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Abstract 

Spatial correlation between variables may exist if the observed data exhibits spatial 

variation in a manner that is described by Tobler's first law of geography. Partial correlation 

is useful when considering multivariate data as it can highlight the effects of certain control 

variables on the correlation between any two other variables. Techniques for estimating 

spatial correlation have been developed based on a geographically weighted scheme. 

However, a partial correlation technique for spatial data has not yet been considered. 

Hence, we describe a technique for obtaining geographically weighted partial correlation 

coefficients between three variables. This approach is then applied, as an example, to 

global climate data in order to explore the relationship between terrestrial vegetation (by 

NDVI proxy), land surface temperature, and precipitation in the year 2014. Spatial 

variations of those variables are observed and the geographically weighted correlation 

and partial correlation coefficients (along with associated levels of statistical significance) 

are compared. 
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1 Introduction 

Correlation between variables is often observed when exploring spatial data and it is 
important to carefully inspect such characteristics before analyses. Furthermore, correlation 
itself is sometimes found to be a valuable descriptive statistic. For example, it may be useful 
in describing relationships between climate and vegetation growth, temperature and 
greenhouse gases, or among various socio-economic data. Quantifying these relationships 
using Pearson's or Spearman's coefficients is well known and well practised when observing 
two variables. However, calculations for partial correlation are necessary to find the degree 
of association between two variables when three or more are involved. Partial correlation 
measures the correlation between two variables whilst removing the effects of any number of 
control variables. This has been used to describe meaningful relationships in several 
disciplines, ranging from the statistical dependencies between regions in the brain (Marrelec 
et al., 2006), to indicators of economic growth across countries (Barro, 1991). Such 
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correlative or partially correlative relationships are generally summarized as static global 
measures and therefore fail to incorporate any underlying spatial structure in the data. 
Various geographically weighted (GW) approaches have been developed to deal with such 
underlying spatial structure, many of which are summarized in the R GWmodel package 
(Gollini et al., 2015; Lu et al., 2014). In this paper, we describe a novel technique for 
obtaining localized geographically weighted partial correlation coefficients among three 
variables. Spatial relations between temperature, precipitation and terrestrial vegetation 
activity as measured by a Normalized Difference Vegetation Index proxy (NDVI) are then 
demonstrated as a case study. 

2 Background 

Geographically weighted analyses are conducted using a moving window weighting 
technique that operates under the assumption of Tobler’s first law of geography. Namely, 
that ‘everything is related to everything else, but near things are more related than distant 
things’ (Tobler, 1970). This approach is useful when describing statistical features and 
relationships that are inadequately described by global models, and instead are more 
accurately described by local ones. If the local model outputs vary across space, it can be 
taken that spatial non-stationarity exists in the data. These techniques differ from non-
weighted moving window techniques where localized analyses are done independent of 
‘nearness’ at each localized scale (see Shuttleworth & Lloyd (2005), for example). To date, 
several GW techniques have been developed and are applicable to, among many other 
things, statistical measures of mean, standard deviation and correlation coefficients, statistical 
models of regression, and principle component analysis (Gollini et al., 2015; Tsutsumida & 
Comber, 2016). Our technique is a small addition to this growing list of GW statistical 
methods. 

3 Data 

This study uses temperature and precipitation observation data from the Climate Research 
Unit Time Series (CRU TS, version 3.23) data set of the University of East Anglia (Harris et 
al., 2014) and NDVI data from the GIMMS NDVI3g.v1 data set (Pinzon & Tucker, 2014) to 
demonstrate local relations. The CRU TS observationdata is considered one of the best-
organized and most complete data sets of temperature and precipitation, covering all 
available stations across the world. For a complete description of the data set, see Harris et 
al. (2014). The GIMMS NDVI3g.v1 is the latest release in the NDVI3g time series data set. 
This data set is well-organized and contains bimonthly NDVI values obtained from a series 
of Advanced Very High Resolution Radiometer (AVHRR) instruments at a scale of 8km, 
extending from 1981 to 2015 (Pinzon & Tucker, 2014). Despite its coarse resolution, this 
data is frequently used for macro-scale global environmental research and is often analysed 
together with the CRU TS gridded data (see for instance Gonsamo et al. (2016)). For this 
study, the average annual temperature, precipitation, and NDVI values for the year 2014 are 
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calculated and used as inputs. After omitting locations with missing data, 737 sample data are 
created. 

4 Methodology 

A GW technique operates by creating a spatial weights matrix W(u, v) at coordinates (u, v) 

for all observations in each window. W(u, v) is an n × n diagonal matrix of spatial weights 

(ω) of n sample size which are calculated by some defined kernel. Any kernel function may 
be used. However, typically a distance-decay kernel function is employed. More complete 
descriptions of administering kernel functions for GW models may be found in Gollini et al. 

(2015). For simplicity, in this paper we apply a bi-square kernel function ωk for calculating 

the weight at any point k from an observation point situated at (u, v): 

ωk(u, v) = {(1 − (
dk

b
)

2

)

2

 if |dk| < b,

0  otherwise

 

where dk is the distance between the observation at the point centred at (u, v) and an 

observation k, and b is the 'bandwidth'. The bandwidth determines the size of the moving 
window. Smaller bandwidths contribute to inspections of local variations in space, while 
larger bandwidths approach the results of the global model. 

Here, we develop a technique in the R programming language to calculate localized partial 
correlation coefficients between two variables and a set of control variables in a way that is 
consistent with the GW model approach using either Pearson's or Spearman's method. This 
process operates by first calculating a spatially weighted co-variance matrix at each given data 
point under the moving kernel defined above. With this weighting scheme, the GW co-
variance matrix at each observation point may be found by the following calculation: 

Σ(u, v) = PTW(u, v)P 

where Σ(u, v) is the local co-variance matrix at coordinates (u, v), P is the data matrix of n 

rows by m variables, and W(u, v) is the spatial weights matrix (see Gollini et al. (2015)). It 

follows, then, that the geographically weighted partial correlation between two variables, mi 

and mj of the set M with cardinality m, given all others of the set, at a location (u, v), may be 

given by: 

ρmimj⋅M\{mi,mj}(u, v) =
−cij

√ciicjj

 

where c is the inverted GW co-variance matrix, c = (Σ(u, v))−1. In the case of three 

variables (m = 3), Σ(u, v) = PTW(u, v)P, where P is now the data matrix made up of three 

variables, x, y, z. Therefore, the geographically weighted partial correlation coefficient at 

coordinates (u, v) between x and y, while controlling for z, can be written as ρxy⋅z(u, v) =
−cxy

√cxxcyy
. The outputs of this function may then be mapped for further exploratory analysis. 
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The geographically weighted partial correlation function (called gwpcor) was developed in R 
by extending the geographically weighted summary statistics (gwss) function of the 
GWmodel package (Gollini et al., 2015; Lu et al., 2014) to incorporate operations of the 
corpcor package (Schäfer et al., 2015). A simple comparison is also made between GW 
correlation and GW partial correlation using gwpcor in order to demonstrate gwpcor's utility 
in being able to easily calculate both coefficients. In its current form, gwpcor can also 
calculate and provide levels of statistical significance for each local coefficient. 

For simplicity, in this paper we used a fixed bandwidth of 3,000km. This was chosen after 
observing the results of several fixed bandwidths. Although a number of approaches have 
been developed for automated optimal bandwidth selection, these require that an objective 
function exists and use cross-validation (CV) techniques (Gollini et al., 2015). However, this 
cross-validation technique has been shown to return the saturation point (corresponding to 
values near the maximum bandwidth) when the input variables are correlated, thus resulting 
in the failure to identify local variation (Tsutsumida et al., in press). Thus, there are currently 
no such optimized bandwidth selection tools for gwpcor. Automated optimal bandwidth 
selection for gwpcor (and other gwss functions) is an important research area that needs 
addressing. 

5 Results and Discussion 

Before proceeding with the results of the GW functions, it is important to observe the global 
measures of correlation and partial correlation coefficients among the three variables. These 
are calculated without regard to spatial location and structure and are displayed in Tables 1 
and 2 below. 

Table 2: Pearson's global correlation matrix 

 Temperature Precipitation NDVI 

Temperature 1.00 0.36 *** 0.26 *** 

Precipitation 0.36 *** 1.00 0.62 *** 

NDVI 0.26 *** 0.62 *** 1.00 

Table 1: Pearson's global partial correlation matrix  

 Temperature Precipitation NDVI 

Temperature 1.00 0.26 *** 0.05 

Precipitation 0.26 *** 1.00 0.58 *** 

NDVI 0.05 0.58 *** 1.00 
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P-values: 0 < *** < 0.01 ≤ ** < 0.05 ≤ * < 0.10 

This global model suggests a weak positive correlation (0.26) between yearly averaged global 
NDVI and temperature for the year 2014 (Table 1). Controlling for precipitation effects 
results in an even weaker and less significant positive correlation (0.05) between the two 
(Table 2). By holding this very simplistic view, it can be said that at the global scale there is 
almost no correlation between NDVI and temperature. Equally weak correlations and partial 
correlations are observed between temperature and precipitation (holding NDVI constant), 
and a moderate correlation is observed between precipitation and NDVI (with little 
difference when controlling for temperature). 

However, as Clinton et al. (2014) observe, terrestrial vegetation can have either strong 
positive or strong negative temporal correlations with temperature and precipitation, 
depending on the geographic location. They review studies that show that plant growth may 
have a strong positive correlation with precipitation in both arid and temperate regions, and 
experience a negative one in some tropical regions (Clinton et al., 2014). In the same manner, 
the correlation between temperature and plant growth varies across space and is often both 
strong and positive in mid to high latitudes (Clinton et al., 2014). Thus it is clear how a GW 
approach may be beneficial in this study. Figure 1 demonstrates these relationships for the 
year 2014. 
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Figure 1: Maps of spatial relations among average NDVI, Temperature and Precipitation in 2014 

calculated by (a) geographically weighted Pearson's correlation and (b) geographically weighted 

Pearson's partial correlation. Coefficients with p-values greater than 0.05 are coloured in grey. 

As expected, there is high variation in the correlation and partial correlation coefficient 
values in both maps when compared to the global results from Tables 1 and 2. The 
calculation of GW partial correlation coefficients demonstrates how the relationships 
between temperature, precipitation and NDVI change when controlling for effects from one 
of the three variables. This is particularly useful in order to check what factors might be 
affecting the GW correlation between any of the two variables. For instance, both maps 
suggest interesting local variations in the correlation between NDVI and temperature. The 
two tend to be negatively correlated in dry regions and positively correlated in other regions. 
However, the magnitude of the negative correlations found in North Africa using GW 
correlation may in fact be overestimated when compared with the results of gwpcor, which 
controls for the effect of precipitation. Furthermore, several areas with weak positive 
coefficients between temperature and NDVI are found to be statistically insignificant when 
controlling precipitation. Focusing now on the relation between NDVI and precipitation, we 
find that the GW correlation does not seem to change very much, even after controlling for 
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the effect of temperature, and most values retain a high level of statistical significance. This 
suggests that the correlation between NDVI and precipitation might be largely consistent, 
regardless of temperature values. 

6 Conclusion 

The estimation of local GW partial correlation coefficients is valuable when data exhibits 
spatial non-stationarity, and such spatial information is important across many disciplines 
related to GIS. Partial correlation coefficients provide a useful descriptive statistic, and the 
extension of this to include geographic weights is helpful if spatial relations in data might be 
described by Tobler's law. More could be done to improve the functionality of gwpcor, 
including adding methods for Kendall's correlation coefficients and optimizing bandwidths. 
Interesting future research could also be done to extend this and other GW summary 
statistic techniques into the time dimension, in order to allow for more comprehensive 
spatio-temporal analyses. 
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