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It is shown that the integers found by Thouless et al. in the quantized Hall effect are
the only quantized quantities associated with the energy bands. It is also proved that if
two bands touch and then come apart as a parameter is varied, then their individual in-
tegers (conductances) may not be preserved but their sum is preserved.

PACS numbers: 72.20.My, 02.40.+m, 71.25.-s

Thouless, Kohmoto, Nightingale, and den Nijs
(TENN), in a remarkable paper, ' considered the
motion in two dimensions of noninteracting elec-
trons in a periodic potential and homogeneous
magnetic field with rational flux through the crys-
talline unit cell. A first main result was that the
Kubo-Greenwood formula for the conductance of
any filled, isolated band is, in fact, an expres-
sion for a topological invariant, and is an inte-
gral multiple of e'/h. Second, in the limits of
either a very weak periodic potential or a very
weak magnetic field, they calculated the conduc-
tance of any given diamagnetic band explicitly in
terms of certain diophantine equations. This
work is an important step towards an understand-
ing of the quantized Hall effect of von Klitzing,
Dorda, and Pepper. '

Our primary purpose is to explain a negative
result: Namely, that in a sense which we will
make precise, the invariants found by TKNN are
the only topological invariants, not only for the
two-dimensional case, but in any dimension in-
cluding three. We also prove a sum rule for the
TENN integers when two bands collide. We
sketch the basic ideas here; fuller details will
appear elsewhere. '

We shall establish results about the homotopy
of periodic (infinite dimensional) Hermitian ma-
trices: They are relevant if the band structure
is described by giving to each k in the Brillouin
zone a Hermitian matrix H(k) with a discrete
spectrum (bands) &„(k), where &„(k)- ~ as n —~.
The matrices H(k) vary continuously' with k, are
periodic because the Brillouin zone is topological-
ly a torus (T' in two dimensions), and —as the

word matrix implies —act on a fixed Hilbert
space.

We stress that it is not true in general that
Bloch Hamiltonians (with or without a magnetic
field) can be described by periodic matrices. In
general, the operator &$) acts on a %-dependent
Hilbert space. ' However, if B&0 and the flux has
suitable values, the Bloch Hamiltonian can in-
deed be brought into the form of a periodic ma-
trix.

To be able to associate a TKNN integer to each
band, one needs to suppose that for every &, the
E„(k)'s are distinct, i.e., for all n, k, E„(k)
&E„+,(k). Replacing H(k) by [H(k) + Eo] ' for
suitable &„ we have a map from T' to the space
M of compact, self-adjoint, positive operators
with nondegenerate eigenvalues. We will indicate
the set of all such periodic matrix functions as
[T'-'JI]. By a quantized invariant on T' we mean
the association of a value in a discrete set to
every element of [T'- X] which is continuous (and
so constant by the discreteness assumption) under
continuous variation of the maps. Our main re-
sults are as follow:

Theorem 1.—Every quantized invariant on T'
is a function of the TENN integers.

'J.'heo~em 2.—Every quantized invariant on T
is a function of the ~d(d —1) sets of TENN inte-
gers obtained by slicing6 T by the ~d(d —1) dis-
tinct' T"s.

We claim that it is obvious that these results
follow from the assertion that two matrix func-
tionsA(k) and B(k) with values in'Jf are homotopic
(can be deformed continuously one into another
through maps with values in X) if and only if their
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TENN integers are the same.
If one looks at maps of the v-dimensional

sphere S' into X, the families of maps which are
homotopic are precisely the homotopy group
&,(X). Think about two maps of T' into an arbi-
trary space X. If we take the two basic loops in
T', we obtain from each map two elements of
n, (X) and the two maps cannot be homotopic unless
the corresponding pair of elements of &,(X) are
the same. Even if they are the same, there is
clearly a leftover map from S' into X. In this
way, one can classify maps from &' into X by ~

elements of &,(X), ~ ~(~ —1) elements of &,(2C),

For general& the precise structure is
complicated (see, e.g. , Fox'), but if all &'s are
zero but for one value of j, the map is precisely
classified by (;) elements of &, . Thus theorems
1 and 2 follow from the following theorem.

Theorem 3.—~„(X)=0 if k &2; &,(ZL) =&, an
infinite set of integers, precisely given by the
S2 analogs of TKNN. Namely, let P, (k) be the
normalized eigenfunction associated with the jth
band and k& S'. Then the integer associated with
the jth band is

n, =(i /2~~) J~2(dp, ,dp, )

with the dg =g;(B„,.g)dk; and dk;dk, = —dk, dk, .
Theorem 3 is actually a rather simple exercise

in homotopy theory: I et N be the set of elements
of X whose eigenvalues are 1,&, -', , . . . . It is
clear that any& in X can be continuously de-
formed to an element in% and vice versa by de-
forming the eigenvalues but keeping the eigenvec-
tors fixed, so that &&(&) =&„(%).

Now any element of R can be written as
UA, U '(k), where &, is the diagonal and k-inde-
pendent matrix (4o)„=(1/n)5 „and U(k)H'u(K),
kaS', are unitary. U(k) is uniquely determined
up to an element of D'u(R), the unitary diagonal
matrices. It follows that Sl is a homogeneous
space )

=&(~)/»(&)

Most spaces whose homotopy groups are of inter-
est to condensed matter physics are homogeneous
spaces and their homotopy groups are computable
in terms of "the exact sequence of a fibration";
see, e.g. , Mermin. ' Theorem 3 follows from this
by knowing first" that

~,(~(X)) =0

which implies that w„(%) =~„,(D Z(K)) and then by
noting that D'u(X) is just an infinite-dimension
torus (given by the set of eigenvalues) so that

w, (D'u(K)) =0 if k ~ 2 and is Z" if k = 1. The iden-
tification of n, with the TENN integers is easy.

Here are some additional r emarks about this
pr oof:

(1) It is remarkable that the only invariants are
those associated with individual bands and there
are none associated with all the bands. If is
replaced with m & m matrices there are addition-
al global invariants' produced by the fact that
~, (U(m)) ~ 0.

(2) The proof also shows that given any set of
integers n„n2, . .. one can find a map A (k) whose
TKNN numbers are precisely ~„~„.. . . One can
construct such &(k) explicitly. ' In the m &m

case, there is a restriction on the ~'s, namely

, n; =0 which comes from the fact that~, (U(m))
-z

These homotopy ideas are also useful in study-
ing some questions about the TENN invariants.
Suppose we start with an A, (k) with given values
of n3 and ~4." We vary an additional parameter, "
6I, and for some ~, and &, the 3 and 4 eigenvalues
of &q(k) are equal, but as & is further increased,

A. q(k) lies again in X for all k. Let n, ', n, ' be the
TENN integers for A~ when» L9

p It is not true
that necessarily &3 =n3', &4 =&4' but we claim that

+ 04 Pl3 +04 ~
1

To see this, let ~&34 be those matrices whose
eigenvalues are nondegenerate except perhaps
for the third and fourth. We want to know about
deformations in IT'- X,J and (1) follows from a
homotopy calculation' that v„(X„)=0 if k&0 and
&,(0I„) is & with integers m, ,m„m„,m„. . .
and that under the natural embedding of 2 into
X„, ~,(0t) is mapped to &,(Ji„) by

PB j Ply y j 1 9 2
P 5 9 ~ o ~ P

Pl' 34 Pl3 + Pl4 ~

This both proves the sum rule and shows that any
time the sum rule is obeyed one can find a de-
formation with a 3-4 collision producing precisely
that change.

In the context of the quantized Hall effect, this
conservation law is what one expects on the basis
of Streda's formula" which relates the sum of
the conductances to the density of states.

We have also found a bare"-hands proof of (1)
which we sketch because of certain formulas of
independent interest which enter along the way.
The TENN integer for the jth band can be de-
cribed as follows. Let g, (k) be an explicit choice
of the jth eigenvector of A(k). Then

n, =(i/2~) J~, (dp, ,dg, .). (2)
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While n, is independent of phase transformations,
i.e. , j,(k)-e' " P;(0), it is not manifestly so.
We have found the following manifest phase-in-
varia, nt formula: Let P, (&) =

I P, (&))(g, (k) I be the
(phase invariant) projection of the jth eigenvec-
tor. Then'

u, =(i/2m) fTr(dP, P, dP, ).
One can also show that if I',

& =P, +I'„ then'

n, + n, =(i/2~) fTr(d P, , I, , aS, , )

Since &34 varies smoothly as ~ varies in the above
situation, (4) proves the sum rule.
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