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Energy Collectives: a Community and Fairness
based Approach to Future Electricity Markets

Fabio Moret, Pierre Pinson, Senior Member, IEEE

Abstract—While power system organization has evolved from
a hierarchical structure to a more decentralized model, electricity
markets are still not up to date with the ongoing transformation
towards more consumer-centric economies. As Information and
Communication Technologies (ICT) are broadly adopted, they
allow prosumers to have a more proactive role in power system
operation. This work introduces the concept of energy collectives,
as a community-based electricity market structure. We find that
when prosumers are allowed to share energy at community
level, overall electricity procurement for the community reflects
prosumers’ preferences. We show that community members
can be influenced by a supervisory third-party in charge of
interfacing with the market and system operator and of guaran-
teeing the collective common agreements. We simulate a number
of test cases and we apply typical principles from analysis
of communication networks and distributed systems to assess
community fairness.

Index Terms—Electricity markets, prosumers community, re-
newable energy integration, distributed optimization, fairness.

NOMENCLATURE

Only the most important symbols of this paper are included.
αj Energy imported by prosumer j.
βj Energy exported by prosumer j.
δj Upper bound of αj .
γ Penalization coefficient (the subscript identifies the

specific application).
λj Price of energy perceived by prosumer j.
λDA Day-ahead market price.
Pj Feasible space of pj .
Rj Feasible space of prosumer j.
Uij Feasible space of uij .
U ij Upper bound of asset i of prosumer j.
ψij Cost/utility function of asset i of prosumer j.
ρ Penalization factor of Lρ.
τ Price spread between import and export price.
f̃j Extended cost function of prosumer j.
U ij Lower bound of asset i of prosumer j.
cij Quadratic coefficient of ψij .
dij Linear coefficient of ψij .
fj Cost function of prosumer j.
g Model of community manager.
hj Preferences and/or transaction costs of prosumer j.
Ij Set of assets of prosumer j.
Lρ Augmented Lagrangian.
n Number of prosumers in the collective.
Nj Set of members of neighbourhood j.

F. Moret and P. Pinson are with the Technical University of Den-
mark, Department of Electrical Engineering, Kgs. Lyngby, Denmark (emails:
{fmoret,ppin}@elektro.dtu.dk). The work is partly supported by the Danish
ForskEL programme through the Energy Collective project (grant no. 2016-
1-12530).

pj Net energy produced by prosumer j.
qj Energy imported by prosumer j from the community.
qexp Total energy exported.
qimp Total energy imported.
rk Vector of primal residuals.
sk Vector of dual residuals.
uij Power set-point of asset i of prosumer j.
vij Energy traded between neighbourhood i and j.
y Vector of Lagrangian multipliers.

I. INTRODUCTION

THE MASSIVE DEPLOYMENT of renewable generation
challenges common practice in power system operation,

not only in the form of large scale power plants, but also
of Distributed Energy Resources (DERs). Simplifying DERs
as load reduction for electricity consumers may have been
acceptable at low penetration levels. However, as their in-
stalled capacity rises, DERs enhance end-users flexibility. If
appropriately controlled, this flexibility can reveal strategic
opportunities for supply and demand at distribution level [1].

Increasing awareness of their energy consumption allow
consumers to go beyond common energy management (e.g.
energy efficiency and time-varying electricity tariffs), and
towards a more proactive role in the power system. Demand
Side Management (DSM) benefits have been largely inves-
tigated in the past [2]. However, to provide services to the
power system, for instance ancillary services or peak-shaving,
DERs are normally considered as a group, increasing the
total available flexibility. As Information and Communication
Technologies (ICT) are broadly employed in energy systems,
it becomes more likely to optimally coordinate energy re-
sources in a distributed fashion. Common solutions include
control architectures such as micro-grids management, virtual
power plants and aggregators, as largely reviewed in [3],
[4]. When optimized through control architectures, end-users
respond to control signals issued by a central agent, that
seeks profit maximization. However, individual preferences
and social perspectives justify the need for prosumer-centric
market mechanisms, in which prosumers actively trade their
energy according to their individual objectives and not those
of a third party [5].

Future prosumer markets may envisage more or less struc-
tured organizations depending on the degree of decentraliza-
tion considered [6]. A fully decentralized market conformation
yields peer-to-peer trades among all participants with no need
for third-party supervision [7], [8]. On the contrary in a
distributed structure, all peers communicate with a central
node that supervises the negotiation process. Technological so-
lutions exist to enable these market organizations, for instance
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on the cloud for distributed systems [9] or using a blockchain
for decentralized mechanisms [10].

In view of a consumer-centric market, the presence of a
supervisory node simplifies market regulation and the interface
with the market and system operator. For this reason, we
believe that community-based distributed structures will more
likely develop in the near future. We call this market organi-
zation energy collective and we define it as a community of
prosumers that operates in a collaborative manner, optimizing
usage of resources. This translates to a market framework
where the collective members can trade their lack or excess
of energy. The distributed nature of the market implies that all
prosumers are in charge of optimizing their assets individually.
Optimality is achieved as prosumers are coordinated by a non-
profit virtual node, that we call community manager.

Building on the concepts of transactive energy [11] and
energetic communities [12], communities of prosumers have
been proposed, where groups of end-users can coordinate
their energy utilization. Specifically, our proposal is to be
placed into perspective with related research that recently
appeared in the power system literature, e.g., [13]–[16]. We
find that these models simplify the problem as the relation
to market-based operation is not considered. In the proposed
market structure, we include the interface with the market and
system operator by means of the community manager. Our
first key contribution is then to analyze how the decisions
of the players are affected by market mechanisms, influenced
by the community manager, and not controlled by control
architectures. As we envisage the community manager also as
a guarantor of the common goals within the community, our
second key contribution consists in the assessment of fairness
among market participants.

Compared to existing market mechanisms, the proposed
energy collective reflects true preferences of consumers in
the negotiation process. Moreover, privacy protection of pref-
erence and strategy schemes for each participant is granted
while the computational burden is distributed among players.
The generality of the negotiation mechanism formulation
allows this market organization to accommodate different
actors as well as different preference schemes. Transactive
energy control systems or control architectures can therefore
be included in an energy collective, by modelling virtual
agents, e.g. aggregators or micro-grids management systems,
as participants of the community.

The paper is organized as following. Section II introduces
market organization for energy collectives as well as the
modelling of the community members. In Section III, we
present and discuss the fundamental role of the community
manager. In Section IV we provide the methodology to char-
acterize and simulate the community negotiation process based
on distributed optimization concepts. Subsequently, we use a
number of test cases in Section V to validate the proposed
market structure as well as to verify the influence of com-
munity manager models on participants’ behaviours. Finally,
Section VI gathers conclusions and perspectives regarding
future works based on energy collectives.

II. ENERGY COLLECTIVES AND THEIR OPERATIONAL
FRAMEWORK

The market structure for energy collectives is designed
to provide a general framework easy to adapt to different
contingent situations. We define the market independently of
the nature of the prosumers assets. This implies that different
DERs can be included without the need to modify the market
mechanisms. The presence of a supervisory node facilitates the
interface to different markets, as the collective members are
represented by a single node. We consider that a community,
especially of large size, can interface with different existing
markets, e.g., wholesale, balancing, ancillary services, as well
as future market designs. Figure 1 displays a possible fu-
ture market organization with peer-to-peer transactions among
communities and nested optimization mechanisms, where sub-
communities become assets of higher level collectives. In case
of small size communities, as the one considered as test case in
this paper, the community manager can interface with retailers
and their respective contracts. Note that there exist utilities
offering the consumers to have a dynamic electricity tariff that,
for instance, follows the trend of the day-ahead market price.
In the proposed market organization, this is simply resolved
by choosing difference import and export price series.

A. Market organization

From a market perspective, prosumers are defined only by
their energy trades within and outside the community, while
the community manager operates as interface between pro-
sumers and two market layers. A market layer at community
level allows the members of the collective to share their excess
or lack of energy. A second layer envisages trades between the
community, as a whole, and the market and system operator.

To better illustrate the market model, let us consider an
energy collective composed by n prosumers (indexed with j =
1, . . . , n), each of them with net energy production pj and total
costs fj . The optimal community dispatch is then obtained as
the solution of the exchange problem

min
Γ

n∑
j=1

fj(pj , qj , αj , βj) + g(qimp, qexp, ϑ) (1a)

s.t. pj + qj + αj − βj = 0 , j = 1, . . . , n (1b)
n∑
j=1

qj = 0 (1c)

n∑
j=1

αj = qimp (1d)

n∑
j=1

βj = qexp (1e)

pj ∈Pj , j = 1, . . . , n (1f)
αj , βj ≥ 0 , j = 1, . . . , n (1g)

where Γ = {pj , qj , αj , βj} is the set of decision variables
and qimp, qexp are continuous variables describing import and
export exchanges with the system operator. For each prosumer
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Fig. 1. Organization of an energy collective and its interactions with system
operator and other collectives.

we consider technical constraints (1f) and power balance
(1b) between net production, pj , and energy traded. This
energy can be traded at community level (1c) and with the
system operator (1d)-(1e). Hence, we describe the energy
traded by each prosumer as sum of the energy exchanged
within the community, qj , and the energy each prosumer has
to respectively import, αj , or export, βj , from outside the
community, as in Figure 1.

The core of this market organization is the inclusion, in the
negotiation process, of common agreements on how the energy
collective is to jointly handle its internal objectives and its
interaction with the outside world. We address this role to the
community manager and we model it in (1) by means of the
function g. We define g only by global variables (qimp and qexp)
and by a set of relevant parameters or additionally variables
ϑ. Different community agreements can be included only by
operating on the community manager, without modifying the
prosumers model. Section III is reserved to the modelling and
discussion of the fundamental role of this term in the operation
of energy collectives.

B. The prosumers model

As we adopt a distributed structure, each prosumer j is
in charge of optimizing its set Ij of assets (indexed with
i ∈ Ij). For a given market time unit, each player has to
find the optimal power set-points for each asset, uij (positive
for energy produced), in view of the respective cost function,
ψij(uij) and the technology constraints, Uij . For the sake of
this work, we assume quadratic costs and utility functions for
each asset,

ψi,j(uij) = ciju
2
ij + dijuij (2)

with cij ≥ 0. However, all the considerations in this paper hold
as long as the functions ψij are convex, preserving the convex-
ity of the entire optimization problem and, hence, ensuring that
the solution found coincides with the global optimum. Note
that in case of non-convex problems decomposition techniques
can be adjusted to reach optimality. However, as there is no

guarantee of global but only local optimality, it is common
procedure to apply out-of-market corrections to cope with
suboptimality.

Since we aim for an assets independent formulation, pro-
sumers are defined in the community market only by their
net production pj =

∑
i∈Ij uij . In order to decompose the

global optimization problem into sub-problems specific for
each prosumer j, we define f̃j as an extension of f in (1),
including all prosumer-specific information, as

f̃j(pj , qj , αj , βj) =
∑
i∈Ij

ψij(uij) + hj(qj , αj , βj)

+ IRj (pj , qj , αj , βj)

(3)

We use the indicator function IRj
(pj , qj , αj , βj) on the set

Rj ={(pj , qj , αj , βj) | pj =
∑
i∈Ij

uij , uij ∈ Uij for i ∈ Ij ,

pj + qj + αj − βj = 0, αj ≥ 0, βj ≥ 0}

to include all the constraints related to the single prosumers
(Pj

⋂
i∈Ij Ui,j) and the function h to include homogeneous

costs previously agreed within the community, e.g. transac-
tion costs, as well as heterogeneous preference schemes. For
instance, if we assume h to be

hj(qj , αj , βj) = γcom|qj |+ γimpαj + γexpβj

the optimization of prosumer j, and hence the equilibrium of
the whole collective, is influenced accordingly to the weighting
coefficients. Favourable transaction costs for internal energy
exchanges, γcom, will encourage prosumer j to trade more
inside the community, while extra penalization for import and
export of energy, (γimp, γexp), may reflect the will of prosumer
j to increase its own autonomy from market and system
operator.

C. Market efficiency and incentive compatibility

The proposed market design for energy collectives ensures,
by construction, market efficiency. As demonstrated in the
Appendix, the Karush-Kuhn-Tucker (KKT) conditions of the
optimization problem, as in (1), correspond to those of an equi-
librium problem in which each agent individually minimizes
its costs. This implies that both problems achieve the same
optimal solution under different assumptions. Perfect compe-
tition is assumed in the equilibrium problem solution, while
in the central optimization problem every agent has to reveal
its utility curves. However, by decomposing the optimization
problem, we are able to limit the set of information needed
to grant market efficiency, enhancing the privacy level of the
participants utility and cost curves as well as their preferences.

While demonstrating market efficiency, the assumption of a
perfect competitive market excludes the possibility of exercis-
ing market power within the community. To ensure incentive
compatibility of the proposed market, one should analyze
system equilibria under heterogeneous strategic behaviours,
that could be modelled by means of function h, and check for
possibility of exercising market power, e.g. by modelling the
problem as a Stackelberg leader-follower game. As this implies
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an independent line of work and a significant contribution
to the state-of-the-art, we leave these issues as future work.
Therefore in this study, we assume homogeneous transaction
costs and we consider that every participant can maximize its
objective just by acting according to its true preferences.

III. THE ROLE OF COMMUNITY MANAGER

As already mentioned, we envisage the community manager
not only as supervisor of convergence to system optimality but
also as interface between collective members and market and
system operator. In theory, one can implement any decision
model g, as long as it preserves convexity of the whole
formulation. We encourage the reader to interpret the interface
models proposed below as some of the several possible exam-
ples. Different definitions for g are to impact the behaviour
of its members, as well as their revenues and payments.
This strongly links to existing work in literature focusing on
congestion management of, e.g., telecommunication networks
or electrical grids with charging of electric vehicles [17],
where concepts such as proportional fairness and max-flow
protocols are built upon.

A. Market-based interface

In the most simple market-driven case, the community tries
to minimize the costs of importing and to maximize the
revenues from exporting energy with the day-ahead market.
The community interface can be modelled as

g(qimp, qexp) = (λDA + τ)qimp − λDAqexp (4)

where λDA is the wholesale market price. Depending on the
contingent regulation, the price at which the community could
buy energy from the power market is generally higher than the
selling one. To consider this possibility, we include a parameter
τ describing the spread between import and export price.

B. Community autonomy

In case the community wants to be as autonomous as
possible, one will naturally have

g(qimp) = γimp||qimp||l + γexp||qexp||l (5)

where || · ||l is the l−norm with l = 1, . . . ,∞ and γimp and
γexp the penalty factors. In case of a l1-norm, (4) becomes

g(qimp, qexp) = γimpqimp + γexpqexp (6)

For γimp = (λDA+τ) and γe = −λDA, (6) generalizes (4), with
γimp and γexp representing the price the community is willing
to pay (when positive, or to receive as compensation when
negative) for exchanging energy with the market or system
operator.

As we analyze the fairness principles of this formulation,
let us consider a situation where the community lacks of
generation and faces an import cost γimpqimp. At optimality,
(1d) is satisfied with shadow price equal to γimp. It follows
that

γimpqimp = γimp

n∑
j=1

αj (7)

Equation (7) shows how proportional fairness is intrinsic in
the proposed formulation. The total costs are shared among
the players and each prosumer j faces a cost proportional to
its contribution αj to the total import.

C. Penalty on the maximum importer

Collaborative systems are prone to unfair behaviours, when-
ever one or more participants behave strategically. The com-
munity manager has the task to preserve fairness inside the
collective. Inheriting demand charges mechanisms, load shape
related features can be regulated. In this framework, min-max
protocols are useful techniques for the community manager to
minimize any maximum “flow”.

One of the objectives of this work is to demonstrate that
fairness among collective participants can be included in the
distributed negotiation mechanisms. For instance, to prevent
strategic behaviour, a community may choose to penalize the
prosumer contributing the most to the import by means of an
additional fee. Each member is, therefore, pushed to decrease
its import, as this fee increases. We model this by adding a
penalization γmax to the maximum component of prosumers
import shares (corresponding to the l∞ norm when all vector
components are non-negative). The function g then becomes

g(qimp, qexp,α) = γimpqimp + γexpqexp + γmax||α||∞ (8)

where α = (α1, . . . , αn). The resulting problem preserves
convexity, since the l∞ norm of a vector is a convex function.
However, as the l∞ norm needs all the components αj to be
calculated, the problem cannot be decomposed anymore. To
maintain a decomposable structure, we rewrite (8) as

g(qimp, qexp, ϑ) = γimpqimp + γexpqexp + γmaxϑ

with αj ≤ ϑ , j = 1, . . . , n
(9)

In this way, g is expressed as function of the upper bound, ϑ,
of the l∞ norm, also known as epigraph formulation, and the
inequality constraints grant to achieve the same solution and
to allow for decomposition techniques.

D. Peak-shaving services

Minimax principles become useful not only to avoid strate-
gic behaviours but also to implement interesting interface
models. For instance, let us assume a multi-temporal optimiza-
tion for an energy collective. The community manager can
coordinate the prosumers to provide peak shaving services by
minimizing the maximum imported energy over the considered
timestamps (indexed with t = 1, . . . , T ), as in [18]. The
definition of g becomes

g(qimp, qexp) = γTimpqimp + γTexpqexp + γpeak||qimp||∞ (10)

where all the bold variables and parameter are to be intended
as vectors of size T and γpeak the penalization coefficient.
Unlike (8), (10) preserves the decomposable structure of the
optimization problem. To simplify the problem solution, the
l∞ norm can still be linearized by means of the upper bound
of qimp,t for all t = 1, . . . , T . It follows that

g(qimp, qexp, ϑ) = γTimpqimp + γTexpqexp + γpeakϑ

with qimp,t ≤ ϑ , ∀t
(11)
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Fairness of these formulation is granted in terms of minimax
principles. The energy “flows” addressed are flattened more,
the higher the penalization coefficient. This does not imply
that the system preserves fairness under other definitions,
e.g. variation of price or proportional total costs. The system
fairness is strictly related to the criteria the collective members
agree to adopt.

E. Geographical preferences

Energy collectives are to be envisaged as a market construct
and not related to a certain positioning on the electric power
grid. In practice, this means that operations on a micro-grid,
both off- and connected to the grid [6], is only one possi-
ble configuration, but more generally such communities may
be formed irrespective of grid connection and geographical
location. The use of distribution (or transmission for longer
distances) networks for community trades results in additional
grid costs including several parameters, e.g. geographical
distance and lines congestion.

We include these additional costs by investigating a setup
where an energy collective is formed by prosumers from three
different neighbourhoods, N1, N2, N3. We model this system
by splitting (1c) in three sub-communities and by defining
energy flows, v = (v12, v13, v23), on each line connecting
the neighbourhoods, as depicted in Figure 2. We include
geographical differentiation as relative transaction costs γgeo =
(γgeo,12, γgeo,13, γgeo,23). It follows that

g(qimp, qexp) = γimpqimp + γexpqexp + γTgeo|v|∑
j∈N1

qj = + v12 + v13∑
j∈N2

qj = − v12 + v23∑
j∈N3

qj = − v13 − v13

(12)

This formulation allows to represent technical constraints,
typical of power flow analysis, in the form of spatial and
temporal varying grid tariffs. This becomes fundamental in
view of a possible integration of energy collectives in the
current system operation. Furthermore, the collective can be
fragmented to the extreme, i.e. to single prosumer, accounting
for individual trades, as in [19]. In this way, the energy
collective becomes a supervised version of a fully peer-to-peer
economic dispatch.

Fig. 2. Energy fluxes between 3 neighbourhoods.

IV. DISTRIBUTED OPTIMIZATION APPROACH TO THE
OPERATION OF ENERGY COLLECTIVES

The nature of (1) readily suggests employing decomposition
techniques to achieve optimality in a distributed fashion. More
precisely, the Alternating Direction Method of Multipliers
(ADMM [20]) is used here. This algorithm allows to ex-
plicitly define individual problems for each prosumer and
supervise the exchange of information between the collective
members and the community manager. Alternative decompo-
sition approaches could be employed, with their advantages
and caveats, as recently reviewed and compared in [21] for
optimal power flow problems. Langragian Relaxation (LR)
and Proximal Message Passing (PMP) are valuable alternative
solving algorithms for the market structure proposed. We find
that ADMM naturally fits the market structure of energy
collectives, as it entails a supervisory node (not required for
instance with PMP). In addition, ADMM generalizes LR,
as it does not require the objective function to be smooth
and differentiable, limiting the requirements to impose to the
community members.

A. Problem formulation

In order to decompose the community economic dispatch
with ADMM, we rewrite (1) in terms of (3). It follows that

min
Γ

n∑
j=1

f̃j(pj , qj , αj , βj) + g(qimp, qexp) (13a)

s.t.
n∑
j=1

qj = 0 (13b)

n∑
j=1

αj = qimp (13c)

n∑
j=1

βj = qexp (13d)

where the only explicit constraints are the coupling constraints
among prosumers sub-problems. In case of coupling inequality
constraints, for instance when g has the form of (9), additional
variables δj are used as upper bounds for the variables of the
sub-problems. In this case (9) becomes

min
Γ

n∑
j=1

f̃j(pj , qj , αj , βj , δj) + g(qimp, qexp, ϑ) (14a)

s.t.
n∑
j=1

qj = 0 (14b)

n∑
j=1

αj = qimp (14c)

n∑
j=1

βj = qexp (14d)

δj = ϑ , j = 1, . . . , n (14e)
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with the feasible set Rj of each function f̃j including the ad-
ditional constraint αj ≤ δj . We can now write the augmented
Lagrangian, for instance of (14), as

Lρ(x, z, y) =
n∑
j=1

f̃j(xj) + g̃(z)+

+ yT (Ax+Bz) +
ρ

2
||Ax+Bz||22

(15)

where, xj = (pj , qj , αj , βj , δj) z = (qimp, qexp, ϑ)

x = (q1, . . . , qn, α1, . . . , αn, β1, . . . , βn, δ1, . . . , δn)

A =


1T 0T 0T 0T

0T 1T 0T 0T

0T 0T 1T 0T

0 0 0 I

 B =


0 0 0

−1 0 0

0 −1 0

0 0 −1


with 0 and 1 n-dimensional vectors of zeros and ones, and
0 and I the n-dimensional null and identity matrices. The
optimization algorithm follows the common ADMM steps

xk+1
j = arg min

xj

Lρ(xj , z
k, yk) , j = 1, . . . , n

zk+1 = arg min
z

Lρ(x
k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1)

Convergence is monitored, at each iteration k, via the primal
residual rk+1 = Axk+1 + Bzk+1 and the dual residual
sk+1 = ρATB(zk+1 − zk). Whenever ||rk+1||2 and ||sk+1||2
are smaller than the desired tolerance, the stopping criterion
is met.

B. Convergence analysis

ADMM formulation ensures that, whenever the optimization
problem is closed, proper and convex, the algorithm converges
to optimality [20]. However when operating with real data,
numerical issues challenge convergence within a reasonable
number of iterations. In particular, large oscillations of the
Lagrangian multiplier y relative to (14b) mine convergence of
ADMM. These oscillations occur as the residual of (14b) has
no direct link to any global variable (first line of matrix B
of all zeros). We solve this numerical issue by weighting the
constraint with a factor of 1

n , hence considering not the whole
residual but its average over the prosumers. In this way, the
oscillations are smoothed out and the method converges more
easily.

A similar issue occurs when we apply ADMM to clear
a market with function g as in (11). The penalization for
the maximum import happens only on the global problem
(z−update) and has no direct link to the x−update. We notice
that when ϑ has non-zero values, the Lagrangian multiplier
of the import balance increases of the penalization factor,
leading to large convergence oscillations. We rewrite (11) as∑n
j=1 δj,t ≤ ϑ and no more as function of qimp. In this way, the

Lagrangian multiplier of the import balance remains the import
price and the penalization is directly mirrored at a community
level. Oscillations are again smoothed helping the algorithm
to reach convergence.

One more numerical issue arises as we find ADMM sen-
sitive to its penalization parameter ρ. Boyd et al. proved
convergence of ADMM for any ρ value in [20], however the
number of iterations needed to achieve optimality can largely
exceed operational requirements. For this reason, we bound
10−5 < ρ < 1 and adopt an heuristic adapting scheme based
on a moving window, W , of the residuals norm, ||rk||2. We
update ρ at each iteration as

ρk =


2ρk−1 max

j=1,...,W
|(||rk||2 − ||rk−j ||2)| ≤ 0.01||rk||2

ρk−1

3 ||rk||2 −
∑W

j=1 ||rk−j ||2
W ≥ 0.1||rk||2

ρk−1 otherwise

The penalization factor, ρ, is reduced with a factor of 3
whenever the primal residual is 10% higher than the average
on its past values (within the considered window). This allows
to detect oscillations of the algorithm and smooth them by
reducing the update step of the Lagrangian multipliers. When-
ever ||rk||2 changes less of 1% along the moving window, ρ is
doubled. Hence, the Lagrangian multipliers are updated with
a larger step and convergence is speeded up.

ADMM provides a general method that grants convergence
independently from the nature of the optimization problem.
As we find ADMM to be sensitive to numerical properties of
the dataset, application-specific methods may achieve better
performances. However, we continue with ADMM, since
relatively easy heuristic schemes solve the convergence issues
for most of the simulations of this paper. Furthermore, the
focus of this work relies more on the market structure and
operational framework of energy collectives rather than on its
solving methodology.

V. APPLICATION AND CASE-STUDIES

As a basis for illustration and discussion, we consider a
setup of 15 prosumers, most of them equipped with solar
power generation and controllable load. The data was orig-
inally collected from households in Australia between July
2012 and June 2013 and shared as open data [22]. From
the raw data, we extract the time series of fixed and flexible

Fig. 3. Examples of cost curves (bottom) and marginal curves (top) for a
consumer (left) and a generator (right) employed in our simulations.
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load, the latter corresponding to the energy consumed by con-
trollable hot water tanks. Since the modelling of controllable
loads is out of the scope of this work, we adopt an arbitrary
load management system as following. We calculate the daily
capacity of flexible consumption (L∗) and we assume that,
at each hour, the flexible content of each actor is twice this
capacity. In this way, the electricity consumption is lower
bounded by the fixed load (L) and can range within the
flexibility budget according to the agent’s preferences up to
L = L + 2L∗, as displayed in Figure 3 (note that in the
figure the consumption is conventionally assumed negative).
Finally, we fix the cumulative daily energy consumption of
each prosumer to match the data of the reference dataset.
This time-linking constraint implies that the energy collective
market is cleared over 24 hours with a single optimization
problem. As for the generation, in addition to solar production,
we add synthetic data for 6 conventional generators, in order
to extend our analysis to a test case with possibility of
dispatchable generation. Given the small size of the collective,
we assume that the community trades energy as price-taker
with the wholesale market. The market prices are extracted
from the Australian Energy Market Operator website.

A. Prosumers costs curves

As the cost functions are dependent on the preferences of
each prosumer, we build them based on the day-ahead market
price as following. We consider different curves for each
quarter of the day (00:00-06:00, 06:00-12:00, 12:00-18:00 and
18:00-24:00). The price a, that each prosumer is willing to pay
(or be paid) for its average load (production) and the increase
(or decrease) of price, b, corresponding to the minimum set-
point U ij (or maximum U ij) of asset i, are sampled as

a ∼ N (µDA,
σDA

3
) b ∼ N (0,

σDA
3

)

The mean µDA and the standard deviation σDA are calculated
from the yearly wholesale market price in the same hours
interval. In both cases we shrink the standard deviation of
the market price to avoid negative values in the prosumers
marginal curves. Assuming quadratic cost curves as in (2),
their marginal functions are linear functions of the assets set-
point uij and can be written as cijuij + dij , with

cij = 2
b

U ij − U ij
d = a+ b

U ij + U ij

U ij − U ij
As we use negative values of uij for energy consumption,
U ij corresponds to the reciprocal of the maximum load −L.
The same procedure is implemented for the cost curves of the
generators, but we twist the mean of the market price to model
three cheaper base-load generators and three more expensive
peak generators. Figure 3 displays two of the curves employed
in the simulated test-case.

B. Simulations results

As we simulate the energy collective market structure on
the described dataset, we assume a transaction cost for the
energy traded within the community of γcom = 1 $/MWh and

Fig. 4. Example of energy imported profiles under different interface models.

a spread between import and export price of τ = 100 $/MWh.
Each simulation is then solved with both a single optimiza-
tion approach and by means of decomposition techniques,
i.e. ADMM. Convergence is reached in most timestamps
and whenever the iterative routine stops after reaching the
maximum number of iterations allowed (104), the optimality
gap is negligible. We find that the maximum gap among
all the simulations is around 0.1%. The large number of
iterations allowed and a low tolerance on the stopping criterion
(ε = 10−6) justifies these small optimality gaps. As real
applications do not require such high precision, the number
of iterations needed can be significantly decreased.

We use as benchmark an optimization model in which the
prosumers trade individually in the wholesale market. Results
show that the collective has a total cost of around 1600$,
compared to a total system cost of around 5250$ in case of
independent trading. Not only the community achieves lower
costs over one year, but all prosumers are individually better
off when allowed to exchange energy within the collective.
All community trading models achieve lower yearly costs
compared to the benchmark model, as in Table I. However,
one should not conclude that prosumers always achieve lower
system costs by joining an energy collective, since the main
objective is to respect common agreements and preferences.
For instance, in case of a community that strongly aims
for autonomy, hence minimizing the import from the market
operator with a large penalization coefficient, the internal price
could increase, according to the participants’ cost and utility
curves, and result in higher total costs.

The main result, however, is that, it is only by changing
the common agreements modeled by the community manager,
that the prosumers behaviour, and consequently the system
costs, are affected. An increase of 16% of the yearly costs
occurs when considering geographical preferences, while the
system costs are more than doubled when the community seeks
autonomy from the system operator. This reflects the costs
the community is willing to bear respectively for including
geographical grid costs and for decreasing the volumes traded
in the wholesale market of around 20% for imported and
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TABLE I
RESULTS AND FAIRNESS INDICATORS OF ALL SIMULATED MODELS.

TRADING MODEL SIMULATIONS RESULTS QOS QOE MIM
Interface model Total costs [$] Total import [MWh] Total export [MWh] Mean St. dev. Mean St. dev. Mean St. dev.

INDIVIDUAL TRADING 5245.30 55.52 45.49 - - 0.15 0.089 0.00 0.001

COMMUNITY TRADING

Market-based 1577.43 16.71 11.77 0.54 0.096 0.95 0.112 0.00 0.005
Autonomy 4064.28 13.78 5.44 0.56 0.101 0.91 0.198 0.00 0.004

Min-max import share 1568.28 16.60 11.75 0.57 0.077 0.45 6.231 1.00 0.020
Peak-shaving 1626.01 16.65 11.73 0.53 0.114 0.93 0.155 0.01 0.058
Geographical 1836.93 18.17 13.37 0.52 0.099 0.81 0.137 0.00 0.003

50% for exported energy. The community manager impacts the
behaviour of the prosumers also in terms of energy dispatch.
Figure 4 displays how the community aggregated load, i.e. the
energy imported, is flattened and its peak reduced, in this case
of around 30%, when including peak-shaving mechanisms.

C. Fairness indicators

As we show how the community manager can impact
prosumers behaviour, we analyze the relationship of this
influence among the single community members. To do this,
we refer to fairness indicators normally used in communication
networks, specifically estimating Quality of Service (QoS),
Quality of Experience (QoE) and Min-Max fairness (MiM).
QoS indicators are normally used to assess allocation fairness
by means of Jain’s index [23], defined as

QoS =

[
n∑
j=1

|qj |

]2

∑n
j=1 q

2
j

We calculate this indicator on the volumes of energy traded
within the community. Under this criterion, the system is
100% fair when the energy volumes traded in the collective
are equal for all players. Equal volumes traded inside the
community is not necessarily an interesting outcome for this
market structure. However, low values of QoS can spot the
presence of players with larger impact in the community, that
may mine the robustness of the collective towards strategic
behaviours. Results in Table I show that the community is
around 55% fair in terms of participation in community trades.
The different capacity among community members justifies
the relatively low QoS index. We find the volumes of the
community trades stable among the simulated models of the
community manager. A lower QoS index is calculated for
the market including geographical preferences, as they act as
economical bottlenecks within the community and impact the
energy flows among prosumers in the form of increased trades
inside neighbourhoods.

Quality of Service indicators allow to evaluate market
disequilibrium in terms of the service considered. To move
away from a system perspective towards a user-centric point
of view, we calculate a second index to evaluate fairness of

consumers satisfaction, namely Quality of Experience. We
base consumers satisfaction on the perceived price of energy

λj =
λDAβj − (λDA + τ)αj − λcomqj

pj + lj

We calculate λj for each prosumer as the sum of costs
or revenues from trading within the community and with
the system operator divided by the net power consumed or
produced. We assess fairness from users perspective, by means
of the index proposed in [24], as

QoE = 1− σ

σmax

where σ is the standard deviation of prices λj and σmax =
λimp − λexp the maximum price deviation. Hence, the energy
collective fairness is higher as the price variation among the
prosumers is smaller, with maximum QoE = 1 whenever all
prosumers prices λj are the same. Our simulations show that
fairness increases, from 0.15 to 0.95, as the prosumers move
from an individual to a community-based market framework.

The impact of community manager models is considerable,
especially when the maximum importer is penalized. In this
case, the yearly mean of the QoE indicator is around 0.45 with
a large standard deviation, 6.2. This happens because the large
penalization factor employed pushes all the import shares of
the collective members to the same value. We verify this by
computing the Min-Max indicator,

MiM =
minαj
maxαj

The index achieves a value of 1.0, meaning that the import
shares are almost always equal among prosumers (standard
deviation of 0.02). This implies that also prosumers with no
need for energy import are forced to buy their share from the
system operator and sell it to others community members. This
leads to larger spread of the individually perceived prices, i.e.
to a lower system fairness.

The results so far discussed consider a fixed penalization
coefficient on the maximum importer of γmax = 1 $/MWh. As
displayed in Figure 5, where γmax varies from 0 $/MWh, as
in the market-based community trading case, and 1 $/MWh,
the impact of common agreements on the investigated fairness
indicators changes for different penalty factors. This result
justifies our claim to design a market organization in which
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Fig. 5. Impact of coefficient γmax on system fairness indicators.

the collective members are able to actively modify their en-
ergy procurement while preserving fairness according to their
common agreements. It is, however, fundamental to underline
that the degree of modification of the participants’ energy
procurement largely depends on their available flexibility as
well as on their preferences and technology mix.

VI. CONCLUSIONS

Acknowledging the increasing installed capacity of DERs,
we proposed the energy collective as a new community-based
market structure, that allows prosumers to actively optimize
their assets. We showed that a distributed market structure
achieves optimal economic dispatch for the community and
that different collective agreements, granted by a third-party
node, influence the negotiation process. This supervisory node,
i.e. community manager, directly impacts the prosumers in
terms of energy dispatch as well as revenues and payments.
We evaluated this by means of fairness indicators, typical of
telecommunication systems and adapted to our case study.

The proposed market structure for energy collectives defines
a general framework easy to adapt for further studies. We
foresee scalability as the first challenge when dealing with
consumer-centric markets. Additional work needs to be done
to compare community-based, peer-to-peer and hybrid market
organizations when the number of players increases. Partic-
ular attention will be paid to fairness among prosumers and
to the clearing algorithms, especially to their performances
in the more realistic case of asynchronous communication.
After investigating the robustness of consumer-centric market
structures towards larger and more realistic test cases, we plan
to focus our research on the integration of these new market
constructs within system operations. Price-maker and strategic
behaviours will be considered as well as the design of new
dynamic grid tariffs to directly reflect grid costs in the market
mechanisms.
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review of the value of aggregators in electricity systems,” Renewable
and Sustainable Energy Reviews, vol. 77, pp. 395–405, 2017.

[5] T. Van Der Schoor and B. Scholtens, “Power to the people: Local com-
munity initiatives and the transition to sustainable energy,” Renewable
and Sustainable Energy Reviews, vol. 43, pp. 666–675, 2015.

[6] Y. Parag and B. K. Sovacool, “Electricity market design for the prosumer
era,” Nature Energy, vol. 1, no. 4, p. 16032, 2016.

[7] C. Giotitsas, A. Pazaitis, and V. Kostakis, “A peer-to-peer approach to
energy production,” Technology in Society, vol. 42, pp. 28–38, 2015.

[8] J. Qin, R. Rajagopal, and P. P. Varaiya, “Flexible market for smart
grid: coordinated trading of contingent contracts,” IEEE Transactions
on Control of Network Systems, 2017.

[9] S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data cloud: A
model for utilizing cloud computing in the smart grid domain,” in 2010
First IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2010, pp. 483–488.

[10] M. Mihaylov, S. Jurado, N. Avellana, K. Van Moffaert, I. M. de Abril,
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APPENDIX

In this appendix we demonstrate market efficiency for
the proposed energy collectives. Our approach is to show
that the energy collective market, modelled as a centralized
optimization problem, solves exactly the same problem as
an equilibrium problem in which every agent optimizes its
energy procurement while subjected to market constraints. In
practice, this is done by checking that the KKT conditions of
both problems coincide. We start by considering the extended
version of (1) as

min
Γ

n∑
j=1

[∑
i∈Ij

ψij(uij) + hj(qj , αj , βj)

]
(16a)

+ g(qimp, qimp)

s.t.
∑
i∈Ij

uij + qj + αj + βj = 0 ∀j (πj) (16b)

n∑
j=1

qj = 0 (λc) (16c)

n∑
j=1

αj − qimp = 0 (λi) (16d)

n∑
j=1

βj − qexp = 0 (λe) (16e)

uij − Ūij ≤ 0 ∀i, j (γMij ) (16f)

¯
Uij − uij ≤ 0 ∀i, j (γmij ) (16g)
− αj ≤ 0 ∀j (γaj ) (16h)

− βj ≤ 0 ∀j (γbj ) (16i)
− qimp ≤ 0 (γi) (16j)
− qexp ≤ 0 (γe) (16k)

where the dual variables of each constraint are reported within
brackets. The KKT conditions of (16) then become

ψ′ij(uij) + πj + γMij − γmij = 0 ∀i, j (17a)
∂h

∂qj
+ πj + λc = 0 ∀j (17b)

∂h

∂αj
+ πj + λi − γaj = 0 ∀j (17c)

∂h

∂βj
+ πj + λe − γbj = 0 ∀j (17d)

∂g

∂qimp
− λi + γi = 0 (17e)

∂g

∂qexp
− λe + γe = 0 (17f)

∑
i∈Ij

uij + qj + αj + βj = 0 ∀j (17g)

n∑
j=1

qj = 0 (17h)

n∑
j=1

αj − qimp = 0 (17i)

n∑
j=1

βj − qexp = 0 (17j)

0 ≤ Ūij − uij ⊥ γMij ≥ 0 ∀i, j (17k)

0 ≤ uij −
¯
Uij ⊥ γmij ≥ 0 ∀i, j (17l)

0 ≤ αj ⊥ γaj ≥ 0 ∀j (17m)

0 ≤ βj ⊥ γbj ≥ 0 ∀j (17n)

0 ≤ qimp ⊥ γi ≥ 0 (17o)
0 ≤ qexp ⊥ γe ≥ 0 (17p)

We then write the relative equilibrium problem, in which
each prosumer j minimizes its costs following

min
Γ

∑
i∈Ij

ψij(uij) + hj(qj , αj , βj)+ (18a)

λcqj + λiαj − λeβj
s.t.

∑
i∈Ij

uij + qj + αj + βj = 0 (πj) (18b)

uij − Ūij ≤ 0 ∀i (γMij ) (18c)

¯
Uij − uij ≤ 0 ∀i (γmij ) (18d)

− αj ≤ 0 (γaj ) (18e)

− βj ≤ 0 (γbj ) (18f)

where λc is the price for trading within the community and
λi and λe respectively the price for buying and selling energy
with the market operator. At the same time, the community
manager, since non-profit, aims for the minimization of the
costs related to internal common agreements and interface with
market or system operator. It follows that

min
Γ

g(qimp, qimp) (19a)

s.t. − qimp ≤ 0 (γi) (19b)
− qexp ≤ 0 (γe) (19c)

Under the assumption of perfect competition, we can model
market constraints as

n∑
j=1

qj = 0 (λc) (20a)

n∑
j=1

αj − qimp = 0 (λi) (20b)

n∑
j=1

βj − qexp = 0 (λe) (20c)

The KKT conditions of the equilibrium problem (18)-(20)
become

ψ′ij(uij) + πj + γMij − γmij = 0 ∀i, j (21a)
∂h

∂qj
+ πj + λc = 0 ∀j (21b)

∂h

∂αj
+ πj + λi − γaj = 0 ∀j (21c)

∂h

∂βj
+ πj + λe − γbj = 0 ∀j (21d)
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∑
i∈Ij

uij + qj + αj + βj = 0 ∀j (21e)

0 ≤ Ūij − uij ⊥ γMij ≥ 0 ∀i, j (21f)

0 ≤ uij −
¯
Uij ⊥ γmij ≥ 0 ∀i, j (21g)

0 ≤ αj ⊥ γaj ≥ 0 ∀j (21h)

0 ≤ βj ⊥ γbj ≥ 0 ∀j (21i)

∂g

∂qimp
− λi + γi = 0 (21j)

∂g

∂qexp
− λe + γe = 0 (21k)

0 ≤ qimp ⊥ γi ≥ 0 (21l)
0 ≤ qexp ⊥ γe ≥ 0 (21m)

n∑
j=1

qj = 0 (21n)

n∑
j=1

αj − qimp = 0 (21o)

n∑
j=1

βj − qexp = 0 (21p)

As the two sets of KKT conditions, (17) and (21), are
equal, this demonstrates that the optimization problem (16)
for the market-based operation of energy collectives and the
equilibrium problem (18)-(20) solve the same problem. This
translates to ensuring market efficiency.
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