable elements. Any pair of elements will have a permutation co-

ordinate and an interchange energy conjugate to it. It is possible, and even

probable, that in constituting the standing waves of a system of this

character, 137 particles of pure identity furnish 136 composite particles.

The problem lies rather beyond the point which our theory has reached.

But if the observations are trustworthy, it would seem to be a direct deduc-

tion from them that there is a discrepancy in the two ways of counting

particles in a macroscopic aggregation. In counting a particles, no question
of interchange arises, because they are observed one at a time. Ideally we

might vaporise the crystal, and count its molecules in the same way; but

instead, we try to count the molecules as they lie simultaneously in space.

It is scarcely surprising that we should become confused in our count of

entities which have no definite position and are indistinguishable from one

another. We count something; but not the particles which we should count

if they passed successively before us. In the crystal we identify a molecule

by the lattice cell which it occupies, disregarding the fact that the molecules

counted by the other method could not be localised individually. This

procedure introduces a permutation coordinate. The extra coordinate

increases the energy invariant of a particle in the ratio yf|, in accordance

with the law ofequipartition ofenergy. Wehavethus to assigntoeach crystal
molecule a mass ^ff times that of a corresponding gas molecule as the

observations actually indicate. This is not energy of crystallisation (which
is too small to be considered); it is presumably a sign that, in the mathe-

matical transformation of the external wave functions of gas molecules

into internal wave functions of a crystal, 137 gas particles become re-

partitioned in 136 crystal particles. We can thus suggest a possible origin

of the discrepancy of the crystal results
;
but it would require a much fuller

investigation to determinewhether the factor jf^ is an observable correction,

or whether it is compensated in the complete theory of the experiment.!

f I understand that (in view of still more recent experiments) the present opinion is

that the supposed crystal grating discrepancy is spurious.



CHAPTER XVI

THE EXCLUSION PRINCIPLE

16-1. The Second Quantisation.

Let Jr (r=l, 2, ... n) be n commuting idempotent symbols. Let U be a

common eigensymbol of the Jr , and let er be the corresponding eigenvalue
ofJr . Since Jra-Jr= 0, er= or 1.

By 3-7 (e) an eigensymbol for any given set of eigenvalues er can be

found explicitly, namely
(16-11)

where V is any symbol. Since J82 J8 :=0 9 and e6
a e8

= 0,

(Js-es)(Js-l + **)
=

<>> (16-12)

from which it follows at once that (J8 e8) U = for all values of s.

Let g=n(Jr-l + er). (16-131)
i

We shall regard q as a transformation operator. It transforms any expres-
sion V89 which is not in general an eigensymbol of the Jr , into

U8= qV89 (16-132)

which is an eigensymbol giving the set of eigenvalues defined by q. By
(16-12), q is singular; there is therefore no inverse transformation. Also

by ( 16
'12)

qJ.= qet . (16-133)

A case of special importance is

V^J8V89 (16-141)

which gives on transformation

Ze8U8=Xe
U8 , (16-142)

i i

where 2e denotes summation over those suffixes for which e,= 1.

Similarly, if F=SJrJ8K%8 , (16-143)

we have U= Xer e8 U,t8
= XeUrt8 , (16-144)

the summation Se being restricted to pairs of suffixes both of which corre-

spond to eigenvalue 1.

To apply this in physics, we take Jr to be an existence operator for an entity
or condition cr . IfJr has the eigenvalue 1, r is said to exist in the system
described by the eigensymbol V\ ifthe eigenvalue is 0, er does not exist in U.

In the system described by V which is not an eigensymbol ofJf , the entity
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er is not definitely pre^nt or absent, and er is said to have partial existence

in V. Two kinds of partial existence are commonly recognised; r may have

a probability of existing in F; or, without being wholly in F, it may have a

component in F. In the former case, what may be called the "degree of

existence" is expressed by a numerical relation to complete existence; in

the latter it is expressed by a directional relation. Both are combined in a

vector which possesses magnitude and direction; and, as we shall see later,

the general existence symbol Jg ,
which replaces the classical existence

symbols (1 for existence, and for non-existence), can be represented as a

strain vector.

To understand the importance of this investigation, we must recall that

in the primary developmqpt of quantum theory a system is looked upon as

the product of its parts rather than as the sum of its parts. We have treated

double systems in this way in Chapter xn, and quadruple systems (a proton

and electron with their respective comparison particles) in Chapter xv.

But for large assemblages the product method becomes unsuitable. If the

probability of one member of the assemblage vanishes, the probability of

the whole assemblage vanishes. That takes us far from the macroscopic

outlook in which the existence of one particle more or less scarcely matters.

Now it is important to develop a microscopic theory which shall converge

to the macroscopic theory when the number of particles becomes very great.

The basis of this new development must be the assignment of additive

instead of multiplicative characteristics to the parts into which the system

is analysed.

To a certain extent we have anticipated this new development, especially

in Chapters xm and xiv. But we there freely employed the exclusion prin-

ciple, and we now return to the beginning of the theory to discover its

foundation.

In (16-142) we have practically the classical conception of an additive

characteristic. The quantity U is made up of contributions U8 from the

various particles fi ,
the summation being of course limited to the particles

which exist in the assemblage to which U refers. The assemblage is,however,

viewed from the standpoint of selection rather than creation] so that SC C^

appears as part of a universal sum ZU8 . This is now treated as a particular

case of an assemblage of partially existing particles with characteristics V8 ,

which are additive in a generalised sense F= JsV8 ,
the symbolic coefficient

J8 being a measure of the degree to which the sth particle is present in the

assemblage in the sense explained above. This generalised addition is of the

same type as that used in expressing a vector as the sum of its components,

In calling the entities f "particles'* we are redefining the term partide,

so as to correspond to the conception of a system as the sum of its particles
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rather than as the product of its particles. As wet have pointed out, the

particles in macroscopic systems in equilibrium have composite identity as

compared with the pure elementary particles originally introduced.

We shall refer to the present development as secondary quantum theory,

the multiplicative combination of particles being primary quantum theory.

16-2, Jordan -Wigner Wave Functions .

We shall now express V= S J8V8 in a form, due to Jordan and Wigner, which

is well known in quantum theory. This transformation isnot ofanyparticular

importance from our point ofview, %J8V8 being not only the most direct but

also the most convenient expression of the additive combination rule; but

it is desirable to show how it is connected with tjie customary outlook.

In the application contemplated, the suffixes s refer to the pure elementary
states that can be occupied by particles, and V8 is the stream vector of the

sth state. In general a state is only partially occupied; equivalently we can

say that a particle whose stream vector is V8 is partially present in the

system considered.

Since the states are pure, V8 is the product of two wave vectors. The

Jordan-Wigner theory is limited to the case in which the stream vector of

each state is a perfect square. We can therefore take V8 to be a strain vector

of index 2 equal to
if>8 . 8 ,

or a strain vector of index equal to $8 .
t/t8 , where

$s is the complex conjugate of
iff ( 8*6). It is understood that these are outer

products; it would be inconvenient in the present investigation to indicate

this explicitly by the asterisk notation.

The characteristic equation J82 78= of an idempotent operator is of

the second degree, so that it can be represented by a twofold matrix. We
shall therefore represent J8 by the idempotent twofold matrix

where & is a Pauli matrix, i.e. any degenerate twofold matrix whose

square is 1. In treating E J8t\V8 , we wish to resolve J
8t\ into two factors to

be associated respectively with the two factors ofV8 . It is possible to express
J
8t^ as the product of two 2-vectors; but in the Jordan-Wigner theory a

different kind of factorisation is employed. Let ^, fl
, be three perpen-

dicular Pauli matrices. Then by (3-86)

(16-212)

We can therefore write

J*X
=*A> 1-4,A=A, (16-22)

where a* 88 &(/* +*) = * (/*-**) (16-23)

and i8 is a square root of 1, commuting with the 's.
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Since the existence operators Jr ,
J8 commute, the Pauli matrices used for

their representation commute; that is to say, we must employ for the

different particles Pauli matrices ^ , J^, vr and A,
8 , ^, v

>
8 , belonging to

different commuting symbolic frames.

The Jordan-Wigner wave functions are

. (16-24)

Forming their outerf products TT and TT, we obtain, if we omit the

,

=A,J
V '

by (16-22). We call A the complementary stream vector to V. It represents the

stream vector of the states to the extent to which they are unoccupied, in

the same way that V is the stream vector ofthe states to the extent to which

they are occupied.

The omission of the cross-terms is to some extent justified when the

elementary wave functions $8 form an orthogonal set, so that their products
vanish on integration over the whole domain. It is in this integrated sense

that *PY and V are equivalent. Physically this correspondence is sufficient,

because we have no right to treat a wave function except as a whole. But, if

we consider the universe ofcompletely occupied states, given bySV8= V -f A,
we come back to the classical conception of addition ofV8 . In order that our

formulae may converge to those of classical theory, it is necessary that

TT+YT should converge to F-fA locally as well as on integration; that

is to say, the cross-terms in TT+TT must vanish.

The point is that when a state extending over a region ofspace is partially

filled, the location of the entity which is (partially) occupying it is a matter

of probability; and we have the complication usual in statistical theory that

the expectation value of a product is not the same as the product of the

expectation values. But when the state is fully occupied, it represents a

definite distribution which can be treated as a classical fluid having a deter-

minate density at every point.

The rs cross-term inW+TT is

Since the 0's commute, this will vanish if

ara8+ a8ar =0, a8ar+ara8 =Q. (16-261)

Since ^r and ^ commute, (16-261) will be satisfied if

V8+ Vr=<>. (16-262)

f Outer products so far as 0, and $t are 'concerned. The symbolic coefficients follow

their own commutation rules found below; ifta and ifta commute.
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That is to say, the factors is in the different termr must be taken to be

anticommuting square roots of 1. Hence we have also

ara, + a8ar =0, ara^+aaar
= (r^s). (16-271)

Also by (16-22) a8a8+ aaas= 1. Combining this with (16-261), we obtain

ara8+ aaar
= Sr*. (16-272)

The equations (16-271) and (16-272) satisfied by the coefficients of the wave

functions (16-24) are known as the Jordan-Wigner commutation rules.

16-3. Einstein-Bose Particles.

In the foregoing analysis we have supposed that the states or particles are

fully distinguished by the additive characteristic^ which is being studied.

We shall now consider states with a distinguishing characteristic W8t , such

that the states W8l , W82 ,
. . . W^ all have the same V8 . Let J

8t
be the existence

operator for the particle occupying the state HJ,; then (16- 141) is replaced by

F= SMJ8^==SA^, (16-311)

where #8=Jsl + J,2 + ...+ J8W . (16-312)

Since the J
ri
commute and have eigenvalues 0, 1, the eigenvalues of Ks

will be 0, 1, 2, ... m. Its minimum equation is therefore

A'(A-l)(A:-2)...(A
r

-w) = 0. (16-32)

Let A:' =#-im.

Then, ifm is even, (16-32) gives

ii /
K' n

-*m\
l +

^Lj
= 0, (16-33)

where r takes successive integral values from - \m to \m. As w-oo, this

tends to the limit
8inw/r = 0. (16-34)

Similarly, ifm is odd, the limit is cosnK' = 0.

Particles, of which there may be any number in the same recognised state

V8 , are called Einstein-Bose particles, as distinguished from excluding or

Fermi-Dirac particles. The distinction is practical rather than fundamental;
the Einstein-Bose case arises when the recognised states V8 comprise a great

number of ultimate elementary states W8f9 i.e. when the practical classi-

fication of states is less minute than the theoretical classification. We have

then to associate a cardinal operator K8 instead of an existence operator J8
with the recognised state, and its eigenvalue gives the number of particles

in that state.

The use of K'

instead of K depends on the theory of the self-consistent

field. We cannot make a large change in the number of particles in a state

without upsetting the conditions which governed the original analysis into
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states. Strictly speaking we must know what states are occupied in order

to determine the controlling field, and a knowledge of the controlling field

must precede the analysis into states. In practice this means that we

employ an approximate or average distribution of the particles to calculate

the self-consistent field. Then we must provide symmetrically for the

addition of extra particles, and the subtraction of particles allowed for but

not present. The characteristic to be considered is therefore V'=*ZK8 V8 ,

whe^e 2K' is an operator which takes the eigenvalues 1, 2, 3, ... according to

the number of additional particles definitely present, and 1, 2, 3, ...

according to the defect in the number of particles. This is fulfilled by
operators satisfying the characteristic equation shirr/?' = 0.

The substitution of Ka
'

for K8 is equivalent to the substitution J
ri \ for

J
8t

in (16-311). We may regard half of the energy (or other mechanical

characteristic) of the particle as allotted to the self-consistent field and

thereby contributing to the energies of the particles in other states. Then if

the particle is fully present we have to add its half of the mutual energy; if

it is absent we have to subtract the energy wrongly included in the self-

consistent field. This is provided for by the eigenvalues , J of J J.

Another point of view is that (/ ) and K' are relative existence

operators, as distinguished from the absolute existence operators </, K.

It would be absurd to schedule everything which does not exist. To call

attention to the non-existence of an entity implies that we had some

a priori expectation that it would exist. To regularise this outlook we

contemplate a comparison system consisting of entities er which have an

equal probability of existing or not, so that their respective existence

operators have expectation values J . The object-system is then specified

by relative operators Jr %, which express deviation from the comparison
distribution. This procedure in secondary quantum theory corresponds

to that which we have already introduced in primary quantum theory in

11-6. In connecting the results of primary and secondary theory it is to

be noticed that the ideal comparison fluid of secondary theory consists of

a set of half-occupied states, whereas the comparison fluid of primary

theory is the impermeable background of fully-occupied states formed by
the unspecified particles of the universe.

In the usual applications the number m is treated as infinite, so that

(16-34) applies. A solution is

K8'=-id/d089 (16-35)

where 98 is a periodic argument of all operands contemplated. For then

Thus &>*&*= e-iTrK'\ so that sin7r^' = 0. We thus obtain a representation

of v'

**
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It is appropriate that a new coordinate 8 should Ve introduced, since the

existence ofstates W^ not discriminated by theValues ofV8 implies that there
exist other characteristics, e.g. momenta 3/30,, unrecognised. A connection

with classical theory is obtained by setting

where t is a common argument for all the functions V8 . Then v8 is the fre-

quency of V8 \
but V8 is not necessarily a simple harmonic function. By

(16-361) i 137P_ *
jj*a. (16.362)

27T V8 Ot

In particular, ifV8 is a momentum vector
id/dx^ , the resultant momentum

vector is

r

which may be compared with the momentum T 4 given by the energy

operator (13-12).

In current quantum theory Einstein-Bose particles are represented by
wave functions analogous to the Jordan-Wigner wave functions of Fermi-

Dirac particles. It is assumed as before that the stream vector V8 is a perfect

square. V is written in the modified form

Since K8 now operates on one factor only, we must take K8
= -

2id/d68 .

A possible factorisation ofK8 is

gt= e** f
a8= dlda89 (16-371)

since a8a8
= 3/3 (log a8 )

= - 2i d/d08 . Thus, if cross-terms are omitted,

F' =W = (Sfe)(Za^). (16-372)

Further, if/ is any symbol,

so that a8a8 a8a8 =l. And since all other combinations of a8 ,
a8 commute,

the complete commutation rules are

(16-381)

0. (1,6-382)

These may be compared with the Jordan-Wigner commutation rules in

(16-271), (16-272).

In problems concerning a specified system, the unspecified particles will

in general be Einstein-Bose particles. For it is clear that the type of analysis

into states V8 applied to the specified system does not provide anything like

enough states to accommodate the 1079 unspecified particles separately.
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For example, consideibthe box-problem ( 13*2) applied to material of the

density of water. If (to avoid introducing supernatural barriers) we suppose
the uniform density to continue indefinitely, we obtain a space whose radius

is ofthe order 3 . 108 km., and a mass about 10~~u ofthe mass ofthe universe.

In this case the recognised states provide room for only 1 in 1014 particles;

so that in (16-312) m=1014
. The unspecified particles provide the imper-

meable background with occasional vacancies which we have identified

with photons. Any number of vacancies up to 1014 may occur in one recog-

nisedenergy state; andthephotonsaccordinglyobeyEinstein-Bose statistics.

It will be seen that a change of outlook can have the effect of changing
Fermi-Dirac particles into Einstein-Bose particles. The theory of Chapter
xivis based on a system ofexcluding particles (system A); but these become

transformed into Einstein-Bose particles in the usual outlook (system B).

16*4. Relation to the Energy Tensor.

It is important to realise the considerable change ofoutlook that is involved

in passing from the primary to the secondary quantum theory. The analysis

which shows that in given field conditions there will be a series of steady

states, composed of probability distributions with wave functions
tf/a or

stream vector functions V8 , is common to both. In primary quantum theory
a particlemay have its total probability (unity) distributed between different

states, so that its stream vector is V=Zp8V8 . If a second particle is present

with the stream vector V = pa

'V8 , there is no warrant for forming the sum

(p^ +PS) Va . The only combination of V and V contemplated is the product

FF', which indicates a set of double states VrV8
'

occupied with probabilities

PrPa- If *be additionp8+pa
' were admitted, the total probability of a state

might exceed unity, and the exclusion principle would be violated; this

contingency does not arise, since the conception of such an addition is

foreign to the outlook of primary quantum theory. In secondary quantum
theory a different type of particle is introduced (composite from the point of

view of primary theory), each particle being limited to one state. The

numerical probability factor pa is now replaced by a vector probability

factor </8 . The exclusion principle is represented by the fact that, the eigen-

values ofJ8 being and 1, its expectation value will always lie between these

limits.

The general theory of relativitythrows light on the meaning of V= J8V8 .

Macroscopically the additive characteristic of a system is its energy tensor.

Thus the secondary quantum theory rightly rejects the sum of vectors

f or Zp8V8 ,
and employs the sum of tensors of the second rank %J8V8 .

Moreover, owing to the non-linearity ofthe equations, the self-energy tensors

ofparticles are not strictly additive in general relativity theory. The additive

energy is a mutual energy of the particle and the rest of the universe. The
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energy is therefore not the square of the momentum vector V8V8 ,
but the

product of a special factor V8 and a world factor J8 . We have already seen

how we endeavour to reconcile this with our usual non-relativistic outlook

by artificially breaking up the mutual energy into self energies of the

particle and the rest of the universe (treated as comparison fluid). The

convergence of the energy tensor %J8
V
8
of secondary quantum theory to

the energy tensor T^v of general relativity theory, as we pass from the

microscopic to the macroscopic outlook, is exhibited in (16-363). Since

the macroscopic outlook implies a much less minute discrimination of

individual states, the quantum expression for the energy tensor is first

reduced to Einstein-Bose form S K8 V8
.

t

16*5. Enumeration of Wave Functions .

By using the observed values of e/m and /c, we have found that there are

approximately 136.2256
protons and an equal number of electrons in the

universe. This will now be confirmed by an independent investigation which

shows that the number is exact.

Our ability to predict the number ofprotons and electrons in the universe

implies that the number is imposed by the procedure followed in analysing

the interrelatediiess of our experience into a manifestation of an assemblage
of particles or wave systems. It is a commonplace that electrons are not

intrinsically distinguishable from one another; it is therefore not surprising

that the total number, allowed for in our scheme ofdissection ofphenomena,

depends on the conventional distinctions introduced when, for example, we

decide that a certain diffuse wave packet is composed of two electrons

rather than one.

We first notice that the value we have found for the total number of

particles N belongs to a series of numbers

^=2.3.24, #2 = 2. 10. 216
,

JVr

4 =2.136.2
256

,

i.e. n (n + 1
)
2*

2

, with n = 2, 4, 1 6, .... If ^/i is regarded as characteristic of a

simple wave function, N^ and N^ will be the corresponding characteristics

of double and quadruple wave functions. We shall first investigate a "uni-

verse" described by simple wave functions and show that it consists ofN
(i.e. 96) particles. It will then be comparatively easy to show that the actual

universe contains N4 particles.

Conditions we can scarcely call them phenomena which require for

their representation no more than a simple matrix frame have been treated

in Chapters i to vin. We can represent a position vector or a stream vector,

but not both; if the position vector is represented in an ^-frame, we have to

change to a (/-frame to represent the stream vector
( 10-5). The familiar

particle, whose position vector and stream vector are both inexact but not
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entirely uncertain, cannot be represented on this plan. But in Chapter vm
we made a new departure by introducing D-operators by means of which

we were able to define vector functions instead of isolated vectors; and in

particular themomentum vector was defined. In fundamental investigations

ofthe kind which we are now treating, the stream vector and themomentum
vector coalescejf but their coalescence is, strictly speaking,

For the operator id/dx^ applies to a representation of positions, and it is

necessary to change to another frame to obtain a representation of the

stream vector j^ .

Consequently, by using position and momentum instead of position and

stream, we are able to keep the whole representation of the particle within

one matrix frame at the cost of using differential operators as well as the

matrix operators of the frame.

This is an illustration of the use of differential operators to avoid multi-

plicity offrames. It can be greatly extended; and, as is well known, particles

are generally distinguished by allotting to each a different orthogonal wave

function, rather than by allotting a different matrix frame as contemplated
in 2-9. It is true that we must still assign to them existence operators J8
which are represented by Pauli matrices in different frames; but that, as it

were, segregates the question of multiplicity of frame from the main part of

the analysis, and eliminates it altogether in the case of particles having

complete existence in the system (J8= 1).

In the systems containing many particles which we have hitherto treated

the box problem in Chapter xin and the Einstein universe in Chapter xiv

we were concerned only with fully occupied states, so that existence

operators (other than unity) with their attendant multiplicity of frames did

not appear. If the scalar state is not fully occupied, we must in general

express the extent of its occupation by an idempotent operator J. In (13-61)

we divided the scalar state into two substates J and 1 J, with equal and

opposite spin. The purpose of dividing an entity into two parts is that we

may conceive of one part existing without the other; so that the division is

made by distinguishing a part J 'which is occupied (since J.J= 1 . 7) from

a part 1 J which is unoccupied (since J ( 1 J) = 0). The further separation
of the state into substates with opposite charges depends on a double

existence operator JrJs
'

for two entities, since charge is meaningless unless

there are two charges to interact. The four substates (13-62) are represented

t We regard non-algebraic wave functions, whose momentum vector has matrix com-

ponents and is not to be identified with
j^,

as a side-development of the wave functions

primarily studied. As explained in 9*5, the steady states defined by them are only con-

ditionally steady.
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The system represented by a simple wave functjpn has four dynamical

coordinates, and in field-free conditions we may take the steady state to

be (cf. (8-53)) ^^ ^ ^^ e^*M**i^*^*4fa 9 (16-52)

where ^ is a common eigensymbol of the four commuting ^-symbols. The

dynamical angular momenta i3/3al9 etc., have eigenvalues . Each set

of four values defines a corresponding eigenfunction 0, and the 16 com-

binations of sign therefore define 16 eigenstates.

In our earlier treatment we regarded a particle as distributed with pro-

bability factors pr between the different eigenstates; to introduce a second

particle would involve beginning the problem over again with double wave

vectors. In secondary quantum theory the states are considered to be

occupied by 16 different partially existing particles, which in special

cases may be definitely present or absent. We have therefore to assign

to them existence operators Jr (r=l, 2, ... 16) stating the degree of

occupation.

The expression (16*52) singles out a particular plane J523 as the plane of

spin, and this choice will be reflected in the value of the eigenvector . The

choice might equally well have been E3l or E^ . This will be investigated in

greater detail in the next section; but it is fairly evident that the effect of

these alternatives will be to triplicate the set ofindependent wave functions,

making the total number 48. This number is again doubled when we allow

for two possible algebraic frames (1, i), or an equivalent duplexity. The
total then becomes 96 or JV^.

We now begin to see the make-up of the numbers Nl9 N2 ,
N. The

elementary states correspond to wave functions of the form e** (:Md^ .

The factor 2w2 corresponds to the variety of the exponential; and the factor

n(n + 1)/2 corresponds to the variety of ^r ; finally there is a factor 2 corre-

sponding to the duplexity of the algebraic frame. We notice that in Nl9 the

four dynamical coordinates give a factor 24 , whereas the three geometrical

coordinates give a factor 3. This is because the wave function depends on a

combination of eigenvalues of the dynamical momenta and a choice of

geometrical axis. Similarly in N2 and N^ the large factor arises from the

number of combinations of eigenvalues of operators with a common eigen-

symbol, and the small factor represents a choice of "orientation" of this

eigensymbol.
The final doubling of the number is the most difficult step to investigate.

It is fairly obvious that the duplexity of the algebraic frame will contribute

a factor 2; but it is less easy to be sure that the factor has not already been

included in the enumeration.

Before studying the method of enumeration more rigorously, we must

make clear the connection between the existence of N eigenfunctions of
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type (16*52) and the formation of a corresponding universe ofN particles.

In Chapter xrv the particles constituting the Einstein universe were

represented by wave functions in a flat space, formed by stereographic

projection of the "actual" spherical space. Here we begin at the other

end of the problem; for the wave functions (16*52) are those occurring

in elementary quantum theory, which, as we have seen (14*3), pre-

supposes an Einstein universe as background. These wave functions

occupy actual space; and the proper energy of the Nl particles, being

represented by the curvature of space, cannot be represented a second

time in the wave functions themselves. By the dynamical theory these

eigenfunctions give the only possible steady states of disturbance of the

system; there are therefore just N independent steady modifications

(generalised states of rotation). But, owing to the symmetry of the con-

ditions, there is a degeneracy which permits us to re-analyse their most

general combination into various alternative sets of N^ elementary states ;

in particular we can analyse it into an equivalent number of spherical

harmonic distributions. By projecting these into a flat space, we restore

to the wave functions the proper energy which was abstracted to provide
the curvature, and obtain wave functions corresponding to those of

Chapter xiv. The latter, by definition, correspond to steady states in

the self-consistent field produced by the whole aggregation, so that they
must conform to this method of enumeration.

Lemaitre has pointed out to me that the ambiguity <E16 <x4 in (16-52)

seems to be in conflict with (8*54), where the algebraic dynamical co-

ordinate was given unique sign. But this ambiguity is seen to be necessary,

when we remember that the set of wave functions, when fully occupied,

must not provide a resultant proper energy additional to that represented

by the curvature of the space to which they are referred. In primary

quantum theory reversal of the algebraic coordinate would turn the

particle into a minus-particle; and here the double sign will imply that

in some sense the 96 composite particles can be regarded as 48 plus-

particles and 48 minus-particles though we must not too hastily assume

that the latter are positrons and negatrons. Since we are treating a set

of particles whose resultant energy tensor provides the curvature of the

space in which their individual wave functions are represented, the con-

tributions of these wave functions to the energy tensor must cancel out,

and there must be as many minus-particles as plus-particles in the set.

It is therefore right to include the minus-particles in the enumeration.

This relative representation provides the simplest method of counting the

independent wave functions; but to obtain the particles ordinarily re-

cognised in physics we must restore to them the energy abstracted to

form the curvature. By this transformation they all become plus-particles,
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as in 14-2. To put the conclusion in another form -/'-elementary quantum

theory always describes its systems as additions to the impermeable

background which constitutes the Einstein universe. If therefore we
describe by the wave functions of elementary quantum theory the set

of particles which composes the impermeable background, the plus-

additions and minus-additions must balance. But the minus aspect is only

relative, and the particles are all positive contributors to the total energy.

16*6. Geometrical Representation of Jr .

By squaring (16-52) we obtain the strain vector of index 2

F(al9 aa ,
aa , a4) = e l

'

ai^a ia3^4^, (16-611)

the matrices being eliminated because VQ is an eigensymbol. Since ^= <A ^o>

it has the pure form F = J (i + j (i + tfw) . (16-612)

We can distinguish the possible functions V as Vr (u,v), the suffix r

(r= 1, 2, ... 16) indicating a particular combination of signs in (16-611) and

the arguments u, v indicating planes in the two Pauli frames.

Consider the existence operator J of V. J is represented in a Pauli frame;

and since there is a possibility that V may be an eigensymbol of J, i.e. that

/F= V, this must be one of the two frames of V. Thus the and frames

have the fundamental distinction that one ofthem (namely the spin frame )

is also the frame of the existence operator. To interpret this physically we
recall that J is the world factor in the energy tensor JV ( 16*4). In the

conditions represented by a simple wave tensor the "rest of the universe"

is understood to form a uniform static distribution defining an electrically

neutral three-dimensional space. On the other hand Vinvolves four dimen-

sions and is not electrically neutral; thus it contains an additional factor

(1 + iOv )
whose plane v is not definable by reference to the three-dimensional

space of J.

Let JW=%(1 +i w) be the existence operator of a particle w . By (16-612)

JWF= F if =,, and JW F= if = -. What we have hitherto called

the degree of existence of the particle w in the system F, is reduced to a

directional relationbetweenthe spin planes w , M ofe^and F. This simplifica-

tion is due to the fact that F is a pure strain vector, and could itself be

regarded as representing an elementary particle u with an existence operator

Ju . In our original formulae ( 16-1) F was not restricted to be a pure strain

vector; it might therefore have a constituent agreeing with ew in direction

but reduced in intensity by a numerical probability factor. This mode of

partial existence of w in F is now excluded by the condition of purity.

Accordingly the degree of failure of one elementary particle or wave system
to exist fully in another elementary wave system is represented exclusively

by angular deviation, and not by fractional probability.
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To enumerate the independent eigenfunctions, we must replace Vr (u, v),

which has a continuously varying parameter u, by an appropriate number
of functions Vr (ua , v) with fixed parameters ua^ The continuity of u is a

degeneracy due to the symmetrical conditions postulated, which permit

relativity rotation in three dimensions (cf. 13*6). To obtain a corresponding

non-degenerate problem, we should limit the spin to three coordinate planes.
Since the spin can be in either direction in each plane, this gives six alter-

natives. We conclude therefore that the 16 eigenfunctions Vr (u,v) have a

sixfold degeneracy, and correspond to 96 non-degenerate eigenfunctions.

The conclusion that the degeneracy is sixfold, not threefold, can be

reached in another way. Pauli space is not an ordinary space of three

dimensions. The Pauli matrices ^, f^, f correspond to JE?23 , E^, E31 , which

have a different group relation from the matrices E ,E29 EB which represent

rectangular axes in ordinary space. Suppose that rectangular axes Ox, Oy,
Oz are laid down geometrically in a three-dimensional space. Taking it to

be an ordinary space, we associate matrices El , E2 , E3 with Ox, Oy, Oz,

respectively; in so doing we do not give any chiral quality to the space.

Taking it to be a Pauli space, we associate Pauli matrices A , f^,
with

Ox, Oy, Oz, respectively; these satisfy ^ v
=

x
= ?,* (3-86). But we

can also associate with the same geometrical axes an alternative (left-

handed) Pauli space by using the matrices in the order ^, fv , i^. Treating

tt
as a vector referred to rectangular axes, Vr (u, v) will have a threefold

degeneracy; but there will also be a duplicate set of 48 eigenfunctions
whose existence operators (or spins) are represented in the alternative

Pauli space.

It might be suggested that all possible reversals have already been

provided for by the signs in (16*52). But a consideration of the hydrogen
atom makes it clear that the reversal ofspin is additional. The orbital motion

of an electron in any plane may be in either direction. In addition, two

states are discriminated according as the electron spin is with or against
the orbital motion. From this aspect the factor 2 arises from the duplexity
indicated by the "fourth quantum number".

16*7. Double and Quadruple Wave Functions.

The enumeration of independent double wave functions proceeds on the

same lines as the enumeration of simple wave functions. The maximum
number of commuting symbols E^FV is 16, obtained by combining an anti-

tetrad ofE-symbols with an antitetrad of JT-symbols. We have therefore 16

t The direction of v in its 3-space does not matter. There is no reference standard to

compare it with; and, whatever the direction may be, it is called the time. (It should be

borne in mind that the physical ideas illustrated by a universe composed of simple wave
functions are necessarily somewhat crude.)

ETP 21
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dynamical coordinates a^,
and the double strain /ector function for a

steady state, corresponding to (16-611), is

where
JJ>

is a common eigensymbol of the 16 commuting JS^-symbols. The

sixteenfold ambiguity provides 216 combinations.

First suppose that V is the product of two simple strain vectors. Then in

place of (16'612) we have

An existence operator for a system of two particles is of the form

since the system does not exist unless both the particles exist. The two Pauli

frames f ,

'

will combine into a frame of fourfold matrices
JSy/,

and the

frames 6, ff into another frame
JJ/.f

Then K is a simple strain vector in

the W-frame and V is a double strain vector in the E'F'-fmmQ.

The strain vector V is by definition a perfect square
VF Y , but in general

Y is not the product of two simple wave vectors. The system represented

by a double wave tensor is a superposition with different probabilities of a

number of resolvable double systems. The essential result for our purposes
is that the geometrical relations, which replace the conception of partial

existence, are contained entirely in the JP'-frame. Rotation in the JF'-frame

can be ignored, since there is no reference standard in that frame.

We have then a series of wave functions lj([im'], [vv']) 9
r= 1, 2, ... 216

,

involving a continuous parameter [uu']; and we have to determine the

degree ofdegeneracy implied by the continuous parameter. IfVr represented
two completely separate particles, [uu

f

] would represent their planes of spin

in three dimensions. Since the particles are not separate [uu
f

] is a simple

strain vector in an ordinary fourfold frame. This brings us to familiar

ground. Although the domain in which we picture this vector is not ordinary

space-time, the problem is the same mathematically. The relativity rota-

tions, whose existence brings about the degeneracy, are the 10 rotations in

five dimensions or the ten displacements in phase space, which we have

studied fully in the earlier chapters. There is accordingly a tenfold degen-

eracy; or, including the duplication due to right- and left-handed frames of

E' each Vr is equivalent to 20 non-degenerate wave functions. This gives

the total #2=2. 10. 216 .

It is perhaps not obvious that the number of rotations to be taken into

account is 10 not 16. We might appeal to the formal argument that the

corresponding factors in N^ andN2 should be either 3, 10 or 4, 16; and since

the factor in JVi is certainly 3, the factor in N2 must be 10. But the result is

t This regrouping has a resemblance to the crossing of frames in 10*4; but it is not the

same transformation.
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verified at once, whence notice that in comparing our double system with

a standard system of two particles defined by the existence operator K, we
cannot distinguish between the combination JWJW! and J^Jw

f

> Thus our

reference system does not distinguish between a rotation t,^v
f and

,,/,

and the rotations
(^

'

,,/ must be ignored in the same way that we

ignore rotations in the 00' frame. Adapting the theory of crossed frames in

10-6 to twofold matrices, the excluded rotations are the antisymuietrical

(tinje-like) rotations in the crossed frame; there remain the ten symmetrical

(space-like) rotations.

The extension to quadruple wave functions does not raise any new point.

The reference system of four separate particles defined by a quadruple
existence operator has a l<J6-dimensional phase space, so that the degeneracy
is 136-fold.

In each case the degeneracy of the wave function corresponds to the phase

space of a tensor of half its rank. A corresponding reduction occurs in the

theory of the steady internal states of the hydrogen atom, which can quite

well be (and commonly are) treated by Pauli vectors instead of Dirac

vectors; but any deviation from the steady state involves the use of Dirac

vectors.

16*8. Four-point Elements of Structure.

We can observe a relation between two physical entities. To mwtsure a relation

we must compare it with another relation of the same kind. Thus a measure

is a relation between two relations and involves four entities.! Formally a

measurement always refers to just four relata, viz. the terminals of the

object relation and the comparison relation. But in practice systems of

combination of measurements have been elaborated which enable us to

attribute measure indirectly to more complex networks of relationship.

The basis of measurement is therefore a four-point element of world

structure. It is on this principle that I have developed the generalised field

theory in Mathematical Theory of Relativity. % Ultimately the theory of

atomicity springs from the same origin.

In the field theory it was necessary to couple with the four-point relation

a condition of affine geometry, viz. that for infinitesimal relations, if the

relation AB is equivalent to the relation CD9 then the relation AC is equi-

valent to the relation BD. More light is now thrown on this axiom by the

transformation theory. I think that in attempting to compare or describe

the difference between two objects, we are impelled to envisage a chain of

intermediate objects to see, as it were, one gradually changing into

another. If such a transformation is too far-fetched to be considered, we

t In special cases two of the entities may coalesce.

J Chapter vn, Pt. II, especially 98.
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are nonplussed, as when asked (in the familiar riddle^the difference between

an orange and a grand piano. Whether or not this is true of all relations, we

do in physics confine attention to relations which are represented by trans-

formations. The axiom of affine geometry then reduces to the condition that

infinitesimal transformations commute as far as terms of the first order.

From this starting point we deduce the existence of a measure of world

structure at each point, given by an affine curvature tensor *jB
ftw , which on

contraction yields a metrical tensor
g^v and an electromagnetic tensor F^.

The tensor g^v provides a Riemannian geometry, and with this we define a

new indirect measure system. A measure is still a relation between relations;

but we now distinguish sharply between the object relation and the com-

parison relation. The latter is standardised; anc^ it is no longer a relation

between specific entities, but is vaguely "contained" in the Riemannian

geometry. The measure is transferred verbally (and usually also in con-

ception) to the object relation, so that it appears to involve only two entities.

Finally in the non-relativistic mode of thought which dominates current

quantum theory (whether styling itselfrelativistic or otherwise) the measure

becomes transferred to one terminal of the object relation, a geometrical

concept (e.g. an origin of coordinates) being substituted for the other

terminal. By this devious route we arrive at entities supposed to be endowed

with measurable properties, e.g. an electron endowed with charge and mass,

although it requires four entities to furnish anything measurable.

In wave mechanics a distinction is drawn between observables and

unobservables. It will here be clearer to call them measurables and un-

measurables. Current wave mechanics attributes measurables (momenta,

coordinates, spins, etc.) to single entities such as an electron. The measur-

ables are, however, four-point relations, which become attached to the

electron because the other three relata are standardised. In the method of

wave mechanics measurables are expectation values or eigenvalues derived

from wave functions; and in attaching the measurables to the electron we
attach also the wave functions which contain them. Primitively the wave
function of an electron is that of a four-point element of structure.

The wave function is quadruple, since it specifies a quadruple probability
distribution of four entities. We have found that the number ofindependent

quadruple eigenfunctions is N = 2 . 136 . 2256 . It is well known that (with due

allowance for degeneracy when it occurs) the number of eigenfunctions

persists in all transformations. By the changes in plan of measurement, to

which we have referred, the quadruple wave functions become replaced by
double and finally by single wave functions. Our position has been that, for

better or worse, current theory has made this substitution; and since it is

implied in all standard nomenclature, we must accept it. We have seen that

certain previously inexplicable features in current physics, such as the mass-
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ratio of the proton and electron, are impositions, which we are forced to

accept in order to validate the substitution. Another such result is that by

substituting N^ simple wave functions for theN quadruple wave functions,

2 . 136 . 2266 simple wave functions are forced into a space-time which is built

to accommodate 96. The result of this overcrowding is that instead of their

wave lengths being naturally adjusted to the curvature ofspace, they occupy

spherical harmonics of high order and short wave length as explained in

Chapter xiv.

Our result, that the "number of particles in the universe" is the number
of independent non-degenerate eigenfunctions in a quadruple wave system,
thus comes from the fact that a measurement, or comparison ofrelation with

relation, is an expectation value determined by a quadruple wave system.
The number of dimensions of space-time can be regarded as one of the

numerical constants of nature. Effectively, the number 4 was assumed at

the beginning of our theory, when we chose a symbolic frame based on 4

anticommuting square roots of 1. But we can now determine it in the

same way as the other natural constants, and show a fundamental reason

why space-time has 4 dimensions and no more.

Space-time may be defined as the continuum in which we represent a

certain type of physical relation called "displacement". The relation

connects two relata which are conceived geometrically as points "having
no parts and no magnitude". We need not add that they have position.

Their relative position is expressed by the relation of displacement already

mentioned; absolute position is denied. To pass from this geometrical abstrac-

tion to a physical universe, we must turn the points into physical entities;

so that "displacement" is now a relation between entities occupying the

points. These entities are represented by simple (commuting) existence

operators, which indicate whether in a given operand (representing a state

of the universe) the points are occupied or not. Nothing more is required;

for, so far as the relation of displacement is concerned, the only property
of the entity is that it occupies the terminal of the relation. The simple

existence operators J, J
r

give a combined existence operator JJ', which will

also be the existence operator of the displacement; for the relation will not

exist unless both the relata exist.

We have now to form a continuum of displacements. This is constructed

by forming a Group of operators, which includes all operators of the form

JJ'. It is not necessary that the Group should consist of JJ' operators

alone; but the JJ9

operators will be distinguished as the pure operators

of the Group.f It is simplest to consider the matrix representation of the

t In a Group the transformations consist of the same operators as the field. It would be

contrary to the ordinary conceptions of transformation theory to limit the transformations

to pure operators. Consequently the field must be extended to include impure operators.
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operators. Since J has two eigenvalues, it can be represented as a twofold

matrix. Then JJ' is represented by a fourfold matrix, or equivalently by
an JS?-number. The required Group is therefore that of the ^-numbers.

This is the simplest solution; but we must also show that more complex
solutions are excluded. For example, J might be represented by an idem-

potent fourfold matrix; but such a matrix has been shown to be of the form

%(l + i). (1 + id), i.e. the product of two idempotent twofold matrices.

Since J is the product oftwo simpler existence operators, the entity defined

by it can be analysed into two parts either of which can exist without the

other. This case is excluded because it is implied in the conception of dis-

placement that the entities related by it are like points "having no parts".

To represent J by a matrix of order higher than the minimum order 2

implies that the entity defined by it is something more than an "occupied

point".

It being established that displacement is represented by an J?-number,

we can proceed to develop the theory of space as in Chapters TV and vi. This

gives the result that space-time is a curved four-dimensional continuum,

and that its signature is 3 + 1.

16*9. Reaction on Macroscopic Theory.

For the most part there is no occasion to modify the existing macroscopic

relativity theory,f which I believe to be correct so far as it goes (except for

the important amendment explained in 8*8). The following are the chief

points that claim attention when it is reviewed in the light of the present

results :

(1) There would seem to be a doubt whether Einstein's theory holds

rigorously for a rotating macroscopic body, e.g. a star. % The whole subject

is very obscure, but I think the question can be put in the following form.

Doubtless the particles in a star have attained a statistically steady dis-

tribution of spin, such that as many spin in one direction as in the opposite.

But is this balance of spin relative to (a) axes rotating with the material, or

(b) Galilean axes ? Since the balance is broughtaboutbyinteractionsbetween
the particles, either directly or with radiation as intermediary, I should

conjecture that the answer is (a). Ifso we have, relative to the Galilean axes,

a distribution of sources (amounting in the aggregate to a macroscopically

appreciable source) for which Einstein's theory provides no notation. If the

answer is (6), the difficulty does not arise.

t For definiteness, this is understood to be the theory set forth in my Mathematical Theory

of Relativity, except that important advances have since been made in the cosmical problem.

Chapter v should therefore be supplemented by B. C. Tolman's Relativity, Thermodynamics
and Cosmology, pp. 331-488.

I Doubt of a similar kind has been raised by Sir J. Larmor (Nature, 137, 271 (1036)).
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Assuming (a), the C|tse appears to be one in which it is necessary to use the

Riemann-Christoffel matrix ( 11 -4). The effect, if any, can scarcely be large

enough to be of macroscopic importance. Its interest lies in its bearing on

the conservation of energy, since it suggests the existence of a new type of

field which, if it is not taken into account, would render even the macro-

scopic conservation of energy imperfect.

(2) Since g^v
and KO denote measurable properties of macroscopic fields,

they are expectation values determined by the wave functions of a great

number of individual particles. We may indicate this average character

explicitly by the notation
g^v ,

Ka . In general gtLV
K ^gVLV

Ka9 so that in the

generalised field theory it is represented by a separate symbol ^Vf<7 .t

The generalised theory reduces to Weyl's theory if K
tlVta^gVkV

Ka . Weyl's

theory is therefore the approximation obtained by neglecting the difference

between the average of a product and the product of averages. From a

practical point of view the correction is trivial; but the question ofpractical

application scarcely arose in these theories, whose aim was to gain insight

into the foundations of world-structure. The point brought out in the general

theory, which is not seen in Weyl's theory, is that the law of gravitation is

not an additional limitation but is simply the gauging equation; this is one

of the essential links in connecting the field theory with the microscopic

theory developed in this book.

As it happens, we have employed Weyl's theory in a practical way on

several occasions (12-7, 12-8). To study the electromagnetic field we
create an artificial field of electromagnetic potential by a gauge transforma-

tion; just as in Einstein's theory we study the gravitational field by creating
an artificial field of gravitational potential by a coordinate transformation.

16-95. Philosophical Outlook.

We conclude with a brief reference to the philosophical position towards

which the present results trend. Unless the structure of the nucleus has a

surprise in store for us, the conclusion seems plain there is nothing in the

whole system of laws of physics that cannot be deduced unambiguously
from epistemological considerations. An intelligence, unacquainted with

our universe, but acquainted with the system of thought by which the

human mind interprets to itselfthe content of its sensory experience, should

be able to attain all the knowledge of physics that we have attained by
experiment. He would not deduce the particular events and objects of our

experience, but he would deduce the generalisations we have based on

them. For example, he would infer the existence and properties of radium,

but not the dimensions of the earth.

The mind which tried to apprehend simultaneously the complexity ofthe

t Mathematical Theory of Relativity, 93.
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universe would be overwhelmed. Experience must be dealt with in bits;

then a system must be devised for re-connecting the bits; and so on. One
outcome of this treatment is that the universe is passed through a sieve

with 3.1079 holes to render it more comprehensible. In the end what we

comprehend about the universe is precisely that which we put into the

universe to make it comprehensible.
So far as I can trace, the earliest sign of uneasiness among physicists

about this procedure was shown in connection with the analysis of white

light by a grating. The analysis ofwhite light by a prism had been looked on
as a discovery of its composite nature. When the same thing was done with

a grating, it was seen that we were openly manufacturing the periodicities

we thought we had discovered in it. As to the composite nature of white

light, all that can be said is that if a mathematician chooses to analyse a

function into Fourier components he is at liberty to do so.

The theory of relativity drew much fuller attention to the subjective

aspect ofmany ofthe laws ofphysics. The Lorentz transformation comprises
a number of laws which seem to describe properties of the natural objects
which surround us (e.g. change of mass with velocity, FitzGerald con-

traction). But we put these properties into the objects because it is our

habit to refer everything-to a reference frame in which space and time are

separated, although there is no such separation to be found in nature.

Passing to a more advanced illustration of subjective influence, we have
seen ( 13-4) that the principle of least action arises because (as part of our

system of comprehending experience in bits) we feel the need to localise the

various measures which we employ. Localisation is an artificial concept in

an interrelated universe; and indeed in elementary wave mechanics the

conception of energy and momentum is primarily introduced as an attribute

of infinite plane waves, spread over the whole universe.

In microscopic physics the question of how much we discover and how
much we manufacture becomes still more acute. We cannot observe a

microscopic particle without grossly interfering with it. It is often said that

the particles are put into particular states by the type of experiment we

perform on them. That is scarcely a fair view of the nature of the inter-

ference by the observer. Ideally he might wait until the conditions of the

experiment reproduced themselves naturally. His interference is selective

rather than active. But so far as physical theory is concerned, it makes
little difference whether the observer selects the state, or puts the system
into the state, which he "discovers". Thus before enumerating the cha-

racteristics of an elementary particle, we have to indicate the type of

observation by which its existence is supposed to have been recognised.
Was it the momentum or the position that was noticed? Or was it inferred

as one ofn particles whose total momentum and mean position were found ?
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Thus at various
stagey

in this book we have had to distinguish specified,

unspecified, and macroscopically specified particles, internal and external

particles, neutral and vector particles and so on. Their diverse properties
are the result of the different varieties of observational interference (active
or selective) which precede our recognition of them. At the beginning we
treated abstract elementary particles supposed to have been the subject
of absolute measurements of position and momentum. In a sense these

particles were all protons or electrons. But only when we recognised that
actual measurements of momentum and position are relative, did we reach

particles having the characteristic mass and charge of the proton and
electron.

Fifteen years ago I was^responsible for an oft-quoted remark,!
tfc

It is one

thing for the human mind to extract from the phenomena of nature the

laws which it has itselfput into them; it may be a far harder thing to extract

laws over which it has had no control. It is even possible that laws which
have not their origin in the mind may be irrational, and we can never succeed
in formulating them." This seems to be coming true, though not in the way
that then suggested itself. Laws of atomicity have since been discovered,
and have turned out to be rational and comprehensible to the mind; but it

turns out also that they have been imposed by the mind in the same way as

the other rational laws. But a new situation has arisen, because we now
recognise that the totality of(mind-made) law does not impose determinism.
Room is left within the scheme of physical law for undetermined behaviour.
Behaviour whose laws are irrational was perhaps as near to the conception
of undetermined behaviour as the thought of the time could reach.

The physicist might be likened to a scientific Procrustes, whose anthro-

pological studies of the stature of travellers reveal the dimensions ofthe bed
in which he has compelled them to sleep. Yet I do not think that we take
unwarrantable liberties with the universe in our Procrustean treatment of it.

If experience is a subject-object relation, the subject is entitled to nay,
he cannot divest himself of his half-share. It can scarcely be a coincidence

that Heisenberg's uncertainty principle has defined the half-way line with
mathematical exactitude, distributing a coordinate to one side and a
momentum to the other side with perfect impartiality. And so we may
look forward with undiminished enthusiasm to learning in the coming
years what lies hidden in the atomic nucleus even though we suspect that
it is hidden there by ourselves.

t Space Time and Gravitation, p. 200.
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A priori probability, 107, 198

Absolute and relative displacement, 109, 183

Action invariant, 136, 243

Action principle, 238, 240

Added system, 262, 266, 268

Addition, non-commutative, 154; general-

ised, 309

Additive characteristics, 154, 309, 315

Affine geometry, 183, 323

Algebraic coordinate in phase space, 106,

216, 220

Algebraic frame, 48

Algebraic function, 125; wave function, 120

Algebraic number, 20

Algebraic wave tensor, 89, 248

Angular momentum, 122; dynamical, 123;

quantisation of, 147; macroscopic, 248,

326. See also Spin

Antedating, 111, 224

Anticommuting symbols, 21, 51, 312

Antiperpendicular rotation, 51, 94

Antisymmetrical matrices, 40, 96; double

matrices, 159, 166

Antisymmetrical tensors, 54, 57, 58, 181

Antisymmetrical wave functions, 167, 288,

290

Antitetrad, 23, 69, 128

Antithetic, 75

Antitriad, 23, 69, 128

Associated strain vector and space vector,

103

Asterisk notation, 16

Augmented phase space, 217, 219

Average particles, 234

Basis of statistics, 198, 216, 281, 286

"Blank sheet", 32, 40, 56, 107, 109, 287

Bond, W. K, 272, 273, 303

Born, M., 151

Born-Infield theory, 136

Box problem, 235

Cardinal operator, 312

CD frame, 161, 167, 203

Chain multiplication, 16, 155

Chandrasekhar, 8., 235

Characteristic equation, 44

Charge (electric), sign of, 49, 80, 88, 168;

association with mass, 223; origin of, 283;
value of e, 304

Charge-current vector, 90. See Stream

vector

Clifford's numbers, 22

Closure of space, 78, 83, 97

Cogrodient, 14

Collision interchange, 245

Combined systems, 110, 158, 215

Commutation rules, Jordan-Wignor, 312;

Einstein-Bose, 314

Commuting operators (W, (\, (7a , Z73), 128,

141 ; for hydrogen, 144

Compact .AJ-numbers, 72, 101

Comparison fluid, 180; partial, 196; neutral,

206; indistinguishable), 294

Complementary stream vector, 311

Complete energy tensor, 163

Complete momentum vector, 65

Complete sots, 22, 35, 47, 156; transforma-

tion of, 27, 160

Complete space vector, 54; constitution of,

57

Complete stream vector, 65, 73

Complex conjugate wave functions, 131

Component of an ^-number, 23; formula for,

37; in double frames, 157

Composite individuality, 234, 285, 307, 315

Configuration, 95

Conjugate triads, 23, 42, 47, 160

Conservation of probability, 115, 120; of

energy and momentum, 229, 327

Constant of gravitation, 273

Constants of nature, 3; revision of, 304

Continuous and discrete wave functions, 213,

226

Contracting universe, 279

Contraction of matrix (spur), 36; of double

matrix, 156; of wave tensor, 206; of

volume element, 213

Contragrodiont, 14

Contravariant, 15

Cosmical constant (A), 3, 188, 194, 279; in-

determinacy of, 229, 238, 252

Cosmical Riemann-Christoffei tensor, 202, 210

Cosmical system (system .4), 266

Coulomb energy, 281, 297, 301

Coupling of spin, 228

Covariant derivative, 121; with respect to

X, 289, 300

Covariant vector, 15; wave tensor, 19, 94,

109

Crossed frames, 161 ; significance of, 162

Crystal grating, 306

Curvature of space-time, 5, 55, 82, 126, 203,
256
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Curvature tensor, gauge-invariant, 251

Cylindrical curvature, 220

Index

^-symbols, 125, 317

Darwin, C. G., 1

de Sitter space-time, 5, 182, 192, 202, 207,

211, 264

Debye-Hiickel effect, 139

Deflection value of e/m, 304

Degeneracy formula, 234, 253

Degeneracy of systems and oigenfunctions,

5, 247, 292, 321

Degenerate ^-number, 23

Description, systems of, 13, 14, 117

Determinant of an J^-number, 42, 107

Differential wave equation, 119; strain

vector form of, 130

Diffraction of electrons, 305

Dirac, P. A. M., 1, 6, 15, 36, 62, 90, 115

Dirac's theory of the positron, 265

Dirac's wave equation, 63, 87, 106; dif-

ferential equation, 119, 130, 144, 151

Discrete and continuous wave functions, 213,

226

Displacement vector, 15

Displacements, existence operators of, 325

Divergence operators, 118

Double frame, 155; wave vector, 155; phase

space, 166; existence operator, 322, 325

Double tensors, importance of, 169, 181 ; re-

duction to simple tensors, 207, 212

Doublc-valuedness of wave function, 60,

151

du Val, P., 36

Dual of a tensor, 162

Dual B.C. tensor, 192

Dynamical coordinates, 116, 123, 127, 140

Dynamical equations, 126, 128, 144, 213; for

strain vector, 136

^-numbers, 21 ; matrix representation (given
in full), 42

^-symbols, 22; line as independence of, 24;

representation by matrices, 36, 39

Eigenfunctions, enumeration of independent,

318; double and quadruple, 321

Eigensymbols and eigenvalues, 44

Einstein, A., 1

Einstein-Bose particles, 312

Einstein space-time, 5, 195, 211, 264

Einstein universe, 192, 256, 258, 278;

metastability of, 277

Electric charge. See Charge
Electric moment, 89

Electrical energy tensor, 189, 194

Electrical matrices, 84; rotations, 84

Electromagnetic potential (*tt ), 119; gauge
transformation of, 134; origin of, 137;

macroscopic character of, 139

Electron-point, 140

Electron pressure, minimum, 234, 258

Elementary particle, 74

Energy, conservation of, 229, 327; furnished

by specification, 197; threshold, 262

Energy invariants, 221, 260, 267

Energy levels of hydrogen, 147, 303; ne-

gative levels, 265

Energy operator (Ta3 ), 230, 250

Energy tensor, 91, 162, 169, 188, 229, 315

Environment, 32; standard, 129, 143, 150,

180

Epistemologv, 5, 328

Equipartition of energy, 221, 254, 268

Equivalence of frames, 29, 32; of points in

space-time, 56, 77; of volumes, 99

Exact energy tensor, 164

Exclusion principle, 231, 233, 253; limited

to steady systems, 246, 254; in secondary

quantum theory, 315

Existence, degree of, 309, 320

Existence operators, 308; double, 317, 322;

geometrical representation, 320

Expanding universe, 225, 273, 279

Expectation value, 38, 149; of spin mo-

mentum, 122; of energy operator, 231,

257

Exponential, non-algebraic, 50

Extended wave function, 284

External and internal states, 92

Factorisation of wave tensors, 66; conditions

for, 69, 70; in secondary quantum theory,

310, 314

Factors, numerical, (J JJ), 10, 302, 304, 307;

(*), 227, 258, 276; (), 259, 276, 278;

(2), 143, 152, 261, 274/277, 318, 319

Factors, symbolic, 37

Fermi-Dirac statistics, 282; law of anti-

symmetry, 290; particles, 312

Field theories. See under Generalised, Uni-

fied and WeyV* theory

Final wave vectors, 16, 18

Fine structure constant, 3, 153, 295, 298

Five-dimensional relativity, 190

Five-dimensional space vectors, 63

Flat space-time, 5

Four dimensions, space vectors in, 55; reason

for, 3, 325

Four-point elements of structure, 170, 323

Four-point matrices, 34, 38, 96

Fowler, R. H., 236

Frame, geometrical, 179
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Frame, symbolic, 29; right- and left-handed,

48; neutral and macroscopic, 84; double,

155; crossed, 161; of identity, 291

^riedman-Lemaitre theory, 279

Frobenius's theorem, 46

Gauge-invariant curvature tensor, 190, 251

Gauge transformation, 135, 223, 226, 295;

non-integrable, 137 ; natural gauge, 136

Generalised field theory, 5, 85, 190, 295, 324,

327 ; amendment of, 136

Gravitation, constant of, 3, 273; law of,

136.

Gravitational potential energy, 264

Ground state of the universe, 256, 259, 279

Group property, 13

Hamiltonian, 63, 129; reality conditions for,

87; strain vector form, 106; for internal

coordinates, 175; for standing waves, 237

Heisenberg, W., 1. See Uncertainty principle

Helium, packing ratio in, 10

Hermitic conditions, 75, 131, 152

Homothetic, 75

"Hybrid" particles, 201

Hydrogen atom, wave equation of, 145; in

practical units, 153; interaction in, 291;

evaluation of Coulomb term, 298

Hyperbolic rotation, 76, 97, 217

Idempotent symbols, 70; physical import-
ance of, 91

Identity, the fundamental, 67; generalisa-
tion of, 187

Identity (physical), relativity of, 290; com-

posite, 234, 285, 307, 315

Imaginary gauge-transformation, 135

Imaginary matrices, 40
Index of wave tensor, 131, 152, 274, 304

Indistinguishable particles, 282; dynamics
of, 285; comparison fluid, 293; protons

indistinguishable from electrons, 287

Inhibited rotation, 110

Initial probability distribution, 107, 11)8,

216, 281, 286

Initial wave vectors, 16, 18

Inner product, 15; notation for, 17

Integrated energy tensor, 253

Interaction, 281; of system with environ-

ment, 112, 116, 129; at boundary, 249; in

hydrogen atom, 291; in general systems,

154, 298

Interchange, continuous, 283

Interchange coordinate. See Permutation

coordinate

Interchange energy, 245, 283, 293

Interchange operator, 158; factors of, 159;

for double frames, 160; associated with

Coulomb energy, 301

Interlocked transformations, 54, 109

Internal and external states, 92

Interval, 75; measurement of, 81, 242

Invariant time (s), 116, 129; represented by

algebraic coordinate, 106, 216

Inverted cross, 161, 164

Irrational laws, 329

Irregular metric, 211

Irrevorsibility of time, 117, 225

Jordan, P., 151

Jordan-Wigner wave functions, 169, 311

A' state of a system, 259, 269

Kinematical energy tensor, 189

Kinomatical matrices, 84; rotations, 84

Kinetic energy, distribution law, 246

Kummer collincation group, 36

Left-handed frames, 48, 81, 85, 172

Lemaitre, G., 47, 279, 319

Light-time, 111, 129, 218

Limit state, 259

Linear transformations, 13

Linkage of system to surroundings, 32, 111,

117, 129, 292

Linked rotations, 182, 187; translations, 189;

displacement in time, 187, 192, 201

Littlewood, D. K, 71

Local orthogonal coordinates, 98

Local system (system /?), 266

Localisation of characteristics, 240

Lorentz transformations, 76, 116, 249; in-

applicable to internal state, 92, 96; to

Einstein world, 211; to exclusion prin-

ciple, 231; to non-transferable energy,
254

MacDuffee, C. C., 7

Macroscopic and microscopic theory, con-

nection of, 4, 169, 201, 208, 256; in secon-

dary quantum theory, 315

Macroscopic relativity theory, emendations

required, 136, 279, 326; new light on, 190,

327

Macroscopic set, 83

Magnetic field, energydue to, 227 ; strong and
weak fields, 228

Magnetic moment, 88, 89

Mass, origin of, 201, 262, 268, 276

Mass-constant, 230

Mass-ratio of proton and electron, 3, 219,.

304
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Matrices, 16; non-commutative property, 17;

components, 36; real and imaginary, 40;

Pauli, 47; kinematical and electrical, 84;

space-like and time-like, 96; double, 155

Matrix representation, advantage of, 39, 96

Matrix representing general ^-number

(given in full), 42

Measurables, 170, 324

Measurement in strong fields, 81, 243

Motastable states, 150

Metrical tensor (^), measurement of, 81;

identified with kinematical self energy
tensor of comparison fluid, 196, 209

Microscopic and macroscopic theory, con-

nection of, 4, 169, 201, 208, 256; in secon-

dary quantum theory, 315

Microscopic vorticity, 189, 326

Milner, S. R., 48

Minimum equation, 44

Minor complete set, 47

Minus particles, 88, 90, 264, 319

Mixed tensor, 14, 29, 54, 94

Modifying factor, 107, 281

Momentum and position, 162. See also

Uncertainty principle
Momentum operator, 120, 131; in practical

units, 152; relation to energy operator,
230

Momentum vector, 63; complete, 65; non-

algebraic, 120

Monothetic, 75

Multiplication, inner, outer and chain, 15,

16; non-commutative, 17; of probabilities,

154, 213, 309

Multiplicity of frames, 204, 317

Mutual energy invariant, 221, 260; pressure

invariant, 221, 231

Mutual energy tensor, 165, 205, 315

Natural coordinates, 98

Natural gauge, 136

Nebulae, speed of recession, 279

Negative and positive charges, 81, 88, 223,

301; balancing of, 278

Negative energy levels, 265

Negations, 90, 265

Neumann, J. v., 2, 36

Neutral particle, 89; mass of, 219, 267;

formula for mass (m ), 271, 275

Neutral space-time, 80; sets, 83; comparison
fluid, 206

Neutron, 7

Newman, M. H. A., 42

Nonads, 42

Non-algebraic phases, 97; wave functions,

120

Non-commutaipve multiplication, 17; ex-

ponentials, &tr, 53; addition, 154; wave

functions, 311

Non-integrable gauge transformation, 137 /

Normalised ^-numbers, 70; strain vectors,

106

Nuclei, atomic, 7; disruption by protons, 246
Number of dimensions of space-time, 3, 325
Number of particles in the universe, 272,

316, 325; relation to number of eigenfunc-

tions, 319

Numerical constants of nature, 3

Object system, 180

Obsorvables, 170, 324

Observer, 79; his selective interference, 328

Outer product, 16; notation for, 17

Packing ratio in helium, 10

Parallel displacement, 122; generalised, 126;

in comparison fluid, 182; in \> 288

Parallel strain, 134

Parameters of wave functions, 60; promo-
tion to coordinate rank, 123, 289

Partial comparison fluid, 196, 198, 207, 210
Partial existence, 309, 320

Partially occupied states, 311, 317

Particles, 8; elementary, 74; neutral, 89;

scalar, 231 ; number in the universe, 272,

316, 325

Particles, external and internal, 174, 221 ; of

composite identity, 234, 285, 307, 315; in-

distinguishable, 282, 285; excluding (Formi-

Dirac) and non-excluding (Einstein-Bose),
312

Partition, scheme of, 183

Pauli matrices, 47, 160, 248, 278, 310

Pauli space, duplexity of, 321

Pentad, 23, 35; real and imaginary members,
40

Pentadic part, 68

Permanent, 59

Permutation coordinate, 153, 228, 283, 284;

relativity of, 291; recoil, 293

Perturbation, 116, 141, 239, 249, 292

Phase, 97

Phase space, 95; singular, 112; double, 165;
in CD frame, 166

Philosophical outlook, 327

Photons, 263, 315

Physical reality, invariance of, 76

Position and momentum, 162. See also

Uncertainty principle

Position vector, 73, 162; tensor, 164

Positive and negative charges, 81, 88, 223,

301; balancing of, 278
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Positively saturated space, 81

Positron, 00, 264

Potential. See Electromagnetic potential

I rtential energy, 245, 264

Pressure in degenerate gas, 235, 236; relation

to energy-density, 237, 241 ; change of zero

reckoning, 258, 269

Pressure invariant, 221, 231

Probability, 107; distributions of ("states")

32, 115; conditions of conservation, 119,

12C; concerned in dynamical equations,

142; multiplication of, 154,213; of identifi-

cation, 284, 286; form of partial existence,

309. See also Initial probability distribution

Procrustean methods, 329

Progressive waves, 247

Projectivo relativity, 56

Proper time. See Invariant time

Pseudo-reciprocal, 26, 63, 112

Pure wave tensors, 65, 68; standard forms,

69; idempotent condition, 70, 73; physical

importance of, 91

Purity lost by contraction, 208

Quadratic equation for mass, 219, 304

Quadruple wave functions, 170, 297, 323

Quantum numbers, ri, 147; u, 147; p, 149

Quantum theory. See Microscopic theory and

Wave mechanics

Quarterspur, 23, 37

Quotient of ^-numbers, 25

Radiation, 7; fields of, 143, 262

Real and imaginary matrices, 40

Reality conditions, 86; in phase space, 97;
for gauge transformation, 135

Recession of the nebulae, 279

Reciprocal, 26

.Recoil of comparison fluid, 183; in time, 186,

191; in *, 293; in r, 296

Reduced mass, 174

Reflection of a complete set, 28

Relata and relations, 170, 181, 323

Relative and absolute displacement, 109,

183

Relative coordinates, 170, 174; energy ten-

sor, 197, 205; time, 217, 295; identity, 290;
existence operator, 313

Relativistic degeneracy, 235, 246, 253

Relativity rotation (or transformation), 30,

50, 165, 248; of identity, 283, 285

Rest energy (or mass), origin of, 262, 268, 276

Riemann-Christoffel matrix, 187

Riemann-Christoffel tensor, 181; relation to

energy tensor, 188; dual of, 192; cosmical,
202

Right- and left-handed frames, 48, 81, 85,

172

Rotation, 30; antiperpendicular, 51, 94;
circular and hyperbolic, 76, 97, 217. See

also Relativity rotation

Saturated space, 81, 164

Scalar particles, 231; mass-constant of, 236;

system of N', 259

Scalar product, 15; notation for, 17

Scalar wave functions, 229; relation to

vector wave functions, 247

Schrodinger's wave mechanics, 75, 89, 143,

229, 232

&P-numbers, 35

Second quantisation, 308

Secondary quantum theory, 310, 315

Self-consistent field, 260, 312

Self-energy tensor, 162, 165, 205, 209, 315;

complete, 163

Solf-pressure and energy invariants, 221, 260

Signature of space-time, 3, 326

Simultaneity in internal space, 92, 110; not

applicable to imaginary time, 295

Single-valued wave functions, 150, 287

Singular matrices and symbols, 18, 26; con-

ditions for, 43, 44

Singular phase space, 112; transformations,

173, 308

Sitter, W. de. See <U Sitter

Six-dimensional group of rotations, 85

Six-vector, 57

Sommerfeld's formula for energy-levels, 147,

302

Sound waves, 245

Space-like matrices, 96; in double frame, 165

Space tensors, 15; vectors, 53; complete, 64;

association with strain vectors, 104, 110

Space-time, four dimensions of, 3, 325;

goneses of macroscopic, 80

Specification of particles, 196; energy fur-

nished by, 197, 267; macroscopic, 201

Spectral set, 72; analysis of algebraic num-
. bers, 89, 249

Spherical curvature (Gaussian), 78, 220

Spherical space, 5, 55. See de Sitter and
Einstein space-time

Spin, 73, 88; momentum, 122; coordinates,

221, 283; duplexity, 321

Spur, 36

Standard environment, 129, 143, 150, 180

Standing waves, 234, 244; hamiltonian of,

237

States, 32, 115; degeneracy of, 124, 247, 289,
292

Statistical equilibrium, 141, 239
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Steady state, 140; generalised, 143

Stereographic coordinates, 101; application

of, 218, 219

Stereographic projection, 257

Stern-Gerlach effect, 226, 278; in weak fields,

228

Straight cross, 161, 164

Strain vector, 94; association with space

vector, 104, 110

Strain vector form of wave equation, 106,

130

Stream vector, 65; of elementary particle,

88; connection with momentum, 122;

algebraic, 248; in secondary quantum
theory, 310

Strong action principles, 242

Strong and weak magnetic fields, 228

Suffix coordinates, 283

Suffixes, omission of, 16

Summation convention, limited use, 22

Symbolic calculus, 20, 125

Symbolic factors, 37

Symbolic frame, 29

Systems A, R (cosmical and local), 266; A'9

B't 270

Temple, G., 27, 73, 145, 151

Tensor, 13

Tensor-density, 58

Tetrode, H., 2

Threshold energy, 262

Time, distinctive character of, 75; in in-

ternal states, 92; irreversibility of, 117,

225; linkage of displacement in, 187, 192;

treated differently from spatial displace-

ment, 201. See also Invariant time

Time, imaginary relative, 295

Time-like matrices, 96; in double frame, 165

Tolman, R. C., 256, 273, 326

Transformations, etymological, 136

Transformations, linear, 13; of wave tensors,

17, 18; of complete orthogonal sets, 27;

unitary, 43, 98; of strain vectors, 94;

general symbolic, 125; of gauge, 134; non-

integrable, 137; of double wave vectors,

155 ; of double frames, 162 ; associated with

interchange, 283, 287; of existence condi-

tions, 308. See also Lorentz transformations

Transitions, 185, 292

Translations, 77; linkage of, 189

Transpose, 19

Triads, 23; coHugate, 23, 42, 47, 160

Two particles, representations of, 167

Uncertain energy tensor, 164, 203, 210

Uncertainty principle, 74, 162, 169, 179, 191,

. 275, 286, 329

Unified theories, 4, 243

Unit matrix, 18

Unitary transformation, 43, 98

Universe, 7; Einstein and de Sitter forms,

211; analysis of Einstein universe, 256;

expanding, 273, 279; number of particles

in, 272, 316, 325

Unspecified particles, 196

Vector, 16; basic, 15, 54; space, 53, 54;

strain, 94; double, 155

Vector density, 58; three-dimensional, 59,

105; discriminated by uncertainty prin-

ciple, 74; by reality conditions, 86, 87

Vector wave function, 60; relation to scalar

wave function, 248

Velocity of indistinguishable particles, 285

Volume clement, 58, 99; contraction of, 213

Volume of phase space, 99 ; of spherical space,
257

Wave equation, 1, 62, 106; differential equa-

tion, 119, 130; for hydrogen, 144, 153, 298

Wave functions, 60, 66; replacement of

double by single, 212; scalar, 229; w-tuple,

244; Jordan-Wigner, 310

Wave mechanics, 1 ; method, not theory, 7,

66, 256 ; importance of conception of states,

32, 115; principles of approximation, 112,

129, 249; a statistical theory, 239; modi-

fied outlook of secondary theory, 309, 315

Wave packets, 225, 263, 286; pockets, 263

Wave tensor calculus, origin of, 2, 15

Waves equivalent to curvature, 256

Weak action principles, 242

Weak and strong magnetic fields, 228

Weyl's theory, 1, 5, 85, 135, 136, 252, 295,

327. For the author's generalisation see

Generalised field theory

White dwarf stars, 235, 255

Zanstra, H., 10

Zariski, O., 36

Zero reckoning of energy and pressure, 188,

195, 197, 229, 238, 258, 266, 313
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