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Abstract

Moving from fossil fuel-based electricity generation to renewable electricity generation is at the heart
of current developments in power sectors worldwide. In this context, synergy assessment between
renewable electricity sources is of great significance for local and regional power planning. Here we use
synergy metrics (stability coefficient (Cy,,) and normalised Pearson correlation coefficient () to a
state-of-the-art reanalysis product from 2011-2020 to preliminarily assess solar-wind synergies
globally on diurnal and seasonal time scales assuming equal installed capacities of solar and wind
hybrid system. Our results suggest that medium-to-good diurnal and seasonal complementarities
between solar photovoltaic and wind power potential are the norm, rather than the exception, which
could help many countries in achieving balanced power mixes based on renewable resources. Our
results also suggest that many regions in the tropics and sub tropics may need to explore synergic
benefits of other renewables in addition to solar power. An open-access application is now available on
the European Copernicus cloud to explore solar and wind synergies on diurnal and seasonal time
scales worldwide.

1. Introduction

A global transition from fossil fuel-based energy to renewable energies could enable drastic reductions of CO,
emissions, which is necessary to limit global warming to well below 2 °C, preferably to 1.5 °C, as decided in the
Paris Agreement [1]. In this context, meeting electricity demand while supporting climate change mitigation is a
central challenge for power sectors, which constitute an important component of the global energy sector.

Due to the cost-competitive and environment-friendly nature of renewable electricity (RE) [2-5],
specifically from solar photovoltaic (PV) and wind power, RE has gained substantial attention as an alternative to
fossil fuel-based power generation and supply to electricity grids around the world [6]. According to the 2021
annual report on renewable capacity statistics by the International Renewable Energy Agency (IRENA), more
than 80% of all new electricity capacity added in 2020 was for renewable power generation, with solar PV and
wind power plants accounting for 91% of this added RE capacity [7].

However, the variable and uncertain nature of wind and solar resources makes it difficult to design and
operate a highly reliable electricity system that is majorly dependent on these renewable resources [5, 8, 9]. This
variability leads to mismatches between supply and demand of electricity, which calls for electricity storage and
hence require additional investments. According to literature, one potential solution to reduce storage needs is
the hybridization of different RE sources [4], such as solar-wind hybridization, since mixes of RE sources may
manifest alower variability or be better aligned with demand than the individual RE sources constituting the mix
[3, 10]. This has led to the concept of RE complementarity or synergy, which entails RE sources partially
balancing each other [4, 11-13]. RE synergy can impact power systems by reducing electricity supply variability,

© 2022 The Author(s). Published by IOP Publishing Ltd
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providing a supply and demand power balance, and thus potentially helping in lowering system cost (by
reducing the dependence on storage) [3-5, 10, 14—19].

Synergy may exist both in the time domain (temporal complementarity) and in the space domain (spatial
complementarity). A comprehensive assessment of solar-wind synergies thus requires a focus on various aspects
of spatiotemporal complementarity [4]. In this work, we concentrate on spatiotemporal synergies between solar
PV and wind power across all global land and covering both diurnal (hour-to-hour) and seasonal (month-to-
month) synergies.

To quantify solar and wind synergy, various studies use statistical measures such as (anti)correlation-based
[4, 10,20-22] or variability-based [3, 10, 17, 18] metrics between the solar and wind power profiles. A recent
study [3] showed that when such metrics are applied on hourly timescales, they typically fail to put realistic
constraints on capacity factors of the considered resources. For example, if wind power potential cycle balances
solar PV potential cycle—thus more wind at night than during the day—but the wind is weak, the diurnal (anti)
correlation coefficients scores high for such complementarity, but one would need to increase the installed
capacities of wind turbines to unrealistic levels to generate relevant power for balancing. This constraint led to
the development of a new metric, the stability coefficient, which is a measure of the added value of wind power to
balance daily electric power production from solar PV. This metric was used to assess hourly synergies of solar
PV and wind power potential in West Africa using climate data from the state-of-the-art ERA5 reanalysis. The
results obtained from this research showed that, if deployed smartly alongside solar PV, wind power could play a
more important role in hybrid power systems in West Africa than maps of average wind resource strength would
suggest, thanks to mutual resource complementarity on day-night scales.

On seasonal time scales, a widely used (anti)-correlation metric, the Pearson correlation coefficient, has been
employed in several studies to assess spatiotemporal synergies between solar PV and wind, as found e.g. in the
review of [4]. However, case studies on the assessment of spatiotemporal complementarity between solar and
wind using the Pearson correlation tend to be highly region-specific. In addition, most literature has
concentrated on Northern America, Brazil, Europe, West Africa, Australia, and China [4]. This spatial bias leaves
large regions in Latin America, Africa, and Asia uncharted.

In this study, we aim to provide a comprehensive overview of solar-wind complementarity across a range of
assumptions by extending previous regional spatiotemporal synergy analyses on hourly and monthly timescales
between solar PV and wind power to the entire world (land only) using the stability coefficient and Pearson
correlation coefficient respectively. We deliberately focus on land and assume that offshore solar PV power plays
anegligible role in the energy transition. Understanding temporal and spatial distributions of renewable
synergies on a global scale will not only be valuable in terms of communicating patterns and indicating the
strength of local and regional synergies but may also play an important role in preliminary local and regional
power planning and policy formulation. More specifically, we aim at answering the following research
questions:

1. What is the global distribution of diurnal and seasonal synergy assuming equal installed capacities of solar
PV and wind turbines (capacity ratio of 1:1)?

2.Is diurnal and seasonal solar-wind synergy in regions with reasonable solar and wind resource strength the
norm or exception?

We also make use of the new European Copernicus cloud, the Climate Data Store (CDS) [23], to create an
open-access software to investigate spatiotemporal solar PV and wind synergy.

The rest of the paper is organised as follows: section 2 focuses on the data and methodological framework
used in the assessment of solar-wind synergy, section 3 presents major findings and discuss them in the light of
available literature and section 4 presents the conclusion of the analysis.

2. Method

2.1. Analysis framework and RELITE software

Figure | summarises the framework used for synergy analysis and forms the framework for developing the
synergy software (Renewable Electricity Synergy (RELITE)). The framework consists of three levels. In the first
level, ERAS5 fields are imported from the European Climate Data store and subsequently converted into capacity
factors (second level). Third level involves power mixes and synergy analysis using stability coefficient (Cg,p,) and
normalised Pearson correlation coefficient (r)) for diurnal and seasonal synergy analysis respectively. Here
Installed capacity of solar and wind power are mixed according to any desired ratio (n:m). This study assumes a
1:1 capacity ratio. Setting this installed capacity ratio is specifically required for stability coefficient estimation.
Hereafter, each of the three steps are described in detail.
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Figure 1. Schematic diagram for assessment framework and software development.

2.1.1. ERA5 data
Many studies report on the high quality of ERA5 data compared to direct measurements, which has led to its
widespread use in energy and power modelling [3, 24-28].

To enable the estimation of solar photovoltaic and wind capacity factor, the following ERA5 data [28] are
retrieved at hourly temporal resolution and at a spatial resolution of 0.25° from Climate Data Store:

1. Solar surface shortwave radiation downwards (ssrd) which correspond to Global Horizontal Irradiation, G,
(Wm™?)

2.2-m temperature (K).

3. Wind speed, V (ms™1), at a hub height of 117 m is estimated from the atmospheric ERA-5 zonal (u) and
meridional (v) wind speeds at 100 m and 10 m. The equation for estimating wind speed at the desired hub
height can be found in [3].

Due to computational constraint for individual users on the Copernicus cloud, all meteorological fields are
aggregated spatially to a 3° resolution and the time period is limited to 2011-2020 for global-scale (land-only)
analysis presented in this study. In spite of the limited spatial resolution and temporal extent, results from this
assessment are of importance for a large-scale assessment for solar wind complementarity. Moreover, users of
our cloud-based software can easily perform similar analyses at higher spatial resolution and longer time periods
over selected regions (including offshore ones).

2.1.2. Calculation of capacity factor (CF)

Capacity factors for two renewable technologies are calculated in this study: monocrystalline silicon-based solar
PV cells and Vestas V126-3.3 wind turbines. For wind CF, the software allows for any wind turbine (with unique
cut-in, nominal and cut-out wind speeds) to be used. The solar CF calculation is currently limited to
monocrystalline silicon cells considering a fixed, flat mounting of solar panels.

2.1.2.1. Solar PV cells

Solar cell efficiency, ..y, is modelled as a function of Global Horizontal Irradiation, denoted G, and ambient air
temperature T, as shown by the equation (1) [3, 29]. We recognize that this selected approach is quite simplistic

and while system-specific improvements are possible, they are unlikely to have a major impact on the outcomes
and findings.

Neet(G> T) = Nypop [1 — B(Leen (G, T) — Trp) + 7y log 10(G)] (¢Y)

where 7),.¢is the reference efficiency and coefficients and vy reflect the cell material and structure. The
characteristic value = 0.0045 and «y = 0.1 for monocrystalline silicon cells are used [3, 29]. The reference
temperature T¢is 25 °C, and the cell temperature T, is calculated as a function of G and T by equation (2).

Tar(G, T) = a+ T + G (@)

where, the constants ¢,_3 also depend on cell properties. Values for ¢,_3 used are taken from [30] with
¢, = —3.75°C,c, = 1.14,¢; = 0.0175°Cm*W .
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Figure 2 . Power curve for Vestas V126-3.3 wind turbine. Reproduced from [3] © IOP Publishing Ltd. CC BY 3.0.

After the modelling of the cell efficiency, the solar PV capacity factor (CFs) is calculated by equation (3).

Cs: ncell(G’ T) - G (3)
nref . Gref

where, a reference irradiation of G,.f = 1000 Wm ™ *is considered as ‘peak sun’ [31]. It evident that the CF
equation is independent of the reference cell efficiency and eventually cancels out since it appears in both the
numerator and the denominator of equation (3). It is also important to note that influence from inverters are
neglected in this modelling approach.

2.1.2.2. Wind capacity factors

The wind CF (CF,,) for a Vestas V126-3.3 wind turbine is modelled with the power curve equation as presented
in equation (4) [3]. In this paper, we make the simplified assumption that this turbine is suitable for global
coverage and various regional weather and climatic conditions. CF,, is calculated based on the turbine’s hub

height as:
0, for V<V,
V: -V’
— for V, < VYV,
Ck, = {7y S VS T (4)
1, for V, <V KV
0, for V> V.

where Vi, = 3ms ™' is defined as the cut-in wind speed, V, = 12ms ' is the rated wind speed and V. = 22.5
ms ™' is the cut-off wind speed [32].

The Vestas V126-3.3 has a hub height of 117 m and rated power of 3.3 MW per turbine [32]. The power
curve equation used in estimating CF,, is shown in figure 2.

For modelling of the wind power, we do not consider influence from low temperature shutoff [33].

2.1.3. Synergy metric

2.1.3.1. Normalised pearson correlation coefficient (monthly analysis)

The Pearson correlation coefficient is a widely used metric to quantify the seasonal complementarity between RE
but in this study Pearson coefficient (equation (5)) has been normalised [10] to range from 0 to 1, where 0 refers
to positive correlation between solar and wind, 0.5 denotes no correlation, and 1 denotes maximum synergy
(negative correlation) between solar and wind power. Normalised Pearson correlation coefficient (r) is defined
as follows:
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Figure 3. Global map showing case study locations for solar PV and wind power synergy analysis. Black markers indicate location
coordinates (see table S1 in supplementary information A for numerical coordinates).

cov(CE, CE
r=0.5]1— M
oCFEoCE,
- = e (CE(® — CE)(CE, (1) — CF,)
2, CEO = TR [3, (CR,() — CF,)

= 3 (€)

Where CE, CF, are given paired generation time series of solar and wind capacity factors, CF denotes a yearly
average capacity factor, whereas covand o denotes covariance and standard deviation, respectively, and tis the
time step (monthly).

2.1.3.2. Stability coefficient (hourly analysis)
The stability coefficient (Cyap) as developed by [3] is used to assess diurnal synergies between solar PV and wind
power and is defined as:

Cv,mix
Coap = 1 — —— (6)

Cy,s

3 \/Zday(CFmix(t) - C_F mix)2 CF B

Cstah =1 — X = (7)
2y (CE(t) — CF 2 CF i
(n 4 m)

where C, is the coefficient of variation, subscripts s, w, mix denote solar, wind and hybrid mix, CF denotes
capacity factor, tis the time step (sub-daily) and CF denotes a daily average capacity factor. The results of Cqy, is
interpreted as follows; Cy,, = 0 indicates no synergy between RE and Cg,, = 1 means that there is maximum
synergy between RE (flat output profile of solar-wind combination). It important to note that the domain of
Cyap <1. As stated earlier, installed capacities of solar (n) and wind (m) is set to a 1:1 ratio in this study. This is
reflected in the calculation of CF,;, (equation (8)). It is already important to note that the software allows users
to choose any desired capacity ratio.

For the calculation of synergy metrics, geographical restrictions (60°S—-60°N; 180°W-180°E) are applied to
the exploitation of power from solar PV cells and wind turbines on a global scale. This then reduces the solar
potential to areas considered available and suitable for electricity production. Even though the polar regions may
be suitable for wind power exploitation, this restriction is done to make sure the matrix dimensions of wind and
solar CF agree for estimation of the synergy metrics.
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Figure 4. Global distribution of RE resource potential from 2011-2020 based on ERA5 data. (A) Annual average solar PV capacity
factor; (B) Annual average wind capacity factor. Solar PV and wind CF are calculated based on monocrystalline silicon cells and Vestas
V126-3.3 turbine respectively. Oceans and polar regions (above 60°N and below 60°S) are masked by white.

Table 1. Defined diurnal and seasonal synergy
threshold.

Diurnal and Seasonal Synergy Threshold

Cstab > 0.4 Good Diurnal Synergy
0.2 < Cgap < 04 Medium Diurnal Synergy
Cstab < 0.2 Bad Diurnal Synergy
r>0.7 Good Seasonal Synergy
05<r<0.7 Medium Seasonal Synergy
r<0.5 Bad Seasonal Synergy

2.2. Synergy performance for case study locations
Synergy performance across nine case study locations (figure 3) is studied. These case studies are selected

arbitrarily with the aim of covering a wide range of types of solar-wind complementarity on the considered time
scales.
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Figure 5. Global distribution of solar-wind synergy from 2011-2020. (A) Seasonal synergy: Annual average normalised Pearson
coefficient (r). (B) Diurnal synergy: Annual average stability coefficient (Cgap). Oceans and polar regions (above 60°N and below 60°S)
are masked by white.

Furthermore, characterization of case study locations into ‘good’, ‘medium’ and ‘bad’ diurnal and seasonal
synergies based on pre-defined Cg,, and r thresholds (table 1) is made. The selected thresholds are applied to the
annually averaged diurnal and seasonal synergies for the respective locations. This categorization is subsequently
extended to the entire globe including global analysis of 8 further variations of the selected threshold (see figures
S11-S12 (available online at stacks.iop.org/ERC/4 /055011 /mmedia) in supplementary information A) and
analyse the outcome. It is important to note here the selected threshold were chosen by the authors based on the
seasonal and diurnal profiles observed across the case studies, and that different thresholds may lead to
somewhat different results. In addition, we also categorise nonpolar regions with low solar or wind capacity
factor (where CF < 10% on an annual basis) as low resource areas’.

3. Results and discussion

3.1. Spatial distribution of average solar and wind potential

The average CF for monocrystalline silicon-based solar PV panels (figure 4(A)) highlights that the spatial
variability of the solar PV potential is mainly driven by the distribution of global horizontal irradiation with
minor dependence on temperature [2, 3,29, 30]. Good solar CF can be found in regions such as Africa, the
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Figure 6. Seasonal solar PV and wind power profile from 2011-2020 for nine case study locations. Full lines represent median monthly
capacity factors for solar PV (red) and wind (blue). Shaded uncertainty bands indicate the interquartile range.

Middle East, Northern Chile and its immediate neighbouring countries, Central and Northeastern Brazil,
Australia, Mexico, Western China, and Western USA.

The spatial distribution of wind CF calculated for Vestas V126-3.3 turbines [32] (figure 4(B)) shows that high
wind CF is mainly concentrated in the northern hemisphere and mid-to-high latitudes in the southern
hemisphere where prevailing wind speeds are high. Low wind power potential is concentrated in the tropics with
the minimum wind CF in the Amazon of South America and the Congo basin, corroborating earlier
studies [34, 35].

Exploitation of RE in regions with high CF can be considered advantageous in terms of high electricity yield
and favourable returns on investment. In practice, however, a major limitation such as capital investment and
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Figure 7. Diurnal solar and wind power profile by month from 2011-2020 for South West Australia. Full lines represent median
monthly capacity factors for solar PV (red) and wind (blue). Shaded uncertainty bands indicate the interquartile range.

physical access to certain location within regions with high resource potential may hinder full exploitation of
these resources.

3.2. Solar-wind synergies at the global scale

Next, we explore the seasonal complementary between solar PV and wind using the normalized Pearson
correlation coefficient (figure 5(A)). In addition, considering a hybrid solar PV and wind power system with
assumed equal installed capacity for both resources (capacity ratio of 1:1), we show the annual average
complementarity between solar PV and wind on diurnal time scale using the stability coefficient (figure 5(B)).

On seasonal time scales, notable regions with high synergy (r > 0.7) are Europe, Southern India, Canada,
USA (excluding the South Western USA), Western Russia, Kazakhstan, South Western China, and Northern
Australia (figure 5(A)). Notable regions with poor seasonal synergies (r < 0.5) are Southern Australia, Northern
India, North Western China, Pakistan, Afghanistan, and many regions in Sub-Saharan Africa (figure 5(A)). In
the latter regions, solar PV potential is high (figure 4(A)) but typically subjected to a much less pronounced
seasonality than wind power potential, lowering the scope for mutual complementarity.

On diurnal time scales, notable regions where high synergies (Cya, > 0.4) can be exploited are Central USA,
Eastern Canada, Northern Europe, Western Russia, Central Asia, Australia, Southern Argentina and various
regions of the Sahara and Sahel (figure 5(B)). Wind power potential is relatively strong over these regions and in
some cases has a complementary diurnal cycle to solar PV, with winds blowing more strongly during night- than
daytime. Regions with low wind power such as the Amazon in South America and Democratic Republic of the
Congo show bad solar-wind complementarity (Cgp, < 0.2) because wind power potential is too weak here to
achieve substantial balancing effects.

Exploitation of RE for large-scale grid feed-in in regions of good seasonal and diurnal synergies will mean
lower dependence on power storage. This will be beneficial in terms of costs resulting from storage deployment
needs. Several of these regions could also explore other RE sources in addition to solar PV and wind, such as
hydropower or biomass where available [12, 19, 36, 37].

3.3. Seasonal and hourly power profiles for case study locations

Northeast (N.E.) Germany shows the most pronounced complementarity (r = 0.87 £ 0.04) between solar PV
and wind on seasonal timescales compared to the other case study locations (figure 6; table 2). Even though
locations such as Central (C.) USA and Southwest (S.W.) Australia would have comparable or even better annual
average wind power yields (annual average wind CF of 37.9%(2.0pp) and 34.1%(1.0pp), respectively, as
compared to 30.4%(2.0pp) for N.E. Germany; see table 2), solar-wind complementarity appears relatively less
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Figure 8. Monthly averaged stability coefficient from 2011-2020 for South West Australia. The error bars represent standard
deviations across the study period.

Table 2. Annual averages of Solar CF, Wind CF, Normalised Pearson Correlation (r), and Stability Coefficient (Cg,p,) from 2011-2020. Case
studies are ordered from high to low normalised pearson correlation. Standard deviation in parenthesis. pp = percentage points.

Region Solar CF (%) Wind CF (%) r(—) Cstab (—)
North East (N.E.) Germany 12.7 (0.5pp) 30.4 (2.0pp) 0.87(0.04) 0.56 (0.02)
North West (N.W.) China 24.3 (0.4pp) 11.7 (1.0pp) 0.82(0.06) 0.16 (0.01)
Southern (S.) India 22.1(0.5pp) 12.7 (1.0pp) 0.73(0.07) 0.32(0.02)
South West (S.W.) China 25.4(0.2pp) 14.6 (1.0pp) 0.69(0.05) 0.17(0.01)
Southern (S.) Paraguay 21.0(0.7pp) 11.9 (0.9pp) 0.69(0.13) 0.37(0.01)
Central (C.) USA 22.5(0.5pp) 37.9(2.0pp) 0.59(0.11) 0.55(0.01)
South East (S.E.) Algeria 26.5(0.3pp) 11.4(0.8pp) 0.33(0.13) 0.22(0.02)
South West (S.W.) Australia 24.7 (0.4pp) 34.1(1.0pp) 0.28 (0.11) 0.56(0.01)
Eastern (E.) Iran 24.3(0.2pp) 14.3 (2.0pp) 0.15(0.02) 0.19(0.02)

pronounced in those regions (r = 0.59 =+ 0.11and 0.28 £ 0.11 respectively). In contrast, in locations such as
Eastern (E.) Iran, solar and wind power do not have opposite seasonality and in fact peak in the same season
(figure 6), implying low seasonal synergy (r = 0.15 £ 0.02) [38, 39].

These results illustrate the clear impact of regional climate conditions on solar-wind synergies on seasonal
timescales, such as temperate maritime climates with pronounced winter-summer differences like N.E.
Germany, or monsoonal climates with rainy and dry seasons like Southern (S.) India. For instance, in S. India,
strong southwest monsoon wind causes an increase in wind power during the monsoon season (June-
September) with a decrease in solar power due to monsoon cloud cover (figure 6), leading to high seasonal
synergies (r = 0.73 £+ 0.07) [40].

Considering an exemplary subtropical location such as S.W. Australia (figure 7), it is evident that on average,
the diurnal cycle of wind power can make up for solar power deficits in the evenings and absence at night
throughout the year for S.W. Australia. This is due to strong available nighttime wind resources in the
southwestern part of Australia, balancing the strong daytime solar PV resource [41]. The diurnal profiles for the
stated location shows particularly high synergies in the summer months (December to February), since these
coincide with strong wind peaking at night, complementing solar PV (figure 7). Comparable solar-wind synergy
is also noted in the winter (June to August) due to strong and less variable wind power, even though solar power
is then relatively low (figure 7). Clearly, the seasonal profile of day-night synergies as quantified with the stability
coefficient has very low variability on average (see figure 8): there is little seasonality in the diurnal synergies. On
the other hand, the seasonal synergy between the two resources is relatively low (see table 2).

Strong day to night synergy of solar PV and wind power is also observed in temperate locations such as C.
USA and N.E Germany, with the latter also showing a pronounced diurnal wind power cycle (see supplementary
information A: figures S2 and S1 respectively) [42, 43]. On the contrary, even though S.W. China shows
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Figure 9. Global categorization of synergy performance for period 2011-2020. See table 1 for synergy metric threshold. Oceans and
polar regions (above 60°N and below 60°S) are masked by white. Low resource area (also masked white) is defined as nonpolar regions
with low solar or wind capacity factor (CF < 10% on an annual basis).

Table 3. Categorization of synergy performance for 9 exemplary focal locations.

Seasonal Synergy

Diurnal Synergy Good Medium Bad
Good N.E. Germany C.USA S.W. Australia
Medium S.India S. Paraguay S.E. Algeria
Bad N.W. China S.W. China E.Iran

pronounced diurnal wind cycles except in the summer months (June-September), wind and solar PV power
have similar diurnal profiles, leading to low diurnal synergies (see supplementary information A: figure S7) [44].

The spatiotemporal distribution of the day-to-night solar and wind synergy is more strongly driven by the
distribution of the wind resource than of the solar resource (see supplementary information A: figure S10). For
instance, locations with weak wind resources (S. India, S. Paraguay, S.E Algeria [45], N.W. China and E. Iran)
automatically reflect in low diurnal synergies (see figures S3—S6, S8 in supplementary information A). This is
because the spatiotemporal variability of wind power potential, and the corresponding range of hourly CF
values, is much more uneven across the globe than that of solar PV.

3.4. Categorizing synergy performance
Result from characterizing case study locations into ‘good’, ‘medium’ and ‘bad’ diurnal and seasonal synergies
based on pre-defined C,,,;, and r thresholds (table 1) is shown in table 3. This categorization of synergy
performance is subsequently extended to the entire globe (figure 9) with 8 further threshold variations (see
supplementary information A: figures S11-S12). As stated earlier, categorization of case studies and regions is
strictly dependent on the selected threshold and different thresholds may give somewhat different results.

Regions with both good diurnal and seasonal synergies include Northern Europe, Eastern Canada, Central
USA, Western Russia, Kazakhstan, and Northern Australia (figure 9). Overall, 14% of all land area is covered by
this category (see figure 10 and quadrant C in figure 11). Central Canada, most of Northern Africa, few regions in
Central Asia, Eastern Argentina, and North-eastern China are notable regions with good diurnal and medium
seasonal synergies (see figure 9). The fraction of land area covered by this category is 10% (see figure 10 and
quadrant B in figure 11). Most of the remaining regions are concentrated in the good diurnal and bad seasonal
synergy zone, land area fraction of 10% (figure 10 and quadrant A in figure 11). While a few regions show
medium diurnal with bad, medium and good seasonal synergies, (see figures 9 and 10 and quadrant D-Fin
figure 11), there are little to no regions in the bad diurnal with bad, medium, and good seasonal synergy zones
(see figure 10 and quadrant G-I in figure 11).

Simultaneous occurrence of bad daily and seasonal synergies would mean that even though solar and wind
resources would be available, synergy would be bad due to poor complementing profiles. Our results show that
such regions are extremely rare globally (0.32% of global land area, see figure 10 and quadrant G in figure 11), a
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Figure 11. Marginal plot distribution of stability coefficient (—) and normalised Pearson correlation coefficient (—). Red dash (black
dash) are threshold for bad (good) diurnal and seasonal synergies based on of stability coefficient and normalised Pearson correlation
coefficient respectively (see table 1). Quadrant A indicates all grid cells with good diurnal but bad seasonal synergies; B indicates all grid
cells with good diurnal but medium seasonal synergies; C indicates all grid cells with good diurnal and seasonal synergies; D indicates
all grid cells with medium diurnal but bad seasonal synergies; E indicates all grid cells with medium diurnal and seasonal synergies; F
indicates all grid cells with medium diurnal but good seasonal synergies; G indicates all grid cells with bad diurnal and seasonal
synergies; H indicates all grid cells with bad diurnal but medium seasonal synergies; I indicates all grid cells with bad diurnal and good

result which is largely insensitive to the choice of threshold values for Cy,, and r (see supplementary information
A: figures S11-S12). Thus, medium-to-good seasonal and diurnal complementarity between solar and wind is

the rule, rather than the exception, in regions with exploitable resources.

3.5. Limitations

Our analysis has important uncertainties and limitations. This study only focuses on the geographical limit of
exploring synergic benefits of solar and wind on land without any consideration of economic feasibility. In
addition, the use of simplified modelling approach of solar PV capacity factor (without consideration of
inverters), generalization of the wind turbine technology (without considerations of low temperature shut-off)
and spatial resolution for analysis may have significant effect on the distribution of solar and wind capacity
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factors respectively. The study also focuses only on the supply side of synergy analysis and assumes equal
installed capacity of hybrid solar and wind system, which may affect the distribution of synergies. Finally,
selected threshold specifically for the categorisation of regions into good, medium and bad synergies are
arbitrary and different threshold may have significant effect on the categorized distribution (especially regions in
the medium to good diurnal and seasonal synergic zones) (figure 9). Despite this simplifying assumption, results
from this study may be of importance for exploratory solar-wind synergic assessment before any detailed
analysis for a region or location is performed.

4. Conclusion

In this study, solar-wind synergies on seasonal and diurnal timescale across the globe have been investigated
across several range of assumptions using the normalized Pearson correlation coefficient (r) and the stability
coefficient (Cy,p,), respectively.

We analysed synergy patterns across nine case study locations including all types of daily and seasonal
synergy going from good to poor synergies. Finally, we demonstrated that in regions with reasonable resources,
complementarity between solar and wind is the norm rather than the exception. Even though categorisation of
regions is dependent on the power generation technology and choice of threshold for synergy metrics, they are
unlikely to change the overall prior conclusion of this study.

Effective exploitation of synergic power depends on local and regional demand profiles and a readily
available electricity grid. This study focuses on supply-side synergies: while considering demand profiles would
be beneficial for further exploring potential synergies or trade-offs, we believe it would engender large
uncertainty due to data availability challenges at regional to global scales. Also, regions may need to expand
existing grid and construct new power grids to unlock the hybrid solar PV-wind complementarity. Local and
regional power grid presence and expansion is beyond the scope of this study and hence not considered.

This study is only a first step in evaluating more in-depth the synergetic roles that solar and wind power
could play in tandem on worldwide scales in future power systems—with important aspects such as
complementarity with demand profiles falling outside of the scope of this study. Yet, an important lesson that
could be retained from this analysis is the fact that the contributions of solar and wind power should perhaps, in
many regions of the world planning for an energy transition, be considered as a unit from the outset. Instead of
developing, for instance, separate assessments of national solar power potential or wind power potential, all
considerations related to these forms of variable renewable electricity generation could be done right from the
start with their potential synergies in mind. This can aid in the designing of robust hybrid energy systems and
diminish fears of diurnal or seasonal imbalances in the power mix.

Also, this study may contribute to determining smart mixes of RE resources for power systems planning,
when combined with local and regional environmental and socioeconomic policies.

An open-source software, Renewable Electricity Synergy (RELITE), used to run the analysis and generate the
results provided in this paper, is hosted on European Copernicus cloud and is publicly available via the link
(https://cds.climate.copernicus.eu/toolbox-editor/50153 /relite). With RELITE local, regional and global
synergy analysis can be performed considering different wind turbine technologies with defined cut-in, nominal
and cut-out wind speeds. Currently RELITE is limited to monocrystalline silicon-based solar PV cells for
synergy analysis. This limitation may be improved in future RELITE versions. The software manual can be found
in the supplementary information B. A free user account is required to access the software.
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