
2021
Web Almanac

HTTP Archive’s annual
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Introduction

Foreword ..iii

Part I. Page Content

Chapter 1: CSS ..1

Chapter 2: JavaScript ...63

Chapter 3: Markup ...95

Chapter 4: Structured Data .. 129

Chapter 5: Media ... 157

Chapter 6: WebAssembly .. 193

Chapter 7: Third Parties ... 217

Part II. User Experience

Chapter 8: SEO ... 247

Chapter 9: Accessibility .. 283

Chapter 10: Performance .. 329

Chapter 11: Privacy .. 357

Chapter 12: Security .. 391

Chapter 13: Mobile Web .. 429

Chapter 14: Capabilities ... 469

Chapter 15: PWA .. 493

Part III. Content Publishing

Chapter 16: CMS ... 525

Chapter 17: Ecommerce ... 559

Chapter 18: Jamstack .. 603

Part IV. Content Distribution

Chapter 19: Page Weight ... 631

Table of Contents

2021 Web Almanac by HTTP Archive i

Chapter 20: Resource Hints .. 643

Chapter 21: CDN ... 667

Chapter 22: Compression .. 687

Chapter 23: Caching .. 701

Chapter 24: HTTP ... 723

Appendices

Methodology .. 753

Contributors ... 763

Table of Contents

ii 2021 Web Almanac by HTTP Archive

Foreword
Three years ago I wondered to myself, plenty of tools can tell me how well-built my website is, but

where would I go to see the state of the web as a whole? As sophisticated as the HTTP Archive

dataset is, the answers it gives us can only be as useful as the questions we ask it. I’m a web

developer, but I’m not an expert in all areas of web development—no one is expected to be! But

collectively, we all have our own areas of expertise. Get enough of us together, and we can start

to ask the right questions about the state of the web that the HTTP Archive can answer in really

meaningful ways. That was the original idea behind the Web Almanac.

This year we’re back with the third edition, which was made possible by the hard work of more

than a hundred amazing people from the web community. I’d like to specifically call out a few

people for whom this is their third consecutive year contributing: Barry Pollard, David Fox, Paul

Calvano, Brian Kardell, Doug Sillars, Eric Portis, Thomas Steiner, Robin Marx, Alan Kent, and

Abby Tsai. I owe every contributor an enormous debt of gratitude for volunteering their time to

this project, but especially these 10 people who have been a part of it since the beginning.

The 2021 edition consists of a comprehensive lineup of 24 chapters, including two that we’re

excited to cover for the first time: Structured Data and WebAssembly. These new chapters help

us expand the scope of the Web Almanac, which educates our reader base about a more diverse

range of topics and equips even more specialized groups with actionable data. Ultimately, that’s

why we do it: we hope that our research can be utilized by the web community as a shared

source of truth to meaningfully improve the ecosystem. If you find this resource as valuable as

we do, we’d love it if you shared it with other people who are interested in the state of the web.

Together, let’s use this data as a forcing function for positive change.

— Rick Viscomi, Web Almanac Editor-in-Chief

Foreword

2021 Web Almanac by HTTP Archive iii

http://127.0.0.1:8080/en/2021/structured-data
http://127.0.0.1:8080/en/2021/webassembly

iv 2021 Web Almanac by HTTP Archive

Part I Chapter 1

CSS

Written by Eric A. Meyer and Shuvam Manna
Reviewed by Chris Lilley, Jens Oliver Meiert, Estelle Weyl, Brian Kardell, Adam Argyle, and Lea Verou
Analyzed by Rick Viscomi
Edited by Shaina Hantsis

Introduction

CSS (Cascading Style Sheets) is one of the three main pillars for building pages on the

web—with HTML, used to define the structure; and JavaScript, used to specify behavior and

interactions, completing the triumvirate.

Compared to last edition, the 2021 Web Almanac offers a deeper insight into how the use of

CSS differs in the realm of what we all think we need versus what we actually see in production.

As the calls for more robust CSS features and the challenge of centering a <div> with CSS

kept making the rounds on our blog posts, conference talks, and Twitter chatter, pages around

the web offered us vastly contradicting results, betraying the fact that CSS has, perhaps,

become old enough to put more thought on staying stable instead of going wild with the zaniest

of toys.

While CSS-in-JS adoption grew to 3% of all pages crawled (a 1 percentage point jump from last

year), cutting-edge Houdini features are still mostly confined to tutorials and example galleries.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 1

Responsiveness continued to be one of most engrossing priorities, with max-width and min-
width being the top media queries, and calc() being the top CSS function most commonly in

use to determine widths.

As users continue to throng to the web, let’s jump into the data that would give us a better

insight into how we have been faring in painting the internet—a place that is a second home, a

workspace, a garage, or a rabbit hole for the rest of us.

Usage

It isn’t the heaviest component of most pages, but CSS—like the rest of the web—continues to

grow in size from year to year. The median web page loads around 70 KB of CSS, and at the

upper end, the average size is just over a quarter of a megabyte. Compared to 2020, the median

total CSS weight rose about 7.9%, and the 90th percentile just under 7%, while preserving the

pattern seen last year that mobile CSS is a little smaller than desktop CSS across all percentiles.

Not every page was so constrained: the page with the greatest CSS weight loaded 64,628 KB.

The biggest mobile CSS weight seems positively svelte in comparison: only 17,823 KB.

As in 2020, it was found that page weight wasn’t significantly driven by preprocessors. 17% of

desktop pages and 16.5% of mobile pages included sourcemaps, up slightly from 15% last year.

The consistent share of CSS including sourcemaps seems to indicate that the sourcemap share

Figure 1.1. Distribution of stylesheet transfer sizes per page.

Part I Chapter 1 : CSS

2 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/stylesheet-transfer-size.png
https://almanac.httparchive.org/static/images/2021/css/stylesheet-transfer-size.png

is due more to build tool usage than sourcemap adoption, as we would expect to see much

bigger year-over-year changes to sourcemap usage otherwise.

As for what kinds of sourcemaps were used, the numbers were largely consistent with last year:

While this could be taken as evidence that Sass continues to gain ground over Less, the changes

are small enough that it’s difficult to call them significant, statistically or otherwise. Time, as

always, will tell.

In terms of the average number of stylesheets per page, whether embedded or external, the

numbers this year are up only slightly from last year. The 50th through 90th percentiles went

up by one each, while the 10th and 25th percentiles didn’t budge.

Figure 1.2. Sourcemap types in 2021 versus 2020.

Sourcemap type 2020 2021

CSS files 45% 45%

Sass 34% 37%

Less 21% 17%

Figure 1.3. Distribution of the number of stylesheets per page.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 3

https://almanac.httparchive.org/static/images/2021/css/stylesheets-per-page.png
https://almanac.httparchive.org/static/images/2021/css/stylesheets-per-page.png

Incredibly, this year’s record for the largest number of external stylesheets beat last year’s by

nearly a factor of two: 2,368 versus 1,379 in 2020. Whoever’s done this, we beg you—combine

some files and give your server a rest!

Number of stylesheets is one thing, but what about the number of actual style rules? Compared

to last year, the lower percentiles rose a bit, while the highest barely budged. What is different

in 2021 versus 2020 is that across nearly all percentiles, desktop pages have more rules on

average than do mobile pages.

Selectors and the cascade

Understanding cascade is an incredibly important part of working with CSS. Even more so for

instances when you’d see that the styles you had written for an element are not working at all.

CSS offers a number of ways of applying styles to pages, from classes, ids and using the all-

important cascade to avoid duplicating styles.

Figure 1.4. The largest number of external stylesheets loaded by a page.

2,368

Figure 1.5. Distribution of the total number of style rules per page.

Part I Chapter 1 : CSS

4 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/rules-per-page.png
https://almanac.httparchive.org/static/images/2021/css/rules-per-page.png

Class names

Much like last year, the most popular class name on the web is active , and the fa , fa-*
(the Font Awesome prefix), and wp-* (the WordPress prefix) class names make very strong

showings. selected and disabled switched places in the lineup compared to last year, but

the most heartening change was a 5% drop for clearfix , a sign that float-based layout

continues to wane.

We were also heartened to see the placement of sr-only-focusable , which is a Bootstrap

Figure 1.6. The most popular class names.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 5

https://almanac.httparchive.org/static/images/2021/css/most-popular-class-names.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-class-names.png

accessibility feature. It causes an element to be placed off-screen, yet remains accessible to

screen readers.

IDs

Pages continue to use IDs, and at about the same rate as seen in 2020. Even the list of popular

ID names is consistent: content sits in the top spot at about 14% of pages, followed by

footer and header . These latter two IDs dropped about a percent versus last year, which

isn’t really enough to say anything definitive about them other than, developers should replace

them with the corresponding HTML elements <header> and <footer> whenever possible.

The IDs starting with rc- are part of Google’s reCAPTCHA system, most versions of which are

inaccessible in various ways1.

Figure 1.7. The most popular ID names.

1. https://www.w3.org/TR/turingtest/#the-google-recaptcha

Part I Chapter 1 : CSS

6 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-id-names.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-id-names.png
https://www.w3.org/TR/turingtest/#the-google-recaptcha
https://www.w3.org/TR/turingtest/#the-google-recaptcha

Attribute selectors

The most popular attribute selector continues to be type , which is most likely to be used in

selecting form controls like checkboxes, radio buttons, text inputs, and so on.

Pseudo-classes and -elements

The ranking and distribution of both pseudo-classes and pseudo-elements was not greatly

changed from the 2020 Web Almanac. A few rankings changed, but overall, things seemed

highly static. Whether this represents a solidification of common practice, a snapshot of

designer interests, or simply the nature of the analysis, is open to debate.

Figure 1.8. The most popular attribute selectors.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 7

https://almanac.httparchive.org/static/images/2021/css/most-popular-attribute-selectors.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-attribute-selectors.png

Just as in 2020, the user-action pseudo-classes :hover , :focus , and :active took the top

three spots, with all of them appearing in a minimum of two-thirds of all pages. Structural

pseudo-classes put in a number of appearances, but one of the most interesting changes was

:not() , the negation pseudo-class, becoming more popular than :visited and achieving a

50% share of pages.

One thing we did check specifically this year was the use of :focus-visible , a way to style

elements in focus in a way that better matches user expectations. This capability landed in

Chromium in 2020, Firefox in January 2021, and (as of publication) is available in Safari 15

behind an experimental flag. Likely reflecting its recent implementation status, it appeared in

less than 1% of the pages analyzed. It will be interesting to see if that number changes over the

next few years.

Figure 1.9. The most popular pseudo-classes.

Part I Chapter 1 : CSS

8 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-pseudo-classes.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-pseudo-classes.png
https://developer.mozilla.org/docs/Web/CSS/:focus-visible
https://developer.mozilla.org/docs/Web/CSS/:focus-visible
https://developer.mozilla.org/docs/Web/CSS/:focus-visible

Most of the pseudo-elements in use are browser-specific ways of selecting things like specific

interface components, parts of browser chrome, or highlighted text. Once we filtered those out,

we found that ::first-letter is used on a very small number of pages, but still many more

than ::first-line , which didn’t make it onto the chart at all. ::marker , a way of selecting

list item markers like bullets or counters in an ordered list, has much less than 1% page share,

yet still made it onto the list. We should note here that cross-browser support for ::marker is

relatively new2 (October 2020). It will be interesting to see if use increases over the next few

years.

Figure 1.10. The most popular unprefixed pseudo-elements.

2. https://caniuse.com/css-marker-pseudo

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 9

https://almanac.httparchive.org/static/images/2021/css/most-popular-unprefixed-pseudo-elements.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-unprefixed-pseudo-elements.png
https://caniuse.com/css-marker-pseudo
https://caniuse.com/css-marker-pseudo

!important

That old battleaxe !important maintains a toehold on the web, with its share of marked rules

hardly changing at all compared to the 2020 Web Almanac.

If that seems like a lot, hold on to your IDEs: we found a mobile page with 17,990 rules marked

!important ! That just edged out the most-important desktop page, which had 17,648

specificity-busting rules. We sincerely, truly hope these were the result of a script or

preprocessor gone wrong.

As for what !important gets applied to, as with last year, it’s display , with the rest of the

chart falling in the same order as in 2020—with the exception of the last item on the chart,

where position bumped off float .

Figure 1.11. Distribution of the percentage of page rules using !important .

Part I Chapter 1 : CSS

10 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/important-properties-per-page.png
https://almanac.httparchive.org/static/images/2021/css/important-properties-per-page.png

Selector specificity

Many CSS methodologies recommend that authors restrict themselves to single classes in

order to squash all selectors’ specificity into a single layer that is more easily managed. The

BEM methodology3, for example, was found on 34% of all pages. The 10th percentile of median

selector specificity shows further evidence of this type of thinking, where both desktop and

Figure 1.12. The most popular properties targeted by !important .

Figure 1.13. Distribution of the median selector specificity per page.

Percentile Desktop Mobile

10 0,1,0 0,1,0

25 0,2,0 0,1,3 (up 0,0,1)

50 0,2,0 0,2,0

75 0,2,0 0,2,0

90 0,3,0 0,3,0

3. https://en.bem.info/methodology/css/

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 11

https://almanac.httparchive.org/static/images/2021/css/top-important-properties.png
https://almanac.httparchive.org/static/images/2021/css/top-important-properties.png
https://en.bem.info/methodology/css/

mobile specificity averages at (0,1,0). This is in line with last year’s findings, as are nearly all the

medians—with the exception of mobile’s 25th percentile, which rose a little bit.

Values and units

CSS provides multiple ways to specify values and units, either in set lengths or calculations

based on global keywords.

Lengths

Whatever you may think of pixel lengths, it’s still the most popular length unit by far, appearing

in about 71% of all pages. The second-place length unit, percentage, trailed pixels by an

overwhelming distance.

Figure 1.14. The most popular length units.

Part I Chapter 1 : CSS

12 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-length-units.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-length-units.png

Where things become interesting is in the breakdown of exactly how the various length units

are used. To pick one example, the most common length unit used on line-height is pixels,

followed by <number> values (which includes all instances of unitless zero length values).

em s are the most popular length unit for vertical-align and padding-inline-start .

The positive and negative figures given in parentheses next to the figures in this table show

change from 2020 results. In almost every property we analyzed, pixels became less popular as

compared to the uses of other length units, with just two exceptions. The biggest change by far

was in vertical-align , with an 11-point shift from pixels to em s as the unit of choice when

the supplied value was a length, as opposed to a keyword like baseline .

Figure 1.15. Distribution of length types per property.

Property px <number> em % rem pt

font-size (▼1%) 69% 2% (▼1%) 16% (▼1%) 5% (▲1%) 5% 2%

line-height (▼5%) 49% (▲3%) 34% (▲1%) 14% (▼1%) 2% (▲1%) 1% 0%

border-radius 65% (▼1%) 20% 3% 10% (▲2%) 2% 0%

border 71% (▲1%) 28% 2% 0% 0% 0%

text-indent (▼1%) 31% (▲1%) 52% 8% (▼1%) 8% 0% 0%

gap (▼8%) 13% (▲2%) 18% (▼1%) 0% 0%
(▲7%)

69%
0%

vertical-align
(▼11%)

18%
12%

(▲11%)

66%
4% 0% 0%

grid-gap (▲3%) 66% (▼1%) 10% 9% (▼1%) 0%
(▼2%)

14%
0%

padding-inline-
start

(▼7%) 26% (▲2%) 7% (▲4%) 66% 0% 0% 0%

mask-position 0% 0% (▼1%) 49%
(▲1%)

51%
0% 0%

margin-inline-start (▼7%) 31% (▲5%) 51% (▲1%) 15% (▲2%) 2% 1% 0%

margin-block-end (▲1%) 5% (▲7%) 38% (▼9%) 56% 0% (▲1%) 1% 0%

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 13

Although em maintains a huge dominance over rem when it comes to sizing fonts, there are

signs of change: there was a seven-point swing from em to rem between 2020 and 2021.

There are a few properties that allow bare <number> units (e.g., line-height), but

Figure 1.16. The most popular font-relative length units.

Figure 1.17. The units (or lack thereof) used on zero-length values.

Part I Chapter 1 : CSS

14 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-font-relative-units-of-length.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-font-relative-units-of-length.png
https://almanac.httparchive.org/static/images/2021/css/zero-lengths-by-unit.png
https://almanac.httparchive.org/static/images/2021/css/zero-lengths-by-unit.png

<length> values have a special case where a length of zero does not require a unit. When we

looked at all zero-length values, almost 88% of them omitted the unit. Nearly all of those zero

lengths that included a unit used pixels (0px). This was a nice result to see, since any length of

zero doesn’t need a unit and including one is fairly pointless. We hope the share of unitless zero

values will grow in the future.

Calculations

As in past years, the most popular usage of calc() is to set widths, although the share of

calc() values in width dropped a full 20 points as compared to 2020. This seems most

likely to reflect an expansion of calc() use in other properties, rather than a contraction of

its use for width .

Figure 1.18. The most popular properties using calc() functions.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 15

https://almanac.httparchive.org/static/images/2021/css/most-popular-properties-using-calc.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-properties-using-calc.png

Although pixel units didn’t shift at all in terms of their usage in calculations, percentages lost a

bit of ground compared to the long tail of other units, falling four points since 2020.

As with last year, when it comes to calculation operators, subtraction is the clear favorite, and

Figure 1.19. The most popular length units used in calc() functions.

Figure 1.20. The most popular operators used in calc() functions.

Part I Chapter 1 : CSS

16 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-units-using-calc.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-units-using-calc.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-operators-using-calc.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-operators-using-calc.png

barely shifted its share of usage. There were much bigger changes in the second and third spots,

where addition vaulted ahead of division, gaining six points while division dropped a similar

amount.

calc() values remain relatively simple, with the overwhelming preponderance of calculations

using two different units, such as to subtract pixels from the calculated result of a percent

value. A total of 99% of all calc() expressions use either one or two unit types.

Figure 1.21. The number of unique units used in calc() functions.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2021/css/units-per-calc-occurence.png
https://almanac.httparchive.org/static/images/2021/css/units-per-calc-occurence.png

Global keywords

The use of global keywords such as initial rose significantly as compared to the 2020 Web

Almanac. While inherit only gained a couple of points, initial rose about eight points,

and unset around 10 points. Even revert managed to lift itself up a point.

Figure 1.22. Usage of global keyword values.

Part I Chapter 1 : CSS

18 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/global-keyword-adoption.png
https://almanac.httparchive.org/static/images/2021/css/global-keyword-adoption.png

Colors

Despite the availability of a wide number of color value types, the #RRGGBB syntax that has

been with us since the days of Netscape 1.1 is still used in half of all color declarations. The CSS

innovation of the #RGB shorthand came in second, at a quarter of color values. In other words,

a solid 75% of all color values are expressed using hexadecimal RGB syntax. The third-place

format, rgba() , points to the likely reason authors go beyond the classic hexadecimal format:

to get access to alpha values. (Indeed, though both their shares are tiny, hsla() is more

popular than hsl() , just as rgba() is much more common than plain rgb() .)

In color formats where the value has historically used commas inside a functional syntax—for

example, rgba(0, 0, 0, 1) —authors may now drop the commas and separate colors from

alpha with a slash (thus, rgb(0 0 0 / 1) . Since 2020, this comma-less syntax has doubled

its usage share, going from 0.12% to 0.25% of all functional color syntax.

Figure 1.23. The most popular color value formats.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2021/css/most-popular-color-formats.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-color-formats.png

Figure 1.24. The most popular named-color keyword values.

Keyword Desktop Mobile

transparent 82.24% 82.93%

white 7.97% 7.59%

black 2.44% 2.29%

red 2.23% 2.17%

currentColor 1.94% 2.03%

gray 0.68% 0.64%

silver 0.56% 0.55%

grey 0.39% 0.37%

green 0.32% 0.31%

blue 0.15% 0.12%

whitesmoke 0.12% 0.11%

orange 0.12% 0.10%

lightgray 0.08% 0.08%

lightgrey 0.07% 0.07%

yellow 0.07% 0.06%

gold 0.04% 0.03%

magenta 0.03% 0.03%

Background 0.02% 0.03%

Highlight 0.02% 0.03%

pink 0.03% 0.03%

Part I Chapter 1 : CSS

20 2021 Web Almanac by HTTP Archive

In the realm of just the named colors, transparent is still the faraway favorite, with around

82% of all named color keyword usage. The familiar and comfortable white , black , and

red total another 12% or so, and currentColor comes in fifth with a half-percent rise over

its 2020 numbers.

In last year’s Web Almanac, there was a note about “the once-deprecated—now partially un-

deprecated—system colors like Canvas and ThreeDDarkShadow ” being just barely in use.

This is still true, but oddly, there are now two such values in the top 20 instead of just one

(Highlight). That said, both occur in the realm of tiny, tiny numbers of pages, so such shifts

are probably unremarkable.

The usage of the display-p3 color space remains about as vanishingly small as was found in

2020, probably because it’s only supported in Safari (both desktop and mobile) as of this

writing. Desktop and mobile use roughly tripled, to 90 and 105 pages, respectively. In the cases

where color(display-p3) was used, it was with good reason: 79% of the colors expressed

using display-p3 on mobile were colors that cannot be represented in the sRGB color space.

Until the color() function becomes more widely supported by browsers, the web will remain

stuck in sRGB, which permits about two-thirds of the colors that screens can actually display.

Images

They say a picture is worth a thousand words, but byte wise, they often cost an order of

magnitude or two more. While there are a myriad of approaches to embedding images with

JavaScript, or include them with the HTML scaffolding, here we looked at how CSS-loaded

images are used.

Formats of images in CSS

First, here’s a breakdown of the image formats we looked for, and how often each format

appeared:

Figure 1.25. Percentage of display-p3 colors that lie outside the sRGB space.

79%

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 21

PNG was the clear favorite, with a surprisingly close clustering of GIF, SVG, and JPG following

behind. The fairly new WEBP format accounted for only 3.7% of images loaded by CSS, and the

tiny slice at the top corresponds to unrecognized values and the ICO format.

We did not attempt to determine whether any of the images were animated.

Please also note that this analysis only covers the images loaded by CSS: we did not check the

HTML to see what was being loaded there. Thus, the following results cannot be taken as a

metric of how heavy web pages are, or even how heavy CSS is or is not. It can only show how

much CSS-loaded images contribute to a page’s total weight.

Figure 1.26. Distribution of the formats of external images loaded via CSS.

Part I Chapter 1 : CSS

22 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/css-initiated-image-formats.png
https://almanac.httparchive.org/static/images/2021/css/css-initiated-image-formats.png

Number of images in CSS

We found that most CSS doesn’t result in a lot of image loads: the lower two percentiles came in

at one image each, and even the 90th percentile hovered around 10 images, across all image

types.

We did find one site where the desktop CSS loaded 6,088 PNG images. The mobile version of

the site actually added an image, bringing it to 6,089 PNGs. We hope they were all small and

color-indexed for efficiency’s sake.

Weight of images in CSS

The number of images is one thing, but how much they weigh is at least as important—loading a

single 10 MB background is worse than loading ten 100 KB pictures, after all, even with server

compression factored in.

Figure 1.27. Distribution of the number of external images loaded via CSS.

Figure 1.28. The largest number of external images loaded by a page’s CSS.

6,089

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 23

https://almanac.httparchive.org/static/images/2021/css/number-of-images-loaded.png
https://almanac.httparchive.org/static/images/2021/css/number-of-images-loaded.png

All told, things were not as bad as we’d feared going in: the median page’s CSS loads a total of 16

KB or so in images. It was also encouraging to see that overall, mobile image loading via CSS was

consistently a bit lower than desktop—a sign that CSS developers do keep the limitations of

mobile contexts at least somewhat in mind.

Sometimes, anyway. We did find a page where the total weight of the images loaded by CSS was

a gargantuan 314,386.1 KB—a third of a gigabyte.

Figure 1.29. Distribution of the total weight in KB of external images loaded via CSS.

Figure 1.30. The heaviest total weight of images loaded via CSS, in KB.

314,386

Part I Chapter 1 : CSS

24 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/total-image-weight.png
https://almanac.httparchive.org/static/images/2021/css/total-image-weight.png

When we broke down the image weights by format, we discovered a fascinating tidbit: at the

90th percentile, GIF images were actually lighter on average than even SVG files.

It was also interesting, though perhaps not surprising, that the heaviest image format was JPG.

This is likely because JPG is favored for those big splashy photographs one so often sees across

the tops of home pages and so forth, and even with compression and other optimization tricks,

all those pixels do add up.

Gradients

The share of pages using CSS gradients was roughly the same as last year: 77% of desktop

pages and 76% of mobile pages. The properties on which they were used did change, however:

while still the overwhelming favorites, background and background-image were the

Figure 1.31. Distribution of the total weight in KB of external images loaded via CSS on mobile
pages, by image format.

Percentile JPG PNG GIF (other) SVG WebP

10 4.5 0.7 0.5 0.3 0.4 1.7

25 28.2 2.2 1.7 0.3 0.6 14.2

50 114.3 7.0 3.7 0.3 1.7 39.6

75 350.7 36.4 8.3 48.1 5.4 133.9

90 889.3 173.6 13.0 229.2 20.0 361.8

Figure 1.32. Percentage of properties given gradient image values.

Property Desktop Mobile

background 62% 62%

background-image 62% 61%

-webkit-mask-image 5% 5%

--* 1% 1%

mask-image 1% 1%

border-image 1% 1%

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 25

properties to which about 62% of gradients were assigned.

Linear gradients continue to be the clear favorite, maintaining the 5-to-1 lead over radial

gradients seen in the 2020 Web Almanac4.

When prefixed versions of gradients (e.g., -webkit-linear-gradient) were included, the

resulting graph looked basically the same as last year’s.

Some other things we found in analyzing gradient values:

• The median number of color stops in gradients is just two, except at the 90th

percentile, where the four stops was the median.

• Hard color stops—that is, gradients where two color stops were placed at the same

position—occurred in just over half of all gradients.

• Color-stop interpolation (a.k.a. “midpoints”) were used in 21% of all gradient

instances.

Figure 1.33. The most popular types of gradient image values.

4. https://almanac.httparchive.org/en/2020/css

Part I Chapter 1 : CSS

26 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-unprefixed-gradient-functions.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-unprefixed-gradient-functions.png
https://almanac.httparchive.org/en/2020/css

We also saw a dramatic reduction at the top end of gradient complexity. Last year, the gradient

with the largest number of color stops had 646 stops. This year, the winner had only 81 color

stops.

Layout

We have come a long, long way from using tables to create layouts on the web to a time when

we have a number of options to choose from—Flexbox, Grid, and Multicolumn, as well as old

chestnuts like floats, positioning and even CSS table properties. We did a simple search of

stylesheets to see which property and value combinations were present, and came up with the

following figures.

Figure 1.34. The linear gradient with the most color stops.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 27

https://almanac.httparchive.org/static/images/2021/css/most-color-stops.png
https://almanac.httparchive.org/static/images/2021/css/most-color-stops.png

Note that this doesn’t chart primary layout methods—we are not claiming here that 93% of the

pages we analyzed are laid out using absolute positioning! Rather, what the chart says is that

position: absolute appeared in the styles for 93% of the page we analyzed, even if that

was just to put an icon in a corner or place bits of content -9999px offscreen. Similarly,

display: grid may have appeared in 36% of page’s styles, but that doesn’t mean 37% of all

pages are Grid pages, just that the combination appeared somewhere in the stylesheet.

Figure 1.35. The most commonly-declared layout types.

Part I Chapter 1 : CSS

28 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/top-layout-methods.png
https://almanac.httparchive.org/static/images/2021/css/top-layout-methods.png

The rest of this section is where more in-depth analyses were done, looking not just for

property-value combinations, but for evidence of actual usage on pages.

Flexbox and Grid adoption

The adoption of Flexbox and grid continues to grow. In 2019, Flexbox adoption was 41%; in

2020, it was 63%. This year, Flexbox hit 71% on mobile and 73% on desktop. Grid, in the

meantime, has been doubling each year of the Web Almanac, from 2% to 4% and now 8%. Note

that, in contrast to the previous section, what is measured here is the percentage of pages that

are actually using Flexbox or Grid for layout, as opposed to the pages that simply have some

sort of Flexbox or Grid property in their stylesheet.

Usage of different Grid layout techniques

Digging into the various Grid properties, we discovered a few interesting patterns.

• About 15% of all Grid pages used grid-template-areas to define named areas

of the grid.

• When we looked for square brackets in Grid templates, which would indicate the

presence of named Grid lines, we found a little fewer than 10,000 pages out of the

seven million or so analyzed.

Figure 1.36. Adoption of Flexbox and Grid layout on mobile devices.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2021/css/flexbox-grid-adoption.png
https://almanac.httparchive.org/static/images/2021/css/flexbox-grid-adoption.png

We also analyzed Flexbox layouts to see which ones set the flex grow and shrink values to zero,

and then set all the flex item widths to be something static, like percentage or pixel widths.

These are referred to as “Grid-like Flexbox,” and we found that just over a quarter of all Flexbox

layouts met these criteria. Given the complexity of the analysis, it is entirely possible that we

missed many cases. Still, it seems clear that designers are strongly interested in grid-style

layouts, and this could drive migration to Grid in the coming years.

Multicolumn

Even though multicolumn layout is a bit fraught on the web, where it can force users to scroll

down to the bottom of a column and then back up to the top of the next column, we detected

multicolumn use on 20% of the pages we analyzed, which is a 5% rise over the 2020 Web

Almanac. We continue to be surprised to see it on so many pages, and even more surprised to

see its adoption increasing.

Figure 1.37. The percentage of pages using multicolumn layout.

20%

Part I Chapter 1 : CSS

30 2021 Web Almanac by HTTP Archive

Box sizing

The principles of the original W3C box model continue to be rejected: when we looked to see

how many pages were using box-sizing: border-box , it was an overwhelming 90%, up

around 5% from 2020. Almost half of all pages analyzed apply border-box sizing to every

element on the page via the universal selector (*). This “one sizing fitted to all” approach may

help explain why the median number of border-box declarations per page is so low across

the bottom three percentiles.

In addition, about a quarter of pages apply box-sizing to checkboxes and radio buttons.

Transitions and animations

Animations continue to be widely used, with the animation property appearing on 77% of all

mobile and 73% of all desktop pages analyzed. It’s even more popular cousin, transition , is

used on 85% of all mobile and 90% of all desktop pages.

Figure 1.38. Distribution of the median number of border-box declarations per page.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 31

https://almanac.httparchive.org/static/images/2021/css/border-box-declarations-per-page.png
https://almanac.httparchive.org/static/images/2021/css/border-box-declarations-per-page.png

Among those transitions, the most common application is to all animatable properties5 using the

all keyword (whether explicitly or by default), which occurred in 46% of the analyzed pages.

Just behind that is opacity , at 42% of all pages containing transitions.

Figure 1.39. The most popular properties given transition effects.

5. https://developer.mozilla.org/docs/Web/CSS/CSS_animated_properties

Part I Chapter 1 : CSS

32 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-transition-properties.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-transition-properties.png
https://developer.mozilla.org/docs/Web/CSS/CSS_animated_properties

We took a look at the duration and delay times of those transitions. Even at the 90th percentile,

the median transition duration was just half a second.

The highest median transition delay was 1.7 seconds, but even more interestingly, the 10th

Figure 1.40. Distribution of transition durations.

Figure 1.41. Distribution of transition delays.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 33

https://almanac.httparchive.org/static/images/2021/css/distribution-of-transition-durations.png
https://almanac.httparchive.org/static/images/2021/css/distribution-of-transition-durations.png
https://almanac.httparchive.org/static/images/2021/css/distribution-of-transition-delays.png
https://almanac.httparchive.org/static/images/2021/css/distribution-of-transition-delays.png

percentile median delay was about not quite one-third of a negative second, indicating that a

large number of transitions are started partway through the resulting animation (which is what

negative delays cause to happen).

A closer look at the range of transition durations and delays revealed some seriously lengthy

spans of time. The largest duration value we found was 9,999,999,999,999,996 seconds, which

corresponds to almost 317 million years. Put another way, if that duration were used in a

horizontal scroll transition of If the Moon Were Only 1 Pixel6, it would take just over two

centuries to scroll to the right by a single pixel. This, however, pales in comparison to the longest

transition delay we found: a value in milliseconds that equals not quite 31.7 quintillion years.

As for the timing functions used during the transitions, the clear leader is the default value,

ease . There’s a virtual tie for second between ease-in-out and linear , but the surprise

was our fourth-place finisher, cubic-bezier . This seems most likely to come from a library or

some sort of tool, because while it’s possible to learn how to construct cubic Bézier curves by

hand, very few people bother to do so (nor is there much reason why they should).

Okay, but what kinds of animations are being performed? To determine this, we classified

various animation labels by the type of animation being performed. For example, animations

labeled fa-spin , spin , spinner-spin , and so on were classified as “rotate” animations,

and these were the most popular.

Figure 1.42. Adoption of transition timing functions.

6. https://www.joshworth.com/dev/pixelspace/pixelspace_solarsystem.html

Part I Chapter 1 : CSS

34 2021 Web Almanac by HTTP Archive

https://www.joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
https://almanac.httparchive.org/static/images/2021/css/timing-functions.png
https://almanac.httparchive.org/static/images/2021/css/timing-functions.png

One reason for the high ranking of “unknown/other” is the animation label a , which was

around 6-7% of all named animations. (The most likely companion to these, b , had a 2%

prevalence.)

The weak showing of “move” and “slide” style animations might seem surprising but remember:

these are specifically types of animation . Transitions driven by the transition property

are not represented in this sample. It is highly likely that many simple movements (and fades)

are handled with transitions, and animation is reserved mostly for more complex effects.

Responsive design

Making a site that copes well with all the different screen sizes wherein you can now browse

the web has become significantly easier with the advent of built-in tools like Flexbox and Grid,

which are further enhanced by using media-queries.

Media features in use

When authors build their media queries, they most often test the width of the viewport. max-
width and min-width were the most popular queries by far, the same as in 2020. There was

no ranking change in the third and fourth place results either.

Figure 1.43. The most popular types of animation.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 35

https://almanac.httparchive.org/static/images/2021/css/animation-name-categories.png
https://almanac.httparchive.org/static/images/2021/css/animation-name-categories.png

Where we did see a notable change was in the ranking of the prefers-reduced-motion
query. This query placed 7th in 2020, with a share of 24%; this year, with a share of 32%, it’s up

to fifth, where it just missed edging out orientation .

We also saw newcomers come and go at the bottom of the list. pointer , a query which checks

to see if the display device’s primary input mechanism is a pointing device such as a mouse and

which placed 19th last year, fell off the chart as it slipped to 21st place. The hover media

feature, on the other hand, entered the chart at 20th place. hover is used to test if the display

device’s primary input mechanism can cause a hover state in elements on the page.

Figure 1.44. The most popular features used as media queries.

Part I Chapter 1 : CSS

36 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/media-query-features.png
https://almanac.httparchive.org/static/images/2021/css/media-query-features.png
https://developer.mozilla.org/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/docs/Web/CSS/@media/pointer
https://developer.mozilla.org/docs/Web/CSS/@media/hover
https://developer.mozilla.org/docs/Web/CSS/@media/hover
https://developer.mozilla.org/docs/Web/CSS/@media/hover

Both queries have a similar aim, which is (put simply) to figure out if the device being used to

display the page is mouse-driven or not. Combined with a mobile-first design philosophy, where

desktop styles are added to override the default mobile styling, one can see how queries like

pointer or hover would be useful. While it’s too soon to say if one or the other will become

dominant, the trends this year swung toward hover .

This year also saw the debut of prefers-color-scheme , coming in at 7%. This may be due to

iOS devices adding dark mode support since last year’s report, but in any event, it’s good to see

that designers are starting to take color scheme preferences into account.

Common breakpoints

As in 2020, the most common breakpoints by far are at 767 and 768 pixels, which correspond

suspiciously well with the resolution of an iPad in portrait mode. We found 767px was

overwhelmingly used as a maximum-width breakpoint and only rarely as a minimum-width

value. 786px , by contrast, was quite often used as both a minimum and maximum breakpoint.

Beyond the 767-768 range, the next most popular breakpoints were at 600 and 1,200 pixels,

and close behind that was 480 pixels.

Lest you think we converted all the breakpoint queries to pixels, we’re sorry to say we did not:

these are the straight values from stylesheets. Out of all the breakpoints we analyzed, the first

non-pixel value on the list is 48em , which came in at 76th on the ranking list, appearing in 1% of

Figure 1.45. The most popular media query breakpoints.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 37

https://almanac.httparchive.org/static/images/2021/css/most-popular-breakpoints.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-breakpoints.png

desktop and 2% of mobile styles. The next em-based value, 40em , is found in 85th place.

Properties inside media queries

So, what do authors actually style inside these media query blocks? The most often property to

set is display , followed closely by color , width , and height .

One of the most notable changes between 2020 and 2021 was the fall of font-size as a

property set inside media blocks. In 2020, it appeared in 73% of all media blocks, placing fifth

on the list. This year, it appeared in around 60% of all media blocks, coming in 12th on the list.

margin-right and margin-top had even bigger falls, going from 8th and 9th to 25th and

17th, respectively. These sorts of shifts strongly imply a change in a common framework or

piece of software—a change in the default WordPress theme would be one example, though we

cannot say if this is the exact source of the change.

Feature queries

Feature queries (@supports) continue to grow in usage. In 2019, 30% of pages were found to

use them, and last year it was 39%. In 2021, almost 48% of pages are using feature queries to

decide which CSS to apply in what contexts.

Figure 1.46. The most popular properties to be changed via media queries.

Part I Chapter 1 : CSS

38 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/most-popular-properties-used-in-media-queries.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-properties-used-in-media-queries.png

So, what do authors condition CSS upon? Sticky positioning was far and away the most popular

query, accounting for over half of all feature queries.

Only 3% of feature queries checked for Grid support, which translates to 261,406 pages

querying Grid support. Given that we found grid layout in use on 2.7 million mobile pages and

2.3 million desktop pages, if our numbers are accurate, it appears that the vast majority of Grid

layouts are deployed without fallbacks.

Figure 1.47. The most popular CSS features to be queried with @supports .

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 39

https://almanac.httparchive.org/static/images/2021/css/most-popular-features-queried.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-features-queried.png

Custom properties

Over the three years of the Web Almanac, custom properties (also known as CSS variables)

have seen one of the greatest surges in usage. In 2019, usage was around 5% of all sites, and

last year that had shot up to nearly 20% mobile and 15% desktop. This year, we found custom

properties being defined on 28.6% of all mobile pages, and 28.3% of desktop pages. Even more,

we found that 35.2% of mobile and 35.6% of desktop pages contained at least one var()
function value.

Figure 1.48. Change in custom property usage, 2019-2021.

Part I Chapter 1 : CSS

40 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/custom-property-usage.png
https://almanac.httparchive.org/static/images/2021/css/custom-property-usage.png

Naming

The first thing we checked was, “What are developers calling their custom properties?” As it

turned out, the prevalence of WordPress came out here, with the top entry being a link-

coloring custom property defined by the WP core.

After that, a lot of color names were found. It might seem odd that anyone would need to define

a custom value for --blue when the named color blue is sitting right there, but in practice,

developers are assigning custom shades to their basic color names. So rather than --blue:
blue , we see declarations like --blue: #3030EA .

Figure 1.49. The most popular custom property names.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2021/css/custom-property-names.png
https://almanac.httparchive.org/static/images/2021/css/custom-property-names.png

Usage

In addition to all the custom properties named after colors, the four most popular properties to

be the recipients of custom-property values (using the var() function) are all setting color in

one way or another.

Figure 1.50. The most popular properties to be given a custom-property value.

Part I Chapter 1 : CSS

42 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/custom-property-properties.png
https://almanac.httparchive.org/static/images/2021/css/custom-property-properties.png

Each custom property gets a CSS value of one type or another. For example, --red: #EF2143
is assigning a color value to --red , whereas --multiplier: 2.5 is assigning a number

value. We found that the most popular value type was colors, followed by dimensions (lengths),

and then fonts families, whether singly or in groups.

Complexity

It’s possible to include custom properties in the values of other custom properties. Consider

this example from the 2020 Web Almanac:

:root {

 --base-hue: 335; /* depth = 0 */

 --base-color: hsl(var(--base-hue) 90% 50%); /* depth = 1 */

 --background: linear-gradient(var(--base-color), black); /* depth

= 2 */

}

As the comments in the previous example show, the more of these sub-references are chained

together, the greater the depth of the custom property.

Figure 1.51. Distribution of types of custom property values.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2021/css/custom-property-value-types.png
https://almanac.httparchive.org/static/images/2021/css/custom-property-value-types.png

Perhaps unsurprisingly, the clear majority of custom properties had a value depth of zero: they

did not include the values of other custom properties in their own values. Nearly a third have

one level of depth, and beyond that, there are almost no custom-property values with a depth

of two or more.

As in 2020, we also checked the selectors in which custom-property values were used. Almost

60% were set on the root element (using either the :root or html selectors), and around 5%

were applied to the <body> element. The rest were applied to some descendant of the root

element other than <body> . This means around two-thirds of all custom properties are used

as what are, in effect, global constants. This is in line with the results seen last year.

Internationalization

English is written horizontally, and the characters are read from left to right. But for languages

such as Arabic, Hebrew and Urdu, among others, are written right to left and then there are

languages and scripts—such as Mongolian, Chinese, and Japanese—which can be written in

vertical lines, from top to bottom. Owing to this, things can get quite complicated. Both HTML

and CSS provide ways to handle this.

Figure 1.52. Distribution of median custom property depth.

Part I Chapter 1 : CSS

44 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/custom-property-depth.png
https://almanac.httparchive.org/static/images/2021/css/custom-property-depth.png

Direction

Text direction can be explicitly enforced using the CSS property direction . We found it in

use on the <html> element in 11% of all pages, and on the <body> element on 3% of pages.

(Note that there may be overlap there, as we did not check for duplicate results.)

Of those pages that used CSS to set direction, 92% of <html> elements and 82% of <body>
elements were set to ltr (left-to-right). Overall, we found rtl (right-to-left) used on only 9%

of pages that set a direction in CSS. This is more or less to be expected, given that most

languages are not right-to-left.

Logical and physical properties

Another CSS feature useful for internationalization are the “logical” properties like margin-
block-start , padding-inline-end , and so on, as well as values such as start and end
for properties like text-align . These properties and values allow box features to be tied to

the direction of text flow, rather than physical directions like top, right, bottom, and so on.

As of mid-2021, only 4% of pages were found to be using logical properties of any kind. Of the

pages that did, about 33% were using it to set text-align to start or end . Another 46%

or so (combined) were setting logical margins and padding. Again, note that there could be

overlap in these figures.

Figure 1.53. Distribution of property types of logical properties.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 45

https://almanac.httparchive.org/static/images/2021/css/logical-property-and-value-usage.png
https://almanac.httparchive.org/static/images/2021/css/logical-property-and-value-usage.png

Ruby

In addition to directionality and logical features, CSS also offers internationalization support

via CSS Ruby, a collection of properties used to affect the layout of interlinear annotation,

which are short runs of text alongside the base text. Its usage is vanishingly small: only 8,157

desktop pages and 9,119 mobile pages were found to be using it—less than 0.1% of all pages

analyzed.

CSS and JS

While the topic of “CSS in JS” is good for at least a Twitter flame war or two, its use in the wild

continues to be very small. This year, we found that about 3% of pages are using some form of

CSS-in-JS, up from 2% in 2020. Furthermore, nearly all of it comes from libraries built for the

purpose, and more than half of that usage is from the Styled Components library.

Houdini

In some ways, CSS Houdini represents the opposite of the CSS-in-JS approach: it allows authors

to mix a little JS into their CSS. Perhaps in part due to slow implementation7 (in browsers that

Figure 1.54. Distribution of CSS-in-JS libraries.

7. https://ishoudinireadyyet.com/

Part I Chapter 1 : CSS

46 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/css-in-js-libraries.png
https://almanac.httparchive.org/static/images/2021/css/css-in-js-libraries.png
https://ishoudinireadyyet.com/

aren’t based on Blink) of core parts of the specification, Houdini has struggled to find its feet.

We find that it’s effectively not used on the open web in 2021: only 1,030 desktop pages and

1,175 mobile pages show evidence of animated custom properties, a feature of Houdini. This is

a threefold increase over the 2020 findings, but it looks like it will still be some time before

Houdini finds an audience.

Meta

In this section, we take a look at more generic concepts in CSS, such as how often declarations

are repeated or what kinds of mistakes authors make in writing their CSS.

Declaration repetition

In the 2020 Web Almanac, analysis was done to determine the amount of “declaration

repetition”—a metric meant to roughly estimate the efficiency of a stylesheet by determining

how many declarations used the same property and value, and how many were unique within

the page’s styles.

The 2021 figures are in and appear to show a slight drop in the median amount of repetition

across all percentiles.

Figure 1.55. Distribution of repetition of declarations per page.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 47

https://almanac.httparchive.org/static/images/2021/css/declaration-repetition.png
https://almanac.httparchive.org/static/images/2021/css/declaration-repetition.png

The degree of this drop is on the order of 2% for the 10th, 50th, and 90th percentiles, so it is

entirely possible this is statistical noise. The only way to tell would be to continue the analysis in

future years and chart the long-term trends.

Shorthands and longhands

There are many parts of CSS where a collection of very specific properties are also covered by a

single “umbrella” property that can set the more specific properties’ values in a single

declaration. font , for example, encompasses the values of font-family , font-size ,

line-height , font-weight , font-style , and font-variant . The umbrella property

font is what’s called a “shorthand” property, because it allows authors to set a number of

things in a kind of shorthand. The corresponding specific properties (e.g., font-family) are

referred to as “longhand” properties.

Shorthands before longhands

If an author mixes shorthand properties like background and longhand properties like

background-size in a stylesheet, it is always best to have the longhands come after the

shorthands. We looked at instances where authors did this to see which longhands were most

common.

Part I Chapter 1 : CSS

48 2021 Web Almanac by HTTP Archive

As in 2020, the winner was background-size , although last year it showed up in 41% of such

cases on mobile, and this year was seen in only 15% of such cases.

Background

Since background longhand properties were at the top of the previous section’s chart, we

turned our attention to the use of background shorthands and longhands.

Figure 1.56. The most common longhand properties to appear after their corresponding shorthand
properties.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 49

https://almanac.httparchive.org/static/images/2021/css/most-popular-longhand-properties-after-shorthands.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-longhand-properties-after-shorthands.png

It will come as little surprise that these are used almost universally; if anything, it came as a

small surprise that there were any pages that didn’t set them. An overwhelming 96% of pages

used the background shorthand, which goes back to CSS1 in 1996. The same went for the

longhand properties of the same age, which were found being applied 85% or more of pages.

That said, the much more recent background-size has seen rapid and widespread adoption,

appearing in 82% of pages, speaking to its incredible utility to authors. At the other end of the

spectrum is background-origin , which dropped from 12% usage last year to just 5% this

year.

Figure 1.57. The most commonly used background properties.

Part I Chapter 1 : CSS

50 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/usage-of-background-shorthand-vs-longhands.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-background-shorthand-vs-longhands.png

Margins and paddings

Moving down the list, we took a look at margin and padding properties. Much as with

backgrounds, it’s more a surprise that any pages don’t set these properties than that so many

do. What interested us this year was that the longhand margin-left edged out its shorthand

counterpart margin to take the top ranking.

Figure 1.58. The most commonly used margin and padding properties.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 51

https://almanac.httparchive.org/static/images/2021/css/usage-of-margin-padding-shorthands-vs-longhands.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-margin-padding-shorthands-vs-longhands.png

Font

Just as was the case in 2020, the shorthand font came in behind all of its common longhand

counterparts, with font-size leading the way and taking the top spot from last year’s

winner, font-weight .

The also-rans here, font-variant and font-stretch , have two very different stories.

font-variant has been around since CSS1, but never really caught on with designers,

perhaps because for a long time, the only thing you could do with it was set small-caps .

Nowadays you can do a lot more with it and downloadable fonts, but authors do not seem to be

making use of this capability. Its use dropped significantly this year, down from 43% in 2020 to

23% in 2021.

It’s worth taking a little closer look at font-variant . While it’s used on 23% of mobile pages,

the longhand properties that it’s now a shorthand for are barely used at all. Here are the actual

number of pages found that use not just font-variant , but each of its corresponding

longhands.

Figure 1.59. The most commonly used font properties.

Part I Chapter 1 : CSS

52 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/usage-of-font-shorthand-vs-longhands.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-font-shorthand-vs-longhands.png

Does this mean authors are only using the shorthand, and ignoring the longhands? That

probably accounts for a lot of the existing usage, but the steep decline in use of font-
variant since last year makes us wonder if a common framework or tool dropped font-
variant from its default styles. Either way, authors may be missing out on a lot of font

features that are widely supported.

The other low scoring property, font-stretch , is heavily dependent on both font families

having wide or narrow faces available and authors choosing (or knowing) to make use of them,

so its 5% share (down from 8% last year) comes as little surprise.

Figure 1.60. Number of pages using font-variant properties.

Property Desktop Mobile

font-variant 3,098,211 3,641,216

font-variant-numeric 153,932 166,744

font-variant-ligatures 107,211 112,345

font-variant-caps 81,734 86,673

font-variant-east-asian 20,662 20,340

font-variant-position 5,198 5,842

font-variant-alternates 4,876 5,511

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 53

Flexbox

Some of the Flexbox longhand and shorthand properties have had a turbulent history; for

example, the CSS Flexbox specification itself recommends that authors avoid8 using flex-
grow , flex-shrink , and flex-basis and use the flex shorthand instead. This ensures

that unset properties have sensible values. Unfortunately, this doesn’t seem to be bearing out in

the wild, where flex-basis is used more often on mobile pages than is flex , by a margin of

more than 10%.

It must be noted that there is a great deal of volatility in these figures as compared to last

year’s, such as flex-basis doubling in usage on mobile while not really shifting on desktop.

This could be due to changes in a common framework used in mobile development, or it could

be some other factor.

Figure 1.61. The most commonly used Flexbox-related properties.

8. https://drafts.csswg.org/css-flexbox-1/#flex-grow-property

Part I Chapter 1 : CSS

54 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/usage-of-flex-shorthands-vs-longhands.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-flex-shorthands-vs-longhands.png
https://drafts.csswg.org/css-flexbox-1/#flex-grow-property

Grid

The pattern observed in past years is that Grid shorthand properties (grid-template ,

grid , etc.) are used far less often than the longhand properties they encompass. In fact, both

come in at a staggering 0%, right next to each other in the rankings. The rest of the shorthands

are all clustered with them, while longhand properties like grid-template-rows and grid-
column enjoy widespread use. In fact, the only longhand property of any notable usage is

grid-gap , with 24% usage on mobile Grid pages. It will be interesting to see if the more

recent, and generic, gap will overtake grid-gap in years to come.

CSS mistakes

Sometimes, one can learn as much from a mistake as from a success. We took the opportunity

Figure 1.62. The most commonly used Grid-related properties.

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 55

https://almanac.httparchive.org/static/images/2021/css/usage-of-grid-properties.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-grid-properties.png

to look for not just common errors, but things that looked like they should be correct, but

weren’t.

Unrecoverable syntax errors

This year’s parsing run, which as in 2020 uses the Rework9 CSS parser, yielded more heartening

numbers. Just 0.94% of desktop pages and 0.55% of mobile pages contained an unrecoverable

error—that is, an error so bad, it made parsing the entirety of the stylesheet with Rework

impossible. There certainly may have been a much greater number of pages with small,

recoverable CSS errors, but the unrecoverable-error figures this year are a great deal lower

than last year. This may easily indicate a change in Rework, as opposed to a sudden outbreak of

syntax cleanup in the wild.

Nonexistent properties

One of the things we like to check for is the existence of declarations that are syntactically

valid, but use properties that don’t actually exist. This doesn’t count vendor-prefixed

properties, but does include malformed vendor-prefixed properties. Indeed, the most

widespread non-existent property we found was webkit-transition (which lacks the - at

Figure 1.63. The most common unknown properties.

9. https://github.com/reworkcss/css

Part I Chapter 1 : CSS

56 2021 Web Almanac by HTTP Archive

https://github.com/reworkcss/css
https://almanac.httparchive.org/static/images/2021/css/most-popular-unknown-properties.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-unknown-properties.png

the beginning needed for a proper vendor prefix), appearing on 14% of all pages that contained

a nonexistent property. Essentially tied with that was font-smoothing , an unprefixed

version of -webkit-font-smoothing that does not actually exist, nor is it likely to10 any time

soon.

Longhands before shorthands

In the previous section of this chapter, we looked at which longhand properties were most likely

to appear after the corresponding shorthand property (e.g., background being followed by

background-size at some point).

Doing things the other way around, putting a shorthand after a longhand, is a depressingly

common mistake, and it happens most often with background properties. In all the cases where

a longhand was followed by a corresponding shorthand, a background longhand property was

overwritten by the values in the background shorthand property.

Figure 1.64. The most common shorthand properties to (improperly) appear after any of their
corresponding longhand properties.

10. https://developer.mozilla.org/docs/Web/CSS/font-smooth

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 57

https://developer.mozilla.org/docs/Web/CSS/font-smooth
https://almanac.httparchive.org/static/images/2021/css/most-common-shorthands-after-longhands.png
https://almanac.httparchive.org/static/images/2021/css/most-common-shorthands-after-longhands.png

Sass

One of the great advantages of CSS preprocessors is that they can reveal what’s missing in CSS

itself, and can thus be a guide to how CSS should be extended in the future. This has already

happened before, with variables being so popular in preprocessors that CSS eventually added

custom properties11 to its repertoire. Other features of preprocessors, like color modifications

and nested selectors, are also finding their way into the base language. This is why we devote a

section of this chapter to seeing how developers are using Sass, one of the most popular

preprocessors on the web today.

The Sass functions we found in use largely mirrored those found in the 2020 Web Almanac,

albeit with some changes in the specific percentages. When classified by type, we found that

28% of all Sass functions were those that modify colors (e.g., darken , mix) and a further 6%

Figure 1.65. The most commonly used Sass function calls.

11. https://www.w3.org/TR/css-variables-1/

Part I Chapter 1 : CSS

58 2021 Web Almanac by HTTP Archive

https://www.w3.org/TR/css-variables-1/
https://almanac.httparchive.org/static/images/2021/css/most-popular-sass-function-calls.png
https://almanac.httparchive.org/static/images/2021/css/most-popular-sass-function-calls.png

were used to read color components (e.g., alpha , blue).

The desire for conditional behavior can be seen in the fact that the if() function placed third

on the list, at 15% of all Sass functions.

This same desire can be seen even more clearly in the use of Sass’s flow control structures, like

@if . Literally two-thirds of all Sass stylesheets use @if , and more than half use @for or

@each (or both). This popular capability was recently added to CSS12. By contrast, only 2% use

the @while structure.

Figure 1.66. The most commonly used Sass flow control structures.

12. https://drafts.csswg.org/css-conditional-4/#when-rule

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 59

https://almanac.httparchive.org/static/images/2021/css/usage-of-control-flow-statements-in-scss.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-control-flow-statements-in-scss.png
https://drafts.csswg.org/css-conditional-4/#when-rule

Another of Sass’s major draws is the ability to nest rules inside other rules and thus avoid

having to write repetitive selector patterns. This capability is under development for native

CSS13, and our analysis shows why: 87% of all Sass stylesheets use a detectable form of rule

nesting. Implicit nesting, which does not require special characters, was not measured.

Conclusion

In the end, the 2021 Web Almanac tells the story of a technology that’s stable but still evolving.

We saw very few instances of major shifts between last year’s Almanac and this year’s—some

practices and web features are clearly growing, while others are beginning to fade, but overall,

there was a very strong sense of continuity.

Does this mean CSS has become stagnant? Hardly: new layout methods are gaining ground, and

major new capabilities are being developed, many of them based on practices worked out in the

realm of preprocessors. We would not think to claim that CSS is “solved” or that the best

possible practices have already been worked out. As practitioners gain ever more experience,

Figure 1.67. The prevalence of rule-nesting in Sass.

13. https://www.w3.org/TR/css-nesting-1/

Part I Chapter 1 : CSS

60 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/css/usage-of-explicit-nesting-in-scss.png
https://almanac.httparchive.org/static/images/2021/css/usage-of-explicit-nesting-in-scss.png
https://www.w3.org/TR/css-nesting-1/
https://www.w3.org/TR/css-nesting-1/

changes will come to both CSS the language and CSS the practice. These changes may be

gradual rather than sudden, steady rather than disruptive, but this is what we expect in any

mature technology.

We look forward to seeing how CSS will grow over the years to come.

Authors

Eric A. Meyer

@meyerweb meyerweb http://meyerweb.com/

Eric A. Meyer has been a burger flipper, a hardware jockey, a college webmaster,

an early blogger, one of the original CSS Samurai14, a member of the CSS Working

Group15, a consultant and trainer, and a Standards Evangelist for Netscape16.

Currently, he is a Developer Advocate at Igalia17 and co-founder of An Event

Apart18 with Jeffrey Zeldman19. Among other things, Eric co-wrote Design For Real

Life20 with Sara Wachter-Boettcher21 for A Book Apart22 and CSS: The Definitive

Guide23 with Estelle Weyl24 for O’Reilly25, created the first official W3C26 test suite,

and assisted in the creation of microformats27.

Shuvam Manna

@shuvam360 GeekBoySupreme https://shuvam.xyz

Shuvam is a designer, doodler28, writer29, shutterbug30 and a software tinkerer31. He’s

currently designing at DeepSource32 and Indie-Hacking, working on Projects such

as Doneth and exploring the rough edges of how computers interact with humans.

14. https://archive.webstandards.org/css/members.html
15. https://en.wikipedia.org/wiki/CSS_Working_group
16. https://en.wikipedia.org/wiki/Netscape
17. http://igalia.com/
18. https://aneventapart.com/
19. http://zeldman.com/
20. https://abookapart.com/products/design-for-real-life
21. https://sarawb.com
22. https://abookapart.com/
23. http://meyerweb.com/eric/books/css-tdg/
24. http://standardista.com/
25. https://oreilly.com/
26. http://w3.org/
27. http://microformats.org/
28. https://www.behance.net/shuvammanna
29. https://distortedaura.wordpress.com/
30. https://www.instagram.com/the_distorted_aura/
31. https://github.com/GeekBoySupreme
32. https://deepsource.io

Part I Chapter 1 : CSS

2021 Web Almanac by HTTP Archive 61

https://x.com/meyerweb
https://github.com/meyerweb
http://meyerweb.com/
https://archive.webstandards.org/css/members.html
https://en.wikipedia.org/wiki/CSS_Working_group
https://en.wikipedia.org/wiki/CSS_Working_group
https://en.wikipedia.org/wiki/Netscape
http://igalia.com/
https://aneventapart.com/
https://aneventapart.com/
http://zeldman.com/
https://abookapart.com/products/design-for-real-life
https://abookapart.com/products/design-for-real-life
https://sarawb.com/
https://abookapart.com/
http://meyerweb.com/eric/books/css-tdg/
http://meyerweb.com/eric/books/css-tdg/
http://standardista.com/
https://oreilly.com/
http://w3.org/
http://microformats.org/
https://x.com/shuvam360
https://github.com/GeekBoySupreme
https://shuvam.xyz/
https://www.behance.net/shuvammanna
https://distortedaura.wordpress.com/
https://www.instagram.com/the_distorted_aura/
https://github.com/GeekBoySupreme
https://deepsource.io/

62 2021 Web Almanac by HTTP Archive

Part I Chapter 2

JavaScript

Written by Nishu Goel
Reviewed by Manuel Garcia, Minko Gechev, Rick Viscomi, Pankaj Parkar, and Barry Pollard
Analyzed by Pankaj Parkar, Max Ostapenko, and Rick Viscomi
Edited by Rick Viscomi, Pankaj Parkar, and Shaina Hantsis

Introduction

The speed and consistency at which the JavaScript language has evolved over the past years is

tremendous. While in the past it was used primarily on the client side, it has taken a very

important and respected place in the world of building services and server-side tools.

JavaScript has evolved to a point where it is not only possible to create faster applications but

also to run servers within browsers33.

There is a lot that happens in the browser when rendering the application, from downloading

JavaScript to parsing, compiling, and executing it. Let’s start with that first step and try to

understand how much JavaScript is actually requested by pages.

33. https://blog.stackblitz.com/posts/introducing-webcontainers/

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 63

https://blog.stackblitz.com/posts/introducing-webcontainers/

How much JavaScript do we load?

They say, “to measure is the key towards improvement”. To improve the usage of JavaScript in

our applications, we need to measure how much of the JavaScript being shipped is actually

required. Let’s dig in to understand the distribution of JavaScript bytes per page, considering

what a major role it plays in the web setup.

The 50th percentile (median) mobile page loads 427 KB of JavaScript, whereas the median

page loaded on a desktop device sends 463 KB.

Compared to 2019’s results34, this shows an increase of 18.4% in the usage of JavaScript for

desktop devices and an increase of 18.9% on mobile devices. The trend over time is moving

towards using more JavaScript, which could slow down the rendering of an application given

the additional CPU work. It’s worth noting that these statistics represent the transferred bytes

which could be compressed responses and thus, the actual cost to the CPU could be

significantly higher.

Let’s have a look at how much JavaScript is actually required to be loaded on the page.

Figure 2.1. Distribution of the amount of JavaScript loaded per page.

34. https://almanac.httparchive.org/en/2019/javascript#fig-2

Part I Chapter 2 : JavaScript

64 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/javascript-bytes-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/javascript-bytes-per-page.png
https://almanac.httparchive.org/en/2019/javascript#fig-2

According to Lighthouse, the median mobile page loads 155 KB of unused JavaScript. And at

the 90th percentile, 598 KB of JavaScript are unused.

Figure 2.2. Distribution of the amount of unused JavaScript bytes on mobile.

Figure 2.3. Distribution of unused and total JavaScript bytes on mobile pages.

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 65

https://almanac.httparchive.org/static/images/2021/javascript/unused-javascript-bytes-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/unused-javascript-bytes-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/unused-vs-total-javascript.png
https://almanac.httparchive.org/static/images/2021/javascript/unused-vs-total-javascript.png

To put it another way, 36.2% of JavaScript bytes on the median mobile page go unused. Given

the impact JavaScript can have on the Largest Contentful Paint35 (LCP) of the page, especially

for mobile users with limited device capabilities and data plans, this is such a significant figure

to be consuming CPU cycles with other important resources just to go to waste. Such

wastefulness could be the result of a lot of unused boilerplate code that gets shipped with large

frameworks or libraries.

Site owners could reduce the percentage of wasted JavaScript bytes by using Lighthouse to

check for unused JavaScript36 and follow best practices to remove unused code37.

JavaScript requests per page

One of the contributing factors towards slow rendering of the web page could be the requests

made on the page, especially when they are blocking requests. It’s therefore of interest to look

at the number of JavaScript requests made per page on both desktop and mobile devices.

Figure 2.4. Percent unused from the total loaded JavaScript.

36.2%

35. https://web.dev/articles/optimize-lcp
36. https://web.dev/unused-javascript/
37. https://web.dev/remove-unused-code/

Part I Chapter 2 : JavaScript

66 2021 Web Almanac by HTTP Archive

https://web.dev/articles/optimize-lcp
https://web.dev/unused-javascript/
https://web.dev/remove-unused-code/

The median desktop page loads 21 JavaScript resources (.js and .mjs requests), going up to

59 resources at the 90th percentile.

Figure 2.5. Distribution of the number of JavaScript requests per page.

Figure 2.6. Distribution of the number of JavaScript requests per page by year.

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 67

https://almanac.httparchive.org/static/images/2021/javascript/js-requests-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/js-requests-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/js-resources-over-years.png
https://almanac.httparchive.org/static/images/2021/javascript/js-resources-over-years.png

As compared with last year’s results38, there has been a marginal increase in the number of

JavaScript resources requested in 2021, with the median number of JavaScript resources

loaded being 20 for desktop pages and 19 for mobile.

The trend is gradually increasing in the number of JavaScript resources loaded on a page. This

would make one wonder if the number should actually increase or decrease considering that

fewer JavaScript requests might lead to better performance in some cases but not in others.

This is where the recent advances in the HTTP protocol come in and the idea of reducing the

number of JavaScript requests for better performance gets inaccurate. With the introduction

of HTTP/2 and HTTP/3, the overhead of HTTP requests has been significantly reduced, so

requesting the same resources over more requests is not necessarily a bad thing anymore. To

learn more about these protocols, see the HTTP chapter.

How is JavaScript requested?

JavaScript can be loaded into a page in a number of different ways, and how it is requested can

influence the performance of the page.

module and nomodule

When loading a website, the browser renders the HTML and requests the appropriate

resources. It consumes the polyfills referenced in the code for the effective rendering and

functioning of the page. Modern browsers that support newer syntax like arrow functions39 and

async functions40 do not need loads of polyfills to make things work and therefore, should not

have to.

This is when differential loading takes care of things. Specifying the type="module" attribute

would serve the modern browsers the bundle with modern syntax and fewer polyfills, if any.

Similarly, older browsers that lack support for modules will be served the bundle with required

polyfills and transpiled code syntax with the type="nomodule" attribute. Read more about

the usage of module/nomodule41.

Let’s look at the data to understand the adoption of these attributes.

38. https://almanac.httparchive.org/en/2020/javascript#request-count
39. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Functions/Arrow_functions
40. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
41. https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules#applying_the_module_to_your_html

Part I Chapter 2 : JavaScript

68 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/javascript#request-count
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules#applying_the_module_to_your_html

4.6% of desktop pages use the type="module" attribute, whereas only 3.9% of mobile pages

use type="nomodule" . This could be due to the fact that the mobile dataset being much

larger contains more “long-tail” websites that might not be using the latest features.

It is important to note that with the end of support for IE 11 browser42, differential loading is

less applicable because evergreen browsers support modern JavaScript syntax. The Angular

framework, for example, removed support for legacy browsers in Angular v1343, which was

released November 2021.

async and defer

JavaScript loading could be render-blocking unless it is specified as asynchronous or deferred.

This is one of the contributing factors to slow performance, as oftentimes JavaScript (or at least

some of it) is needed for the initial render.

However, loading the JavaScript asynchronously or deferred helps in some ways to improve

this experience. Both the async and defer attributes load the scripts asynchronously. The

scripts with the async attribute are executed irrespective of the order in which they are

defined, however, defer executes the scripts only after the document is completely parsed,

ensuring that their execution will take place in the specified order. Let’s look at how many pages

actually specify these attributes for the JavaScript requested in the browser.

Figure 2.7. Distribution of differential loading usage on desktop and mobile clients.

Attribute Desktop Mobile

module 4.6% 4.3%

nomodule 3.9% 3.9%

42. https://docs.microsoft.com/en-us/lifecycle/announcements/internet-explorer-11-support-end-dates
43. https://github.com/angular/angular/issues/41840

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 69

https://docs.microsoft.com/en-us/lifecycle/announcements/internet-explorer-11-support-end-dates
https://github.com/angular/angular/issues/41840

There was an anti-pattern observed in last year’s results that some websites use both async
and defer attributes on the same script, which falls back to async if the browser supports it

and using defer for IE 8 and IE 9 browsers. This is, however, unnecessary now for most of the

sites since async takes precedence on all supported browsers and. In turn, this pattern

interrupts HTML parsing instead of deferring until the page has loaded. The usage was so

frequent that 11.4%44 of mobile pages were seen with at least one script with async and

defer attributes used together. The root causes45 were found and an action item was also

taken down to remove such usage going forward46.

This year, we found that 35.6% of mobile pages use the async and defer attributes

together. The large discrepancy from last year is due to a methodological improvement to

measure attribute usage at runtime, rather than parsing the static contents of the initial HTML.

This difference shows that many pages update these attributes dynamically after the document

has already been loaded. For example, one website was found to include the following script:

<!-- Piwik -->

<script type="text/javascript">

 (function() {

 var d=document, g=d.createElement('script'),

Figure 2.8. Percent of pages using async and defer .

Attribute Desktop Mobile

async 89.3% 89.1%

defer 48.1% 47.8%

Both 35.7% 35.6%

Neither 10.3% 10.4%

Figure 2.9. Percent of mobile pages on which the async and defer attributes are set on the

same script.

35.6%

44. https://almanac.httparchive.org/en/2020/javascript#how-do-we-load-our-javascript
45. https://x.com/rick_viscomi/status/1331735748060524551?s=20
46. https://x.com/Kraft/status/1336772912414601224?s=20

Part I Chapter 2 : JavaScript

70 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/javascript#how-do-we-load-our-javascript
https://x.com/rick_viscomi/status/1331735748060524551?s=20
https://x.com/Kraft/status/1336772912414601224?s=20

s=d.getElementsByTagName('script')[0];

 g.type='text/javascript'; g.async=true; g.defer=true;

g.src=u+'piwik.js'; s.parentNode.insertBefore(g,s);

 })();

</script>

<!-- End Piwik Code -->

So, what is Piwik? According to its Wikipedia entry:

This information strongly suggests that much of the increase we observed may be due to similar

marketing and analytics providers that dynamically inject these async and defer scripts

into the page later than had been previously detected.

Even though a large percentage of pages use this anti-pattern, it turns out that only 2.6% of all

scripts use both async and defer on the same script element.

First-party vs third-party

Recall from the How much JavaScript do we load section that the median number of JavaScript

requests on mobile pages is 20. In this section, we’ll take a look at the breakdown of first and

third-party JavaScript requests.

— Matomo (software) on Wikipedia47

Matomo, formerly Piwik, is a free and open source web analytics application

developed by a team of international developers, that runs on a PHP/MySQL

web server. It tracks online visits to one or more websites and displays reports

on these visits for analysis. As of June 2018, Matomo was used by over

1,455,000 websites, or 1.3% of all websites with known traffic analysis

tools… "
Figure 2.10. Percent of scripts using the async and defer attribute together.

2.6%

47. https://en.wikipedia.org/wiki/Matomo_(software)

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 71

https://en.wikipedia.org/wiki/Matomo_(software)

The median mobile page requests 10 third-party resources and 9 first-party requests. This

difference increases as we move up to the 90th percentile as 33 requests on mobile pages are

first-party but the number goes up to 34 for third-party requests for the mobile pages. Clearly,

the number of third-party resources requested is always one step ahead of the first-party ones.

Figure 2.11. Distribution of the number of JavaScript requests per mobile page by host.

Figure 2.12. Distribution of the number of JavaScript requests per desktop page by host.

Part I Chapter 2 : JavaScript

72 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/js-requests-mobile-host.png
https://almanac.httparchive.org/static/images/2021/javascript/js-requests-mobile-host.png
https://almanac.httparchive.org/static/images/2021/javascript/js-requests-desktop-host.png
https://almanac.httparchive.org/static/images/2021/javascript/js-requests-desktop-host.png

The median desktop page requests 11 third-party resources, compared to 10 first-party

requests. Irrespective of the performance and reliability risks48 that third-party resources may

bring, both desktop and mobile pages consistently seem to favor third-party scripts. This effect

could be due to the useful interactivity features49 that third-party scripts give to the web.

Nevertheless, site owners must ensure that their third-party scripts are loaded performantly50.

Harry Roberts51 advocates for going a step further and stress testing third-parties52 for

performance and resilience.

preload and prefetch

As a page is rendered, the browser downloads the given resources and prioritizes the download

of some resources the browser uses over others using resource hints. The preload hint tells

the browser to download the resource with a higher priority as it will be required on the

current page. The prefetch hint, however, tells the browser that the resource could be

required after some time (useful for future navigation) and it’d better to fetch it when the

browser has the capacity to do so and make it available as soon as it is required. Learn more

about how these features are used in the Resource Hints chapter.

Figure 2.13. Use of resource hints on JavaScript resources.

48. https://css-tricks.com/potential-dangers-of-third-party-javascript/
49. https://developers.google.com/web/fundamentals/performance/critical-rendering-path/adding-interactivity-with-javascript
50. https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript
51. https://x.com/csswizardry
52. https://csswizardry.com/2017/07/performance-and-resilience-stress-testing-third-parties/

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 73

https://css-tricks.com/potential-dangers-of-third-party-javascript/
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/adding-interactivity-with-javascript
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript
https://x.com/csswizardry
https://csswizardry.com/2017/07/performance-and-resilience-stress-testing-third-parties/
https://almanac.httparchive.org/static/images/2021/javascript/javascript-resource-hint-usage.png
https://almanac.httparchive.org/static/images/2021/javascript/javascript-resource-hint-usage.png

preload hints are used to load JavaScript on 15.4% of mobile pages, whereas only 1.0% of

mobile pages use the prefetch hint. 15.8% and 1.1% of desktop pages use these resource

hints to load JavaScript resources, respectively.

It would also be useful to see how many preload and prefetch hints are used per page, as

that affects the impact of these hints. For example, if there are five resources to be loaded on

the render and all five use the preload hint, the browser would try to prioritize every

resource, which would effectively work as if no preload hint was used at all.

Figure 2.14. Distribution of preload hints for JavaScript resources per page.

Part I Chapter 2 : JavaScript

74 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/preload-hints-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/preload-hints-per-page.png

The median desktop page loads one JavaScript resource with the preload hint and two

JavaScript resources with the prefetch hint.

While the median number of preload hints per mobile page has stayed the same, the number

of prefetch hints has decreased from three to two per page. Note that at the median, these

results are identical for both mobile and desktop pages.

How is JavaScript delivered?

JavaScript resources can be loaded more efficiently over the network with compression and

minification. In this section, we’ll explore the usage of both techniques to better understand the

extent to which they’re being utilized effectively.

Figure 2.15. Distribution of prefetch hints for JavaScript resources per page.

Figure 2.16. Year-over-year comparison of the median number of preload and prefetch hints

for JavaScript resources per mobile page.

Hint 2020 2021

preload 1 1

prefetch 3 2

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 75

https://almanac.httparchive.org/static/images/2021/javascript/prefetch-hints-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/prefetch-hints-per-page.png

Compression

Compression is the process of reducing the file size of a resource as it gets transferred over the

network. This can be an effective way to improve the download times of JavaScript resources,

which are highly compressible. For example, the almanac.js script loaded on this page is 28

KB, but only 9 KB over the wire thanks to compression. You can learn more about the ways

resources are compressed across the web in the Compression chapter.

Most JavaScript resources are either compressed using Gzip53, Brotli54 (br), or not compressed at

all (not set). 55.4% of mobile JavaScript resources use Gzip, whereas 30.8% of resources are

compressed with Brotli.

Interestingly, compared to the state of JavaScript compression in 201955, Gzip has gone down

by almost 10 percentage points and Brotli has increased by 16 percentage points. The trend

illustrates the shift to focus on smaller size files with higher levels of compression that Brotli

provides as compared to Gzip.

To help explain this change, we analyzed the compression methods of first and third-party

resources.

Figure 2.17. Adoption of the methods for compressing JavaScript resources.

53. https://www.gnu.org/software/gzip/manual/gzip.html
54. https://github.com/google/brotli
55. https://almanac.httparchive.org/en/2019/javascript#fig-10

Part I Chapter 2 : JavaScript

76 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/compression-requests.png
https://almanac.httparchive.org/static/images/2021/javascript/compression-requests.png
https://www.gnu.org/software/gzip/manual/gzip.html
https://github.com/google/brotli
https://almanac.httparchive.org/en/2019/javascript#fig-10

59.1% of third-party scripts on mobile pages are gzipped and 29.6% are compressed with Brotli.

Looking at first-party scripts, these are 51.7% with Gzip compression but only 32.0% with

Brotli. There are still 11.3% of third-party scripts that do not have any compression method

defined.

Figure 2.18. Adoption of the methods for compressing first and third-party JavaScript resources on
mobile pages.

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 77

https://almanac.httparchive.org/static/images/2021/javascript/compression-first-third-party.png
https://almanac.httparchive.org/static/images/2021/javascript/compression-first-third-party.png

90% of uncompressed third-party JavaScript resources are less than 5 KB, though first-party

requests trail a bit. This may help explain why so many JavaScript resources go uncompressed.

Due to the diminishing returns of compressing small resources, a small script may cost more in

terms of the resource consumption of server-side compression and client-side decompression

than the performance benefits of saving a few bytes over the network.

Minification

While compression only changes the transfer size of JavaScript resources over the network,

minification actually makes the code itself smaller and more efficient. This not only helps to

reduce the load time of the script but also the amount of time the client spends parsing the

script.

The unminified JavaScript56 Lighthouse audit highlights the opportunities of minification.

Figure 2.19. Uncompressed resources for first party vs third party.

56. https://web.dev/unminified-javascript/

Part I Chapter 2 : JavaScript

78 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/uncompressed-first-third-party.png
https://almanac.httparchive.org/static/images/2021/javascript/uncompressed-first-third-party.png
https://web.dev/unminified-javascript/

Here, 0.00 represents the worst score whereas 1.00 represents the best score. 67.1% of mobile

pages have an audit score between 0.9 and 1.0. That means there are still more than 30% of

pages that have an unminified JavaScript score worse than 0.9 and could make better use of

code minification. Compared to the results from the 2020 edition57, the percent of mobile pages

with an “unminified JS” score between 0.9 and 1.0 fell by 10 points.

To understand the reason for the worse scores this year, let’s dive deeper to look at how many

bytes per page are unminified.

Figure 2.20. Distribution of unminified JavaScript audit scores.

57. https://almanac.httparchive.org/en/2020/javascript#fig-16

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 79

https://almanac.httparchive.org/static/images/2021/javascript/unminified-js-audit-scores.png
https://almanac.httparchive.org/static/images/2021/javascript/unminified-js-audit-scores.png
https://almanac.httparchive.org/en/2020/javascript#fig-16

57.4% of mobile pages have 0 KB of unminified JavaScript as reported by the Lighthouse audit.

17.9% of mobile pages have between 0 and 10 KB of unminified JavaScript. The rest of the

pages have an increasing number of unminified JavaScript bytes and correspond to those

having poor “unminified JavaScript” audit scores in the previous chart.

Figure 2.21. Distribution of the amount of unminified JavaScript per page, in KB.

Figure 2.22. Average distribution of unminified JavaScript bytes.

Part I Chapter 2 : JavaScript

80 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/unminified-js-bytes.png
https://almanac.httparchive.org/static/images/2021/javascript/unminified-js-bytes.png
https://almanac.httparchive.org/static/images/2021/javascript/average-unminified-js-bytes.png
https://almanac.httparchive.org/static/images/2021/javascript/average-unminified-js-bytes.png

When we segmented the unminified JavaScript resources by host, we found that 82.0% of the

average mobile page’s unminified JavaScript bytes actually come from first-party scripts.

Source maps

Source maps58 are hints sent along with JavaScript resources that allow the browser to map the

minified resource back to their source code. This is especially helpful to web developers for

debugging in a production environment.

Only 0.1% of mobile pages use the SourceMap response header on script resources. One

reason for this extremely small percentage could be that not many sites choose to put their

original source code in production through the source map.

98.0% of the SourceMap usage on JavaScript resources can be attributed to first-parties. Only

2.0% of scripts with the header on mobile pages are third-party resources.

Libraries and frameworks

The usage of JavaScript seems to have increased tremendously over the years, with the

adoption of many new libraries and frameworks all promising their own unique improvements

to the developer and user experiences. They have become so prevalent that the term framework

fatigue was coined to describe developers’ struggle just to keep up. In this section, we’ll look at

the popularity of the JavaScript libraries and frameworks in use on the web today.

Figure 2.23. Percent of mobile pages that use the SourceMap header.

0.1%

Figure 2.24. Percent of JavaScript resources on mobile pages using the SourceMap header that

are first-party resources.

98.0%

58. https://developer.mozilla.org/docs/Tools/Debugger/How_to/Use_a_source_map

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 81

https://developer.mozilla.org/docs/Tools/Debugger/How_to/Use_a_source_map
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap
https://allenpike.com/2015/javascript-framework-fatigue
https://allenpike.com/2015/javascript-framework-fatigue

Libraries usage

To understand the usage of libraries and frameworks, HTTP Archive uses Wappalyzer to detect

the technologies used on a page.

jQuery remains the most popular library, used by a staggering 84% of mobile pages. React

usage has jumped from 4% to 8% since last year, which is a significant increase. React’s increase

may be partially due to recent detection improvements59 to Wappalyzer, and may not

necessarily reflect the actual change in adoption. It’s also worth noting that Isotope, which uses

jQuery, is found on 7% of pages, leading to RequireJS falling out of the top spots on just 2% of

pages.

You might wonder why jQuery is still so dominant in 2021. There are two main reasons for this.

First, as highlighted over the previous years60, most WordPress61 sites use jQuery. Given that

WordPress is used on nearly a third of all websites, according to the CMS chapter, this accounts

for a huge proportion of jQuery adoption. Second, several of the other top-used JavaScript

libraries still rely on jQuery in some way under the hood, contributing to indirect adoption of

the library.

Figure 2.25. Usage of JavaScript libraries and frameworks.

59. https://github.com/AliasIO/wappalyzer/issues/2450
60. https://almanac.httparchive.org/en/2019/javascript#open-source-libraries-and-frameworks
61. https://wordpress.org/

Part I Chapter 2 : JavaScript

82 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/js-libs-frameworks.png
https://almanac.httparchive.org/static/images/2021/javascript/js-libs-frameworks.png
https://github.com/AliasIO/wappalyzer/issues/2450
https://almanac.httparchive.org/en/2019/javascript#open-source-libraries-and-frameworks
https://wordpress.org/

The most popular version of jQuery is 3.5.1, which is used by 21.3% of mobile pages. The next

most popular version of jQuery is 1.12.4, at 14.4% of mobile pages. The leap to version 3.0 can

be explained by a change to WordPress core62 in 2020, which upgraded the default version of

jQuery from 1.12.4 to 3.5.1.

Libraries used together

Now let’s look at how the popular frameworks and libraries are used together on the same

page.

The most widely-used combination of JavaScript libraries and frameworks doesn’t actually

consist of multiple libraries at all! When used by itself, jQuery is found on 17.4% of mobile

pages. The next most popular combination is jQuery and jQuery Migrate, which is used on 8.7%

Figure 2.26. The most popular version of jQuery.

3.5.1

Figure 2.27. Top combinations of JavaScript frameworks and libraries used together.

Frameworks and libraries Desktop Mobile

jQuery 16.8% 17.4%

jQuery, jQuery Migrate 8.4% 8.7%

jQuery, jQuery UI 4.0% 3.7%

jQuery, jQuery Migrate, jQuery UI 2.6% 2.5%

Modernizr, jQuery 1.6% 1.6%

FancyBox, jQuery 1.1% 1.1%

Slick, jQuery 1.2% 1.1%

Lightbox, jQuery 1.1% 0.8%

React, jQuery, jQuery Migrate 0.9% 0.9%

Modernizr, jQuery, jQuery Migrate 0.8% 0.9%

62. https://wptavern.com/major-jquery-changes-on-the-way-for-wordpress-5-5-and-beyond

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 83

https://wptavern.com/major-jquery-changes-on-the-way-for-wordpress-5-5-and-beyond

of mobile pages. In fact, all of the top 10 library and framework combinations include jQuery.

Security vulnerabilities

Using JavaScript libraries can come with its own benefits and drawbacks. When using these

libraries, one drawback is that older versions may include security risks like Cross Site

Scripting63 (XSS). Lighthouse detects the JavaScript libraries used on a page and fails the audit if

their version has any known vulnerabilities in the open-source Snyk vulnerability database64.

63.9% of mobile pages use a JavaScript library or framework with a known security

vulnerability. For context, this number has come down from 83.5% since last year65.

Figure 2.28. Percentage of mobile pages with libraries having a security vulnerability.

63.9%

63. https://owasp.org/www-community/attacks/xss/
64. https://snyk.io/vuln?type=npm
65. https://almanac.httparchive.org/en/2020/javascript#fig-30

Part I Chapter 2 : JavaScript

84 2021 Web Almanac by HTTP Archive

https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://snyk.io/vuln?type=npm
https://almanac.httparchive.org/en/2020/javascript#fig-30

When we segment the percent of mobile pages by library and framework, we can see that

jQuery is largely responsible for the decrease in vulnerabilities. This year JavaScript

vulnerabilities were found on 57.6% of pages with jQuery, compared to 80.9% last year66. As

predicted67 by Tim Kadlec68 in the 2020 edition of this chapter, “if we can get folks to migrate away

from those outdated, vulnerable versions of jQuery, we would see the number of sites with known

Figure 2.29. The percent of mobile pages found to contain a vulnerable version of a JavaScript
library or framework.

Library or framework Percent of pages

jQuery 57.6%

Bootstrap 12.2%

jQuery UI 10.5%

Underscore 6.4%

Lo-Dash 3.1%

Moment.js 2.3%

GreenSock JS 1.8%

Handlebars 1.3%

AngularJS 1.0%

Mustache 0.7%

jQuery Mobile 0.5%

Dojo 0.5%

Angular 0.4%

Vue 0.2%

Knockout 0.2%

Highcharts 0.1%

Next.js 0.0%

React 0.0%

66. https://almanac.httparchive.org/en/2020/javascript#fig-31
67. https://almanac.httparchive.org/en/2020/javascript#fig-31
68. https://almanac.httparchive.org/en/2020/contributors#tkadlec

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 85

https://almanac.httparchive.org/en/2020/javascript#fig-31
https://almanac.httparchive.org/en/2020/javascript#fig-31
https://almanac.httparchive.org/en/2020/contributors#tkadlec

vulnerabilities plummet”. And that’s exactly what happened; WordPress migrated from jQuery

version 1.12.4 to the more secure version 3.5.1, contributing to a 20 point drop in the percent

of pages with known JavaScript vulnerabilities.

How do we use JavaScript?

Now that we’ve looked at how we get the JavaScript, what are we using it for?

AJAX

One way that JavaScript is used is to communicate with servers to asynchronously receive

information in various formats. Asynchronous JavaScript and XML (AJAX) is typically used to

send and receive data, and it supports more than just XML, including JSON, HTML, and text

formats.

With multiple ways to send and receive data on the web, let’s look at how many asynchronous

requests are sent per page.

The median mobile page makes 4 asynchronous requests. If we look at the long tail, the largest

number of asynchronous requests on desktop pages is 623, which is eclipsed by the biggest

mobile page, which makes 867 asynchronous requests!

Figure 2.30. Distribution of the number of asynchronous requests made per page.

Part I Chapter 2 : JavaScript

86 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Guide/AJAX/Getting_Started
https://almanac.httparchive.org/static/images/2021/javascript/async-requests-per-page.png
https://almanac.httparchive.org/static/images/2021/javascript/async-requests-per-page.png

An alternative to the asynchronous AJAX requests are the synchronous requests. Rather than

passing a request to a callback, they block the main thread until the request completes.

However, this practice is discouraged69 due to the potential for poor performance and user

experiences, and many browsers already warn about such usage. It would be intriguing to see

how many pages still use synchronous AJAX requests.

2.5% of mobile pages use the deprecated synchronous AJAX requests. To put this into

perspective, let’s look at the trend by comparing the results with the last two years.

Figure 2.31. Usage of synchronous and asynchronous AJAX requests.

69. https://developer.mozilla.org/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests#synchronous_request

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 87

https://developer.mozilla.org/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests#synchronous_request
https://almanac.httparchive.org/static/images/2021/javascript/usage-sync-async.png
https://almanac.httparchive.org/static/images/2021/javascript/usage-sync-async.png

We see that there is a clear increase in the usage of asynchronous AJAX requests. However,

there isn’t a significant decline in the usage of synchronous AJAX requests.

Knowing the number of AJAX requests per page now, we’d also be interested in knowing the

most commonly used APIs to request the data from the server.

We can broadly classify these AJAX requests into three different APIs and dig in to see how

they’re used. The core APIs XMLHttpRequest (XHR), Fetch , and Beacon are used

commonly across websites with XHR being used primarily, however Fetch is gaining

popularity and growing rapidly while Beacon has low usage.

Figure 2.32. Usage of synchronous and asynchronous AJAX requests over years.

Part I Chapter 2 : JavaScript

88 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/javascript/usage-sync-async-over-years.png
https://almanac.httparchive.org/static/images/2021/javascript/usage-sync-async-over-years.png
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/docs/Web/API/Beacon_API
https://developer.mozilla.org/docs/Web/API/Beacon_API

The median mobile page makes 2 XHR requests, but at 90th percentile, makes 6 XHR requests.

In the case of the usage of the Fetch API, the median mobile page makes 2 requests, and in

the long tail, reaches 3 requests. This API is becoming the standard XHR way of making

Figure 2.33. Distribution of the number of XMLHttpRequest requests per page.

Figure 2.34. Distribution of the number of Fetch requests per page.

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 89

https://almanac.httparchive.org/static/images/2021/javascript/ajax_xhr.png
https://almanac.httparchive.org/static/images/2021/javascript/ajax_xhr.png
https://almanac.httparchive.org/static/images/2021/javascript/ajax_fetch.png
https://almanac.httparchive.org/static/images/2021/javascript/ajax_fetch.png

requests, due in part to its cleaner approach and less boilerplate code. There may also be

performance benefits70 to Fetch over the traditional XHR approach, due to the way browsers

can decode large JSON payloads off the main thread.

Beacon usage is almost non-existent, with 0 requests per page until the 90th percentile, at

which there’s only one request per page. One possible explanation for this low adoption could

be that Beacon is typically used for sending analytics data, especially when one wants to

ensure that the request is sent even if the page might unload soon. This is, however, not

guaranteed when using XHR. A good experiment for the future would be to see if some

statistics could be collected around any pages using XHR for analytics data, session data, etc.

It would be interesting to also compare the adoption of XHR and Fetch over time.

Figure 2.35. Distribution of the number of Beacon requests per page.

70. https://gomakethings.com/the-fetch-api-performance-vs.-xhr-in-vanilla-js/

Part I Chapter 2 : JavaScript

90 2021 Web Almanac by HTTP Archive

https://gomakethings.com/the-fetch-api-performance-vs.-xhr-in-vanilla-js/
https://almanac.httparchive.org/static/images/2021/javascript/ajax_beacon.png
https://almanac.httparchive.org/static/images/2021/javascript/ajax_beacon.png

For both Fetch and XHR, the usage has increased significantly over the years. Fetch usage

on mobile pages is up 4 points and XHR is up 19 points. The gradual increase of Fetch
adoption seems to point towards a trend of cleaner requests and better response handling.

Web Components and the shadow DOM

With the web becoming componentized71, a developer building a single page application may

think about a user view as a set of components. This is not only for the sake of developers

building dedicated components for each feature, but also to maximize component reusability. It

could be in the same app on a different view or in a completely different application. Such use

cases lead to the usage of custom elements and web components in applications.

It would be justified to say that with many JavaScript frameworks gaining popularity, the idea of

reusability and building dedicated feature-based components has been adopted more widely.

This feeds our curiosity to look into the adoption of custom elements, shadow DOM, template

elements.

Custom Elements72 are customized elements built on top of the HTMLElement API. Browsers

provide a customElements API that allows developers to define an element and register it

with the browser as a custom element.

Figure 2.36. Adoption of AJAX APIs by year.

71. https://developer.mozilla.org/docs/Web/Web_Components
72. https://developers.google.com/web/fundamentals/web-components/customelements

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 91

https://almanac.httparchive.org/static/images/2021/javascript/ajax-apis-per-year.png
https://almanac.httparchive.org/static/images/2021/javascript/ajax-apis-per-year.png
https://developer.mozilla.org/docs/Web/Web_Components
https://developers.google.com/web/fundamentals/web-components/customelements
https://developer.mozilla.org/docs/Web/API/HTMLElement
https://developer.mozilla.org/docs/Web/API/HTMLElement

3.0% of mobile pages use custom elements for one or more parts of the web page.

Shadow DOM allows you to create a dedicated subtree in the DOM for the custom element

introduced to the browser. It ensures the styles and nodes inside the element are not accessible

outside the element.

0.4% of mobile pages use shadow DOM specification of web components to ensure a scoped

subtree for the element.

A template element is very useful when there is a pattern in the markup which could be

reused. The contents of template elements render only when referenced by JavaScript.

Templates work well when dealing with web components, as the content that is not yet

referenced by JavaScript is then appended to a shadow root using the shadow DOM.

Fewer than 0.1% of web pages have adopted the use of templates. Although templates are well

supported73 in browsers, there is still a very low percentage of pages using them.

Conclusion

The numbers that we have seen throughout the chapter have brought us to an understanding of

how vast the JavaScript usage is and how it’s evolving over time. The JavaScript ecosystem has

Figure 2.37. Percent of desktop pages using custom elements.

3.0%

Figure 2.38. Percent of pages using Shadow DOM.

0.4%

Figure 2.39. Percent of pages using template elements.

<0.1%

73. https://caniuse.com/template

Part I Chapter 2 : JavaScript

92 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developer.mozilla.org/docs/Web/Web_Components/Using_templates_and_slots#the_truth_about_templates
https://developer.mozilla.org/docs/Web/Web_Components/Using_templates_and_slots#the_truth_about_templates
https://caniuse.com/template
https://caniuse.com/template

been growing with the focus towards making the web more performant and secure for users,

with newer features and APIs that make the developer experience easier and more productive.

We saw how so many features that improve rendering and resource loading performance could

be more widely utilized to provide users with faster experiences. As a developer, you can start

by adopting these new web platform features. However, make sure to use them wisely and

ensure that they actually improve performance, as some APIs can cause harm through misuse,

as we saw with async and defer attributes on the same script.

Making appropriate use of the powerful APIs that we now have access to is what it will take to

see these numbers improve further in the coming years. Let’s continue to do so.

Author

Nishu Goel

@TheNishuGoel NishuGoel https://unravelweb.dev/

Nishu Goel is an engineer at Web DataWorks74. She is a Google Developer Expert

for Web Technologies and Angular, Microsoft MVP for Developer Technologies,

and the author of Step by Step Guide Angular Routing (BPB, 2019) and A Hands-

on Guide to Angular (Educative, 2021). Find her writings at unravelweb.dev75.

74. http://webdataworks.io/
75. https://unravelweb.dev/

Part I Chapter 2 : JavaScript

2021 Web Almanac by HTTP Archive 93

https://x.com/TheNishuGoel
https://github.com/NishuGoel
https://unravelweb.dev/
http://webdataworks.io/
https://unravelweb.dev/

94 2021 Web Almanac by HTTP Archive

Part I Chapter 3

Markup

Written by Alex Lakatos
Reviewed by Jens Oliver Meiert, Brian Kardell, Shaina Hantsis, Barry Pollard, and Rick Viscomi
Analyzed by Kevin Farrugia
Edited by Rick Viscomi

Introduction

Have you ever wondered what happens when you try to visit a web site? After you enter the

URL in the address bar of your browser, one of the first things that happens is that a HTML file

is downloaded and parsed. You could say that markup is the foundation of the Web. We’ve

dedicated this chapter to looking at some of the bricks that make the web stand today.

We’ve drawn on the data analyzed for the past three years to try to come up with a few

questions around the future of markup, the trends emerging over the years, and the adoption

rate of new standards. We’ve also shared the data in the hopes that you’ll dig deeper into it, and

interpret it in a way that we haven’t.

In the Markup chapter, we focus on HTML. While we briefly touch on other markup languages (like

SVG or MathML) or other topics in the Web Almanac, those are covered in more detail in their own

dedicated chapters. Because the markup is the gateway into the web, it was extremely hard not to

dedicate a whole chapter to it.

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 95

General

We’ll start with some of the more general aspects of a markup document: things like document

types, document sizes, document language, and compression.

Doctypes

Ever wondered why all pages start with <!DOCTYPE html> or something similar, even in

2021? Doctypes are required because they tell the browsers not to switch into “quirks mode76”

when rendering a page, and instead, they should make a best-effort attempt to follow the

HTML spec.

This year, 97.4% of pages had a doctype, slightly up from last year’s 96.8%. Looking at the past

couple of years, the doctype percentage has increased steadily by half a percentage point every

year. In an ideal world, 100% of web pages would have a doctype—at this rate, we’ll live in an

ideal world by 2027!

In terms of popularity, HTML5, better known as <!DOCTYPE html> is still the most popular

doctype, with 88.8% of mobile pages using it.

The surprising part is that, almost 20 years later78, XHTML is still a considerable part of the web,

with 8% of pages still using it on desktop and a little under 7% on mobile.

Document size

In a mobile world, where every byte of data has a cost associated with it, document sizes for

Figure 3.1. Most popular doctypes.

Doctype Desktop Mobile

HTML (“HTML5”) 87.0% 88.8%

XHTML 1.0 Transitional 5.7% 4.6%

XHTML 1.0 Strict 1.4% 1.3%

HTML 4.01 Transitional 0.9% 0.7%

HTML 4.01 Transitional (quirky77) 0.5% 0.5%

76. https://developer.mozilla.org/docs/Web/HTML/Quirks_Mode_and_Standards_Mode
77. https://hsivonen.fi/doctype/#xml
78. https://en.wikipedia.org/wiki/XHTML

Part I Chapter 3 : Markup

96 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Quirks_Mode_and_Standards_Mode
https://hsivonen.fi/doctype/#xml
https://en.wikipedia.org/wiki/XHTML

mobile websites are becoming increasingly more important. It is also increasingly bigger, by the

looks of it. This year, the median mobile page had 27 KB of HTML, up 2 KB from last year. On

the desktop side, the median page had 29 KB of HTML.

The interesting points were:

• The median page sizes in 2020 were shrinking when compared to 2019. Looking at

the figure above, we’ve had a slight increase this year, after the dip in 2020.

• The biggest HTML documents for both desktop and mobile have shed a whopping

20 MB each this year, with the biggest ones being 45 MB on desktop and 21 MB on

mobile.

Compression

With document sizes increasing, we also looked at compression this year. We felt the document

size relates closely to the level of compression used when transferring it over the wire.

Figure 3.2. The median page size year-over-year.

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 97

https://almanac.httparchive.org/static/images/2021/markup/page-size-by-year.png
https://almanac.httparchive.org/static/images/2021/markup/page-size-by-year.png

Out of the 6 million desktop pages scanned, an overwhelming 84.4% were compressed with

either gzip (62.7%) or Brotli (21.7%) compression. For mobile pages, the numbers are very

similar, 85.6% were compressed with either gzip (63.7%) or Brotli (21.9%) compression. The

slight variation in percentages for mobile and desktop is not surprising, as they comprise of

different URLs, and the Mobile data set is a lot larger.

Compression is important as, particularly in a mobile world, every byte of data has a cost

associated with it. You can learn more about the states of content encoding and the mobile web

in the Compression and Mobile Web chapters.

Document language

We’ve encountered 3,598 unique instances of the lang attribute on the html element.

Because there are 7,139 spoken languages79 at the time of writing this chapter, it made us think

not all of them were represented. When we factored in the script and region subtags80, even

fewer remained.

Figure 3.3. Adoption of content encoding schemes.

79. https://www.ethnologue.com/guides/how-many-languages
80. https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang#language_tag_syntax

Part I Chapter 3 : Markup

98 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/content-encoding.png
https://almanac.httparchive.org/static/images/2021/markup/content-encoding.png
https://www.ethnologue.com/guides/how-many-languages
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang#language_tag_syntax

Out of the pages scanned, 19.6% on desktop, and 18.6% on mobile, specified no lang
attribute, even though the Web Content Accessibility Guidelines (WCAG81) requires that a page

language is defined and “programmatically accessible”. Languages can be specified in different

ways, including an xml:lang element, which we didn’t check for, so there might still be hope

for some of the pages scanned.

Figure 3.4. Adoption of the most popular HTML language codes, including region.

81. https://www.w3.org/TR/UNDERSTANDING-WCAG20/meaning-doc-lang-id.html

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 99

https://almanac.httparchive.org/static/images/2021/markup/lang-region.png
https://almanac.httparchive.org/static/images/2021/markup/lang-region.png
https://www.w3.org/TR/UNDERSTANDING-WCAG20/meaning-doc-lang-id.html

While we looked at the top 10 normalized languages in the set, some interesting trends

emerged:

• Mobile has a lower relative percentage of English websites. We’re not sure why that

is the case, we’ve been discussing the cause as a team. It’s possible that some people

only use mobile phones to access the web, so that would diversify the mobile set’s

language landscape. This author believes a lot of the mobile pages are intended to

be used on the go and hence are local.

• While Spanish has a lot more region and subscript options than Japanese, it was a

tight contest for the second most popular language.

• There is an inverse correlation between the difference in empty attributes for

desktop and mobile and English.

Figure 3.5. Adoption of the most popular HTML language codes, not including region.

Part I Chapter 3 : Markup

100 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/lang.png
https://almanac.httparchive.org/static/images/2021/markup/lang.png

Comments

Most production build tools have an option to remove comments, but we’ve found a majority of

the pages we’ve analyzed, 88%, had at least one comment.

While comments are generally encouraged in code, a particular type of comment, conditional

comments, were used in web pages to render markup for particular browsers.

<!--[if IE 8]>

 <p>This renders in Internet Explorer 8 only.</p>

<![endif]-->

Microsoft dropped support for conditional comments in IE 10. Still, 41% of the pages had at

least one conditional comment present. Aside from the possibility that these are very old

websites, we could only assume they are using some sort of variation of polyfilling framework

for older browsers.

SVG use

This year, we wanted to take a look at SVG usage. With popular icon libraries using more and

more SVG, favicon support improving, and SVG images being on the rise in animations, it’s no

surprise that 46.4% of web pages had some sort of SVG on them. 37.2% had a SVG element,

20.0% on desktop and 18.4% on mobile were using SVG images, and a negligible amount had

either SVG embeds, objects, or iframes in them.

SVGs have more use cases when compared to the style element, but in terms of popularity, the

Figure 3.6. Pages with at least one comment in HTML.

88%

Figure 3.7. Pages with at least one SVG element in HTML.

46.4%

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 101

numbers are comparable. SVG sits just outside the top 20 in terms of element popularity on a

page.

Elements

Elements are the DNA of a HTML document. We wanted to analyze the cells that make up the

living organism that is a web page. What are the most popular, the most likely to be present, and

the obsolete elements on most pages?

Element diversity

There are 112 elements82 currently defined and in use (excepting SVG and MathML), with

another 28 being deprecated83 or obsolete. We wanted to see how many of them were actually

used on a page, and how likely a web of div s was.

No need to panic, the web isn’t all made up of div s. The median mobile page uses 31 different

elements and has a total of 616 elements.

Figure 3.8. Distribution of the number of distinct types of elements per page.

82. https://html.spec.whatwg.org/multipage/indices.html#elements-3
83. https://developer.mozilla.org/docs/Web/HTML/Element#obsolete_and_deprecated_elements

Part I Chapter 3 : Markup

102 2021 Web Almanac by HTTP Archive

https://html.spec.whatwg.org/multipage/indices.html#elements-3
https://developer.mozilla.org/docs/Web/HTML/Element#obsolete_and_deprecated_elements
https://almanac.httparchive.org/static/images/2021/markup/element-diversity.png
https://almanac.httparchive.org/static/images/2021/markup/element-diversity.png

While the median page had 666 elements on desktop, and 616 on mobile, the top 10% of all

pages had closer to triple that number, 1,727 for mobile and 1,902 for desktop.

Top elements

Every year since 2019, the Markup chapter of the Web Almanac has featured the most

frequently used elements in reference to Ian Hickson’s work in 200584. This author couldn’t

break with tradition, so we had a look at the data again.

Figure 3.9. Distribution of the number elements per page.

84. https://web.archive.org/web/20060203031713/http://code.google.com/webstats/2005-12/elements.html

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 103

https://almanac.httparchive.org/static/images/2021/markup/element-count.png
https://almanac.httparchive.org/static/images/2021/markup/element-count.png
https://web.archive.org/web/20060203031713/http://code.google.com/webstats/2005-12/elements.html

The top six elements haven’t changed in the past three years, and it looks like the link
element is gaining a foothold as a solid number seven.

It’s interesting to see that i and option have both fallen out of favor. The first probably

because libraries that misuse the i element for icons have fallen out of popularity in favor of

libraries using SVGs for icons. The meta element is making a strong push into the top 10 this

year, perhaps because social markup is also on the rise. We’ll look at social markup in a later

section of this chapter. The rise of styled select elements accounts for the ul (unordered

list) element gaining popularity over the option element.

main

With the creation of content spiking in 202185 (most likely because the world was stuck in a

pandemic), we wanted to see if that correlates to an adoption of content elements as well. We

Figure 3.10. Evolution of the most frequently used elements per page.

2005 2019 2020 2021

title div div div

a a a a

img span span span

meta li li li

br img img img

table script script script

td p p p

tr option link link

i meta

option i

ul

option

85. https://wordpress.com/activity/posting/

Part I Chapter 3 : Markup

104 2021 Web Almanac by HTTP Archive

https://wordpress.com/activity/posting/

thought main is a good indicator, it being an informative element that doesn’t affect the

DOM’s concept of the structure of a page.

27.7% of desktop pages and 27.9% of mobile pages had a main element. In terms of popularity,

it made it well in the top 50 elements, at a respectable 34th place. Before you start thinking that

there are only 114 elements, we’ve actually had more than a thousand elements come back

from the queries we ran, most of which were custom.

base

Another curiosity was how much developers were paying attention to the stricter rules of the

HTML spec. For example, the spec says there must be no more than one base element in a

document, because the base element defines how user agents should resolve relative URLs.

Having more than one base element introduces ambiguity, so the spec requires that all base
elements after the first be ignored, rendering them useless.

From looking at the desktop pages, base is a popular element, with 10.4% of pages having one.

But do they have only one? There are 5,908 more base elements than pages, so we can only

conclude at least some pages have more than one base element. Who said developers were

great at following directions? We would also recommend people validate their HTML using the

W3C-provided Markup Validation Service86.

dialog

Throughout the chapter we wanted to also look at the adoption of some of the more

controversial or new elements. dialog is one of them, with not all major browsers supporting

it out of the box yet. Only 7,617 pages on desktop and 7,819 pages on mobile are using a dialog

element. When we consider that’s only around 0.1% of the pages analyzed, it doesn’t look like

the adoption is there yet.

Figure 3.11. Percent of mobile pages with at least one main element.

27.9%

86. https://validator.w3.org/

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 105

https://html.spec.whatwg.org/multipage/semantics.html#the-base-element
https://html.spec.whatwg.org/multipage/semantics.html#the-base-element
https://validator.w3.org/

canvas

The canvas element can be used with either the Canvas API87 or WebGL API88 to draw

graphics and animations. It’s one of the main elements used for games or mixed reality on the

web. It’s no surprise 3.1% of the desktop pages and 2.6% of the mobile pages use it. The higher

usage on desktop makes sense when you consider the graphic capabilities of the different

devices, and the use cases skewed towards games and virtual reality.

Probability of element use

While the html , head , body , title , and meta elements are all optional, they’re the most

common elements this year, all present on more than 99% of the pages.

Note that as we are looking at the rendered HTML, and the browsers will automatically add the html
and head elements, this chart shows we have an error rate of 0.2% of pages in our crawl due to sites

no longer being accessible at the time of the crawl.

87. https://developer.mozilla.org/docs/Web/API/Canvas_API
88. https://developer.mozilla.org/docs/Web/API/WebGL_API

Part I Chapter 3 : Markup

106 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Canvas_API
https://developer.mozilla.org/docs/Web/API/WebGL_API

While the percentages are slightly different when compared with last year, the order for the

most popular elements remains the same. What about some of the more exotic elements?

Figure 3.12. Adoption of the top HTML elements.

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 107

https://almanac.httparchive.org/static/images/2021/markup/element-popularity.png
https://almanac.httparchive.org/static/images/2021/markup/element-popularity.png

It’s interesting to see that tt , a deprecated element for Teletype Text89, is 100% more popular

than ruby and rt , which are the Ruby Annotation90 and Text91 elements still used for showing

the pronunciation of East Asian characters.

script

A little over 98% of the pages scanned contain at least one script element. It’s no surprise

that script is also the 6th most popular element on a page. Compared with last year, the

script element seems to remain constant in terms of popularity and has slightly increased

levels of occurrence in the millions of pages analyzed, from 97% to 98%.

51.4% of pages also contain a noscript element, which is generally used to display a message

for browsers that have disabled JavaScript. Another popular use for the noscript element is

the Google Tag Manager (GTM) snippet. 18.8% of pages on desktop and 16.9% of pages on

mobile are using the noscript element as part of the GTM snippet. It’s interesting to note

that GTM is more popular on desktop than mobile.

Figure 3.13. Adoption of tt , ruby , and rt elements on mobile pages.

Element Percent of pages (mobile)

tt 0.04%

ruby 0.02%

rt 0.02%

Figure 3.14. Percent of mobile pages with at least one script element.

98.2%

Figure 3.15. Percent of mobile pages with at least one noscript element.

51.4%

89. https://developer.mozilla.org/docs/Web/HTML/Element/tt
90. https://developer.mozilla.org/docs/Web/HTML/Element/ruby
91. https://developer.mozilla.org/docs/Web/HTML/Element/rt

Part I Chapter 3 : Markup

108 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/tt
https://developer.mozilla.org/docs/Web/HTML/Element/ruby
https://developer.mozilla.org/docs/Web/HTML/Element/rt

template

One of the least recognized, but most powerful features92 of the Web Components specification

is the template element. Despite the fact that the template element is well supported on

modern browsers since 2013, only 0.5% of the pages were using it in 2021. In terms of

popularity, it didn’t even make it into the top 50 elements. We thought this speaks volumes

about the adoption curve of the modern HTML specification for web developers.

In case you don’t really know what template does, here is a refresher from the specification:

“the template element is used to declare fragments of HTML that can be cloned and inserted

in the document by script”. If you’re a web developer and think that sounds familiar, you’re right.

Most of the popular frameworks today have a similar non-native mechanism to do the same:

Angular has ng-content , React has portals93 and Vue has slot . We would have thought

those frameworks would use the native template element or Web Components instead of

re-creating the functionality within the frameworks.

style

When creating a web page, three things come together. One is HTML, and we’re looking at that

throughout this chapter. The second one is JavaScript, and we saw in the previous section that

the script element used to load JavaScript is one of the most popular ones. It doesn’t come

as a shock that the style element, used to inline CSS is similarly popular. 83.8% of the mobile

pages scanned had at least one style element.

In terms of sheer popularity on a page, it barely made it into the top 20, with 0.7%. That leaves

us to believe that while multiple script elements are popular on a page, most have five times

fewer style elements on them. And that makes sense. Because script elements can be

used for both inline and external scripts, but CSS uses a separate element, the link element,

for loading external stylesheets. The link element is present on slightly more pages than the

script element, while being slightly less popular in terms of the number of occurrences.

Figure 3.16. Percent of mobile pages with at least one style element.

83.8%

92. https://css-tricks.com/crafting-reusable-html-templates/
93. https://reactjs.org/docs/portals.html

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 109

https://css-tricks.com/crafting-reusable-html-templates/
https://developer.mozilla.org/docs/Web/Web_Components/Using_templates_and_slots
https://developer.mozilla.org/docs/Web/Web_Components/Using_templates_and_slots
https://angular.io/guide/content-projection
https://angular.io/guide/content-projection
https://reactjs.org/docs/portals.html
https://v3.vuejs.org/guide/component-slots.html#slots
https://v3.vuejs.org/guide/component-slots.html#slots

Custom elements

We’ve also looked at elements that didn’t show up in the HTML or SVG spec, be it current or

obsolete, to determine what custom elements were out there in the wild.

By far, the most popular one is Slider Revolution94, with a majority of elements attributed to the

framework. It more than tripled in popularity over the past year, which leads us to believe it

might be a part of a popular template or site builder. A close second is Wix95, the popular free

site builder. We initially couldn’t identify pages-css , but Alon Kochba reached out and

identified it as another custom element used by Wix, which also explains the similar page count

to wix-image .

We would have thought that popular frameworks like Angular96, Next.js97, or the former

Angular.js98 would account for more custom components, but router-outlet and ng-
component make up a small part of the custom component base.

Obsolete elements

There are currently 28 obsolete and deprecated elements99 described in the HTML reference.

We wanted to see how many of those were still in use today. By far, the most used ones are

center and font , and we’re glad to see their usage has slightly declined when compared

Figure 3.17. Adoption of select custom elements on desktop pages.

Element Number of pages Percent of pages

rs-module-wrap 123,189 2.0%

wix-image 76,138 1.2%

pages-css 75,539 1.2%

router-outlet 35,851 0.6%

next-route-announcer 9,002 0.1%

app-header 7,844 0.1%

ng-component 3,714 0.1%

94. https://www.sliderrevolution.com/faq/developer-guide-output-class-tag-changes/
95. https://www.wix.com/
96. https://angular.io/
97. https://nextjs.org/
98. https://angularjs.org/
99. https://developer.mozilla.org/docs/Web/HTML/Element#obsolete_and_deprecated_elements

Part I Chapter 3 : Markup

110 2021 Web Almanac by HTTP Archive

https://www.sliderrevolution.com/faq/developer-guide-output-class-tag-changes/
https://www.wix.com/
https://angular.io/
https://nextjs.org/
https://angularjs.org/
https://developer.mozilla.org/docs/Web/HTML/Element#obsolete_and_deprecated_elements

with last year.

nobr and big on the other hand, while still being deprecated, have increased in usage

slightly when compared with last year.

While the percentage of obsolete elements for mobile pages is slightly different when

compared with desktop, the order remains the same.

Figure 3.18. Adoption of the top obsolete HTML elements.

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 111

https://almanac.httparchive.org/static/images/2021/markup/obsolete-elements.png
https://almanac.httparchive.org/static/images/2021/markup/obsolete-elements.png

Google still uses a center element on their home page in 2021, but we’re not going to judge.

Proprietary and non-standard elements

While custom elements all have a hyphen in them, we’ve also encountered elements that are

made up, don’t have a hyphen, and don’t show up on the HTML standard100.

Figure 3.19. Relative adoption of the top obsolete HTML elements.

100. https://html.spec.whatwg.org/#toc-semantics

Part I Chapter 3 : Markup

112 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/relative-obsolete-elements.png
https://almanac.httparchive.org/static/images/2021/markup/relative-obsolete-elements.png
https://html.spec.whatwg.org/#toc-semantics

All of them were present last year as well, and can be attributed to popular frameworks or

products like JivoChat, Yandex, MediaElement.js, and Yandex Maps. And because some people

get carried away, or six is just not enough headers, h7 to h9 .

Embedded content

Content can be embedded through multiple elements in a page. The most popular is an

iframe , followed at a considerable distance by source and picture .

The actual embed element is the least popular out of all the present elements for embedding

Figure 3.20. Adoption of non-standard elements.

Element Mobile Desktop

jdiv 0.8% 0.8%

noindex 0.9% 0.8%

mediaelementwrapper 0.6% 0.6%

ymaps 0.3% 0.2%

h7 0.1% 0.1%

h8 <0.1% <0.1%

h9 <0.1% <0.1%

Figure 3.21. Adoption of elements for embedding content.

Element Desktop Mobile

iframe 56.7% 54.5%

source 9.9% 8.4%

picture 6.1% 6.0%

object 1.4% 2.0%

param 0.4% 0.4%

embed 0.4% 0.4%

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 113

content.

Forms

Forms, or ways of getting input from your visitors, are part of the fabric of the web. It’s no

surprise that 71.3% of pages on desktop and 67.5% of pages on mobile had at least one form
on them. The most common occurrence was one (33.0% on desktop and 31.6% on mobile) or

two (17.9% on desktop and 16.8% on mobile) form elements on a page.

There are also extreme cases with one page having 4,018 form elements on desktop and

4,256 form elements on mobile. We can’t help but wonder what kind of input is so valuable,

that you’d have to break it up in 4,000 pieces.

Attributes

Element behaviors are heavily influenced by attributes, so we thought it was only fair we took a

look at the attributes used on a page, explore data-* patterns, and some popular social

attributes for meta elements.

Figure 3.22. The most form elements found on a single page.

4,256

Part I Chapter 3 : Markup

114 2021 Web Almanac by HTTP Archive

Top attributes

The most popular attribute is class and that’s no surprise, given that it’s used for styling.

34.3% of all the attributes found on the pages we queried were class . By contrast, id was

much less used, at 5.2%. It’s interesting to note that the style attribute edged out the id
attribute in popularity, accounting for 5.6% of occurrences.

The second most popular attribute is href , with 9.9% of occurrences. With links being part of

the fabric of the web, it’s not surprising an anchor element attribute was this popular. What was

surprising is that the src attribute was only twice as popular as the alt attribute, despite it

being available to considerably more elements.101

Figure 3.23. The most popular HTML attributes.

101. https://developer.mozilla.org/docs/Web/HTML/Attributes

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 115

https://almanac.httparchive.org/static/images/2021/markup/attribute-popularity.png
https://almanac.httparchive.org/static/images/2021/markup/attribute-popularity.png
https://developer.mozilla.org/docs/Web/HTML/Attributes

Meta flavors

meta elements are gaining some of their lost popularity this year, so we wanted to take a

closer look at them. They provide a way to add machine-readable information to your pages, as

well as perform some nifty HTTP equivalents. For example, setting a Content Security Policy for a

page:

<meta http-equiv="Content-Security-Policy" content="default-src

'self'; img-src https://*;">

From the available attributes, name (paired with content) was the most popular. 14.2% of

the meta elements did not have a name attribute. In conjunction with the content
attribute, they are used as a key-value pair for passing in information. What information, you

ask?

Part I Chapter 3 : Markup

116 2021 Web Almanac by HTTP Archive

The most popular is viewport information, with the most popular viewport value being

initial-scale=1,width=device-width . 45.0% of mobile pages scanned used that value.

The second most popular combination are og:* meta elements, also known as Open Graph102

meta elements. We’ll talk about those in the next section.

Figure 3.24. The most popular meta node names.

Figure 3.25. Percent of meta viewports having a value of initial-scale=1,width=device-
width .

45.0%

102. https://ogp.me/

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 117

https://almanac.httparchive.org/static/images/2021/markup/meta-names.png
https://almanac.httparchive.org/static/images/2021/markup/meta-names.png
https://ogp.me/

Social markup

Providing information and assets for social platforms to use when previewing links to your page

is a popular use case for the meta element.

The most common by far are the Open Graph meta elements, used across multiple networks,

with Twitter-specific elements lagging behind. og:title , og:type , og:image , and

og:url are all required for every page, so it’s interesting that there is a variation in their

usage numbers.

Figure 3.26. Social meta nodes usage by page.

Part I Chapter 3 : Markup

118 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/social-meta-names.png
https://almanac.httparchive.org/static/images/2021/markup/social-meta-names.png

data- attributes

The HTML specification allows103 for custom attributes, prefixed by data- . They are intended

to store custom data, state, annotations, and the like, private to the page or application, for

which there are no more appropriate attributes or elements.

The most common ones, data-id , data-src , and data-type are non-specific, with

data-src , data-srcset , and data-sizes being very popular with image lazy-loading

libraries. data-element_type and data-widget_type are coming from a popular website

builder, Elementor104.

Figure 3.27. The most popular data- attributes.

103. https://html.spec.whatwg.org/#embedding-custom-non-visible-data-with-the-data-*-attributes
104. https://code.elementor.com/

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 119

https://html.spec.whatwg.org/#embedding-custom-non-visible-data-with-the-data-*-attributes
https://almanac.httparchive.org/static/images/2021/markup/data-attributes.png
https://almanac.httparchive.org/static/images/2021/markup/data-attributes.png
https://code.elementor.com/

Slick, “the last carousel you’ll ever need”105, is responsible for data-slick-index . Popular

frameworks like Bootstrap are responsible for data-toggle , while testing-library106 is

responsible for data-testid .

Miscellaneous

We’ve covered a good chunk of the most common HTML use cases. We’ve set aside this section

at the end to look into some of the more esoteric use cases, as well as adoption of new

standards on the web.

viewport specifications

The viewport meta element is used to control layout on mobile devices. Or at least that was

the idea when it came out. Today, some browsers107 have started to ignore some of the

viewport options to allow for zooming a page up to 500%108.

105. https://github.com/kenwheeler/slick
106. https://testing-library.com/docs/queries/bytestid/
107. https://www.quirksmode.org/blog/archives/2020/12/userscalableno.html
108. https://dequeuniversity.com/rules/axe/4.0/meta-viewport-large

Part I Chapter 3 : Markup

120 2021 Web Almanac by HTTP Archive

https://github.com/kenwheeler/slick
https://testing-library.com/docs/queries/bytestid/
https://www.quirksmode.org/blog/archives/2020/12/userscalableno.html
https://dequeuniversity.com/rules/axe/4.0/meta-viewport-large

The most common viewport content option is initial-scale=1,width=device-width ,

which is not surprising when it’s the recommended option on the MDN guide109 explaining

viewports. 45.0% of the pages analyzed are using it, almost 3% more than last year110. 8.2% of

pages had an empty content attribute, slightly more than last year as well. That correlates

with a decrease in usage for improper combinations of viewport options.

Favicons

Favicons are one of the most resilient pieces of the web. They work even without markup and

accept multiple image formats. There are also literally dozens of sizes you need to use to be

thorough.

Figure 3.28. Adoption of the most popular meta viewport values.

Attribute Desktop Mobile

initial-scale=1,width=device-width 46.6% 45.0%

(empty) 12.8% 8.2%

initial-scale=1,maximum-scale=1,width=device-width 5.3% 5.6%

initial-scale=1,maximum-scale=1,user-
scalable=no,width=device-width

4.6% 5.4%

initial-scale=1,maximum-scale=1,user-
scalable=0,width=device-width

4.0% 4.3%

initial-scale=1,shrink-to-fit=no,width=device-
width

3.9% 3.8%

width=device-width 3.3% 3.5%

initial-scale=1,maximum-scale=1,minimum-
scale=1,user-scalable=no,width=device-width

1.9% 2.5%

initial-scale=1,user-scalable=no,width=device-
width

1.89% 1.9%

109. https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
110. https://almanac.httparchive.org/en/2020/markup#viewport-specifications

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 121

https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
https://almanac.httparchive.org/en/2020/markup#viewport-specifications

There were a few surprises when we looked at the data:

• ICO was finally dethroned as the most popular format by PNG.

• JPG is still used, even though it’s not the best option when compared with some of

the other unpopular options.

• With SVG support for favicons finally improving, SVG has overtaken WebP this year

in terms of popularity.

Figure 3.29. The most popular favicon formats.

Part I Chapter 3 : Markup

122 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/favicons.png
https://almanac.httparchive.org/static/images/2021/markup/favicons.png

Button and input types

Buttons are controversial. There are a lot of opinions about what does and what doesn’t

constitute a button on the web. While we’re not taking sides, we thought we should look at

some of the semantic ways to specify a button element, seeing as how 65.5% of pages already

had a button element on them.

When we compared the data to last year111, we noticed a lot more pages had button elements

on them. This year we didn’t run a query for input -typed buttons, but we’ve seen a definite

decrease in usage for the number of button elements on pages. The Accessibility chapter also

has a whole section on buttons, you should read that as well!

Figure 3.30. Percent of mobile pages with at least one button element.

65.5%

Figure 3.31. The most popular button types.

111. https://almanac.httparchive.org/en/2020/markup#button-and-input-types

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 123

https://almanac.httparchive.org/static/images/2021/markup/buttons.png
https://almanac.httparchive.org/static/images/2021/markup/buttons.png
https://almanac.httparchive.org/en/2020/markup#button-and-input-types

Links

Links are the glue that ties the web together. Normally, we wanted to look at the instances

where they are proving problematic. Using target="_blank" without noopener and

noreferrer was a security vulnerability for the longest time, but 71.1% of desktop pages and

68.9% of mobile pages still use it today.

That’s what probably prompted a spec change112 this year, so now browsers set

rel="noopener" by default on all target="_blank" links.

Web Monetization

Web Monetization113 is being proposed as a W3C standard at the Web Platform Incubator

Community Group114 (WICG). It’s a young standard that provides an open, native, efficient, and

automatic way to compensate creators, pay for API calls, and support crucial web

infrastructure. While it is in its early days, and it is not implemented by any of the major

browsers, it is supported via forks and extensions, and has been instrumented in Chromium and

the HTTP Archive dataset for over a year. We wanted to take a look at adoption so far.

Figure 3.32. Adoption of various combinations of link attributes.

Link Desktop Mobile

Always uses target="_blank" with noopener and noreferrer 22.0% 23.2%

Sometimes uses target="_blank" with noopener and noreferrer 78.0% 76.8%

Has target="_blank" 81.2% 79.9%

Has target="_blank" with noopener and noreferrer 14.3% 13.2%

Has target="_blank" with noopener 21.2% 20.1%

Has target="_blank" with noreferrer 1.2% 1.1%

Has target="_blank" without noopener and noreferrer 71.1% 69.9%

112. https://github.com/whatwg/html/issues/4078
113. https://discourse.wicg.io/t/proposal-web-monetization-a-new-revenue-model-for-the-web/3785
114. https://www.w3.org/community/wicg/

Part I Chapter 3 : Markup

124 2021 Web Almanac by HTTP Archive

https://github.com/whatwg/html/issues/4078
https://discourse.wicg.io/t/proposal-web-monetization-a-new-revenue-model-for-the-web/3785
https://www.w3.org/community/wicg/
https://www.w3.org/community/wicg/

Web Monetization popularly uses a meta element on the page, specifying the wallet address

for the money to be paid into. It looks a little bit like:

<meta name="monetization" content="$wallet.example.com/alice">

While it still seems a vanishingly small number by percentages, it has shown growth—more on

desktop than mobile. It’s important to keep in mind how big the HTTP Archive dataset is and

how slowly it takes to gain numbers, even for a feature that is widely and natively supported. It

will be interesting to continue to track these numbers and developments over more time. This

author might be biased, as an editor for the Web Monetization standard, but you’re encouraged

to give it a try116, it’s free.

There has been an issue open for some time117, and the new version of the specification will use a

link instead. Only 36 pages in our desktop set and 37 in our mobile set used the link
version, and all of those also included the meta version as well.

We know there are currently two Interledger118-enabled wallet providers in the ecosystem, so

Figure 3.33. Number of mobile pages that use Web Monetization.

1,067

Figure 3.34. Adoption of Web Monetization over time. (Source: Chrome Status115)

115. https://www.chromestatus.com/metrics/feature/timeline/popularity/3119
116. https://webmonetization.org/docs/getting-started
117. https://github.com/WICG/webmonetization/issues/19
118. https://interledger.org/

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 125

https://www.chromestatus.com/metrics/feature/timeline/popularity/3119
https://www.chromestatus.com/metrics/feature/timeline/popularity/3119
https://www.chromestatus.com/metrics/feature/timeline/popularity/3119
https://webmonetization.org/docs/getting-started
https://github.com/WICG/webmonetization/issues/19
https://github.com/WICG/webmonetization/pull/193
https://github.com/WICG/webmonetization/pull/193
https://github.com/WICG/webmonetization/pull/193
https://interledger.org/

we wanted to see the distribution and adoption of those wallets.

Uphold and Gatehub are the current wallets, and it looks like Uphold is the dominant wallet by

far. What is curious, a wallet that was deprecated this year, Stronghold, was more popular than

an active wallet provider, Gatehub. We thought that speaks towards the rate at which web

developers update their web sites.

Conclusion

We’ve pointed out interesting, surprising, and concerning bits of data throughout the chapter.

Let us reflect once more on the state of markup in 2021.

The most surprising for us was that, almost 20 years later, XHTML was still used on a

considerable part of the web, with a little over 7% of pages using it in 2021.

The median page sizes in 2020 were shrinking when compared to 2019, but this year it looks

like the trend has regressed, surpassing the median sizes for 2019 as well. The web is getting

heavier. Again.

English is relatively less popular on mobile pages. We’re not sure why, and this author would

like to encourage you to explore the possibilities of why this is the case.

It was interesting to see that libraries adopting better practices correlated directly with

Figure 3.35. The most popular Web Monetization hosts.

Part I Chapter 3 : Markup

126 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/markup/monetization-by-host.png
https://almanac.httparchive.org/static/images/2021/markup/monetization-by-host.png

elements falling out of favor. Both i and option are less-used this year because icon libraries

have switched over to using SVG.

It was great to see ICO finally being dethroned as the most popular favicon format in favor of

PNG. Similarly, seeing SVG more than doubling in usage for favicons in the past year made us

think we’re 10 years away from dethroning PNG.

The doctype percentage has increased steadily by half a percentage point every year. At this

rate, we’ll live in an ideal world where every page has a doctype by 2027.

It was concerning for this author to see that the adoption of some of the newer standards is

slow, sometimes on a 10-year cycle, and that web pages don’t get updated as often as we’d like.

With that in mind, I’ll leave you to reflect on the state of the web in 2021. I’d also encourage you to be

part of the people who increase adoption of new standards every year. Start with something new

you’ve learned today, one of the many standards we’ve covered not only in this chapter but in this

whole Web Almanac publication.

Author

Alex Lakatos

@avolakatos AlexLakatos http://alexlakatos.com/

Alex Lakatos has spent the past decade working on the Open Web within Browser,

Communications, and FinTech organizations. With a background in web

technologies and developer advocacy, he’s helping the Interledger Foundation119

build developer-friendly products while engaging with the developer community

at large. You can reach out to him on Twitter120.

119. https://interledger.org/
120. https://x.com/avolakatos

Part I Chapter 3 : Markup

2021 Web Almanac by HTTP Archive 127

https://x.com/avolakatos
https://github.com/AlexLakatos
http://alexlakatos.com/
https://interledger.org/
https://x.com/avolakatos

128 2021 Web Almanac by HTTP Archive

Part I Chapter 4

Structured Data

Written by Jono Alderson and Andrea Volpini
Reviewed by Koen Van den Wijngaert and Phil Barker
Analyzed by Greg Brimble
Edited by Jarno van Driel, Jasmine Drudge-Willson, and Barry Pollard

Introduction

When reading web pages, we consume unstructured content. We read paragraphs, examine

media, and consider what we digest. As part of that process, we apply intuition and context

(such as subject-matter familiarity) to identify key themes, data points, entities, and

relationships. As humans, we’re very good at this.

But this kind of intuition and context is difficult for software to replicate. It’s difficult for systems

to reliably parse, identify, and extract key themes with a high degree of reliability.

These limitations can constrain the kinds of things which we can effectively build and create,

and limits how “smart” web technology can be.

By introducing structure to information, we can make it much easier for software to understand

content. We do this by adding labels and metadata which identify key concepts and entities—as

well as their properties and relationships.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 129

When machines can reliably extract structured data, at scale, we enable new and smarter types

of software, systems, services and businesses.

The goal of the Web Almanac’s Structured Data chapter is to explore how structured data is

currently being used across the web. We hope that this will provide insight into the landscape,

the challenges, and the opportunities at hand.

This is the first time that this chapter has been included in the Web Almanac, and so we

unfortunately lack historical data for the purposes of comparison. Future chapters will also

explore year-on-year trends.

Key concepts

Structured data is a complex landscape, and one which is by nature abstract and ’meta’. To

understand the significance and potential impact of structured data, it’s worth exploring the

following key concepts.

The semantic web

When we add structured data to public web pages—and we define the entities that those pages

contain (or are about, or reference)—we create a form of linked data121.

We make statements about the things in (and related to) our content in the form of triples.

Statements like, “This article was authored by this person”, or “That video is about a cat”.

Describing our content in this way enables machines to treat web pages and websites as

databases. At scale, it creates a semantic web122; a giant global database of information.

That creates a wealth of possibilities for business, technology, and society.

— Greg Ross, An introduction to Tim Berners-Lee’s Semantic Web123

The Semantic Web is the name of a long-term project started by W3C with

the stated purpose of realizing the idea of having data on the Web defined

and linked in a way that it can be used by machines not just for display

purposes, but for automation, integration, and reuse of data across various

applications "
121. https://en.wikipedia.org/wiki/Linked_data
122. https://www.techrepublic.com/article/an-introduction-to-tim-berners-lees-semantic-web/
123. https://www.techrepublic.com/article/an-introduction-to-tim-berners-lees-semantic-web/

Part I Chapter 4 : Structured Data

130 2021 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Semantic_triple
https://www.techrepublic.com/article/an-introduction-to-tim-berners-lees-semantic-web/
https://www.techrepublic.com/article/an-introduction-to-tim-berners-lees-semantic-web/

Search engines, and beyond

To date, some of the broadest consumers of structured data are search engines and social media

platforms.

In most major search engines, website owners may become eligible for various forms of rich

results (which may influence visibility and traffic) by implementing various types of structured

data on their websites.

In fact, search engines have played such a significant role in the general adoption of (and

education around124) structured data across the web, that this chapter was born out of Web

Almanac SEO chapters from previous years125. In recent years, the influence of search engines

has also popularized schema.org126 the vocabulary of choice for structured data.

In addition to this, social media platforms rely on structured data to influence how they read

and display content when it’s shared (or linked to) on their platforms. Rich previews, tailored

titles and descriptions, and interactivity in these platforms are often powered by structured

data.

But there’s more to see and understand here than search engine optimization and social media

benefits. The scale, variety, impact and potential of structured data goes far beyond rich results,

far beyond search engines, and far beyond schema.org.

For example, structured data facilitates:

• Easier topic modelling and clustering across multiple pages, websites and concepts;

enabling new types of research, comparison and services.

• Enriching analytics data, to allow for deeper and horizontalized analysis of content

and performance.

• Creating a unified (or at least, connected) language and syntax for querying

business systems and website content.

• Semantic search; using the same rich metadata used for search engine optimization,

to create and manage internal search systems.

Whilst the findings of our research are inevitably shaped by the influence of search engines, we

hope to also explore other types, formats, and use-cases of structured data.

124. https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data
125. https://almanac.httparchive.org/en/2020/seo#structured-data
126. https://schema.org/

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 131

https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data
https://almanac.httparchive.org/en/2020/seo#structured-data
https://schema.org/

Types of structured data and coverage

Structured data comes in many formats, standards, and syntaxes. We’ve collected data about

the most common of these across our data set.

Specifically, we’ve identified and extracted structured data relating to:

• Schema.org127

• Dublin core128

• Meta tags used by social networks:

• Open Graph129

• Twitter130

• Facebook131

• Microformats132 (and microformats2133)

• RDFa134, Microdata135 and JSON-LD136

Collectively, these provide a broad overview of different use-cases and scenarios; and include

both legacy standards and modern approaches (e.g., microformats vs JSON-LD).

Before we explore specific usage across the various structured data types, we should briefly

explore some caveats.

Data caveats

1. The influence of Content Management Systems

Many of the pages we’ve evaluated are from websites which use a Content Management

System (CMS), such as WordPress137 or Drupal138. These systems—or the themes/plugins/

modules which enhance their functionality—are often responsible for generating the HTML

markup which contains the structured data which we’re analyzing.

127. http://schema.org/
128. https://www.dublincore.org/specifications/dublin-core/
129. https://ogp.me/
130. https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started
131. https://developers.facebook.com/docs/sharing/webmasters/
132. http://microformats.org/
133. https://microformats.org/wiki/microformats2
134. https://en.wikipedia.org/wiki/RDFa
135. https://en.wikipedia.org/wiki/Microdata_(HTML)
136. https://json-ld.org/
137. https://wordpress.org/
138. https://www.drupal.org/

Part I Chapter 4 : Structured Data

132 2021 Web Almanac by HTTP Archive

http://schema.org/
https://www.dublincore.org/specifications/dublin-core/
https://ogp.me/
https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started
https://developers.facebook.com/docs/sharing/webmasters/
http://microformats.org/
https://microformats.org/wiki/microformats2
https://en.wikipedia.org/wiki/RDFa
https://en.wikipedia.org/wiki/Microdata_(HTML)
https://json-ld.org/
https://wordpress.org/
https://www.drupal.org/

That means that our findings are unavoidably skewed to aligning with the behaviors and output

of the most prevalent CMS’. For example, many websites using Drupal automatically output

structured data in the form of RDFa, and WordPress (which powers a significant percentage of

websites) often includes microformats markup in template code. This contributes significantly

to the shape of our findings.

2. The limitations of home page-only data

Unfortunately, the nature and scale of our data-collection methods limit our analysis to home

pages only (i.e., the root URL of each hostname we evaluate).

This significantly limits the amount of data we can collect and analyze, and undoubtedly skews

the kinds of data we’ve collected.

As most home pages act as portals to more specific pages, we can reasonably expect that our

analysis underestimates the prevalence of the kinds of content present on that deeper pages.

That likely includes information relating to articles, people, products and similar.

Conversely, we likely over-index on information typically found on home pages, and site-wide

information which is present on all pages—like information about web pages, websites and

organizations.

3. Data overlaps

The nature of some structured data formats makes it hard to perform this kind of analysis

cleanly at scale. In many cases, structured data is implemented in multiple (often overlapping)

formats, and the lines between syntaxes and vocabularies get blurred.

For example, Facebook and Open Graph metadata are technically a subset of RDFa. That means

that our research identifies a page containing a Facebook meta tag in our Facebook category,

and our RDFa section. We’ve done our best to clean, normalize, and make sense of these types

of overlaps and nuances.

4. Mobile metrics

Throughout our data set, the adoption and presence of structured data varies only very slightly

between our desktop and mobile data sets. As such, for the sake of brevity, our narrative

focuses predominantly on the mobile data set.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 133

Usage by type

We can see that there’s a broad range of different types of structured data across many of the

pages in our set.

We can also see that RDFa and Open Graph tags in particular are extremely prevalent, appearing

on 60.61% and 57.45% of pages respectively.

At the other end of the scale, legacy formats, like Microformats and microformats2, appear on

fewer than 1% of pages.

Coverage by syntax type

In addition to identifying when a certain type of structured data is present, we collect

information on the types of data it describes. We can break each of these down and explore

how each format and syntax is being used.

RDFa

Resource Description Framework in Attributes139 (RDFa) is a technology for linked data markup,

which was introduced by W3C in 2015. It allows users to augment and translate visual

Figure 4.1. Structured data usage.

139. https://www.w3.org/TR/rdfa-lite/

Part I Chapter 4 : Structured Data

134 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-usage-by-type.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-usage-by-type.jpg
https://www.w3.org/TR/rdfa-lite/

information on a web page by adding additional attributes to markup.

For example, a website owner might add a rel="license" attribute to a hyperlink in order to

explicitly describe it as a link to a licensing information page.

When we evaluate the types of RDFa, we can see that the foaf:image syntax is present on

far more pages than any other type—on upwards of 0.86% of all pages in our data set. Whilst

that may seem like a small proportion, it represents over ~65,000 pages, and over 60% of the

total RDFa markup that we discovered.

Beyond this outlier, the use of RDFa diminishes and fragments considerably, though there are

still some interesting discoveries to explore.

On FOAF

FOAF140 (or “Friend of a Friend”) is a linked data dictionary of people-related terms, created in

Figure 4.2. RDFa types.

140. http://xmlns.com/foaf/spec/

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 135

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-rdfa-types.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-rdfa-types.jpg
http://xmlns.com/foaf/spec/

the early-2000s. It can be used to describing people, groups and documents.

FOAF uses W3C’s RDF syntax and in its original introduction141 was explained as follows:

Anecdotally, we can attribute a prominence of foaf markup in our results to sites running on

older versions of the Drupal CMS, which historically added typeof="foaf:image" and

foaf:document markup to its HTML by default.

On other notable RDFa findings

As well as FOAF properties, various other standards and syntaxes show up in our list.

Notably, we can see several sioc properties, such as sioc:item (0.24% of pages) and

sioc:useraccount (0.03% of pages). SIOC143 is a standard designed to describe structured

data relating to online communities, such as message boards, forums, wikis and blogs.

We can also see a SKOS144 (or “Simple Knowledge Organization System”)

property— skos:concept —on 0.04% of pages. SKOS is another standard, which aims to

provide a way of describing taxonomies and classifications (e.g., tags, data sets, and so on).

Dublin Core

Dublin Core145 is a vocabulary interoperable with linked data standards that was originally

conceived in Dublin, Ohio in 1995 at an OCLC (Online Computer Library Center) and NCSA

(National Center for Supercomputing Applications) workshop.

It was designed to describe a broad range of resources (both digital and physical) and can be

used in various business scenarios. Starting in 2000 it became extremely popular among RDF-

based vocabularies and received the adoption of the W3C.

Introducing FOAF142

Consider a Web of inter-related home pages, each describing things of

interest to a group of friends. Each new home page that appears on the Web

tells the world something new, providing factoids and gossip that make the

Web a mine of disconnected snippets of information. FOAF provides a way to

make sense of all this. "

141. https://web.archive.org/web/20140331104046/http://www.foaf-project.org/original-intro
142. https://web.archive.org/web/20140331104046/http://www.foaf-project.org/original-intro
143. https://www.w3.org/Submission/sioc-spec/
144. https://www.w3.org/TR/skos-primer/
145. https://dublincore.org/

Part I Chapter 4 : Structured Data

136 2021 Web Almanac by HTTP Archive

https://web.archive.org/web/20140331104046/http://www.foaf-project.org/original-intro
https://web.archive.org/web/20140331104046/http://www.foaf-project.org/original-intro
https://www.w3.org/Submission/sioc-spec/
https://www.w3.org/TR/skos-primer/
https://dublincore.org/

Since 2008 it is managed by the Dublin Core Metadata Initiative (DCMI) and remains highly

interoperable with other linked data vocabularies. It is typically implemented as a collection of

meta tags in an HTML document.

That the most popular attribute type is dc:title (on 0.70% of pages) comes as no surprise;

but it is interesting to see that dc:language is next (above common descriptors like

description, subject and publisher) with a penetration of 0.49%. This makes sense, when you

consider that Dublin Core is often used in multilingual metadata management systems.

It’s also interesting to see the relatively prominent appearance of dc:relation (on 0.16% of

pages)—an attribute that is capable of expressing relationships between different concepts.

While it might seem to many that Schema.org is predominant in the context of SEO, the role of

DC remains pivotal because of its broad interpretation of concepts and its deep roots in the

linked open data movement.

Figure 4.3. Dublin Core usage.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 137

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-dublin-core.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-dublin-core.jpg

Social metadata

Social networks and platforms are some of the biggest publishers and consumers of structured

data. This section explores the roles, breadth of adoption, and scale of some of their specific

structured data formats.

Open Graph

The Open Graph protocol146 is an open-source standard, originally created by Facebook. It is a

type of structured data specific to the context of sharing content, based loosely on Dublin Core,

Microformats and similar standards.

It describes a series of meta tags and properties, which may be used to define how content

should be (re)presented when shared between platforms. For example, when liking or

embedding a post, or sharing a link.

These tags are typically implemented in the <head> of an HTML document, and define

elements such as the page’s title, description, URL, and featured image.

The Open Graph protocol has since been broadly adopted by many platforms and services,

including Twitter, Skype, LinkedIn, Pinterest, Outlook and more. When platforms don’t have their

own standards for how shared/embedded content should be presented (and sometimes, even

when they do), Open Graph tags are often used to define the default behavior.

146. https://ogp.me/

Part I Chapter 4 : Structured Data

138 2021 Web Almanac by HTTP Archive

https://ogp.me/

The most common type of Open Graph tag is the og:title , which can be found on an

incredible 54.87% of pages. That’s followed closely by a set of related attributes, which

describe what type of thing is being represented (e.g., og:type , on 48.18% of pages) and how it

should be represented (e.g., og:description , on 48.55% of pages).

This narrow distribution is to be expected, as these tags are often used together as part of a

“boilerplate” set of tags used in the <head> across all pages on a site.

Slightly less common is og:locale (26.39% of pages), which is used to define the language of

the page’s content.

Less common still is more specific metadata about the og:image tag, in the form of

og:image:width (12.95% of pages), og:image:height (12.91% of pages),

og:image:secure_url (5.61% of pages) and og:image:alt (1.75% of pages). It’s worth

noting that with HTTPS adoption now increasingly the norm, og:image:secure_url (which

Figure 4.4. Open Graph usage.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 139

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-open-graph.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-open-graph.jpg

was intended to identify a https version of the og:image) is now largely redundant.

Beyond these examples, usage drops off rapidly, into a long tail of (often malformed, deprecated

or erroneous) tags.

Twitter

Though Twitter uses Open Graph tags as fallbacks and defaults, the platform supports its own

flavor of structured data. A set of specific meta tags (all prefixed with twitter:) can be used

to define how pages should be presented when URLs are shared on Twitter.

The most common Twitter meta tag is twitter:card , which was found on 35.42% of all

pages. This tag can be used to define how pages should be presented when shared on the

platform (e.g., as a summary, or as a player when paired with additional data about a media

Figure 4.5. Twitter meta tag usage.

Part I Chapter 4 : Structured Data

140 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-twitter.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-twitter.jpg

object).

Beyond this outlier, adoption drops off steeply. The next most common tags are

twitter:title and twitter:description (both also used to define how shared URLs

are presented), which appear on 20.86% and 18.68% of all pages, respectively.

It’s understandable why these particular tags—as well as the twitter:image tag (11.41% of

pages) and twitter:url tag (3.13% of pages)—aren’t more prevalent, as Twitter falls back to

the equivalent Open Graph tags (og:title , og:description and og:image) when

they’re not defined.

Also of interest are:

• The twitter:site tag (11.31% of pages) which defines the Twitter account

associated with the website in question.

• The twitter:creator tag (3.58% of pages), which defines the Twitter account of

the author of the web page’s content.

• The twitter:label1 and twitter:data1 tags (both on 6.85% of pages), which

can be used to define custom data and attributes about the web page. Additional

label/data pairs (e.g., twitter:label2 and twitter:data2) are also present

on a significant number (0.5%) of pages.

Beyond these examples, usage drops off rapidly, into a long tail of (often malformed, deprecated

or erroneous) tags.

Facebook

In addition to Open Graph tags, Facebook supports additional metadata (meta tags, prefixed

with fb:) for relating web pages to specific brands, properties and people on their platform.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 141

Of all of the Facebook tags that we detected, there are only three tags with significant

adoption.

Those are fb:app_id , fb:admins , and fb:pages ; which we found on 6.06%, 2.63% and

0.86% of pages respectively.

These tags are used to explicitly relate a web page to a Facebook Page/Brand, or to grant

permissions to a user (or users) who administrates those profiles.

Anecdotally, it’s unclear how well these are supported by Facebook. The platform has gone

through radical changes over the past few years, and their technical documentation hasn’t been

well-maintained. However, many content management systems, templates and best practice

guides—as well as some of Facebook’s debugging tools—still include and make reference to

them.

Microformats and microformats2

Microformats (commonly abbreviated as μF) are an open data standard for metadata to

embed semantics and structured data in HTML.

They are composed of a set of defined classes that describe the meanings behind normal HTML

elements, such as headings and paragraphs.

Figure 4.6. Facebook meta tag usage.

Part I Chapter 4 : Structured Data

142 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-facebook.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-facebook.jpg

The guiding principle behind this format for structured data is to convey semantics by reusing

widely adopted standards (semantic (X)HTML). The official documentation147 describes

Microformats as “designed for humans first and machines second”, and are “a set of simple, open

data formats built upon existing and widely adopted standards”.

Microformats are available in two versions: Microformats v1 and Microformats v2

(microformats2). The latter, introduced in March 2014, replaces and supersedes v1 and takes

advantage of some important lessons learned from both microdata and RDFa syntaxes.

Historically and due to its nature (as an extension of HTML), Microformats have been heavily

used by website developers to describe properties of businesses and organizations; particularly

in pages promoting local businesses. This goes a long way to explaining the prominence of the

adr property (on 0.50% of pages), reviews (hReview , on 0.06% of pages) and other

information meant to characterize local businesses and their products/services.

Figure 4.7. Microformats usage.

147. https://microformats.org/wiki/what-are-microformats

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 143

https://microformats.org/wiki/what-are-microformats
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microformats.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microformats.jpg

The difference between legacy microformats and the more modern version is significant, and

an interesting insight into changing behaviors and preferences in the use of markup.

Where the adr class dominated the classic microformats data set, the equivalent h-adr
property only occurs on 0.02% of pages. The results here are dominated instead by the h-
entry property (on 0.08% of pages and which describes blog posts and similar content units),

and the h-card property (on 0.04% of pages and which describes a business card of an

organization or individual).

We can speculate on three likely causes for this difference:

• Data for common class names (like adr) is almost certainly over-inflated in our

microformats v1 data; where it’s difficult to distinguish between when these values

are used for structured data vs more generic reasons (e.g., as an HTML class attribute

value with associated CSS rules).

• The use of microformats in general (regardless of type) has decreased significantly,

and been replaced with other formats.

• Many websites and themes still include h-entry (and sometimes h-card)

markup on common design elements and layouts. For example, many WordPress

themes continue to output a h-entry class on the main content container.

Figure 4.8. microformats2 usage.

Part I Chapter 4 : Structured Data

144 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microformats2.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microformats2.jpg

Microdata

Like microformats and RDFa, microdata148 is based on adding attributes to HTML elements.

Unlike microformats, but in common with RDFa, it’s not tied to a set of defined meanings. The

standard is extensible and allows authors to declare which vocabularies of data they’re

describing; most commonly schema.org.

One of the limitations of microdata is that it can be difficult to describe abstract or complex

relationships between entities, when those relationships aren’t explicitly reflected in the HTML

structure of the page.

For example, it may be hard to describe the opening hours of an organization if that information

isn’t concurrent or logically structured in the document. Note that, there are standards and

methodologies for solving this problem (e.g., by including inline <meta> tags and properties),

but these aren’t widely adopted.

148. https://en.wikipedia.org/wiki/Microdata_(HTML)

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 145

https://en.wikipedia.org/wiki/Microdata_(HTML)

The most common types of microdata across the pages we analyzed describe the web page

itself; via properties like webpage (7.44% of pages), sitenavigationelement (5.62% of

pages), wpheader (4.87% of pages) and wpfooter (4.56% of pages).

It’s easy to speculate on why these types of structural descriptors are more prominent than

content descriptors (such as person or product); creating and maintaining microdata

requires content producers to add specific code to their content—and that’s often easier to do

at template level than it is at content level.

Figure 4.9. Microdata types.

Part I Chapter 4 : Structured Data

146 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microdata.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-microdata.jpg

Whilst one of the strengths of microdata is its explicit relationship with (and authoring in) the

HTML markup, this has limited its approach to content authors with the technical knowledge

and capabilities to use it.

That said, we see a broad adoption and variety of microdata types. Of note:

• Organization (4.02%), which typically describes the company which publishes

the website, the manufacturer of a product, the employer of an author, or similar.

• CreativeWork (2.14%) the most generic parent type to describe all written and

visual content (e.g., blog posts, images, video, music, art).

• BlogPosting (1.34%), which describes an individual blog post (which commonly

also identifies a Person as an author).

• Person (1.37%) which is often used to describe content authors and people

related to the page (e.g., the publisher of the website, the owner of the publishing

organization, the individual selling a product, etc.).

• Product (1.22%) and Offer (1.09%), which, when used together, describe a

product which is available for purchase (typically with additional properties which

describe pricing, reviews and availability).

JSON-LD

Unlike microdata and microformats, JSON-LD149 isn’t implemented by adding properties or

classes to HTML markup. Instead, machine-readable code is added to the page as one or more

standalone blobs of JavaScript Object Notation. This code contains descriptions of the entities

on the page, and their relationships.

Because the implementation isn’t tied directly to the HTML structure of the page, it can be

much easier to describe complex or abstract relationships, as well as representing information

which isn’t readily available in the human-readable content of the page.

149. https://json-ld.org/

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 147

https://json-ld.org/

As we might expect, our findings are similar to our findings from evaluating the use of

microdata. That’s to be expanded, as both approaches are heavily skewed towards the use of

schema.org as a predominant standard. However, there are some interesting differences.

Because the JSON-LD format allows for site owners to describe their content independently of

the HTML markup, it can be easier to represent more abstract complex relationships, which

aren’t tied so strictly to the content of the page.

We can see this reflected in our findings, where more specific and structured descriptors are

more common than with microdata. For example:

Figure 4.10. JSON-LD usage.

Part I Chapter 4 : Structured Data

148 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld.jpg

• BreadcrumbList (1.45% of pages) describes the hierarchical position of the web

page on the website (and describes each parent page).

• ItemList (0.5% of pages), which describes a set of entities, such as steps in a

recipe, or products in a category.

Outside of these examples, we continue to see a similar pattern as we did with microdata

(though at a much lower scale). Descriptions of websites, local businesses, organizations and

the structure of web pages account for the majority of broad adoption.

JSON-LD structures & relationships

One key advantage of JSON-LD is that we can more easily describe the relationships between

entities than we can in other formats.

An event, for example, may have an organizing corporation, be located at a specific location, and

have tickets available on sale as part of an offer. A blog post describing that event might have an

author, and so on, and so on. Describing these kinds of relationships is much easier with JSON-

LD than with other syntaxes and can help us tell rich stories about entities.

However, these relationships can often become deep, complex and intertwined. So, for the

purposes of this analysis, we’re only looking at the most common types of relationships

between entities; not evaluating entire trees and relationship structures.

Below are the most common connections between types, based on how frequently they occur

within all structure/relationship values. Note that some of these structures and values may

sometimes overlap, as they’re small parts of larger relationship chains.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 149

Relationship
% of desktop

pages
% of mobile

pages

WebSite > potentialAction >
SearchAction

6.44% 6.15%

5.06% 4.85%

@graph > WebSite 4.89% 4.69%

WebPage > isPartOf > WebSite 4.02% 3.81%

@graph > WebPage 4.01% 3.79%

BreadcrumbList > itemListElement >
ListItem

3.93% 3.78%

Organization > logo > ImageObject 2.85% 3.03%

@graph > BreadcrumbList 3.18% 2.99%

WebPage > potentialAction >
ReadAction

2.92% 2.71%

WebPage > breadcrumb >
BreadcrumbList

2.60% 2.44%

WebSite 2.49% 2.30%

@graph > Organization 2.26% 2.13%

WebSite > publisher > Organization 2.22% 2.09%

Product > offers > Offer 1.47% 1.89%

Product 1.41% 1.73%

@graph > ImageObject 1.80% 1.71%

ItemList > itemListElement >
ListItem

1.71% 1.69%

@graph > SiteNavigationElement 1.70% 1.66%

WebPage > primaryImageOfPage >
ImageObject

1.67% 1.59%

Part I Chapter 4 : Structured Data

150 2021 Web Almanac by HTTP Archive

The most common structure is the relationship between website , potentialAction , and

SearchAction schema (accounting for 6.15% of structures). Collectively, this relationship

enables the use of a Sitelinks Search Box in Google’s search results.

Perhaps most interestingly, the next most popular structure (4.85% of relationships) defines no

relationships. These pages output only the simplest types of structured data, defining

individual, isolated entities and their properties.

The next most popular structure (4.69% of relationships) introduces the @graph property (in

conjunction with describing a website). The @graph property doesn’t is not an entity in its

own right but can be used in JSON-LD to contain and group relationships between entities.

As we explore further relationships, we can see various descriptions of content and

organizational relationships, such as WebPage > isPartOf > WebSite (3.81% of

relationships), Organization > logo > ImageObject (3.03% of relationships), and

WebSite > publisher > Organization (2.09% of relationships).

We can also see lots of structures related to breadcrumb navigation, such as:

• BreadcrumbList > itemListElement > ListItem (3.78% of relationships)

• @graph > BreadcrumbList (2.99% of relationships)

• ItemList > itemListElement > ListItem (1.69% of relationships)

Beyond these most popular structures, we see an extremely long-tail of relationships,

describing all manner of entities, content types and concepts; as niche as ApartmentComplex
> amenityFeature > LocationFeatureSpecification (0.1% of relationships) and

AutoDealer > department > AutoRepair (0.04% of relationships) and MusicEvent >
performer > PerformingGroup (0.01% of relationships).

We should reiterate that these types of structures and relationships are likely to be much more

common than our data set represents, as we’re limited to analyzing the home pages of websites.

That means that, for example, a website which lists many thousands of individual apartment

complexes, but does so on inner pages, wouldn’t be reflected in this data.

Figure 4.11. JSON-LD entity relations.

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 151

https://developers.google.com/search/docs/advanced/structured-data/sitelinks-searchbox

The diagram shows the correlation between JSON-LD entities on mobile pages and represent

them as flows, visually linking entities and relationships. Each class represents a unique value in

the cluster and the height is proportional to its frequency.

We’re limiting in the chart the analysis to the top 200 most frequent chains.

From the chart we also get first overview of the sectors behind these graphs from general

publishing to e-commerce from local business to events, automotive, music and so on.

Relationship depth

Out of curiosity, we also calculated the deepest, most complex relationships between

entities—in both our mobile and desktop data sets.

Figure 4.12. JSON-LD entity relationship as a Sankey diagram.

WebPage
potentialAction ImageObject

WebSite

Organization

SearchAction

itemListElement

Organization
ListItem

Product

isPartOf

WebSite

publisher

BreadcrumbList
WebPage

BlogPosting

image

ReadAction

logo

breadcrumb

BreadcrumbList

offers

Offer

ListItem item

Offer mainEntityOfPage

CollectionPage
Person

QuantitativeValue

about

authorItemList
primaryImageOfPage

PostalAddressseller
Article

address
SearchAction

target EntryPoint

weight
openingHoursSpecification

OpeningHoursSpecification

Review

inventoryLevel

LocalBusiness

MenuItem

MenuItem
MenuSection

hasMenuItem

Person
Place
Event

brandAutoDealer
contactPoint

ContactPoint
Place
Thing

reviewRating

Rating

location

Person,Organization
Review

review

Person,Organization

geo

GeoCoordinates

additionalProperty

PropertyValue

SomeProducts
Question

acceptedAnswer

Answer
MusicEvent
Restaurant
SoftwareApplication
FAQPage

mainEntity

Question
ApartmentComplex

organizer
aggregateRating

AggregateRating
OfferCatalog
NewsArticle

SiteNavigationElement
Product

screenshotBlog
blogPost

BlogPosting
FoodEstablishment
MusicAlbum sponsorMenu

offer

departmentMusicRecording
AutoRepair
SportsEvent

imageObject

amenityFeature

LocationFeatureSpecification

worksFor
ImageGallery associatedMedia

CollectionPage
SportsOrganization

hasMenuSection

MenuSection

Store itemReviewed

MusicGroup

hasPartAutoPartsStore
MediaObject video

VideoObject

PostalAddress addressCountry

Country

hasPOS

OfferCatalog
SportsTeam

ItemOffered
SportsTeam

memberOf

AggregateOffer

Website
AutoDealer

Brand
Physician

width
height
performer
depth

organization

itemOffered
nutrition

NutritionInformation

reviews

Restaurant
AutoRepair

Item
photos
parentOrganization
subOrganization

FoodEstablishment

areaServed

City

performers
awayTeam
homeTeam

Apartment
AutoBodyShop
MusicRelease,Product

From Relationship To

Part I Chapter 4 : Structured Data

152 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld-entities-relationships.svg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld-entities-relationships.svg

Deeper relationships tend to equate to richer, more comprehensive descriptions of entities (and

the other entities they’re related to).

The deepest relationships are:

• On desktop, a depth of 18 nested connections.

• On mobile, a depth of 12 nested connections.

It’s worth considering that these levels of depth may hint at programmatic generation of

output, rather than hand-crafted markup, as these structures become challenging to describe

and maintain at scale.

Use of sameAs

One of the most powerful use-cases for structured data to declare when an entity is the

sameAs another entity. Building a comprehensive understanding of a thing often requires

consuming information which exists in multiple locations and formats. Having a way in which

each of those instances can cross-reference the others makes it much easier to “connect the

dots” and to build a richer understanding of that entity.

Because this is such a powerful tool, we’ve taken the time to explore some of the most common

types of sameAs usage and relationships.

Figure 4.13. Deepest nested relationship on desktop.

18

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 153

The sameAs property accounts for 1.60% of all JSON-LD markup and is present on 13.03% of

pages.

We can see that the most common values of the sameAs property (normalizing from URLs to

hostnames) are social media platforms (e.g., facebook.com, instagram.com), and official sources

(e.g., wikipedia.org, yelp.com)—with the sum of the former accounting for ~75% of usage.

It’s clear that this property is primarily used to identify the social media accounts of websites

and businesses; likely motivated by Google’s historical reliance on this data as an input for

managing knowledge panels in their search results. Given that this requirement was deprecated

Figure 4.14. SameAs usage.

Part I Chapter 4 : Structured Data

154 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld.jpg
https://almanac.httparchive.org/static/images/2021/structured-data/structured-data-json-ld.jpg
https://x.com/googlesearchc/status/1143558928439005184

in 2019150, we might expect this data set to gradually alter in coming years.

Conclusion

Structured data is used broadly, and diversely, across the web. Whilst some of this is

undoubtedly stale (legacy sites/pages, using outmoded formats), there is also strong adoption

of new and emerging standards.

Anecdotally, much of the adoption we see of modern standards like schema.org (particularly via

JSON-LD) appears to be motivated by organizations and individuals who wish to take

advantage of search engines’ support (and rewards) for providing data about their pages and

content. But outside of this, there’s a rich landscape of people who use structured data to

enrich their pages for other reasons. They describe their websites and content so that they can

integrate with other systems, so that they can better understand content, or in order to

facilitate others to tell their own stories and build their own products.

A web made of deeply connected, structured data which powers a more integrated world has

long been a science-fiction dream. But perhaps, not for much longer. As these standards

continue to evolve, and their adoption continues to grow, we pave a road towards an exciting

future.

Future years

In future years we hope to be able to continue the analysis started here, and to map the

evolution of structured data usage over time.

We look forward to exploring further.

Authors

Jono Alderson

@jonoalderson jonoalderson https://www.jonoalderson.com

Jono Alderson is a digital strategist, marketing technologist, and full stack

developer. He enjoys dabbling with website performance, technical SEO,

schema.org and all things structured data.

150. https://x.com/googlesearchc/status/1143558928439005184

Part I Chapter 4 : Structured Data

2021 Web Almanac by HTTP Archive 155

https://x.com/googlesearchc/status/1143558928439005184
https://x.com/jonoalderson
https://github.com/jonoalderson
https://www.jonoalderson.com/

Andrea Volpini

@cyberandy cyberandy https://wordlift.io/blog/en/entity/andrea-volpini

Andrea Volpini is the CEO of WordLift, and is currently focusing on the semantic

web, SEO and artificial intelligence.

Part I Chapter 4 : Structured Data

156 2021 Web Almanac by HTTP Archive

https://x.com/cyberandy
https://github.com/cyberandy
https://wordlift.io/blog/en/entity/andrea-volpini

Part I Chapter 5

Media

Written by Eric Portis and Doug Sillars
Reviewed by Navaneeth Krishna, Tamas Piros, Akshay Ranganath, and Addy Osmani
Analyzed by Eric Portis, Doug Sillars, and Akshay Ranganath
Edited by Barry Pollard

Introduction

Almost three decades ago the tag dropped and hypertext became hypermedia. The web

has become increasingly visual ever since. What is the state of media on the web in 2021? Let’s

look at images and videos, in turn.

Images

Images are ubiquitous on the web. Almost every page contains image content.

Figure 5.1. Percentage of pages that contained at least one contentful .

95.9%

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 157

https://thehistoryoftheweb.com/the-origin-of-the-img-tag/
https://thehistoryoftheweb.com/the-origin-of-the-img-tag/

And effectively all pages serve up some sort of imagery (even if it’s just a background or

favicon).

The impact that all of these images have is hard to overstate. As the Page Weight chapter

highlights, images are still responsible for more bytes-per-page than any other resource type.

However, year-over-year, per-page image transfer sizes have decreased.

This is surprising. For the last decade, the Image Bytes151 chart on the HTTP Archive’s monthly

State of Images report152 has seemingly only ever gone one direction: up. What reversed this

trend in 2021? I think it may have something to do with native lazy-loading’s rapid adoption,

which we will discuss more later in the chapter.

In any case, by quantity, images continue to make up an awful lot of the stuff of the web. But

tallying the sheer number of elements, requests, and bytes doesn’t tell us how crucial images

are to users’ experiences. To get a sense of that, we can look at the Largest Contentful Paint153

Figure 5.2. Percentage of pages that generated at least one request for an image resource.

99.9%

Figure 5.3. Mobile image transfer size by year.

151. https://httparchive.org/reports/state-of-images#bytesImg
152. https://httparchive.org/reports/state-of-images
153. https://web.dev/articles/lcp

Part I Chapter 5 : Media

158 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/mobile-image-transfer-size-by-year.png
https://almanac.httparchive.org/static/images/2021/media/mobile-image-transfer-size-by-year.png
https://httparchive.org/reports/state-of-images#bytesImg
https://httparchive.org/reports/state-of-images
https://web.dev/articles/lcp

metric, which tries to identify the most important piece of above-the-fold content on any given

page. As you can see in the Performance chapter, the LCP element has an image on around

three quarters of pages.

Images are crucial to user’s experiences of the web! Let’s dive in, taking a closer look at how

they’re encoded, embedded, laid out, and delivered.

Encoding

Image data on the web is encoded in files. What can we say out about these files, and the image

data that they contain?

Let’s start by looking at their pixel dimensions. We’ll start small.

Single pixel images

Many elements don’t actually represent contentful images154 and instead, they contain

only a single pixel:

These single pixel elements are, put bluntly, hacks: they are being abused either to do

layout155 (which would be better done with CSS) or to track users156 (which would be better-

accomplished using the Beacon API157).

We can establish a baseline breakdown of what jobs all of these single pixel s are doing

Figure 5.4. Mobile pages whose LCP element has an image. On the desktop it’s 79.4%!.

70.6%

Figure 5.5. Single pixel image use.

Client 1x1 images

Mobile 7.5%

Desktop 7.0%

154. https://www.merriam-webster.com/dictionary/image
155. https://en.wikipedia.org/wiki/Spacer_GIF
156. https://en.wikipedia.org/wiki/Web_beacon
157. https://developer.mozilla.org/docs/Web/API/Beacon_API

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 159

https://www.merriam-webster.com/dictionary/image
https://en.wikipedia.org/wiki/Spacer_GIF
https://en.wikipedia.org/wiki/Spacer_GIF
https://en.wikipedia.org/wiki/Web_beacon
https://developer.mozilla.org/docs/Web/API/Beacon_API

by looking at how many use data URIs158.

The single pixel s containing data URIs are almost certainly being used for layout. The

remaining ~54% which generate a request might be there for layout or they might be tracking

pixels—we can’t tell.

Note that throughout the rest of this analysis, we have excluded single pixel s from the

results. For this media chapter, we’re interested in elements that are presenting visual

information to the user, not tracking pixels or layout hacks.

Multiple pixel images

When s contain more than one pixel, how many pixels do they contain?

Figure 5.6. Data URI single pixel images.

Client Data URI single pixel s

Mobile 44.7%

Desktop 47.1%

Figure 5.7. Distribution of image pixel counts.

158. https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs

Part I Chapter 5 : Media

160 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://almanac.httparchive.org/static/images/2021/media/image-pixel-counts.png
https://almanac.httparchive.org/static/images/2021/media/image-pixel-counts.png

The median loads just over 40,000 pixels on mobile. I found this number surprisingly

small. Just under half of crawled s (excluding the ones that loaded single pixel images, or

nothing at all) contain about the same number of pixels as a 200x200 image.

However, when you consider the number of elements per page, this statistic is less

surprising. Most pages contain more than 15 images, so they are often made up of many smaller

images and icons. Thus, while images with more than half-a-megapixel might only account for

one in ten elements, they are not at all uncommon, as we navigate across pages. Many

pages will include at least one larger image.

I was also surprised that there was almost no difference between desktop and mobile at the top

end of the pixel count distribution. Initially, this seemed to indicate a lack of effective adoption

of responsive image features, but when you consider that the mobile crawler has a 360 × 512px

@3x viewport (so 1,080 by 1,536 physical pixels), while the desktop viewport is 1,376 × 768px

@1x, it isn’t actually surprising: the crawlers’ viewports had similar widths, in physical pixels

(1,080 vs 1,376). A bigger difference in physical pixel resolution between the crawlers would be

more revealing.

Aspect ratios

Images on the web are mostly landscape-oriented, and portrait-oriented images are relatively

rare.

Figure 5.8. Number of s per page.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 161

https://almanac.httparchive.org/static/images/2021/media/number-of-imgs-per-page.png
https://almanac.httparchive.org/static/images/2021/media/number-of-imgs-per-page.png

This feels like a missed opportunity on mobile. The success of the “stories” UI pattern159 shows

that there’s value in imagery tailored to fill portrait-oriented mobile screens.

Images’ aspect ratios were clustered around “standard” values, such as 4:3, 16:9, and especially

1:1 (square). The top 10 aspect ratios accounted for nearly half of all s:

Figure 5.9. Image orientations.

159. https://uxdesign.cc/the-powerful-interaction-design-of-instagram-stories-47cdeb30e5b6

Part I Chapter 5 : Media

162 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/image-orientations.png
https://almanac.httparchive.org/static/images/2021/media/image-orientations.png
https://uxdesign.cc/the-powerful-interaction-design-of-instagram-stories-47cdeb30e5b6

Bytes

Let us turn our attention to file sizes.

Figure 5.10. A ranked list of the top ten image aspect ratios.

Aspect ratio Desktop images Mobile images

1:1 32.9% 32.7%

4:3 3.7% 4.1%

3:2 2.5% 2.6%

2:1 1.6% 1.7%

16:9 1.5% 1.5%

3:4 0.9% 1.0%

2:3 0.7% 0.7%

5:3 0.6% 0.5%

6:5 0.5% 0.5%

8:5 0.5% 0.5%

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 163

The median contentful weighs in at just over 10kB. But, again, the median page

contains more than 15 s so, when looking at the ninetieth percentile of all images across

pages, images that push past 100kB aren’t rare at all.

Bits per pixel

Bytes and dimensions are interesting on their own, but to get a sense of how compressed the

web’s image data is, we need to put bytes and pixels together, to calculate bits per pixel. Doing so

allows us to make apples-to-apples comparisons of the information density of images, even if

those images have different resolutions.

In general, bitmaps on the web decode to eight bits of information per channel, per pixel. So, if

we have an RGB image with no transparency, we can expect a decoded, uncompressed image to

weigh in at 24 bits per pixel160. A good rule of thumb for lossless compression is that it should

reduce file sizes by a 2:1 ratio (which would work out to 12 bits per pixel for our 8-bit RGB

image). The rule of thumb for 1990s-era lossy compression schemes (JPEG and MP3) was a

10:1 ratio (2.4 bits/pixel). It should be noted that, depending on image content and encoding

settings, these ratios vary widely, and modern JPEG encoders like MozJPEG161 typically

outperform this 10:1 target at their default settings.

Figure 5.11. Distribution of image byte sizes.

160. https://en.wikipedia.org/wiki/Color_depth#True_color_(24-bit)
161. https://github.com/mozilla/mozjpeg

Part I Chapter 5 : Media

164 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/distribution-of-image-byte-sizes.png
https://almanac.httparchive.org/static/images/2021/media/distribution-of-image-byte-sizes.png
https://en.wikipedia.org/wiki/Color_depth#True_color_(24-bit)
https://github.com/mozilla/mozjpeg

So, with all of that context, here’s how the web’s images stack up:

The median on mobile hits that 10:1 compression ratio target on the nose: 2.4 bits/

pixel. However, around that median, there is a tremendous spread. Let’s break things down by

format in order to learn a bit more.

Figure 5.12. Distribution of image bits per pixel.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 165

https://almanac.httparchive.org/static/images/2021/media/distribution-of-image-bits-per-pixel.png
https://almanac.httparchive.org/static/images/2021/media/distribution-of-image-bits-per-pixel.png

Bits per pixel, by format

The median JPEG weighs in at 2.1 bits per pixel. Given the format’s ubiquity, this is the best

baseline to measure other formats by.

The median PNG weighs in at more than twice that. PNG is sometimes called a lossless format,

but a median of 4.6 bits per pixel shows how false this is. True lossless compression should

typically land at around 12-16 bits per pixel (depending on whether or not we’re dealing with an

alpha channel). PNG comes in so far below this because common PNG tooling is usually lossy: it

modifies pixels—reducing color palettes and introducing dithering patterns—before encoding

pixels, to boost compression ratios.

GIFs, weighing in at 7.4 bits per pixel, come off terribly here, and make no mistake, they162 are163

terrible164! But they’re also at a bit of an unfair disadvantage here because many GIFs on the

web are animated. Web platform APIs don’t expose the number of frames in an animated image,

so we haven’t accounted for frames. To give you a sense of how much this inflates GIF’s

numbers: a GIF measured as 20 bits per pixel, here, which contains ten frames, should be fairly

counted as using two bits per pixel.

Things get really interesting when we look at two next-gen formats: WebP and AVIF. Both

weigh in almost 40% lighter than JPEG, at 1.3-1.5 bits per pixel. In formal studies using matched

Figure 5.13. Median bits per pixel by format.

162. https://web.dev/efficient-animated-content/
163. https://bitsofco.de/optimising-gifs/
164. https://dougsillars.com/2019/01/15/state-of-the-web-animated-gifs/

Part I Chapter 5 : Media

166 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/median-bits-per-pixel-by-format.png
https://almanac.httparchive.org/static/images/2021/media/median-bits-per-pixel-by-format.png
https://web.dev/efficient-animated-content/
https://bitsofco.de/optimising-gifs/
https://dougsillars.com/2019/01/15/state-of-the-web-animated-gifs/
https://kornel.ski/en/faircomparison

qualities165, WebP outperforms JPEG by between 25-34%166, so its real-world performance

seems surprisingly good. On the other hand, AVIF’s creators have published data suggesting

that it is capable of outperforming modern JPEG encoders JPEG by 50%+, in the lab167. So, while

AVIF’s performance here is good, I expected it to be better. I can think of a few possible

explanations for these discrepancies between lab data and real-world performance.

First: tooling. JPEG encoders vary incredibly widely, ranging from hardware encoders in

cameras which don’t spend much effort compressing images well, to ancient copies of

libjpeg installed decades ago, to bleeding-edge, best-practice-by-default encoders like

MozJPEG. In short, there are a lot of old, badly compressed JPEGs out there, but every WebP

and AVIF has been compressed with modern tooling.

Also, anecdotally, the reference WebP encoder (cwebp) is relatively aggressive about quality/

compression, and returns lower-quality, more-compressed results by default than most

common JPEG tooling.

As far as AVIF is concerned: libavif is capable of a wide variety of compression ratios

depending on which “speed” setting you choose. At its slowest speeds (producing the highest-

efficiency files) libavif can take minutes to encode a single image. It’s reasonable to assume

that different image-rendering pipelines will make different tradeoffs when choosing speed

settings, depending on their constraints. This results in a wide distribution of compression

performance.

Another thing to keep in mind when evaluating AVIF’s real-world performance here, is that

there just aren’t that many AVIFs on the web, yet. The format is currently being used by

relatively few sites, on a limited set of content, so we don’t yet have a full sense of how it will

ultimately perform “in the wild.” This will be interesting to track over the coming years, as

adoption increases (and tooling improves).

One thing that is absolutely clear is that both WebP and AVIF can be used to deliver a wide

variety of content (including photography, illustrations168, and images with transparency) more

efficiently than the web’s legacy formats. But, as we’ll see in the next section, not that many

sites have adopted them.

165. https://kornel.ski/en/faircomparison
166. https://developers.google.com/speed/webp/docs/webp_study
167. https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
168. https://jakearchibald.com/2020/avif-has-landed/#flat-illustration

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 167

https://kornel.ski/en/faircomparison
https://developers.google.com/speed/webp/docs/webp_study
https://netflixtechblog.com/avif-for-next-generation-image-coding-b1d75675fe4
https://wikipedia.org/wiki/Libjpeg
https://wikipedia.org/wiki/Libjpeg
https://developers.google.com/speed/webp/download
https://developers.google.com/speed/webp/download
https://github.com/AOMediaCodec/libavif
https://github.com/AOMediaCodec/libavif
https://jakearchibald.com/2020/avif-has-landed/#flat-illustration

Format adoption

The old formats still reign: JPEG dominates, with PNG and GIF rounding out the podium.

Together, they account for almost 90% of the images on the web. WebP—which is now more

than a decade old but which only achieved universal browser support last year169—is still in the

single digits. And effectively no-one is using AVIF, which accounted for only 0.04% of crawled

resources. We found a thousand JPEGs for every AVIF.

For an in-depth analysis of how (and educated guesses as to why) WebP and AVIF adoption has

changed over time, the best resource is Paul Calvano170’s excellent recent talk at ImageReady

(full video171 and slides 13-15172). In it, he shows that WebP adoption increased by ~34% from

July 2020 (when Safari added support) to July 2021. AVIF’s numbers have risen even more

rapidly, in percentage terms, though perhaps that’s not surprising given that the format is still

brand new and used by relatively few sites. A few large173 players174 adopting AVIF was all it took.

Embedding

In order to display an image on a web page, we must embed it, using the element. This

Figure 5.14. Image format adoption (mobile).

169. https://www.macrumors.com/2020/06/22/webp-safari-14/
170. https://x.com/paulcalvano
171. https://www.youtube.com/watch?v=tz5bpAQY43k
172. https://docs.google.com/presentation/d/1VS5QjNR6lh2y9jL5xaeainQ2cTAWyy7QiEjDMh4hNQA/edit#slide=id.gefc0d6ffce_0_0
173. https://x.com/chriscoyier/status/1465474900588646408
174. https://medium.com/vimeo-engineering-blog/upgrading-images-on-vimeo-620f79da8605

Part I Chapter 5 : Media

168 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/image-format-adoption-mobile.png
https://almanac.httparchive.org/static/images/2021/media/image-format-adoption-mobile.png
https://www.macrumors.com/2020/06/22/webp-safari-14/
https://x.com/paulcalvano
https://www.youtube.com/watch?v=tz5bpAQY43k
https://docs.google.com/presentation/d/1VS5QjNR6lh2y9jL5xaeainQ2cTAWyy7QiEjDMh4hNQA/edit#slide=id.gefc0d6ffce_0_0
https://x.com/chriscoyier/status/1465474900588646408
https://medium.com/vimeo-engineering-blog/upgrading-images-on-vimeo-620f79da8605

venerable element has gained a handful of new features over the past few years but how are

those features being put into practice?

Lazy-loading

If there is one breakout story this year as far as images on the web, it is native lazy-loading175

adoption. Look at this chart:

In July of 2020, native lazy-loading was used on just 1% of pages. By July of 2021, that number

had exploded, to 18%. This is an unbelievable rate of growth considering the vast number of

pages and templates which are not updated from year to year.

Personally, I think native lazy-loading’s rapid adoption is the best explanation we have for the

trend-breaking reduction in image bytes per page, this year.

What fueled lazy-load adoption? There’s some consensus that it was a combination of ease of

use, pent-up developer demand, and WordPress enabling lazy-loading by default across a vast

swath of the web176.

Perhaps native lazy-loading has been too successful? The Resource Hints chapter notes that

the majority of lazy-loaded images were in the initial viewport (whereas the feature is ideally

Figure 5.15. Adoption of loading="lazy" on .

175. https://web.dev/browser-level-image-lazy-loading/
176. https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 169

https://web.dev/browser-level-image-lazy-loading/
https://almanac.httparchive.org/static/images/2021/media/adoption-of-native-loading-lazy-on-img.png
https://almanac.httparchive.org/static/images/2021/media/adoption-of-native-loading-lazy-on-img.png
https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/
https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/

used on “below the fold” images). Furthermore, the Performance chapter found that 9.3% of

Largest Contentful Paint elements have their loading attribute set to lazy , which

significantly delays the page’s most important piece of content from loading, and hurts users’

experiences.

Decoding

The decoding attribute on serves as a useful point of contrast to highlight native

lazy-loading’s success. First supported177 in 2018—about a year before native lazy-loading—the

decoding attribute allows developers to prevent large image decode operations from

blocking the main thread. It provides functionality that not all web developers need or

understand, and that shows in the usage data. decoding is used on just 1% of pages, and on

only 0.3% of elements.

Accessibility

When you embed contentful images on web pages, you should make their content as accessible

as possible for non-visual users. I note this only to refer you to the Accessibility chapter, whose

in-depth analysis of image accessibility on the web found small year-over-year progress, but

mostly: a whole lot of room for improvement.

Responsive images

In 2013, a suite of features enabling adaptive image loading on responsive websites landed, too

much fanfare. Eight years in, how are responsive image features being used?

First, let us consider the srcset attribute, which allows developers to supply multiple

possible resources for the same .

x and w descriptor adoption

Almost a third of crawled pages use srcset —pretty good!

Figure 5.16. Percent of mobile pages that use srcset .

30.9%

177. https://www.chromestatus.com/feature/4897260684967936

Part I Chapter 5 : Media

170 2021 Web Almanac by HTTP Archive

https://www.chromestatus.com/feature/4897260684967936
https://docs.google.com/spreadsheets/d/1nwkpviC3gNhRb48i8OoIgtJx1ckqRjJGW7uc7Gdi_sI/edit?pli=1#gid=1934121343
https://docs.google.com/spreadsheets/d/1nwkpviC3gNhRb48i8OoIgtJx1ckqRjJGW7uc7Gdi_sI/edit?pli=1#gid=1934121343
https://docs.google.com/spreadsheets/d/1nwkpviC3gNhRb48i8OoIgtJx1ckqRjJGW7uc7Gdi_sI/edit?pli=1#gid=1934121343
https://docs.google.com/spreadsheets/d/1nwkpviC3gNhRb48i8OoIgtJx1ckqRjJGW7uc7Gdi_sI/edit?pli=1#gid=1934121343
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset
https://developer.mozilla.org/docs/Web/API/HTMLImageElement/srcset

And w descriptors, which allow browsers to select a resource based on both varying layout

widths and varying screen densities178, are four times more popular than x descriptors, which

only enable DPR-adaptation179.

How are developers populating their srcset s with resources?

Number of srcset candidates

Let’s first take a look at the number of candidate resources developers are including:

Figure 5.17. srcset descriptor adoption.

178. https://jakearchibald.com/2015/anatomy-of-responsive-images/#varying-size-and-density
179. https://jakearchibald.com/2015/anatomy-of-responsive-images/#fixed-size-varying-density

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 171

https://cloudfour.com/thinks/responsive-images-101-part-4-srcset-width-descriptors/
https://cloudfour.com/thinks/responsive-images-101-part-4-srcset-width-descriptors/
https://jakearchibald.com/2015/anatomy-of-responsive-images/#varying-size-and-density
https://jakearchibald.com/2015/anatomy-of-responsive-images/#varying-size-and-density
https://cloudfour.com/thinks/responsive-images-101-part-3-srcset-display-density/
https://cloudfour.com/thinks/responsive-images-101-part-3-srcset-display-density/
https://jakearchibald.com/2015/anatomy-of-responsive-images/#fixed-size-varying-density
https://jakearchibald.com/2015/anatomy-of-responsive-images/#fixed-size-varying-density
https://almanac.httparchive.org/static/images/2021/media/srcset-descriptor-adoption.png
https://almanac.httparchive.org/static/images/2021/media/srcset-descriptor-adoption.png

A large majority of srcset s are populated with five-or-fewer resources.

srcset density ranges

Are developers giving browsers an appropriately wide range of choices, within their srcset s?

In order to answer this question, we must first understand how srcset and sizes values

are used by browsers.

When browsers pick a resource to load out of a srcset , they first assign every candidate

resource a density180. Calculating the density of resources that use x descriptors is

straightforward. A resource with a 2x density descriptor has a density of (wait for it) 2x.

w descriptors complicate things. What’s the density of a 1000w resource? It depends on the

resolved sizes value (which might depend on the viewport width!). When w descriptors are

used, each descriptor is divided by the resolved sizes value, to determine its density. For

example:

<img

 srcset="large.jpg 1000w, medium.jpg 750w, small.jpg 500w"

Figure 5.18. Number of srcset candidates.

180. https://html.spec.whatwg.org/multipage/images.html#current-pixel-density

Part I Chapter 5 : Media

172 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/number-of-srcset-candidates.png
https://almanac.httparchive.org/static/images/2021/media/number-of-srcset-candidates.png
https://html.spec.whatwg.org/multipage/images.html#current-pixel-density

 sizes="100vw"

/>

On a 500-CSS- px -wide viewport, these resources will be assigned the following densities:

However, on a 1000-CSS- px -wide viewport, these same resources, marked up with the same

srcset and sizes values, will have different densities:

After these densities are calculated, browsers pick the resource with the density that’s the best

match for the current browsing context. It’s safe to say that in this example, the srcset did

not contain a wide-enough range of resources. Viewports measuring more than 1,000 CSS px
across, with higher than 1x densities, are not uncommon; if you’re reading this on a laptop,

you’re probably browsing in such a context, right now. And in these contexts, the best browsers

can do is pick large.jpg , whose 1x density will still appear blurry on the high-density display.

So, armed with both:

1. an understanding of how browsers turn x and w descriptors, sizes values, and

browsing contexts into resource densities.

2. an understanding of how the range of resource densities in a srcset changes

across browsing contexts, and ultimately impacts users.

…let’s look at the ranges of densities supplied by the srcset s that use either x descriptors or

w descriptors:

Resource Density

large.jpg 1000w ÷ 500px = 2x

medium.jpg 750w ÷ 500px = 1.5x

small.jpg 500w ÷ 500px = 1x

Resource Density

large.jpg 1000w ÷ 1000px = 1x

medium.jpg 750w ÷ 1000px = 0.75x

small.jpg 500w ÷ 1000px = 0.5x

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 173

As you interpret this data, keep in mind the viewports of the two different crawlers:

• Desktop: 1,376 × 768px @1x

• Mobile: 360 × 512px @3x

Different viewport widths would have altered many resolved sizes values and given

different results.

That said, these results look good. Nine out of ten srcset s are providing a range of resources

that covers a reasonable range of output display densities (1x-2x), even on the larger desktop

viewport. Given the exponential bandwidth costs and diminishing visual returns of densities

above 2x181, the steep drop-off after 2x seems not only reasonable, but perhaps even optimal.

sizes accuracy

Responsive images can be tricky. Authoring reasonably-accurate sizes attributes—and

keeping them up to date with evolving page layouts and content—might be the hardest part

about getting responsive images right. How many authors get sizes wrong? And how wrong

do they get it?

Figure 5.19. Ranges of densities covered by srcset s that use either x or w descriptors.

181. https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/capping-image-fidelity-on-ultra-high-resolution-devices

Part I Chapter 5 : Media

174 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/srcset-density-coverage.png
https://almanac.httparchive.org/static/images/2021/media/srcset-density-coverage.png
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/capping-image-fidelity-on-ultra-high-resolution-devices
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/capping-image-fidelity-on-ultra-high-resolution-devices

More than a quarter of sizes attributes are perfect: exact matches for the layout size of the

image. As someone who has authored a number of erroneous sizes attributes, myself, I found

this both surprising and impressive. That is, until I realized that the accuracy measurement here

was taken after JavaScript runs, and many sizes attributes are ultimately written by client-

side JavaScript. Here are the most common sizes values, before JavaScript runs:

Figure 5.20. Distribution of sizes errors.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 175

https://almanac.httparchive.org/static/images/2021/media/distribution-of-img-sizes-errors.png
https://almanac.httparchive.org/static/images/2021/media/distribution-of-img-sizes-errors.png

One in ten sizes attributes on mobile has an initial value of auto . This non-standard value is

then presumably replaced by a JavaScript library (probably lazysizes.js182), using the measured

layout size of the image.

Some error in sizes is acceptable as the attribute provides a pre-layout hint to the browser in

order to help it select an appropriate resource to load, before layout is complete. But large

errors can lead to bad resource choices. This appears likely for the least-accurate quarter of

sizes attributes, which report widths twice as large as the actual layout width on

desktop and 1.5x as large as the actual layout width on mobile.

So: one in ten sizes attributes is being authored on the client by a JavaScript library, and at

least one in four is inaccurate enough that the error is likely to impact resource selection. Both

of these facts represent significant opportunities for either existing tooling183 or new web

platform features184 to help more authors get sizes right.

Figure 5.21. A ranked list of the most common sizes attribute values, before JavaScript runs.

Sizes Desktop Mobile

auto 8.2% 9.6%

(max-width: 300px) 100vw, 300px 4.7% 5.9%

(max-width: 150px) 100vw, 150px 1.3% 1.6%

(max-width: 600px) 100vw, 600px 1.0% 1.2%

(max-width: 400px) 100vw, 400px 1.0% 1.1%

(max-width: 800px) 100vw, 800px 0.8% 0.9%

(max-width: 500px) 100vw, 500px 0.8% 0.9%

(max-width: 1024px) 100vw, 1024px 0.7% 0.9%

(max-width: 320px) 100vw, 320px 0.5% 0.8%

(max-width: 100px) 100vw, 100px 0.7% 0.8%

100vw 0.7% 0.7%

182. https://github.com/aFarkas/lazysizes
183. https://github.com/ausi/respimagelint
184. https://github.com/whatwg/html/issues/4654

Part I Chapter 5 : Media

176 2021 Web Almanac by HTTP Archive

https://github.com/aFarkas/lazysizes
https://github.com/ausi/respimagelint
https://github.com/whatwg/html/issues/4654
https://github.com/whatwg/html/issues/4654

<picture> usage

The <picture> element serves a couple of use cases:

1. Art direction, with the media attribute

2. Format-switching, based on MIME-type, via the type attribute

<picture> is used much less frequently than srcset . Here’s how usage breaks down

between those two use cases:

Art direction appears a bit more popular than format-switching, but both features appear

underutilized when you consider their potential utility. As we’ve seen, very few pages are

tailoring images’ aspect ratios to fit mobile screens, and many more pages could deliver their

imagery more efficiently using next-generation formats. These are exactly the problems that

<picture> was invented to solve, and perhaps more than 5.9% of pages could be addressing

them, using it.

Figure 5.22. The percentage of mobile pages which use <picture> .

5.9%

Figure 5.23. <picture> feature usage.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 177

https://developer.mozilla.org/docs/Web/HTML/Element/picture#the_media_attribute
https://developer.mozilla.org/docs/Web/HTML/Element/picture#the_media_attribute
https://developer.mozilla.org/docs/Web/HTML/Element/picture#the_type_attribute
https://developer.mozilla.org/docs/Web/HTML/Element/picture#the_type_attribute
https://almanac.httparchive.org/static/images/2021/media/picture-feature-usage.png
https://almanac.httparchive.org/static/images/2021/media/picture-feature-usage.png

It’s possible that format-switching with <source type> is only used on 2-3% of pages

because format-switching can also be accomplished using server-side content negotiation185.

Unfortunately, server-side adaptation mechanisms are hard to detect in the crawled data, and

we have not analyzed them here.

Notably, <source type> and <source media> are not mutually exclusive, and, put

together, the usage percentages here do not add up to 100%. This suggests that at least 15% of

<picture> elements do not leverage either of these attributes, making those <picture> s

functionally equivalent to a .

Layout

Once you’ve embedded an image on a page, you must lay it out amongst the rest of the page’s

contents. There are many, many ways to do this, but we can derive a few insights about how it’s

generally done by zooming out and answering a couple of big-picture questions.

Intrinsic vs extrinsic sizing

As replaced elements186, images have a natural, “intrinsic” size187. This is the size that they will

render at by default, if there are no CSS rules placing “extrinsic” layout constraints upon them.

How many images are intrinsically vs extrinsically sized?

185. https://developer.mozilla.org/docs/Web/HTTP/Content_negotiation
186. https://developer.mozilla.org/docs/Web/CSS/Replaced_element
187. https://developer.mozilla.org/docs/Glossary/Intrinsic_Size

Part I Chapter 5 : Media

178 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Content_negotiation
https://developer.mozilla.org/docs/Web/CSS/Replaced_element
https://developer.mozilla.org/docs/Glossary/Intrinsic_Size

The question is a little complicated because some images (those with a max-width , max-
height , min-width , or min-height constraint), are sometimes extrinsically sized, but

sometimes left to their intrinsic size. We’ve labelled those images as “both.”

In any case, perhaps unsurprisingly, most images have extrinsic width constraints and height-

constrained sizing is much less common.

Reducing layout shifts with height and width

This brings us to the last web platform feature that we’d like to investigate: using the height
and width attributes to reserve layout space for flexible images.

By default, images left to their intrinsic dimensions take up no space until they load, and their

intrinsic dimensions become known. At that point—poof—they pop into the page, causing a

layout shift188. This was exactly the problem that the height and width attributes were

invented to solve—in 1996189.

Unfortunately, height and width never played well with images that are assigned a variable

extrinsic size in one dimension (e.g., width: 100%;), and left to fill out their intrinsic aspect

ratio, in the other dimension. This is the dominant pattern in responsive design. So width and

Figure 5.24. Intrinsic and extrinsic image sizing.

188. https://developers.google.com/publisher-tag/guides/minimize-layout-shift
189. https://www.w3.org/TR/2018/SPSD-html32-20180315/#img

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 179

https://almanac.httparchive.org/static/images/2021/media/intrinsic-and-extrinsic-image-sizing.png
https://almanac.httparchive.org/static/images/2021/media/intrinsic-and-extrinsic-image-sizing.png
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://www.youtube.com/watch?v=4-d_SoCHeWE
https://developers.google.com/publisher-tag/guides/minimize-layout-shift
https://www.w3.org/TR/2018/SPSD-html32-20180315/#img

height fell out of favor within responsive contexts until 2019, when a tweak to how height
and width are used by browsers fixed this problem. Now, consistently setting height and

width is one of the best things authors can do to reduce Cumulative Layout Shift190. How often

are these attributes accomplishing this task?

It’s hard to tell how many of these s were authored with the new browser behavior in

mind, but they’re all benefiting from it. And that was the point—by re-using existing attributes,

lots of existing content benefited from the change, automatically.

Delivery

Finally, let’s take a look at how images are delivered over the network.

Cross-origin image hosts

How many images are being hosted by the same origin that they’re being embedded on? The

slimmest of minorities:

Figure 5.25. The percentage of s on mobile that have both height and width
attributes and are extrinsically sized in only one dimension.

7.5%

190. https://web.dev/articles/cls

Part I Chapter 5 : Media

180 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://developer.mozilla.org/docs/Web/Media/images/aspect_ratio_mapping#a_new_way_of_sizing_images_before_loading_completes
https://web.dev/articles/cls

Cross-origin images are subject to significant security restrictions191, and can sometimes incur

performance costs192. On the other hand, moving static assets to a dedicated CDN is one of the

most impactful things you can do to help Time to First Byte193, and image CDNs provide

powerful transformation and optimization194 features which can automate all sorts of best-

practices. It would be fascinating to see how many of the 51% of cross-origin images are hosted

on image CDNs and to compare their performance against the rest of the web’s. Unfortunately,

that was outside the scope of our analysis.

And with that, it is time to turn our attention to…

Video

As the world has dramatically changed over the last year, we have seen a huge growth in video

usage on the web. In the 2020 media report, it was estimated that 1-2% of websites had a

<video> tag. In 2021, that number has jumped drastically, with over 5% of desktop sites and

4% of mobile sites incorporating a <video> tag.

Figure 5.26. Image origins.

191. https://developer.mozilla.org/docs/Web/HTML/CORS_enabled_image
192. https://andydavies.me/blog/2019/03/22/improving-perceived-performance-with-a-link-rel-equals-preconnect-http-header/
193. https://developer.mozilla.org/docs/Glossary/time_to_first_byte
194. https://web.dev/image-cdns/

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 181

https://almanac.httparchive.org/static/images/2021/media/image-origins.png
https://almanac.httparchive.org/static/images/2021/media/image-origins.png
https://developer.mozilla.org/docs/Web/HTML/CORS_enabled_image
https://andydavies.me/blog/2019/03/22/improving-perceived-performance-with-a-link-rel-equals-preconnect-http-header/
https://developer.mozilla.org/docs/Glossary/time_to_first_byte
https://web.dev/image-cdns/

This huge growth in video usage on the web indicates that as devices/networks improve, there

is a desire to add immersive experiences such as video to sites.

When it comes to interaction with video, it is interesting to see how long the videos are when

posted on a web page. We were able to query this value for 440k desktop videos, and 382k

mobile videos, and broke down the duration into buckets of varying duration (in seconds):

Figure 5.27. Sites with at least one video element.

Part I Chapter 5 : Media

182 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/sites-with-at-least-one-video-element.png
https://almanac.httparchive.org/static/images/2021/media/sites-with-at-least-one-video-element.png

Most videos on the web are short: ~ 60% of videos are under 30 seconds long on both mobile

and desktop. However, 12-13% are between one and two minutes, and 10% of videos are over

two minutes long.

Video: formats

What types of files are being delivered as video? We queried all files with video in the MIME

type, and then sorted by the file extension.

The chart below shows all video extensions with over 1% market share:

Figure 5.28. Video durations.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 183

https://almanac.httparchive.org/static/images/2021/media/video-durations.png
https://almanac.httparchive.org/static/images/2021/media/video-durations.png

By far, the #1 video format on the web is the mp4 (or MPEG-4), since the mp4 h264 format has

98.4% support in all modern browsers195, and the 1.9% of browsers that do not support mp4
have no video support, so the number is really 100% coverage. Interestingly, the mp4 usage

has dropped by ~15% YOY on both desktop and mobile. WebM support also dropped

significantly YOY196 (50% drop on both mobile and desktop).

Where we see the growth are files with no extension (these are often from YouTube or other

streaming platforms), and in web streaming. ts files are segments used in HTTP Live

Streaming (HLS) where we see a 4% jump in usage. .m4s are MPEG Dynamic Adaptive

Streaming over HTTP (MPEG-DASH) video segments. M4S files grew by 50% from 2.3% to

3.3% YOY.

Video CSS: display

To begin, let’s look at how a video will appear on a page by looking at the CSS display
property for that video. What we find is that approximately half of all videos use a display value

of block —placing the video on its own line and allowing for height and width values to be set

for the video. The inline-block value also allows height and width to be specified—for a

total of two thirds of all videos.

Figure 5.29. Top extensions of files with a video MIME type.

195. https://caniuse.com/mpeg4
196. https://almanac.httparchive.org/en/2020/media#videos

Part I Chapter 5 : Media

184 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/top-extensions-of-files-with-a-video-mime-type.png
https://almanac.httparchive.org/static/images/2021/media/top-extensions-of-files-with-a-video-mime-type.png
https://caniuse.com/mpeg4
https://caniuse.com/mpeg4
https://almanac.httparchive.org/en/2020/media#videos
https://almanac.httparchive.org/en/2020/media#videos

The display: none declaration hides the video from the viewer. One in five videos on the

web is hidden behind this display value. From a data usage perspective, this is less than optimal,

as the video is still downloaded by the browser.

Video attributes

The <video> HTML5 tag has a number of attributes that can be used to define how the video

player will appear to end users.

Let’s look at the most common attributes and how they are used inside the <video> tag:

Figure 5.30. Video CSS display percentages.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 185

https://almanac.httparchive.org/static/images/2021/media/video-css-display-percentages.png
https://almanac.httparchive.org/static/images/2021/media/video-css-display-percentages.png

preload

The most commonly used attribute is preload. The preload attribute gives the browser a hint on

the best way to handle the video download. There are four possible options: auto ,

metadata , none , and an empty response (which uses the default of auto).

Figure 5.31. Video element attributes.

Part I Chapter 5 : Media

186 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/video-element-attributes.png
https://almanac.httparchive.org/static/images/2021/media/video-element-attributes.png

Interestingly, we see a large push away from preload on both mobile and desktop. While it is

possible that this changed for many videos, it could just be that the new videos added to the

web over the last year do not utilize this setting. From a page weight perspective this is a large

win for the web.

autoplay

The next most commonly used attribute is autoplay . This tells the browser that the video

should play as soon as possible (and because of this, autoplay will actually override the preload

attribute).

The autoplay attribute is a Boolean attribute, meaning that its presence by default means true.

So, for the 190 sites that use autoplay="false" , we’re sorry to tell you that is not going to

work.

width

The width attribute is also one of the top <video> attributes. It tells the browser how wide

the video player should be. Note that height is very rarely used, since the browser can set

this - but it will use a default aspect-ratio of 2:1197 which may be incorrect if not explicitly

Figure 5.32. Video preload values.

197. https://github.com/whatwg/html/issues/3090

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 187

https://almanac.httparchive.org/static/images/2021/media/video-preload-values.png
https://almanac.httparchive.org/static/images/2021/media/video-preload-values.png
https://github.com/whatwg/html/issues/3090

overridden with the aspect-ratio CSS styling.

The width can be presented as a percentage, or a width in pixels.

• When a percentage width is defined, the value 100% is used in 99% of cases.

• When a width in pixels is defined, we see very similar numbers of videos at lower

widths, but a large drop-off in the 1800 and 1920 widths:

It appears that about half of sites with larger videos that also define the width of the video

remove the larger videos for mobile devices. Since very few devices need a 1080p (1920 wide)

video embedded in a website, this makes sense.

src and <source>

The src attribute is used in the <video> tag to point to the URL of the video to be played.

Another way to reference the video is to use the <source> element.

One of the key ideas behind the <source> element is that the developer can supply multiple

video formats to the browser, and the browser will select the first format that the browser

understands.

When we look at <source> usage, we see that about 40% of videos have no <source>

Figure 5.33. Video widths.

Part I Chapter 5 : Media

188 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/media/video-widths.png
https://almanac.httparchive.org/static/images/2021/media/video-widths.png

element—implying that they use the src attribute. This is similar to the ratio found in 2020

(35%).

We also see that the <source> element is most often used with just one element (50% of all

<video> tags). Only 10% of <video> elements have 2 or more video sources named. By a

3:1 ratio, 2 is more common than 3 sources, and then there is a small selection of more than 3

(there is one video with 48 sources!).

Let’s look at the videos that use 2 sources. Here are the top 10 occurrences:

Figure 5.34. source element count.

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 189

https://almanac.httparchive.org/static/images/2021/media/source-element-count.png
https://almanac.httparchive.org/static/images/2021/media/source-element-count.png

In six of the top 10 examples, the MP4 is listed as the first source. MP4 support on the web is at

98.4%198, and the browsers that do not support MP4 generally do not support the <video> tag

at all. This implies that these sites do not need two sources and could save some storage on

their web servers by removing their WebM or Ogg video sources—or they could reverse the

order of the videos, and browsers that support WebM will download the WebM.

The same trend holds for <video> elements with three sources—eight of the top 10 examples

begin with MP4.

Figure 5.35. The most common ordered pairs of type values, when there are two source
elements within a video element.

Format Desktop Mobile

["video/mp4","video/webm"] 25.9% 26.1%

["video/webm","video/mp4"] 22.3% 23.3%

["video/mp4","video/ogg"] 20.2% 24.2%

[null,null] 14.1% 8.0%

["video/mp4"] 3.6% 3.4%

["video/mp4","video/mp4"] 3.5% 5.1%

["application/x-mpegURL","video/mp4"] 2.4% 2.1%

[] 2.1% 1.8%

["video/mp4; codecs="avc1.42E01E,
mp4a.40.2","video/webm; codecs="vp8, vorbis"]

0.8% 0.3%

["video/mp4;","video/webm;"] 0.4% 0.3%

198. https://caniuse.com/mpeg4

Part I Chapter 5 : Media

190 2021 Web Almanac by HTTP Archive

https://caniuse.com/mpeg4
https://caniuse.com/mpeg4

Of course, these implementations will just play the MP4 file, and the WebM and Ogg files will

be ignored.

The incorporation of video on the web has grown immensely over the last year—jumping from

1-2% of web pages to 4-5%. We expect this growth to continue. Interestingly, the “king of

video”, MP4, while still the king, is having its market share eroded by video streaming formats

(that feature responsive and adaptive video sizing).

We do see movement to more performant usage of the <video> tag—with less use of

preload=auto —and more use of preload=none as well as we see behaviors in the width
attribute that indicate that videos are being modified (or removed) for smaller screens.

Figure 5.36. The most common ordered triplets of type values, when there are three source
elements within a video element.

Format Desktop Mobile

["video/mp4","video/webm","video/ogg"] 30.4% 28.6%

["video/mp4; codecs=avc1","video/mp4;
codecs=avc1","video/mp4; codecs=avc1"]

13.3% 16.4%

["video/webm","video/mp4","video/ogg"] 7.0% 6.3%

["video/mp4; codecs=avc1"] 5.8% 7.1%

["video/mp4","video/ogg","video/webm"] 5.0% 5.5%

["video/mp4;","video/ogg; codecs="theora,
vorbis","video/webm; codecs="vp8, vorbis"]

3.8% 1.2%

["video/mp4; codecs=hevc","video/webm","video/
mp4"]

3.2% 3.4%

["video/mp4"] 3.0% 3.0%

["video/ogg; codecs="theora, vorbis","video/
webm","video/mp4"]

2.7% 3.3%

["video/mp4","video/webm","video/ogv"] 2.5% 1.7%

Part I Chapter 5 : Media

2021 Web Almanac by HTTP Archive 191

Conclusion

As we stated at the outset: the web is increasingly visual, and the ways in which we use the

web’s evolving feature set to encode, embed, lay out, and deliver media continue to evolve. This

year, native lazy-loading stemmed the tide of ever-increasing image transfer sizes. And

universal support for WebP and initial support for AVIF pave the way for a visually richer and

more efficient future. On the video side, we saw an explosion in the number of <video>
elements and increasing use of sophisticated delivery methods like adaptive bitrate streaming.

The Web Almanac is a chance to take stock and look back. It’s also a time to chart a path

forward. Here’s to ever-more effective visual communication on the web in 2022.

Authors

Eric Portis

@etportis @ericportis.com eeeps https://ericportis.com

Eric Portis is a Web Platform Advocate at Cloudinary199.

Doug Sillars

@dougsillars dougsillars https://dougsillars.com

Doug Sillars is a leader in developer relations, and a digital nomad working on the

intersection of performance and media. He tweets @dougsillars, and blogs

regularly at dougsillars.com200.

199. https://cloudinary.com/
200. https://dougsillars.com

Part I Chapter 5 : Media

192 2021 Web Almanac by HTTP Archive

https://x.com/etportis
https://bsky.app/profile/ericportis.com
https://github.com/eeeps
https://ericportis.com/
https://cloudinary.com/
https://x.com/dougsillars
https://github.com/dougsillars
https://dougsillars.com/
https://x.com/dougsillars
https://dougsillars.com/

Part I Chapter 6

WebAssembly

Written by Ingvar Stepanyan
Reviewed by Jarrod Overson, Carlo Piovesan, Alon Zakai, Rick Viscomi, and Barry Pollard
Analyzed by Ingvar Stepanyan
Edited by Shaina Hantsis

Introduction

WebAssembly201 is a binary instruction format that allows developers to compile code written in

languages other than JavaScript and bring it to the web in an efficient, portable package. The

existing use-cases range from reusable libraries and codecs to full GUI applications. It’s been

available in all browsers since 2017—for 4 years now—and has been gaining adoption since, and

this year we’ve decided it’s a good time to start tracking its usage in the Web Almanac.

Methodology

For our analysis we’ve selected all WebAssembly responses from the HTTP Archive crawl on

2021-09-01 that matched either Content-Type (application/wasm) or a file extension

201. https://webassembly.org/

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 193

https://webassembly.org/

(.wasm). Then we downloaded all of those202 with a script203 that additionally stored the URL,

response size, uncompressed size and content hash in a CSV file204 in the process. We excluded

the requests where we repeatedly couldn’t get a response due to server errors, as well as those

where the content did not in fact look like WebAssembly. For example, some Blazor205 websites

served .NET DLLs206 with Content-Type: application/wasm , even though those are

actually DLLs parsed by the framework core, and not WebAssembly modules.

For WebAssembly content analysis, we couldn’t use BigQuery directly. Instead, we created a

tool207 that parses all the WebAssembly modules in the given directory and collects numbers of

instructions per category, section sizes, numbers of imports/exports and so on, and stores all

the stats in a stats.json file. After executing it on the directory with downloads from the

previous step, the resulting JSON file was imported into BigQuery208 and joined with the

corresponding summary_requests and summary_pages tables into

httparchive.almanac.wasm_stats so that each record is self-contained and includes all

the necessary information about the WebAssembly request, response and module contents.

This final table was then used for all further analysis in this chapter.

Using crawler requests as a source for analysis has its own tradeoffs to be aware of when

looking at the numbers in this article:

• First, we didn’t have information about requests that can be triggered by user

interaction. We included only resources collected during the page load.

• Second, some websites are more popular than others, but we didn’t have precise

visitor data and didn’t take it into account—instead, each detected Wasm usage is

treated as equal.

• Finally, in graphs like sizes we counted the same WebAssembly module used across

multiple websites as unique usages, instead of comparing only unique files. This is

because we are most interested in the global picture of WebAssembly usage across

the web pages rather than comparing libraries to each other.

Those tradeoffs are most consistent with analysis done in other chapters, but if you’re

interested in gathering other statistics, you’re welcome to run your own queries against the

table httparchive.almanac.wasm_stats .

202. https://github.com/RReverser/wasm-stats/blob/master/downloader/wasms.csv
203. https://github.com/RReverser/wasm-stats/blob/master/downloader/index.mjs
204. https://github.com/RReverser/wasm-stats/blob/master/downloader/results.csv
205. https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
206. https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library#the-net-framework-assembly
207. https://github.com/RReverser/wasm-stats
208. https://cloud.google.com/bigquery/docs/batch-loading-data

Part I Chapter 6 : WebAssembly

194 2021 Web Almanac by HTTP Archive

https://github.com/RReverser/wasm-stats/blob/master/downloader/wasms.csv
https://github.com/RReverser/wasm-stats/blob/master/downloader/index.mjs
https://github.com/RReverser/wasm-stats/blob/master/downloader/results.csv
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library#the-net-framework-assembly
https://github.com/RReverser/wasm-stats
https://cloud.google.com/bigquery/docs/batch-loading-data
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/util/wasm_stats.sql
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/util/wasm_stats.sql
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/util/wasm_stats.sql
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/util/wasm_stats.sql

How many modules?

We got 3854 confirmed WebAssembly requests on desktop and 3173 on mobile. Those Wasm

modules are used across 2724 domains on desktop and 2300 domains on mobile, which

represents 0.06% and 0.04% of all domains on desktop and mobile correspondingly.

Interestingly, when we look at the most popular resulting mime-types, we can see that while

Content-Type: application/wasm is by far the most popular, it doesn’t cover all the

Wasm responses—good thing we included other URLs with .wasm extension too.

Some of those used application/octet-stream —a generic type for arbitrary binary data,

some didn’t have any Content-Type header, and others incorrectly used text types like plain

or HTML or even invalid ones like binary/octet-stream .

In case of WebAssembly, providing correct Content-Type header is important not only for

security reasons, but also because it enables a faster streaming compilation and instantiation

via WebAssembly.compileStreaming and WebAssembly.instantiateStreaming .

How often do we reuse Wasm libraries?

While downloading those responses, we’ve also deduplicated them by hashing their contents

and using that hash as a filename on disk. After that we were left with 656 unique

Figure 6.1. Top mime types.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 195

https://almanac.httparchive.org/static/images/2021/webassembly/mime_types.png
https://almanac.httparchive.org/static/images/2021/webassembly/mime_types.png
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/compileStreaming
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/compileStreaming
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiateStreaming
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiateStreaming

WebAssembly files on desktop and 534 on mobile.

The stark difference between the numbers of unique files and total responses already suggests

high reuse of WebAssembly libraries across various websites. It’s further confirmed if we look

at the distribution of cross-origin / same-origin WebAssembly requests:

Figure 6.2. Number of Wasm responses.

Part I Chapter 6 : WebAssembly

196 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/counts.png
https://almanac.httparchive.org/static/images/2021/webassembly/counts.png

Let’s dive deeper and figure out what those reused libraries are. First, we’ve tried to

deduplicate libraries by content hash alone, but it became quickly apparent that many of those

left are still duplicates that differ only by library version.

Then we decided to extract library names from URLs. While it’s more problematic in theory due

to potential name clashes, it turned out to be a more reliable option for top libraries in practice.

We extracted filenames from URLs, removed extensions, minor versions, and suffixes that

looked like content hashes, sorted the results by number of repetitions and extracted the top

10 modules for each client. For those left, we did manual lookups to understand which libraries

those modules are coming from.

Figure 6.3. Cross-origin WebAssembly usage.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 197

https://almanac.httparchive.org/static/images/2021/webassembly/cross_domain.png
https://almanac.httparchive.org/static/images/2021/webassembly/cross_domain.png

Almost a third of WebAssembly usages on both desktop and mobile belong to the Amazon

Interactive Video Service209 player library. While it’s not open-source, the inspection of the

associated JavaScript glue code suggests that it was built with Emscripten210.

The next up is Hyphenopoly211—a library for hyphenating text in various languages—that

accounts for 13% and 19% of Wasm requests on desktop and mobile correspondingly. It’s built

with JavaScript and AssemblyScript212.

Figure 6.4. Popular WebAssembly libraries.

209. https://aws.amazon.com/ivs/
210. https://emscripten.org/
211. https://github.com/mnater/Hyphenopoly
212. https://www.assemblyscript.org/

Part I Chapter 6 : WebAssembly

198 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/popular_by_name.png
https://almanac.httparchive.org/static/images/2021/webassembly/popular_by_name.png
https://aws.amazon.com/ivs/
https://aws.amazon.com/ivs/
https://emscripten.org/
https://github.com/mnater/Hyphenopoly
https://www.assemblyscript.org/

Other libraries from both top 10 desktop and mobile lists account for up to 5% of

WebAssembly requests each. Here’s a complete list of libraries shown above, with inferred

toolchains and links to corresponding home pages with more information:

• Amazon IVS213 (Emscripten)

• Hyphenopoly214 (AssemblyScript)

• Blazor215 (.NET)

• ArcGIS216 (Emscripten)

• Draco217 (Emscripten)

• CanvasKit218 (Emscripten)

• Playa Games219 (Unity via Emscripten)

• Tableau220 (Emscripten)

• Xat221 (Emscripten)

• Tencent Video222 (Emscripten)

• Nimiq223 (Emscripten)

• Scandit224 (Emscripten)

Few more caveats about the methodology and results here:

1. Hyphenopoly loads dictionaries for various languages as tiny WebAssembly files,

too, but since those are technically not separate libraries nor are they unique

usages of Hyphenopoly itself, we’ve excluded them from the graph above.

2. WebAssembly file from Playa Games seems to be used by the same game hosted

across similarly-looking domains. We count those as individual usages in our query,

but, unlike other items in the list, it’s not clear if it should be counted as a reusable

library.

213. https://aws.amazon.com/ivs/
214. https://mnater.github.io/Hyphenopoly/
215. https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
216. https://developers.arcgis.com/javascript/latest/
217. https://google.github.io/draco/
218. https://skia.org/docs/user/modules/canvaskit/
219. https://www.playa-games.com/en/
220. https://help.tableau.com/current/api/js_api/en-us/JavaScriptAPI/js_api.htm
221. https://xat.com/
222. https://intl.cloud.tencent.com/products/vod
223. https://www.npmjs.com/package/@nimiq/core-web
224. https://www.scandit.com/developers/

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 199

https://aws.amazon.com/ivs/
https://mnater.github.io/Hyphenopoly/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://developers.arcgis.com/javascript/latest/
https://google.github.io/draco/
https://skia.org/docs/user/modules/canvaskit/
https://www.playa-games.com/en/
https://help.tableau.com/current/api/js_api/en-us/JavaScriptAPI/js_api.htm
https://xat.com/
https://intl.cloud.tencent.com/products/vod
https://www.npmjs.com/package/@nimiq/core-web
https://www.scandit.com/developers/

How much do we ship?

Languages compiled to WebAssembly usually have their own standard library. Since APIs and

value types are so different across languages, they can’t reuse the JavaScript built-ins. Instead,

they have to compile not only their own code, but also APIs from said standard library and ship

it all together to the user in a single binary. What does it mean for the resulting file sizes? Let’s

take a look:

The sizes vary a lot, which indicates a decent coverage of various types of content—from simple

helper libraries to full applications compiled to WebAssembly.

We saw sizes of up to 81 MB at the most which may sound pretty concerning, but keep in mind

those are uncompressed responses. While they’re also important for RAM footprint and start-

up performance, one of the benefits of Wasm bytecode is that it’s highly compressible, and size

over the wire is what matters for download speed and billing reasons.

Let’s check sizes of raw response bodies as sent by servers instead:

Figure 6.5. Uncompressed response sizes.

Part I Chapter 6 : WebAssembly

200 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/uncompressed_resp_sizes.png
https://almanac.httparchive.org/static/images/2021/webassembly/uncompressed_resp_sizes.png

The median is at around 290 KB, meaning that half of usages download below 290 KB, and half

are larger. 90% of all Wasm responses stay below 2.6 MB on desktop and 1.4 MB on mobile.

The largest response in the HTTP Archive downloads about 44 MB of Wasm on desktop and 28

MB on mobile.

Even with compression, those numbers are still pretty extreme, considering that many parts of

the world still don’t have a high-speed internet connection. Aside from reducing the scope of

applications and libraries themselves, is there anything websites could do to improve those

stats?

How is Wasm compressed in the wild?

First, let’s take a look at compression methods used in these raw responses, based on

Content-Encoding header. I’ll show the mobile dataset here because on mobile bandwidth is

even more important, but desktop numbers are pretty similar:

Figure 6.6. Raw response sizes.

Figure 6.7. Largest Wasm response downloaded on desktop.

44 MB

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 201

https://almanac.httparchive.org/static/images/2021/webassembly/raw_resp_sizes.png
https://almanac.httparchive.org/static/images/2021/webassembly/raw_resp_sizes.png

Unfortunately, it shows that ~40% of WebAssembly responses on mobile are shipped without

any compression.

Another ~46% use gzip, which has been a de-facto standard method on the web for a long time,

and still provides a decent compression ratio, but it’s not the best algorithm today. Finally, only

~14% use Brotli—a modern compression format that provides an even better ratio and is

supported in all modern browsers225. In fact, Brotli is supported in every browser that has

WebAssembly support too, so there’s no reason not to use them together.

Can we improve compression?

Would it have made a difference? We’ve decided to recompress all those WebAssembly files

with Brotli (compression level 9) to figure it out. The command used on each file was:

Figure 6.8. Compression methods.

Figure 6.9. Percent of uncompressed WebAssembly responses on mobile.

40.2%

225. https://caniuse.com/brotli

Part I Chapter 6 : WebAssembly

202 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/compression_methods.png
https://almanac.httparchive.org/static/images/2021/webassembly/compression_methods.png
https://caniuse.com/brotli

brotli -k9f some.wasm -o some.wasm.br

Here are the resulting sizes:

The median drops from almost 290 KB to almost 240 KB, which is already a pretty good sign.

The top 10 percentiles go down from 2.5 MB / 1.4 MB to 2.2 MB / 0.8 MB. We can see

significant improvements across all other percentiles, too.

Due to their nature, percentiles don’t necessarily fall onto the same files between datasets, so it

might be hard to compare numbers directly between graphs and to understand the size savings.

Instead, from now on, let’s see the savings themselves provided by each optimization, step by

step:

Figure 6.10. Sizes after Brotli compression.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 203

https://almanac.httparchive.org/static/images/2021/webassembly/br_sizes.png
https://almanac.httparchive.org/static/images/2021/webassembly/br_sizes.png

Median savings are around 40 KB. The top 10% save just under 600 KB on desktop and 330 KB

on mobile. The largest savings produced reach as much as 35 MB / 21 MB. Those differences

speak in favor of enabling Brotli compression whenever possible, at least for WebAssembly

content.

What’s also interesting, at the other end of the graph—where we were supposed to see the

worst savings—we found regressions of up to 1.4 MB. What happened there? How is it possible

that Brotli recompression has made things worse for some modules?

As mentioned above, in this article we’ve used Brotli with compression level 9, but—and we’ll

admit, we completely forgot about this until this article—it also has levels 10 and 11. Those

levels produce even better results in exchange for a steep performance drop-off, as seen, for

example, in Squash benchmarks226. Such trade-off makes them worse candidates for the

common on-the-fly compression, which is why we didn’t use them in this article and went for a

more moderate level 9. However, website authors can choose to compress their static

resources ahead of time or cache the compression results, and save even more bandwidth

without sacrificing CPU time. Cases like these show up as regressions in our analysis, meaning

resources can be and, in some cases, already were optimized even better than we did in this

article.

Figure 6.11. Brotli response savings.

226. https://quixdb.github.io/squash-benchmark/#results-table

Part I Chapter 6 : WebAssembly

204 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/br_savings.png
https://almanac.httparchive.org/static/images/2021/webassembly/br_savings.png
https://quixdb.github.io/squash-benchmark/#results-table

Which sections take up most of the space?

Compression aside, we could also look for optimization opportunities by analyzing the high-

level structure of WebAssembly binaries. Which sections are taking up most of the space? To

find out, we’ve summed up section sizes from all the Wasm modules and divided them by the

total binary size. Once again, we used numbers from the mobile dataset here, but desktop

numbers aren’t too far off:

Unsurprisingly, most of the total binary size (~74%) comes from the compiled code itself,

followed by ~19% for embedded static data. Function types, import/export descriptors and

such comprise a negligible part of the total size. However, one section type stands out—it’s

custom sections, which account for ~6.5% of total size in the mobile dataset.

Custom sections are mainly used in WebAssembly for 3rd-party tooling—they might contain

information for type binding systems, linkers, DevTools and such. While all of those are

legitimate use-cases, they are rarely necessary in production code, so such a large percentage is

suspicious. Let’s take a look at what they are in top 10 files with largest custom sections:

Figure 6.12. Section size distribution.

Figure 6.13. Portion of custom sections in the total binary size of mobile dataset.

6.5%

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 205

https://almanac.httparchive.org/static/images/2021/webassembly/section_sizes.png
https://almanac.httparchive.org/static/images/2021/webassembly/section_sizes.png

All of those are almost exclusively the name section which contains function names for basic

debugging. In fact, if we keep looking through the dataset, we can see that almost all of those

custom sections contain just the debug information.

How much can we save by stripping debug info?

While debug information is useful for local development, those sections can be hefty—they take

over 14 MB before compression in the table above. If you want to be able to debug production

issues users are experiencing, a better approach might be to strip the debug information out of

the binary using llvm-strip , wasm-strip or wasm-opt --strip-debug before

shipping, collect raw stacktraces and match them back to source locations locally, using the

Figure 6.14. Largest custom sections.

URL
Size of Custom

Sections
Custom Sections

…/dotnet.wasm227 15,053,733 name

…/unity.wasm.br?v=1.0.8874228 9,705,643 name

…/nanoleq-HTML5-Shipping.wasmgz229 8,531,376 name

…/export.wasm230 7,306,371 name

…/c0c43115a4de5de0/…/northstar_api.wasm231 6,470,360
name,

external_debug_info

…/9982942a9e080158/…/northstar_api.wasm232 6,435,469
name,

external_debug_info

…/ReactGodot.wasm233 4,672,588 name

…/v18.0-591dd9336/trace_processor.wasm234 2,079,991 name

…/v18.0-615704773/trace_processor.wasm235 2,079,991 name

…/canvaskit.wasm236 1,491,602 name

227. https://gallery.platform.uno/package_85a43e09d7152711f12894936a8986e20694304a/dotnet.wasm
228. https://cdn.decentraland.org/@dcl/unity-renderer/1.0.12536-20210902152600.commit-86fe4be/unity.wasm.br?v=1.0.8874
229. https://nanoleq.com/nanoleq-HTML5-Shipping.wasmgz
230. https://convertmodel.com/export.wasm
231. https://webasset-akm.imvu.com/asset/c0c43115a4de5de0/build/northstar/js/northstar_api.wasm
232. https://webasset-akm.imvu.com/asset/9982942a9e080158/build/northstar/js/northstar_api.wasm
233. https://superctf.com/ReactGodot.wasm
234. https://ui.perfetto.dev/v18.0-591dd9336/trace_processor.wasm
235. https://ui.perfetto.dev/v18.0-615704773/trace_processor.wasm
236. https://unpkg.com/canvaskit-wasm@0.25.1/bin/profiling/canvaskit.wasm

Part I Chapter 6 : WebAssembly

206 2021 Web Almanac by HTTP Archive

https://gallery.platform.uno/package_85a43e09d7152711f12894936a8986e20694304a/dotnet.wasm
https://cdn.decentraland.org/@dcl/unity-renderer/1.0.12536-20210902152600.commit-86fe4be/unity.wasm.br?v=1.0.8874
https://nanoleq.com/nanoleq-HTML5-Shipping.wasmgz
https://convertmodel.com/export.wasm
https://webasset-akm.imvu.com/asset/c0c43115a4de5de0/build/northstar/js/northstar_api.wasm
https://webasset-akm.imvu.com/asset/9982942a9e080158/build/northstar/js/northstar_api.wasm
https://superctf.com/ReactGodot.wasm
https://ui.perfetto.dev/v18.0-591dd9336/trace_processor.wasm
https://ui.perfetto.dev/v18.0-615704773/trace_processor.wasm
https://unpkg.com/canvaskit-wasm@0.25.1/bin/profiling/canvaskit.wasm

original binary.

It would be interesting to see how much much stripping this debug information would save us in

combination with Brotli, vs. just Brotli from the previous step. However, most modules in the

dataset don’t have custom sections so any percentiles below 90 would be useless:

Instead, let’s take a look at the distribution of savings only over files that do have custom

sections:

Figure 6.15. strip-debug + Brotli savings.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 207

https://almanac.httparchive.org/static/images/2021/webassembly/strip_br_savings_100.png
https://almanac.httparchive.org/static/images/2021/webassembly/strip_br_savings_100.png

As can be seen from the graph, some file’s custom sections are negligibly small, but the median

is at 54 KB and the 90 percentile is at 247 KB on desktop and 118 KB on mobile. The largest

savings we could get were at 2.4 MB / 1.3 MB for the largest Wasm binaries on desktop and

mobile, which is a pretty noticeable improvement, especially on slow connections.

You might have noticed that the difference is a lot smaller than raw sizes of custom sections

from the table above. The reason is that the name section, as its name suggests, consists

mostly of function names, which are ASCII strings with lots of repetitions, and, as such, are

highly compressible.

There are a few outliers where the process of removing custom sections with llvm-strip
made some changes to the WebAssembly module that made it smaller before compression, but

slightly larger after the compression. Such cases are rare though, and the difference in size is

insignificant compared to the total size of the compressed module.

How much can we save via wasm-opt ?

wasm-opt from the Binaryen237 suite is a powerful optimization tool that can improve both size

and performance of the resulting binaries. It’s used in major WebAssembly toolchains such as

Emscripten, wasm-pack and AssemblyScript to optimize binaries produced by the underlying

compiler.

Figure 6.16. strip-debug + Brotli savings.

237. https://github.com/WebAssembly/binaryen

Part I Chapter 6 : WebAssembly

208 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/strip_br_savings.png
https://almanac.httparchive.org/static/images/2021/webassembly/strip_br_savings.png
https://github.com/WebAssembly/binaryen

It provides significant size savings on both uncompressed and compressed real-world

benchmarks:

Figure 6.17. wasm-opt uncompressed size benchmarks.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 209

https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_bench.png
https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_bench.png

We’ve decided to check the performance of wasm-opt on the collected HTTP Archive dataset

as well, but there’s a catch.

As mentioned above, wasm-opt is already used by most compiler toolchains, so most of the

modules in the dataset are already its resulting artifacts. Unlike in compression analysis above,

there’s no way for us to reverse existing optimizations and run wasm-opt on the originals.

Instead, we’re re-running wasm-opt on pre-optimized binaries, which skews the results. This

is the command we’ve used on binaries produced after the strip-debug step:

wasm-opt -O -all some.wasm -o some.opt.wasm

Figure 6.18. wasm-opt + Brotli size benchmarks.

Part I Chapter 6 : WebAssembly

210 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_br_bench.png
https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_br_bench.png

Then, we compressed the results to Brotli and compared to the previous step, as usual.

While the resulting data is not representative of real-world usage and not relevant to regular

consumers who should use wasm-opt as they normally do, it might be useful to consumers like

CDNs that want to run optimizations at scale, as well as to the Binaryen team itself:

The results in the graph are mixed, but all changes are relatively small, up to 26 KB. If we

included outliers (0 and 100 percentiles), we’d see more significant improvements of up to 1 MB

on desktop and 240 KB on mobile on the best end, and regressions of 255 KB on desktop and

175 KB on mobile on the worst end.

The significant savings in a small percentage of files mean they were likely not optimized before

publishing on the web. But why are the other results so mixed?

If we look at the uncompressed savings, it becomes more clear that, even on our dataset,

wasm-opt consistently keeps files either roughly the same size or still improves size slightly

further in majority of cases, and produces significant savings for the unoptimized files.

Figure 6.19. wasm-opt + Brotli savings.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 211

https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_br_savings.png
https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_br_savings.png

This suggests several reasons for the surprising distribution in the post-compression graph:

1. As mentioned above, our dataset does not resemble real-world wasm-opt usage

as the majority of the files have been already pre-optimized by wasm-opt . Further

instruction reordering that improves uncompressed size a bit further, is bound to

make certain patterns either more or less compressible than others, which, in turn,

produces statistical noise.

2. We use default wasm-opt parameters, whereas some users might have tweaked

wasm-opt flags in a way that produces even better savings for their particular

modules.

3. As mentioned earlier, the network (compressed) size is not everything. Smaller

WebAssembly binaries tend to mean faster compilation in the VM, less memory

consumption while compiling, and less memory to hold the compiled code. wasm-
opt has to strike a balance here, which might also mean that the compressed size

might sometimes regress in favor of better raw sizes.

4. Finally, some of the regressions look like potentially valuable examples to study and

improve that balance. We’ve reported them back238 to the Binaryen team so that

they could look deeper into potential optimizations.

Figure 6.20. Uncompressed wasm-opt savings.

238. https://github.com/WebAssembly/binaryen/issues/4322

Part I Chapter 6 : WebAssembly

212 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_savings.png
https://almanac.httparchive.org/static/images/2021/webassembly/wasm_opt_savings.png
https://github.com/WebAssembly/binaryen/issues/4322

What are the most popular instructions?

We’ve already glimpsed at the contents of Wasm when sliced by section kinds above. Let’s take

a deeper look at the contents of the code section—the largest and the most important part of a

WebAssembly module.

We’ve split instructions into various categories and counted them across all the modules

together:

One surprising takeaway from this distribution is that local var operations—that is,

local.get , local.set and local.tee —comprise the largest category—36%, far ahead

from the next few categories—inline constants (15.2%), load/store operations (14.7%) and all

the math and logical operations (14.3%). Local var operations are usually generated by

compilers as a result of optimization passes in compilers. They downgrade expensive memory

access operations to local variables where possible, so that engines can subsequently put those

local variables into CPU registers, which makes them much cheaper to access.

It’s not actionable information for developers compiling to Wasm, but something that might be

interesting to engine and tooling developers as a potential area for further size optimizations.

Figure 6.21. Instruction kinds.

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 213

https://almanac.httparchive.org/static/images/2021/webassembly/instruction_kinds.png
https://almanac.httparchive.org/static/images/2021/webassembly/instruction_kinds.png

What’s the usage of post-MVP extensions?

Another interesting metric to look at is post-MVP Wasm extensions. While WebAssembly 1.0

was released several years ago, it’s still actively developed and grows with new features over

time. Some of those improve code size by moving common operations to the engines, some

provide more powerful performance primitives, and others improve developer experience and

integration with the web. On the official feature roadmap239 we track support for those

proposals across latest versions of every popular engine.

Let’s take a look at their adoption in the Almanac dataset too:

One feature stands out—it’s the sign-extension operators proposal240. It was shipped in all

browsers not too long after the MVP, and enabled in LLVM (a compiler backend used by Clang /

Figure 6.22. Post-MVP extensions usage.

239. https://webassembly.org/roadmap/
240. https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md

Part I Chapter 6 : WebAssembly

214 2021 Web Almanac by HTTP Archive

https://webassembly.org/roadmap/
https://almanac.httparchive.org/static/images/2021/webassembly/proposals.png
https://almanac.httparchive.org/static/images/2021/webassembly/proposals.png
https://github.com/WebAssembly/sign-extension-ops/blob/master/proposals/sign-extension-ops/Overview.md

Emscripten and Rust) by default, which explains its high adoption rate. All other features

currently have to be enabled explicitly by the developer at compilation time.

For example, non-trapping float-to-int conversions241 is very similar in spirit to sign-extension

operators—it also provides built-in conversions for numeric types to save some code size—but

it became uniformly supported only recently with the release of Safari 15. That’s why this

feature is not yet enabled by default, and most developers don’t want the complexity of building

and shipping different versions of their WebAssembly module to different browsers without a

very compelling reason. As a result, none of the Wasm modules in the dataset used those

conversions.

Other features with zero detected usages—multi-value, reference types and tail calls—are in a

similar situation: they could also benefit most WebAssembly use-cases, but they suffer from

incomplete compiler and/or engine support.

Among the remaining, used, features, two that are particularly interesting are SIMD and

atomics. Both provide instructions for parallelizing and speeding up execution at different

levels: SIMD242 allows to perform math operations on several values at once, and atomics

provide a basis for multithreading in Wasm243. Those features are not enabled by default, require

specific use-cases, and multithreading in particular requires using special APIs in the source

code as well as additional configuration to make the website cross-origin isolated244 before it can

be used on the web. As a result, a relatively low usage level is unsurprising, although we expect

them to grow over time.

Conclusion

While WebAssembly is a relatively new and somewhat niche participant on the web, it’s great

to see its adoption across a variety of websites and use-cases, from simple libraries to large

applications.

In fact, we could see that it integrates so well into the web ecosystem, that many website

owners might not even know they already use WebAssembly—to them it looks like any other

3rd-party JavaScript dependency.

We found some room for improvement in shipped sizes which, through further analysis,

appears to be achievable via changes to compiler or server configuration. We’ve also found

some interesting stats and examples that might help engine, tooling and CDN developers to

understand and optimize WebAssembly usage at scale.

241. https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
242. https://v8.dev/features/simd
243. https://web.dev/webassembly-threads/
244. https://web.dev/coop-coep/

Part I Chapter 6 : WebAssembly

2021 Web Almanac by HTTP Archive 215

https://github.com/WebAssembly/nontrapping-float-to-int-conversions/blob/master/proposals/nontrapping-float-to-int-conversion/Overview.md
https://v8.dev/features/simd
https://web.dev/webassembly-threads/
https://web.dev/coop-coep/

We’ll be tracking those stats over time and return with updates in the next edition of the Web

Almanac.

Author

Ingvar Stepanyan

@RReverser RReverser https://rreverser.com/

Ingvar is a passionate D2D (developer-to-developer) programmer who’s always

working on improving developer experience through better tools, specs and

documentation. He currently works as a WebAssembly Developer Advocate on

the Google Chrome team.

Part I Chapter 6 : WebAssembly

216 2021 Web Almanac by HTTP Archive

https://x.com/RReverser
https://github.com/RReverser
https://rreverser.com/

Part I Chapter 7

Third Parties

Written by Barry Pollard
Reviewed by Patrick Hulce, Andy Davies, Simon Hearne, and Harry Roberts
Analyzed by Barry Pollard
Edited by Rick Viscomi

Introduction

Ah third parties, the solution to so many problems on the web… and cause of so many others!

Fundamentally, the web has always been about interconnectivity and sharing. Using third-party

content on a website is a natural extension of that and was first set into motion with the

introduction of the element in HTML 2.0; we have been able to hyperlink external

content straight into our documents ever since. This has only grown with the introduction of

CSS, and JavaScript allowing part (or all!) of the page to be changed completely just by including

a seemingly simple <link> or <script> element.

Third parties provide a never-ending collection of images, videos, fonts, tools, libraries, widgets,

trackers, ads, and anything else you can imagine embedding into our web pages. This enables

even the most non-technical to be able to create and publish content to the web. Without third

parties, the web would likely be a very boring, text-based, academic medium instead of the rich,

immersive, complex platform that is so integral to the lives of many of us today.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 217

https://www.w3.org/MarkUp/html-spec/html-spec_5.html#SEC5.10
https://www.w3.org/MarkUp/html-spec/html-spec_5.html#SEC5.10

However, there is a dark side to using third-party content on the web. An innocuous inclusion of

an image or a helpful library opens the floodgates to all sorts of performance, privacy, and

security implications that many developers do not consider fully. Speak to any professionals in

those industries and they will lament the use of third-party content making their lives more

difficult. Scrutiny is surely only going to grow with performance getting extra attention through

the Core Web Vitals initiative from Google245, increased focus on privacy from governments and

individuals, and the ever-increasing threat of exploitable vulnerabilities and malicious threats

inherent to the web.

In this chapter we’re going to have a look at the state of third parties on the web: how much are

we using them, what are we using them for, and has our usage changed over the last year,

particularly given the three concerns listed above? These are questions I’m looking to answer

here.

Definitions

We may have different ideas of what constitutes a “third party” or “using third-party content”,

so we’ll start with a definition of what we consider a third party to be for this chapter:

“Third party”

We use the same definition of third party as we have in the 2019246 and 2020247 editions, though a

slightly different interpretation of it will exclude one category this year, as we’ll discuss in the

next section.

A third party is an entity outside the primary site-user relationship, i.e. the aspects of the site

not directly within the control of the site owner but present with their approval. For example,

the Google Analytics script is an example of a common third-party resource.

Third-party resources are:

• Hosted on a shared and public origin

• Widely used by a variety of sites

• Uninfluenced by an individual site owner

To match these goals as closely as possible, the formal definition used throughout this chapter

245. https://web.dev/articles/vitals
246. https://almanac.httparchive.org/en/2019/third-parties
247. https://almanac.httparchive.org/en/2020/third-parties

Part I Chapter 7 : Third Parties

218 2021 Web Almanac by HTTP Archive

https://web.dev/articles/vitals
https://almanac.httparchive.org/en/2019/third-parties
https://almanac.httparchive.org/en/2020/third-parties

of a third-party resource is one that originates from a domain whose resources can be found on

at least 50 unique pages in the HTTP Archive dataset.

Note that using these definitions, third-party content served from a first-party domain is

counted as first-party content. For example, self-hosting Google Fonts or bootstrap.css is

counted as first-party content.

Similarly, first-party content served from a third-party domain is counted as third-party

content—assuming it passes the “more than 50 pages criteria”, which it may well do based on

domain, even if the resource itself is unique to that website. For example, first-party images

served over a CDN on a third-party domain are considered third-party content.

Third-party categories

This year we will, again, be drawing heavily on the third-party-web248 repository from Patrick

Hulce249 to help us identify and categorize third parties. This repository categorizes commonly

used third-party URLs into the following categories:

• Ad - These scripts are part of advertising networks, either serving or measuring.

• Analytics - These scripts measure or track users and their actions. There’s a wide

range in impact here depending on what’s being tracked.

• CDN - These are a mixture of publicly hosted open source libraries (e.g. jQuery)

served over different public CDNs and private CDN usage.

• Content - These scripts are from content providers or publishing-specific affiliate

tracking.

• Customer Success - These scripts are from customer support/marketing providers

that offer chat and contact solutions. These scripts are generally heavier in weight.

• Hosting - These scripts are from web hosting platforms (WordPress, Wix,

Squarespace, etc.).

• Marketing - These scripts are from marketing tools that add popups/newsletters/

etc.

• Social - These scripts enable social features.

• Tag Manager - These scripts tend to load lots of other scripts and initiate many

tasks.

248. https://github.com/patrickhulce/third-party-web/blob/master/data/entities.js
249. https://x.com/patrickhulce

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 219

https://github.com/patrickhulce/third-party-web/blob/master/data/entities.js
https://x.com/patrickhulce
https://x.com/patrickhulce

• Utility - These scripts are developer utilities (API clients, site monitoring, fraud

detection, etc.).

• Video - These scripts enable video player and streaming functionality.

• Other - These are miscellaneous scripts delivered via a shared origin with no

precise category or attribution.

Note: The CDN category here includes providers that provide resources on public CDN domains (e.g.
bootstrapcdn.com, cdnjs.cloudflare.com, etc.) and does not include resources that are simply served
over a CDN. For example, putting Cloudflare in front of a page would not influence its first-party
designation according to our criteria.

One change that we have made to our methodology this year is to remove the Hosting category

from our analysis. If you happen to use WordPress.com for your blog, or Shopify for your

ecommerce platform, then we’re going to ignore other requests for those domains by that site

as not truly “third-party”, as they are in many ways part of hosting on those platforms. Similar to

the note above, we do not consider CDNs in front of a page to be “third party”. In reality this

made very little difference to the numbers, but we feel it’s a more accurate reflection of what

we should consider “third party” by the above definition, and also aligns more closely with how

the other chapters use this term.

Caveats

• All data presented here is based on a non-interactive, cold load. These values could

start to look quite different after user interaction.

• The pages are tested from servers in the US with no cookies set, so third parties

requested after opt-in are not included. This will especially affect pages hosted and

predominantly served to countries in scope for the General Data Protection

Regulation250, or other similar legislation.

• Only the home pages are tested. Other pages may have different third-party

requirements.

• Some of the lesser-used third-party domains are grouped into the unknown

category. As part of this analysis, we submitted more categories for the top-used

domains to improve the third-party-web dataset.

Learn more about our methodology.

250. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Part I Chapter 7 : Third Parties

220 2021 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Prevalence

So how much are third parties used? Well, the answer is a lot!

A staggering 94.4% of mobile sites and 94.1% of desktop sites use at least one third-party

resource. Even with our newer restrictive definition of third parties, this represents a continued

growth from when the Web Almanac started in 2019251.

Rerunning the last three annual Web Almanac datasets with the new, stricter definition, we see

in the chart above that our usage of third parties on our website has grown slightly on last year

by 0.2% on desktop and 0.4% on mobile.

Figure 7.1. Percentage of mobile sites using at least one third-party resource.

94.4%

Figure 7.2. Websites using third parties by year.

251. https://almanac.httparchive.org/en/2019/third-parties

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 221

https://almanac.httparchive.org/en/2019/third-parties
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-websites-using-third-parties-by-year.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-websites-using-third-parties-by-year.png

45.9% of requests on mobile and 45.1% of requests on desktop are third-party requests, which

is similar to last year’s results252.

It would appear that privacy-preserving regulations like GDPR253 and CCPA254 are not dampening

our appetite for third-party usage. Though it should be remembered that our methodology is to

test websites from US data centers and so may be served different content because of that.

So, we know nearly all sites use third parties, but how many do they use?

Looking at the spread, we see there is a large variance with websites only using two third

parties–measured as the number of distinct third-party hostnames–at the 10th percentile, up

to 89 or 91 at the 90th percentile.

Note that the 90th percentile is down a bit from last year’s analysis255, where we had 104 and

106 third parties for desktop and mobile respectively, but this looks to be due to restricting our

Figure 7.3. Percentage of requests which are third-party.

45.9%

Figure 7.4. Number of third parties per website.

252. https://almanac.httparchive.org/en/2020/third-parties
253. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
254. https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
255. https://almanac.httparchive.org/en/2020/third-parties#fig-2

Part I Chapter 7 : Third Parties

222 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/third-parties
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-number-of-third-parties-per-website.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-number-of-third-parties-per-website.png
https://almanac.httparchive.org/en/2020/third-parties#fig-2

domains to assets used by 50 websites or more this year, which was not done for this statistic

last year.

The median website uses 21 third parties on mobile and 23 on desktop, which still seems like

quite a lot!

Third party prevalence by rank

This year we have access to the Chrome UX Report (CrUX) “rank”256 for each website. This is a

popularity assignment for each site, which allows us to group our data into the top 1,000 most-

used sites (based on page views), top 10,000 most-used sites, etc. Slicing the data by this

popularity rank shows that there is a slight decrease in third-party usage for the less popular

websites, but it never dips below 93.3%, again reiterating that pretty much all websites love to

include at least one third party.

However, what does change is the number of third parties used by website:

Figure 7.5. Websites using third parties by rank.

256. https://developers.google.com/web/updates/2021/03/crux-rank-magnitude

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 223

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-websites-using-third-parties-by-rank.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-websites-using-third-parties-by-rank.png
https://developers.google.com/web/updates/2021/03/crux-rank-magnitude

Looking at the median (50th percentile) statistics, we see a marked decline as we go up the

rankings, with the most popular websites using twice as many third parties as the whole

dataset. We’ll see in a moment that that is driven almost entirely by ads. It is perhaps

unsurprising that these are much more prevalent on more popular websites, with more eyeballs

to monetize.

Third-party type

Our analysis shows we’re using third parties a lot, but what are we using them for? Looking at

the categories of each third-party request, we see the following:

Figure 7.6. Median number of third parties per website by rank.

Part I Chapter 7 : Third Parties

224 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-per-website-by-rank.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-per-website-by-rank.png

Ads are the most common third-party requests, followed by “unknown”—a collection of various

uncategorized or lesser-used sites—then CDN, social, utility, and analytics. So, while some

categories are more popular than others, what’s perhaps the bigger takeaway here is how

varied third-party usage is. They really are used for all sorts of reasons, rather than one or two

use cases dominating all the others.

Figure 7.7. Third-party requests by type.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 225

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-requests-by-type.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-requests-by-type.png

Third-party requests by type and rank

Splitting the requests by rank and category, we see the reason for the larger number of

requests discussed previously: ads are much more heavily used on the more popular sites.

Note this chart shows the median number of requests for each category, by rank, but not every

category is used on every page, explaining why the totals per rank are much higher than the

median number of requests per rank from the previous chart.

Content types

Taking an alternative view on the data, let’s see what type of content we’re getting back from all

those third-party requests.

Figure 7.8. Median third-party requests by type and rank.

Part I Chapter 7 : Third Parties

226 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-median-third-party-requests-by-type-and-rank-on-mobile.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-median-third-party-requests-by-type-and-rank-on-mobile.png

Unsurprisingly, JavaScript, images, and HTML comprise the majority of third-party requests.

JavaScript is used by most third parties to add functionality, whether that be in ads, trackers, or

libraries. Similarly, the high usage of images is to be expected, as they will include the 1-pixel

blank images so beloved of tracking solutions.

The high usage of HTML may seem surprising initially (surely documents would be the

prevalent form of HTML and they would be first-party requests?), but our investigation showed

them mostly to be iframes, which makes much more sense as they are often used to house ads,

or other widgets (e.g. YouTube serves an HTML document in an iframe including the player,

rather than just the video itself).

So based purely on the number of requests, third parties seem to be adding functionality more

so than content—though that’s a little misleading since, as per the YouTube example, some third

parties add functionality in order to enable the content.

Figure 7.9. Third-party usage by content type.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 227

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-usage-by-content-type.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-usage-by-content-type.png

Splitting the requested content types by the type of third party, we see the prevalence of those

three main types (scripts, images, and HTML) across most types, though the worrying amount

of JavaScript (even for video type!) is already apparent. The above chart is for mobile, but the

desktop picture is very similar.

Figure 7.10. Third-party requests by content type and category (mobile).

Figure 7.11. Third-party requests by content type and category.

Part I Chapter 7 : Third Parties

228 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-requests-by-content-type-and-category-on-mobile.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-requests-by-content-type-and-category-on-mobile.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-bytes-by-content-type-and-category-on-mobile.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-bytes-by-content-type-and-category-on-mobile.png

When looking by bytes, rather than by requests, the amount of JavaScript is even more

worrying. Again, we’ve shown mobile here, but there are no major differences for desktop.

To quote Addy Osmani257 (twice in the same sentence!) from his “Cost of JavaScript”258 post,

“byte-for-byte, JavaScript is still the most expensive resource we send”, and “a 200 KB script

and a 200 KB image have very different costs”. Some categories like Analytics, Consent

Provider, and Tag Manager are pretty much all JavaScript, while others like Ad and Customer

Success are not far behind. We’ll return to the performance impact of using third-party

resources, which is often caused by costly use of JavaScript.

Third-party domains

Who are we loading all these third-party requests from? Most of these names won’t be

surprising, but the prevalence of one name just reiterates the dominance that company has

across a number of different categories:

257. https://x.com/addyosmani
258. https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 229

https://x.com/addyosmani
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4

Google takes 8 of the top 15 most-used third parties—including the top 6 spots!—and no else

comes close. Google is a market leader in Analytics, Fonts, Ads, Accounts, Tag Managers, and

Video to name but a few. A staggering 62.7% of mobile websites use Google Analytics, and

almost as many use Google Fonts, with Ads, Accounts and Tag Manager usage not far behind in

the 42%-49% range.

The first non-Google entity is Facebook, with comparatively low usage of 29.2%. This is

followed by Cloudflare’s CDN fronting popular libraries and other resources. Despite being

listed as amp.cloudflare.com, it also includes the much larger cdnjs.cloudflare.com–this has

been updated to show the more commonly used domain for next year.

After this we’re back to Google with YouTube, and Maps two spots later. The remaining spots

are filled with CDNs for other popular libraries and tools.

Performance impact of third parties

Using third parties can have a noticeable impact on performance. That’s not necessarily a

Figure 7.12. Top 15 third parties by usage.

Part I Chapter 7 : Third Parties

230 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-top-15-by-usage.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-top-15-by-usage.png

consequence of them being a third party per se. The same functionality implemented by a site

owner as a first-party resource can often be less performant, given the expertise the third party

should have on the particular field.

So, performance isn’t necessarily impacted by the fact that the resources are third-party, it’s

more of a matter of what those resources are doing. And most third-party usage depends on

the third-party service, rather than just as a place to serve it from.

However, a third party’s business is in allowing their content or service to be hosted on many

websites. Third parties have a duty to ensure that they minimize the negative impact of that

dependency. This is an especially important duty given that site owners often have limited

control over and influence on the performance impact of third parties other than to use them or

not.

Using third-party domains versus self-hosting

There is a definite cost to connecting to another domain, even though most third parties will be

using globally distributed, high-performance CDNs, and many web performance advocates

(including this author!) recommend self-hosting where possible to avoid this penalty. This is

particularly relevant now that all the major browsers have moved away from sharing caches

between origins, so the claim that once one site has downloaded that resource, other sites

visited can also benefit from it is no longer true. Though this was a questionable claim even in

the past, given the number of versions of libraries, and limitations of the HTTP cache.

Saying that, rarely is life as definitive as we would like and, in some cases self-hosting may

actually cost performance. This author has written before how the question on whether to self-

host Google Fonts259 is not as clear cut as it might seem and requires a degree of expertise to

ensure you are replicating all that Google Fonts does for you in the performance front. To avoid

that hassle you can just use the hosted version, and ensure you’re reducing the performance

impact as much as possible, as discussed by Harry Roberts260 in his The Fastest Google Fonts261

post.

Similarly, image CDNs can optimize media better than most first-parties and, more importantly,

can do this automatically without the need for manual steps that will inevitably be skipped or

done incorrectly on occasion.

259. https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
260. https://x.com/csswizardry
261. https://csswizardry.com/2020/05/the-fastest-google-fonts/

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 231

https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://x.com/csswizardry
https://csswizardry.com/2020/05/the-fastest-google-fonts/

Popular third parties embeds and their performance impact

To try to understand the performance impact of third parties, we will look at some of the most

popular third-party embeds. Some of these have gotten a bad name in web performance circles,

so let’s see if the bad reputation is really deserved. To do that, we’ll be making use of two

Lighthouse audits: Eliminate render blocking resources262 and Reduce the impact of third-party

code263, based on some similar research264 by Houssein Djirdeh265.

Popular third parties and their impact on render

To understand third parties’ impact on rendering, we’ve analyzed how sites resources perform

on Lighthouse’s render-blocking resources audit, and identified which are third-parties by

cross-referencing them with the third-party-web dataset.

262. https://web.dev/render-blocking-resources/
263. https://web.dev/third-party-summary/
264. https://docs.google.com/spreadsheets/d/1Td-4qFjuBzxp8af_if5iBC0Lkqm_OROb7_2OcbxrU_g/edit?usp=sharing&resourcekey=0-ZCfve5cngWxF0-sv5pLRzg
265. https://x.com/hdjirdeh

Part I Chapter 7 : Third Parties

232 2021 Web Almanac by HTTP Archive

https://web.dev/render-blocking-resources/
https://web.dev/third-party-summary/
https://web.dev/third-party-summary/
https://docs.google.com/spreadsheets/d/1Td-4qFjuBzxp8af_if5iBC0Lkqm_OROb7_2OcbxrU_g/edit?usp=sharing&resourcekey=0-ZCfve5cngWxF0-sv5pLRzg
https://x.com/hdjirdeh
http://127.0.0.1:8080/en/2021/methodology#third-party-web

The top 15 most popular third parties are shown above along with the percentage of resources

they block on the initial render of the page.

On the whole this is a positive story; most do not block rendering, and those that do are for

common libraries associated with layout (e.g. bootstrap) or fonts that perhaps should block

initial render (this author doesn’t agree that using font-display: swap or optional is a

good thing).

Often third-party embeds advise using async or defer to avoid blocking rendering, and it

looks like this might be the case for many of them.

Figure 7.13. Top 15 third parties impact on render.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 233

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-most-popular-third-parties-impact-on-render.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-most-popular-third-parties-impact-on-render.png
https://x.com/tunetheweb/status/1364278446311043073
https://x.com/tunetheweb/status/1364278446311043073
https://x.com/tunetheweb/status/1364278446311043073
https://x.com/tunetheweb/status/1364278446311043073

Popular third parties and their impact on main thread

Lighthouse has a Reduce the impact of third-party code266 audit that lists the main-thread times

of all third-party resources. So how long do the most popular ones block the main thread for?

Here we see YouTube sticking out like a sore thumb so let’s delve into that a little more:

Figure 7.14. Main-thread blocking time of top 15 third parties.

266. https://web.dev/third-party-summary/

Part I Chapter 7 : Third Parties

234 2021 Web Almanac by HTTP Archive

https://web.dev/third-party-summary/
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-popular-third-parties-main-thread-blocking-time.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-popular-third-parties-main-thread-blocking-time.png

YouTube

We can see a huge impact of 1.6 seconds of main-thread activity at the median (50th

percentile), rising to a shocking 4.6 seconds of main-thread blocking at the 90th percentile (still

meaning 10% of websites have a worse impact than even that!). It should be remembered

however that these are throttled, lab-simulated timings, so many real users may not be

experiencing this level of impact, but it is still a lot.

It’s also apparent that the impact increases with transfer size–perhaps not surprising as there is

more to process. And remember that our crawl does not interact with these videos, so these are

either auto-playing videos, or the YouTube player itself causing all this use.

Let’s dig a little deeper into some of the other third party embeds on our list.

Figure 7.15. YouTube’s impact on the main thread.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 235

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-youtube-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-youtube-main-thread-impact.png

Google Analytics

Google Analytics is pretty good, so obviously a lot of work has gone into optimizing this, given

all that it tracks.

Figure 7.16. Google Analytics’ impact on the main thread.

Part I Chapter 7 : Third Parties

236 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-analytics-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-analytics-main-thread-impact.png

Google/Doubleclick Ads

Google Ads was doing so well, until we hit the 90th percentile, when it got blown off the chart.

Again, a reminder that this means 10% of websites have worse numbers than these.

Figure 7.17. Google/Doubleclick Ads’ impact on the main thread.

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 237

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-doubleclick-ads-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-doubleclick-ads-main-thread-impact.png

Google Tag Manager

Google Tag Manager fares much better than expected to be honest. This author has seen some

horrific GTM implementations, overloaded with old tags and triggers that are no longer used.

But GTM seems to do well at not blocking the main thread for too long in our test page loads.

Figure 7.18. Google Tag Manager’s impact on the main thread.

Part I Chapter 7 : Third Parties

238 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-tag-manager-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-tag-manager-main-thread-impact.png

Facebook

Facebook also isn’t as resource intensive as I thought it would be. Facebook embeds of posts

seem to be less popular than Twitter embeds, so these will likely be Facebook retargeting

trackers. These trackers should be working silently in the background and not impacting the

main thread at all, so it’s apparent there is still more work for Facebook to do here. I’ve even

had good success in not using the Facebook JavaScript API and using pixel tracking through

Google Tag Manager267 without losing any functionality, and would encourage others to consider

this option.

Figure 7.19. Facebook’s impact on the main thread.

267. https://www.tunetheweb.com/blog/adding-controls-to-google-tag-manager/#pixels

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 239

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-facebook-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-facebook-main-thread-impact.png
https://www.tunetheweb.com/blog/adding-controls-to-google-tag-manager/#pixels
https://www.tunetheweb.com/blog/adding-controls-to-google-tag-manager/#pixels

Google Maps

Google Maps definitely needs some improvement. Especially as it’s often present as a small

extra piece on a page, rather than the main content. As a website owner, this highlights the

importance of only including the Google Maps code on pages that require it.

Twitter

And finally, let’s look at one further down the list: Twitter.

Figure 7.20. Google Maps’ impact on the main thread.

Part I Chapter 7 : Third Parties

240 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-maps-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-google-maps-main-thread-impact.png

Twitter as a third-party can be used in one of two ways: as a retargeting advertising tracker, and

as a way of embedding tweets. Embedding tweets in pages is more popular than other social

networks. However it has been called out as having an undue impact on the page by many in the

web performance community, including Matt Hobbs268 in his Using Puppeteer and Squoosh to fix

the web performance of embedded tweets269 post. Our analysis backs that up—especially as

those use cases will be diluted with the (presumably lighter) tracking use case in the above

graph.

While some of the above examples fare better or worse, it must be remembered that it’s the

cumulative effect of these that really impacts the performance of a website. It’s rare for

websites to only use one of these, so add together Google Analytics, GTM loading Facebook

and Twitter Tracking, on a page with a Map and an embedded Tweet, and it really starts to add

up. Sometimes it’s unsurprising why your phone sometimes feels too hot to handle, or your PC

fan starts going into overdrive just from surfing the web!

All this shows why Google recommends reducing the impact of embeds270 (mostly their own

ironically!), through the use of document ordering, lazy-loading, facades, and other techniques.

However, it’s really quite infuriating that some of these are not the default and that advanced

techniques like these must fall on the responsibility of the website owner. The third parties

highlighted here really do have the resources, and technical know-how to reduce the impact of

Figure 7.21. Twitter’s impact on the main thread.

268. https://x.com/TheRealNooshu
269. https://nooshu.com/blog/2021/02/06/using-puppeteer-and-squoosh-to-fix-twitter-embeds/
270. https://web.dev/embed-best-practices/

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 241

https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-twitter-main-thread-impact.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-twitter-main-thread-impact.png
https://x.com/TheRealNooshu
https://nooshu.com/blog/2021/02/06/using-puppeteer-and-squoosh-to-fix-twitter-embeds/
https://nooshu.com/blog/2021/02/06/using-puppeteer-and-squoosh-to-fix-twitter-embeds/
https://web.dev/embed-best-practices/

using their products for everyone by default, but often choose not to. This performance section

started by saying that using third parties wasn’t necessarily bad for performance, but these

examples show there is certainly more that some of them can do in this area!

Hopefully highlighting some of these well-known examples will cause readers to investigate the

impact of third-party embeds on their own sites and ask themselves if they really are all worth

it. Perhaps if we make this subject more important to the third parties, they will prioritize

performance.

Timing-Allow-Origin header prevalence

Last year we looked at the prevalence of the timing-allow-origin header, which allows

the Resource Timing API271 to be used on third-party requests. Without this HTTP header, the

information available to on-page performance monitoring tools for third-party requests is

restricted for security and privacy reasons. However, for static requests, third parties that

allow this header enable greater transparency into the loading performance of their resources.

Looking at the usage over the last three Web Almanac years, usage has dropped considerably

this year. Digging deeper into the data showed a 33% drop in Facebook requests. Given that

they supported this header and are widely used, this explains most of this drop. Interestingly,

the number of pages with Facebook usage actually increased, but it looks like Facebook have

Figure 7.22. Timing-Allow-Origin header usage.

271. https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API

Part I Chapter 7 : Third Parties

242 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/third-parties#timing-allow-origin-prevalence
https://almanac.httparchive.org/en/2020/third-parties#timing-allow-origin-prevalence
https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-timing-allow-origin-header-usage.png
https://almanac.httparchive.org/static/images/2021/third-parties/third-parties-timing-allow-origin-header-usage.png

changed their embed to make fewer requests in the last year and, given their prevalence, that’s

made quite a dent on the usage of the timing-allow-origin header. Ignoring that, usage of

this header has basically stayed stable, which is a bit disappointing given the focus on

performance with the ranking impact of the Core Web Vitals272.

Security and Privacy

Measuring the security and privacy impact of using third parties is more difficult. Undoubtedly,

giving access to third parties increases risks on both security and privacy, and then giving

access to run scripts—which we’ve shown to be the most prevalent type—effectively gives full

access to the website. However, the entire intent of third-party resources is to allow them to be

seamlessly used on the sites, meaning restricting this will limit the very functionality they are

being used for.

Security

Sites themselves can reduce the risk of using third parties in a number of ways: restricting

access to cookies273 with the HttpOnly attribute, so they cannot be accessed by JavaScript,

and through appropriate use of SameSite attributes. These are explored more in the Security

chapter so we will not delve further into them here.

Another security feature that can make third-party resources safer is the use of Subresource

Integrity274 (SRI), which is enabled by adding a cryptographic hash of a resource to the <link>
or <script> element loading the resource. This hash is then checked by the browser to

ensure that the content downloaded is exactly what is expected. However, the varying nature

of third-party resources could mean that this introduces more risks than it solves, with sites

breaking when resources are intentionally updated by the third party. If content really is static,

then it can be self-hosted, removing the need of SRI. So, while many people recommend SRI,

this author remains unconvinced that it really offers the security benefits that proponents

claim.

One of the best ways sites can reduce the security risk of any third-party content coming onto

their site—from either third-party resource use, or even user-generated content—is with a

robust Content Security Policy275 (CSP). This is an HTTP header sent with the original website

that tells the browser exactly what resources can and cannot be loaded and by whom. It is a

more advanced technique that few sites use, according to the Security chapter, and we’ll leave it

to them to analyze CSP usage, but what is worth covering here is that one of the reasons for the

272. https://developers.google.com/search/blog/2020/11/timing-for-page-experience
273. https://developer.mozilla.org/docs/Web/HTTP/Cookies#restrict_access_to_cookies
274. https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
275. https://developer.mozilla.org/docs/Web/HTTP/CSP

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 243

https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://developer.mozilla.org/docs/Web/HTTP/Cookies#restrict_access_to_cookies
https://developer.mozilla.org/docs/Web/HTTP/Cookies#restrict_access_to_cookies
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/HTTP/CSP

lack of uptake may be third parties. In this author’s experience, very few third parties publish

CSP information with the exact requirements that sites must add to their policy to use the third

party without issue. Worse still is that others are incompatible with a secure CSP. Some third

parties use inline script elements or change domains without notification, which breaks that

functionality for sites using CSP until they update their policy. Google Ads is another example

which, through the use of a different domain per country276, makes it difficult to really lock down

CSP.

It is difficult enough to set up CSP in the first place for the parts of the site in your control,

without the added complexity of third parties making it even more difficult for things outside of

your control! Third parties really should get better at supporting CSP to make it easier for sites

to reduce the risk of using them.

Privacy

The privacy implications of using third parties is something we will again leave to the Privacy

chapter dedicated to this topic, but what should already be apparent from the above analysis

are the following two things that majorly impact the privacy of web users:

• The prevalence of third-party usage on the web at just shy of 95% of websites.

• The dominance of particular third parties, like Google and Facebook, who are not

known for being on the side of privacy.

Of course, one of the major reasons for using third parties on your site is for tracking for

advertisement purposes, which by its very nature is not going to be in the best privacy interests

of your visitors. Alternatives to this pervasive tracking, which is basically only possible by the

use of third parties, have been suggested such as Google’s Privacy Sandbox and FLoC initiative277

but have, so far, failed to gain sufficient traction across the wider ecosystem.

What is perhaps more concerning is the tracking that can occur without website users and

owners being aware. There is the old adage that if you’re not paying for a product or service,

then you are the product. Many third parties give away their product for “free”, which for most

means they are monetizing it in some other way—usually at the expense of your visitors’

privacy!

Adoption of newer technologies like feature-policy and permission-policy can

restrict the usage of certain functionalities of the browser, such as microphones and video

cameras. These can reduce the privacy and security risks; though many of these will usually be

276. https://stackoverflow.com/questions/34361383/google-adwords-csp-content-security-policy-img-src
277. https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/

Part I Chapter 7 : Third Parties

244 2021 Web Almanac by HTTP Archive

https://stackoverflow.com/questions/34361383/google-adwords-csp-content-security-policy-img-src
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Feature-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Feature-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Feature-Policy

secured behind a browser prompt to ensure they are not silently activated. Google is also

working on a Privacy Budget proposal278 to limit the privacy impact of web browser, though

others remain skeptical of their work in this space279. All in all, adding privacy controls seems to

be swimming against the tide given the intent of many third-party resources.

Conclusion

Third parties are integral to the web. In many ways they are the web; without the prevalence of

third parties, websites would be harder to build and less feature rich. As mentioned at the

beginning, interconnectedness is at the very heart of the web, and third parties are the natural

extension of this. Our analysis has shown that third parties are more prevalent than ever—sites

without them are very much the exception!

However, using third parties is not without risks and in this chapter, we have explored the

performance impact of third parties and discussed the potential security and privacy risks of

using them on your site.

There are consequences to needlessly loading up your website with every third-party tool,

widget, tracker and whatever else you can think of. Site owners have a responsibility to look at

the impact of all that third-party content and decide if the functionality is worth that potential

impact.

It’s easy to get sucked into the negative however, so to finish off the chapter, let’s look back at

the positives. There is a reason that third parties are so prevalent and they are (usually!) used

out of choice. Sharing is what the web is about and so third parties are very much in the spirit of

the web. It’s amazing what functionality we web developers have at our disposal and how easy

it is to add them to our sites. Hopefully this chapter has opened your eyes to give a little more

thought to making sure you fully understand the deal you’re making when you do that.

278. https://github.com/bslassey/privacy-budget
279. https://blog.mozilla.org/en/mozilla/google-privacy-budget-analysis/

Part I Chapter 7 : Third Parties

2021 Web Almanac by HTTP Archive 245

https://github.com/bslassey/privacy-budget
https://blog.mozilla.org/en/mozilla/google-privacy-budget-analysis/

Author

Barry Pollard

@tunetheweb @https://webperf.social/@tunetheweb @tunetheweb.com tunetheweb

tunetheweb https://www.tunetheweb.com

Barry Pollard is a software developer and author of the Manning book HTTP/2 in

Action280. He thinks the web is amazing but wants to make it even better. You can

find him tweeting @tunetheweb and blogging at www.tunetheweb.com.

280. https://www.manning.com/books/http2-in-action

Part I Chapter 7 : Third Parties

246 2021 Web Almanac by HTTP Archive

https://x.com/tunetheweb
https://webperf.social/@tunetheweb
https://bsky.app/profile/tunetheweb.com
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb/
https://www.tunetheweb.com/
https://www.manning.com/books/http2-in-action
https://www.manning.com/books/http2-in-action
https://x.com/tunetheweb
https://www.tunetheweb.com/

Part II Chapter 8

SEO

Written by Patrick Stox, Tomek Rudzki, and Ian Lurie
Reviewed by Fili Wiese, Rob Teitelman, and Jamie Indigo
Analyzed by JR Oakes and Ruth Everett
Edited by Barry Pollard

Introduction

SEO (Search Engine Optimization) is the practice of optimizing a website or web page to

increase the quantity and quality of its traffic from a search engine’s organic results.

SEO is more popular than ever and has seen huge growth over the last couple years as

companies sought new ways to reach customers. SEO’s popularity has far outpaced other

digital channels.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 247

The purpose of the SEO chapter of the Web Almanac is to analyze various elements related to

optimizing a website. In this chapter, we’ll check if websites are providing a great experience for

users and search engines.

Many sources of data were used for our analysis including Lighthouse281, the Chrome User

Experience Report (CrUX)282, as well as raw and rendered HTML elements from the HTTP

Archive283 on mobile and desktop. In the case of the HTTP Archive and Lighthouse, the data is

limited to the data identified from websites’ home pages only, not site-wide crawls. Keep that in

mind when drawing conclusions from our results. You can learn more about the analysis on our

Methodology page.

Read on to find out more about the current state of the web and its search engine friendliness.

Crawlability and Indexability

To return relevant results to these user queries, search engines have to create an index of the

web. The process for that involves:

1. Crawling - search engines use web crawlers, or spiders, to visit pages on the

internet. They find new pages through sources such as sitemaps or links between

pages.

Figure 8.1. Google Trends comparison of SEO versus pay-per-click, social media marketing, and
email marketing.

281. https://developers.google.com/web/tools/lighthouse/
282. https://developers.google.com/web/tools/chrome-user-experience-report
283. https://httparchive.org/

Part II Chapter 8 : SEO

248 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/seo-term-trends.png
https://almanac.httparchive.org/static/images/2021/seo/seo-term-trends.png
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://httparchive.org/
https://httparchive.org/

2. Processing - in this step search engines may render the content of the pages. They

will extract information they need like content and links that they will use to build

and update their index, rank pages, and discover new content.

3. Indexing - Pages that meet certain indexability requirements around content

quality and uniqueness will typically be indexed. These indexed pages are eligible to

be returned for user queries.

Let’s look at some issues that may impact crawlability and indexability.

robots.txt

robots.txt is a file located in the root folder of each subdomain on a website that tells

robots such as search engine crawlers where they can and can’t go.

81.9% of websites make use of the robots.txt file (mobile). Compared with previous years

(72.2% in 2019 and 80.5% in 2020), that’s a slight improvement.

Having a robots.txt is not a requirement. If it’s returning a 404 not found, Google assumes

that every page on a website can be crawled. Other search engines may treat this differently.

Using robots.txt allows website owners to control search engine robots. However, the data

showed that as many as 16.5% of websites have no robots.txt file.

Figure 8.2. Breakdown of robots.txt status codes.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 249

https://almanac.httparchive.org/static/images/2021/seo/robots-txt-status-codes.png
https://almanac.httparchive.org/static/images/2021/seo/robots-txt-status-codes.png

Websites may have misconfigured robots.txt files. For example, some popular websites

were (presumably mistakenly) blocking search engines. Google may keep these websites

indexed for a period of time, but eventually their visibility in search results will be lessened.

Another category of errors related to robots.txt is accessibility and/or network errors,

meaning the robots.txt exists but cannot be accessed. If Google requests a robots.txt
file and gets such an error, the bot may stop requesting pages for a while. The logic behind this

is that search engines are unsure if a given page can or cannot be crawled, so it waits until

robots.txt becomes accessible.

~0.3% of websites in our dataset returned either 403 Forbidden or 5xx. Different bots may

handle these errors differently, so we don’t know exactly what Googlebot may have seen.

The latest information available from Google, from 2019284 is that as many as 5% of websites

were temporarily returning 5xx on robots.txt, while as many as 26% were unreachable.

Two things may cause the discrepancy between the HTTP Archive and Google data:

1. Google presents data from 2 years back while the HTTP Archive is based on recent

information, or

2. The HTTP Archive focuses on websites that are popular enough to be included in

the CrUX data, while Google tries to visit all known websites.

Figure 8.3. Breakdown of robots.txt status codes Googlebot encountered.

284. https://www.youtube.com/watch?v=JvYh1oe5Zx0&t=315s

Part II Chapter 8 : SEO

250 2021 Web Almanac by HTTP Archive

https://www.youtube.com/watch?v=JvYh1oe5Zx0&t=315s
https://almanac.httparchive.org/static/images/2021/seo/robots-usage-presentation.png
https://almanac.httparchive.org/static/images/2021/seo/robots-usage-presentation.png

robots.txt size

Most robots.txt files are fairly small, weighing between 0-100 kb. However, we did find over

3,000 domains that have a robots.txt file size over 500 KiB which is beyond Google’s max limit.

Rules after this size limit will be ignored.

Figure 8.4. robots.txt size distribution.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 251

https://almanac.httparchive.org/static/images/2021/seo/robots-txt-size-distribution.png
https://almanac.httparchive.org/static/images/2021/seo/robots-txt-size-distribution.png

You can declare a rule for all robots or specify a rule for specific robots. Bots usually try to

follow the most specific rule for their user-agents. User-agent: Googlebot will refer to

Googlebot only, while User-agent: * will refer to all bots that don’t have a more specific

rule.

We saw two popular SEO-related robots: mj12bot (Majestic) and ahrefsbot (Ahrefs) in the

top 5 most specified user agents.

robots.txt search engine breakdown

When looking at rules applying to particular search engines, Googlebot was the most

Figure 8.5. robots.txt user-agent usage.

Figure 8.6. robots.txt search engine breakdown.

User-agent Desktop Mobile

Googlebot 3.3% 3.4%

Bingbot 2.5% 3.4%

Baiduspider 1.9% 1.9%

Yandexbot 0.5% 0.5%

Part II Chapter 8 : SEO

252 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/robots-txt-user-agent.png
https://almanac.httparchive.org/static/images/2021/seo/robots-txt-user-agent.png

referenced appearing on 3.3% of crawled websites.

Robots rules related to other search engines, such as Bing, Baidu, and Yandex, are less popular

(respectively 2.5%, 1.9%, and 0.5%). We did not look at what rules were applied to these bots.

Canonical tags

The web is a massive set of documents, some of which are duplicates. To prevent duplicate

content issues, webmasters can use canonical tags to tell search engines which version they

prefer to be indexed. Canonicals also help to consolidate signals such as links to the ranking

page.

The data shows increased adoption of canonical tags over the years. For example, 2019’s

edition shows that 48.3% of mobile pages were using a canonical tag. In 2020’s edition, the

percentage grew to 53.6%, and in 2021 we see 58.5%.

More mobile pages have canonicals set than their desktop counterparts. In addition, 8.3% of

mobile pages and 4.3% of desktop pages are canonicalized to another page so that they provide

a clear hint to Google and other search engines that the page indicated in the canonical tag is

the one that should be indexed.

A higher number of canonicalized pages on mobile seems to be related to websites using

Figure 8.7. Canonical tag usage.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 253

https://almanac.httparchive.org/static/images/2021/seo/canonical-tag-usage.png
https://almanac.httparchive.org/static/images/2021/seo/canonical-tag-usage.png

separate mobile URLs285. In these cases, Google recommends placing a rel="canonical" tag

pointing to the corresponding desktop URLs.

Our dataset and analysis are limited to home pages of websites; the data is likely to be different

when considering all URLs on the tested websites.

Two methods of implementing canonical tags

When implementing canonicals, there are two methods to specify canonical tags:

1. In the HTML’s <head> section of a page

2. In the HTTP headers (via the Link HTTP header)

Implementing canonical tags in the <head> of a HTML page is much more popular than using

the Link header method. Implementing the tag in the head section is generally considered

easier, which is why that usage so much higher.

We also saw a slight change (< 1%) in canonical between the raw HTML delivered, and the

rendered HTML after JavaScript has been applied.

Figure 8.8. Canonical raw versus rendered usage.

285. https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls

Part II Chapter 8 : SEO

254 2021 Web Almanac by HTTP Archive

https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls
https://almanac.httparchive.org/static/images/2021/seo/canonical-raw-rendered-usage.png
https://almanac.httparchive.org/static/images/2021/seo/canonical-raw-rendered-usage.png

Conflicting canonical tags

Sometimes pages contain more than one canonical tag. When there are conflicting signals like

this, search engines will have to figure it out. One of Google’s Search Advocates, Martin Splitt286,

once said it causes undefined behavior287 on Google’s end.

The previous figure shows as many as 1.3% of mobile pages have different canonical tags in the

initial HTML and the rendered version.

Last year’s chapter noted that288 “A similar conflict can be found with the different

implementation methods, with 0.15% of the mobile pages and 0.17% of the desktop ones

showing conflicts between the canonical tags implemented via their HTTP headers and HTML

head.”

This year’s data on that conflict is even more worrisome. Pages are sending conflicting signals in

0.4% of cases on desktop and 0.3% of cases on mobile.

As the Web Almanac data only looks on home pages, there may be additional problems with

pages located deeper in the architecture, which are pages more likely to be in need of canonical

signals.

Page Experience

2021 saw an increased focus on user experience. Google launched the Page Experience

Update289 which included existing signals, such as HTTPS and mobile-friendliness, and new

speed metrics called Core Web Vitals.

286. https://x.com/g33konaut
287. https://www.youtube.com/watch?v=bAE3L1E1Fmk&t=772s
288. https://almanac.httparchive.org/en/2020/seo#canonicalization
289. https://developers.google.com/search/blog/2020/11/timing-for-page-experience

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 255

https://x.com/g33konaut
https://www.youtube.com/watch?v=bAE3L1E1Fmk&t=772s
https://almanac.httparchive.org/en/2020/seo#canonicalization
https://developers.google.com/search/blog/2020/11/timing-for-page-experience
https://developers.google.com/search/blog/2020/11/timing-for-page-experience

HTTPS

Adoption of HTTPS is still increasing. HTTPS was the default on 81.2% of mobile pages and

84.3% of desktop pages. That’s up nearly 8% on mobile websites and 7% on Desktop websites

year over year.

Mobile-friendliness

There’s a slight uptick in mobile-friendliness this year. Responsive design implementations have

increased while dynamic serving has remained relatively flat.

Responsive design sends the same code and adjusts how the website is displayed based on the

screen size, while dynamic serving will send different code depending on the device. The

viewport meta tag was used to identify responsive websites vs the Vary: User-Agent
header to identify websites using dynamic serving.

Figure 8.9. Percentage of Desktop and Mobile pages served with HTTPS.

Figure 8.10. Percent of mobile pages using the viewport meta tag—a signal of mobile

friendliness.

91.1%

Part II Chapter 8 : SEO

256 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/usage-of-https.png
https://almanac.httparchive.org/static/images/2021/seo/usage-of-https.png

91.1% of mobile pages include the viewport meta tag, up from 89.2% in 2020. 86.4% of

desktop pages also included the viewport meta tag, up from 83.8% in 2020.

For the Vary: User-Agent header, the numbers were pretty much unchanged with 12.6% of

desktop pages and 13.4% of mobile pages with this footprint.

One of the biggest reasons for failing mobile-friendliness was that 13.5% of pages did not use a

legible font size. Meaning 60% or more of the text had a font size smaller than 12px290 which can

be hard to read on mobile.

Core Web Vitals

Core Web Vitals are the new speed metrics that are part of Google’s Page Experience signals.

The metrics measure visual load with Largest Contentful Paint (LCP), visual stability with

Cumulative Layout Shift (CLS), and interactivity with First Input Delay (FID).

Figure 8.11. Vary: User-Agent header usage.

Figure 8.12. Percent of mobile pages not using legible font sizes.

13.5%

290. https://web.dev/font-size/

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 257

https://almanac.httparchive.org/static/images/2021/seo/vary-usage-agent-header-usage.png
https://almanac.httparchive.org/static/images/2021/seo/vary-usage-agent-header-usage.png
https://web.dev/font-size/

The data comes from the Chrome User Experience Report (CrUX), which records real-world

data from opted-in Chrome users.

29% of mobile websites are now passing Core Web Vitals thresholds, up from 20% last year.

Most websites are passing FID, but website owners seem to be struggling to improve CLS and

LCP. See the Performance chapter for more on this topic.

On-Page

Search engines look at your page’s content to determine whether it’s a relevant result for the

search query. Other on-page elements may also impact rankings or appearance on the search

engines.

Metadata

Metadata includes <title> elements and <meta name="description"> tags. Metadata

can directly and/or indirectly affect SEO performance.

Figure 8.13. Core web vitals metrics trend.

Part II Chapter 8 : SEO

258 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/core-web-vitals-trend.png
https://almanac.httparchive.org/static/images/2021/seo/core-web-vitals-trend.png

In 2021, 98.8% of desktop and mobile pages had <title> elements. 71.1% of desktop and

mobile home pages had <meta name="description"> tags.

<title> Element

The <title> element is an on-page ranking factor that provides a strong hint regarding page

relevance and may appear on the Search Engine Results Page (SERP). In August 2021 Google

started re-writing more titles in their search results291.

Figure 8.14. Breakdown of title and meta description usage.

291. https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 259

https://almanac.httparchive.org/static/images/2021/seo/title-meta-description-usage.png
https://almanac.httparchive.org/static/images/2021/seo/title-meta-description-usage.png
https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles
https://developers.google.com/search/blog/2021/08/update-to-generating-page-titles

In 2021:

• The median page <title> contained 6 words.

• The median page <title> contained 39 and 40 characters on desktop and mobile,

Figure 8.15. Number of words used in title elements.

Figure 8.16. Number of characters used in title elements.

Part II Chapter 8 : SEO

260 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/title-word-counts.png
https://almanac.httparchive.org/static/images/2021/seo/title-word-counts.png
https://almanac.httparchive.org/static/images/2021/seo/title-character-counts.png
https://almanac.httparchive.org/static/images/2021/seo/title-character-counts.png

respectively.

• 10% of pages had <title> elements containing 12 words.

• 10% of desktop and mobile pages had <title> elements containing 74 and 75

characters, respectively.

Most of these stats are relatively unchanged since last year. Reminder that these are titles on

home pages which tend to be shorter than those used on deeper pages.

Meta description tag

The <meta name="description> tag does not directly impact rankings. However, it may

appear as the page description on the SERP.

Figure 8.17. Number of words used in meta descriptions.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 261

https://almanac.httparchive.org/static/images/2021/seo/meta-word-counts.png
https://almanac.httparchive.org/static/images/2021/seo/meta-word-counts.png

In 2021:

• The median desktop and mobile page <meta name="description> tag

contained 20 and 19 words, respectively.

• The median desktop and mobile page <meta name="description> tag

contained 138 and 127 characters, respectively.

• 10% of desktop and mobile pages had <meta name="description> tags

containing 35 words.

• 10% of desktop and mobile pages had <meta name="description> tags

containing 232 and 231 characters, respectively.

These numbers are relatively unchanged from last year.

Figure 8.18. Number of characters used in meta descriptions.

Part II Chapter 8 : SEO

262 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/meta-character-counts.png
https://almanac.httparchive.org/static/images/2021/seo/meta-character-counts.png

Images

Images can directly and indirectly impact SEO as they impact image search rankings and page

performance.

• 10% of pages have two or fewer tags. That’s true of both desktop and

mobile.

• The median desktop page has 21 tags while the median mobile page has 19

 tags.

• 10% of desktop pages have 83 or more tags. 10% of mobile pages have 73

or more tags.

These numbers have changed very little since 2020.

Image alt attributes

The alt attribute on the element helps explain image content and impacts

accessibility292.

Figure 8.19. Number of images on each page.

292. https://almanac.httparchive.org/en/2021/accessibility

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 263

https://almanac.httparchive.org/static/images/2021/seo/number-of-images-per-page.png
https://almanac.httparchive.org/static/images/2021/seo/number-of-images-per-page.png
https://almanac.httparchive.org/en/2021/accessibility

Note that missing alt attributes may not indicate a problem. Pages may include extremely

small or blank images which don’t require an alt attribute for SEO (nor accessibility) reasons.

Figure 8.20. Percentage of images that contain alt attributes.

Figure 8.21. Percentage of alt attributes that were blank.

Part II Chapter 8 : SEO

264 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/images-with-alt-attribute.png
https://almanac.httparchive.org/static/images/2021/seo/images-with-alt-attribute.png
https://almanac.httparchive.org/static/images/2021/seo/images-with-blank-alt-attribute.png
https://almanac.httparchive.org/static/images/2021/seo/images-with-blank-alt-attribute.png

We found that:

• On the median desktop page, 56.5% of tags have an alt attribute. This is a

slight increase versus 2020.

• On the median mobile page, 54.6% of tags have an alt attribute. This is a

slight increase versus 2020.

• However, on the median desktop and mobile pages 10.5% and 11.8% of
tags have blank alt attributes (respectively). This is effectively the same as 2020.

• On the median desktop and mobile pages there are zero or close to zero
tags missing alt attributes. This is an improvement over 2020, when 2-3% of

 tags on median pages were missing alt attributes.

Image loading attributes

The loading attribute on elements affects how user agents prioritize rendering and

display of images on the page. It may impact user experience and page load performance, both

of which impact SEO success.

Figure 8.22. Percentage of images missing alt attributes.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 265

https://almanac.httparchive.org/static/images/2021/seo/images-with-missing-alt-attribute.png
https://almanac.httparchive.org/static/images/2021/seo/images-with-missing-alt-attribute.png

We saw that:

• 85.5% of pages don’t use any image loading property.

• 15.6% of pages use loading="lazy" which delays loading an image until it is

close to being in the viewport.

• 0.8% of pages use loading="eager" which loads the image as soon as the

browser loads the code.

• 0.1% of pages use invalid loading properties.

• 0.1% of pages use loading="auto" which uses the default browser loading

method.

Word count

The number of words on a page isn’t a ranking factor, but the way pages deliver words can

profoundly impact rankings. Words can be in the raw page code or the rendered content.

Rendered word count

First, we look at rendered page content. Rendered is the content of the page after the browser

Figure 8.23. Image loading property usage.

Part II Chapter 8 : SEO

266 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/image-loading-property-usage.png
https://almanac.httparchive.org/static/images/2021/seo/image-loading-property-usage.png

has executed all JavaScript and any other code that modifies the DOM or CSSOM.

• The median rendered desktop page contains 425 words, versus 402 words in 2020.

• The median rendered mobile page contains 367 words, versus 348 words in 2020.

• Rendered mobile pages contain 13.6% fewer words than rendered desktop pages.

Note that Google is a mobile-only index. Content not on the mobile version may not

get indexed.

Raw word count

Next, we look at the raw page content Raw is the content of the page before the browser has

executed JavaScript or any other code that modified the DOM or CSSOM. It’s the “raw” content

delivered and visible in the source code.

Figure 8.24. Visible words rendered by percentile.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 267

https://almanac.httparchive.org/static/images/2021/seo/visible-rendered-words-percentile.png
https://almanac.httparchive.org/static/images/2021/seo/visible-rendered-words-percentile.png

• The median raw desktop page contains 369 words, versus 360 words in 2020.

• The median raw mobile page contains 321 words, versus 312 words in 2020.

• Raw mobile pages contain 13.1% fewer words than raw desktop pages. Note that

Google is a mobile-only index. Content not on the mobile HTML version may not get

indexed.

Overall, 15% of written content on desktop devices is generated by JavaScript and 14.3% on

mobile versions.

Structured Data

Historically, search engines have worked with unstructured data: the piles of words, paragraphs

and other content that comprise the text on a page.

Schema markup and other types of structured data provide search engines another way to

parse and organize content. Structured data powers many of Google’s search features293.

Like words on the page, structured data can be modified with JavaScript.

Figure 8.25. Visible words raw by percentile.

293. https://developers.google.com/search/docs/advanced/structured-data/search-gallery

Part II Chapter 8 : SEO

268 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/visible-raw-words-percentile.png
https://almanac.httparchive.org/static/images/2021/seo/visible-raw-words-percentile.png
https://developers.google.com/search/docs/advanced/structured-data/search-gallery

42.5% of mobile pages and 41.8% of desktop pages have structured data in the HTML.

JavaScript modifies the structured data on 4.7% of mobile pages and 4.5% of desktop pages.

On 1.7% of mobile pages and 1.4% of desktop pages structured data is added by JavaScript

where it didn’t exist in the initial HTML response.

Figure 8.26. Structure data usage.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 269

https://almanac.httparchive.org/static/images/2021/seo/structured-data-usage.png
https://almanac.httparchive.org/static/images/2021/seo/structured-data-usage.png

Most popular structured data formats

There are several ways to include structured data on a page: JSON-LD, microdata, RDFa, and

microformats2. JSON-LD is the most popular implementation method. Over 60% of desktop

and mobile pages that have structured data implement it with JSON-LD.

Among websites implementing structured data, over 36% of desktop and mobile pages use

microdata and less than 3% of pages use RDFa or microformats2.

Structured data adoption is up a bit since last year. It’s used on 33.2% of pages in 2021 vs 30.6%

in 2020.

Figure 8.27. Breakdown of structured data formats.

Part II Chapter 8 : SEO

270 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/structured-data-formats.png
https://almanac.httparchive.org/static/images/2021/seo/structured-data-formats.png

Most popular schema types

The most popular schema types found on home pages are WebSite , SearchAction ,

WebPage . SearchAction is what powers the Sitelinks Search Box294, which Google can

choose to show in the Search Results Page.

<h> elements (headings)

Heading elements (<h1> , <h2> , etc.) are an important structural element. While they don’t

directly impact rankings, they do help Google to better understand the content on the page.

Figure 8.28. Most popular schema types.

294. https://developers.google.com/search/docs/advanced/structured-data/sitelinks-searchbox

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 271

https://almanac.httparchive.org/static/images/2021/seo/most-popular-schema-types.png
https://almanac.httparchive.org/static/images/2021/seo/most-popular-schema-types.png
https://developers.google.com/search/docs/advanced/structured-data/sitelinks-searchbox

For main headings, more pages (71.9%) have h2 s than have h1 s (65.4%). There’s no obvious

explanation for the discrepancy. 61.4% of desktop and mobile pages use h3 s and less than 39%

use h4 s.

There was very little difference between desktop and mobile heading usage, nor was there a

major change versus 2020.

Figure 8.29. Heading element usage.

Part II Chapter 8 : SEO

272 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/heading-element-usage.png
https://almanac.httparchive.org/static/images/2021/seo/heading-element-usage.png

However, a lower percentage of pages include non-empty <h> elements, particularly h1 .

Websites often wrap logo-images in <h1> elements on home pages, and this may explain the

discrepancy.

Links

Search engines use links to discover new pages and to pass PageRank which helps determine the

importance of pages.

On top of PageRank, the text used as a link anchor helps search engines to understand what a

linked page is about. Lighthouse has a test to check if the anchor text used is useful text or if it’s

generic anchor text like “learn more” or “click here” which aren’t very descriptive. 16% of the

tested links did not have descriptive anchor text, which is a missed opportunity from an SEO

perspective and also bad for accessibility.

Figure 8.30. Non-empty heading element usage.

Figure 8.31. Pages using non-descriptive link texts.

16.0%

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 273

https://almanac.httparchive.org/static/images/2021/seo/non-empty-heading-element-usage.png
https://almanac.httparchive.org/static/images/2021/seo/non-empty-heading-element-usage.png
https://en.wikipedia.org/wiki/PageRank

Internal and external links

Internal links are links to other pages on the same site. Pages had less links on the mobile

versions compared to the desktop versions.

The data shows that the median number of internal links on desktop is 16% higher than mobile,

64 vs 55 respectively. It’s likely this is because developers tend to minimize the navigation

menus and footers on mobile to make them easier to use on smaller screens.

The most popular websites (the top 1,000 according to CrUX data) have more outgoing internal

links than less popular websites. 144 on desktop vs. 110 on mobile, over two times higher than

the median! This may be because of the use of mega-menus on larger sites that generally have

more pages.

Figure 8.32. Internal links from home pages.

Part II Chapter 8 : SEO

274 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/outgoing-internal-link.png
https://almanac.httparchive.org/static/images/2021/seo/outgoing-internal-link.png

External links are links from one website to a different site. The data again shows fewer

external links on the mobile versions of the pages.

The numbers are nearly identical to 2020. Despite Google rolling out mobile first indexing this

year, websites have not brought their mobile versions to parity with their desktop versions.

Figure 8.33. External links from home pages.

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 275

https://almanac.httparchive.org/static/images/2021/seo/outgoing-external-links.png
https://almanac.httparchive.org/static/images/2021/seo/outgoing-external-links.png

Text and image links

While a significant portion of links on the web are text based, a portion also link images to other

pages. 9.2% of links on desktop pages and 8.7% of links on mobile pages are image links. With

image links, the alt attributes set for the image act as anchor text to provide additional

Figure 8.34. Text links from home pages.

Figure 8.35. Image links from home pages.

Part II Chapter 8 : SEO

276 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/seo/text-links.png
https://almanac.httparchive.org/static/images/2021/seo/text-links.png
https://almanac.httparchive.org/static/images/2021/seo/image-links.png
https://almanac.httparchive.org/static/images/2021/seo/image-links.png

context on what the pages are about.

Link attributes

In September of 2019, Google introduced attributes295 that allow publishers to classify links as

being sponsored or user-generated content. These attributes are in addition to rel=nofollow
which was previously introduced in 2005296. The new attributes, rel=ugc and

rel=sponsored , add additional information to the links.

The new attributes are still fairly rare, at least on home pages, with rel="ugc" appearing on

0.4% of mobile pages and rel="sponsored" appearing on 0.3% of mobile pages. It’s likely

these attributes are seeing more adoption on pages that aren’t home pages.

rel="follow" and rel=dofollow appear on more pages than rel="ugc" and

rel="sponsored" . While this is not a problem, Google ignores rel="follow" and

rel="dofollow" because they aren’t official attributes.

rel="nofollow" was found on 30.7% of mobile pages, similar to last year. With the attribute

used so much, it’s no surprise that Google has changed nofollow to a hint—which means they

can choose whether or not they respect it.

Figure 8.36. Rel attribute usage.

295. https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html
296. https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 277

https://webmasters.googleblog.com/2019/09/evolving-nofollow-new-ways-to-identify.html
https://googleblog.blogspot.com/2005/01/preventing-comment-spam.html
https://almanac.httparchive.org/static/images/2021/seo/rel-attibute-usage.png
https://almanac.httparchive.org/static/images/2021/seo/rel-attibute-usage.png

Accelerated Mobile Pages (AMP)

2021 saw major changes in the Accelerated Mobile Pages (AMP) ecosystem. AMP is no longer

required for the Top Pages carousel, no longer required for the Google News app, and Google

will no longer show the AMP logo next to AMP results in the SERP297.

However, AMP adoption continued to increase in 2021. 0.09% of desktop pages now include

the AMP attribute vs 0.22% for mobile pages. This is up from 0.06% on desktop pages and

0.15% on mobile pages in 2020.

Internationalization

Figure 8.37. AMP attribute usage.

— Google SEO documentation298

If you have multiple versions of a page for different languages or regions, tell

Google about these different variations. Doing so will help Google Search

point users to the most appropriate version of your page by language or

region. " 297. https://developers.google.com/search/blog/2021/04/more-details-page-experience#details
298. https://developers.google.com/search/docs/advanced/crawling/localized-versions

Part II Chapter 8 : SEO

278 2021 Web Almanac by HTTP Archive

https://developers.google.com/search/blog/2021/04/more-details-page-experience#details
https://developers.google.com/search/blog/2021/04/more-details-page-experience#details
https://developers.google.com/search/blog/2021/04/more-details-page-experience#details
https://almanac.httparchive.org/static/images/2021/seo/amp-markup-types.png
https://almanac.httparchive.org/static/images/2021/seo/amp-markup-types.png
https://developers.google.com/search/docs/advanced/crawling/localized-versions

To let search engines know about localized versions of your pages, use hreflang tags.

hreflang attributes are also used by Yandex299 and Bing (to some extent300).

9.0% of desktop pages and 8.4% of mobile pages use the hreflang attribute.

There are three ways of implementing hreflang information: in HTML <head> elements,

Link headers, and with XML sitemaps. This data does not include data for XML sitemaps.

The most popular hreflang attribute is "en" (English version). 4.75% of mobile home pages

use it and 5.32% of desktop home pages.

x-default (also called the fallback version) is used in 2.56% of cases on mobile. Other

popular languages addressed by hreflang attributes are French and Spanish.

Figure 8.38. Top hreflang tag attributes chart.

299. https://yandex.com/support/webmaster/yandex-indexing/locale-pages.html
300. https://x.com/facan/status/1304120691172601856

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 279

https://yandex.com/support/webmaster/yandex-indexing/locale-pages.html
https://x.com/facan/status/1304120691172601856
https://almanac.httparchive.org/static/images/2021/seo/hreflang-usage.png
https://almanac.httparchive.org/static/images/2021/seo/hreflang-usage.png

For Bing, hreflang is a “far weaker signal” than the content-language header.

As with many other SEO parameters, content-language has multiple implementation

methods including:

1. HTTP server response

2. HTML tag

Using an HTTP server response is the most popular way of implementing content-
language . 8.7% of websites use it on desktop while 9.3% on mobile.

Using the HTML tag is less popular, with content-language appearing on just 3.3% of mobile

websites.

Figure 8.39. Language usage (HTML and HTTP header).

Part II Chapter 8 : SEO

280 2021 Web Almanac by HTTP Archive

https://x.com/facan/status/1304120691172601856
https://x.com/facan/status/1304120691172601856
https://x.com/facan/status/1304120691172601856
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language
https://almanac.httparchive.org/static/images/2021/seo/language-usage-html-http.png
https://almanac.httparchive.org/static/images/2021/seo/language-usage-html-http.png

Conclusion

Websites are slowly improving from an SEO perspective. Likely due to a combination of

websites improving their SEO and the platforms hosting websites also improving. The web is a

big and messy place so there’s still a lot to do, but it’s nice to see consistent progress.

Authors

Patrick Stox

@patrickstox patrickstox https://patrickstox.com

Patrick is Product Advisor, Technical SEO, and Brand Ambassador at Ahrefs301. He’s

an organizer for the Raleigh SEO Meetup302 (the most successful SEO Meetup in

the US), the Beer and SEO Meetup303, and the Raleigh SEO Conference304. He also

runs a Technical SEO Slack group and is a moderator for /r/TechSEO on Reddit305.

Patrick also likes to share random SEO knowledge in Twitter threads he calls

Uncommon SEO Knowledge. He’s a well-known conference speaker, industry

blogger (mostly on the Ahref’s blog306 these days), judge of search awards, and he

helped define the role of Search Marketing Strategist for the US Department of

Labor.

Tomek Rudzki

@TomekRudzki Tomek3c https://tomekseo.com/

Tomek is the Head of Research and Development at Onely307. He’s also building

ZipTie308, a product aiming to help website owners get more content indexed by

Google. In his spare time, he enjoys hiking and playing poker.

301. https://ahrefs.com/
302. https://www.meetup.com/RaleighSEO/
303. https://www.meetup.com/beerandseo/
304. https://raleighseomeetup.org/conference/
305. https://www.reddit.com/r/TechSEO
306. https://ahrefs.com/blog/
307. http://onely.com/
308. https://www.ziptie.dev/

Part II Chapter 8 : SEO

2021 Web Almanac by HTTP Archive 281

https://x.com/patrickstox
https://github.com/patrickstox
https://patrickstox.com/
https://ahrefs.com/
https://www.meetup.com/RaleighSEO/
https://www.meetup.com/beerandseo/
https://raleighseomeetup.org/conference/
https://www.reddit.com/r/TechSEO
https://ahrefs.com/blog/
https://x.com/TomekRudzki
https://github.com/Tomek3c
https://tomekseo.com/
http://onely.com/
https://www.ziptie.dev/

Ian Lurie

@ianlurie wrttnwrd https://www.ianlurie.com

Ian is a marketing consultant, SEO, speaker, and recovering agency founder. He

founded Portent, a digital marketing agency, in 1995, and sold it to Clearlink in

2017. He’s now on his own, consulting for brands309 he loves and speaking at

conferences310 that provide Diet Coke. He’s also trying to become a professional

Dungeons & Dragons player, but it hasn’t panned out. You can find him pedaling his

bike up Seattle’s ridiculous hills.

309. https://www.ianlurie.com/digital-marketing-consulting/
310. https://www.ianlurie.com/speaking/

Part II Chapter 8 : SEO

282 2021 Web Almanac by HTTP Archive

https://x.com/ianlurie
https://github.com/wrttnwrd
https://www.ianlurie.com/
https://www.ianlurie.com/digital-marketing-consulting/
https://www.ianlurie.com/speaking/
https://www.ianlurie.com/speaking/

Part II Chapter 9

Accessibility

Written by Alex Tait, Scott Davis, Olu Niyi-Awosusi, Gary Wilhelm, and Katriel Paige
Reviewed by Eric Bailey, Cassey Lottman, Shaina Hantsis, Estelle Weyl, Gigi Rajani, and Carlie Dixon
Analyzed by David Fox
Edited by Barry Pollard

Introduction

Every year the internet grows—as of January 2021 there are 4.66 billion active internet users311.

Unfortunately, accessibility is not substantially improving alongside this growth as we’ll see

throughout this chapter. As our reliance on internet solutions increases, so does the alienation

of people who do not have equal access to the web.

2021 marked the second year of the ongoing COVID-19 pandemic. It is apparent that the

disabled population is increasing as a result of long-term effects from COVID -19312. In tandem

with the long-term health effects of COVID-19, society as a whole has become increasingly

dependent on digital services as a result of the pandemic. Everyone is spending more time

online and completing more essential activities online as well. According to the Statistics

Canada Internet Use Survey313, “75% of Canadians 15 years of age and older engaged in various

311. https://www.statista.com/statistics/617136/digital-population-worldwide/
312. https://www.scientificamerican.com/article/a-tsunami-of-disability-is-coming-as-a-result-of-lsquo-long-covid-rsquo/
313. https://www150.statcan.gc.ca/n1/pub/45-28-0001/2021001/article/00027-eng.htm

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 283

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.scientificamerican.com/article/a-tsunami-of-disability-is-coming-as-a-result-of-lsquo-long-covid-rsquo/
https://www150.statcan.gc.ca/n1/pub/45-28-0001/2021001/article/00027-eng.htm
https://www150.statcan.gc.ca/n1/pub/45-28-0001/2021001/article/00027-eng.htm

Internet-related activities more often since the onset of the pandemic”.

Products and services are also rapidly shifting online as a result of the pandemic. According to

this McKinsey report314, “Perhaps more surprising is the speedup in creating digital or digitally

enhanced offerings. Across regions, the results suggest a seven-year increase, on average, in

the rate at which companies are developing these [online] products and services.”

Web accessibility is about giving complete access to all aspects of an interface to people with

disabilities by achieving feature and information parity. A digital product or website is simply

not complete if it is not usable by everyone. If a digital product excludes certain disabled

populations, this is discrimination and potentially grounds for fines and/or lawsuits. Last year

lawsuits related to the Americans with Disabilities Act were up 20%315.

Sadly, year over year, we and other teams conducting analysis such as the WebAIM Million316 are

finding very little improvement in these metrics. The WebAIM study found that 97.4% of home

pages had automatically detected accessibility failures, which is less than 1% lower than the

2020 audit.

The median overall site score for all Lighthouse Accessibility317 audit data rose from 80% in 2020

to 82% in 2021. We hope that this 2% increase represents a shift in the right direction.

However, these are automated checks, and this could also potentially mean that developers are

doing a better job of subverting the rule engine.

Because our analysis is based on automated metrics only, it is important to remember that

automated testing captures only a fraction of the accessibility barriers that can be present in an

interface. Qualitative analysis, including manual testing and usability testing with people with

disabilities, is needed in order to achieve an accessible website or application.

We’ve split up our most interesting insights into six categories:

• Ease of reading

• Ease of page navigation

• Forms

• Media on the Web

• Supporting Assistive technology with ARIA

• Accessibility Overlays

314. https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-
and-transformed-business-forever

315. https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits
316. https://webaim.org/projects/million/
317. https://web.dev/lighthouse-accessibility/

Part II Chapter 9 : Accessibility

284 2021 Web Almanac by HTTP Archive

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits
https://webaim.org/projects/million/
https://web.dev/lighthouse-accessibility/

We hope that this chapter, full of sobering metrics and demonstrable accessibility negligence

on the Web, will inspire readers to prioritize this work and change their practices, shifting

towards a more inclusive internet.

We chose to use the person-first term “people with disabilities” throughout this chapter. We
acknowledge that the identity-first term “disabled people” is preferred for many. Our choice in
terminology is in no way prescriptive of which term is appropriate.

Ease of reading

Making content as simple and clear to read as possible is an important aspect of web

accessibility. When people are unable to read the content of a page, not only are they unable to

access its information, they are also prevented from being able to complete tasks such as

registering for an account or making a purchase.

There are many aspects of a web page that make it easier or harder to read, including color

contrast, zooming and scaling of pages, and language identification.

Color contrast

Color contrast318 refers to how easily text and other page artifacts stand out against the

surrounding background. The higher the contrast, the easier it is for people to distinguish the

content. The Web Content Accessibility Guidelines319 (WCAG) has minimum contrast

requirements for text and non-text content.

People who may have difficulties viewing low contrast content include those with color vision

deficiency, people with mild to moderate vision loss, and those with situational difficulties

viewing the content, such as glare on screens in bright light.

318. https://www.a11yproject.com/posts/2015-01-05-what-is-color-contrast/
319. https://www.w3.org/WAI/standards-guidelines/wcag/

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 285

https://www.a11yproject.com/posts/2015-01-05-what-is-color-contrast/
https://www.w3.org/WAI/standards-guidelines/wcag/

This year we found that only 22% of sites have passing color contrast scores in Lighthouse. It is

worth noting that these scans are only able to catch text-based contrast issues, as non-text

content is so variable. This score has stayed about the same year over year; it was 21% in 2020

and 22% in 2019. This metric is somewhat disheartening, as catching text-based contrast issues

is possible with a variety of common automated tools.

Zooming and scaling

Users with low vision may rely on zooming and scaling the page using system settings or screen

magnifying software in order to view its content, especially text. The Web Content Accessibility

Guidelines require that text in particular can be resized up to at least 200%320.

Adrian Roselli321 wrote a comprehensive article about the various harms caused when zooming

is not enabled for users322. Many browsers now prevent developers from overriding zoom

controls, but it must be avoided at the code-level, as we cannot count on every browser

overriding this behavior when we consider the wide range of browser and OS usage on a global

scale.

Figure 9.1. Mobile sites with sufficient color contrast.

320. https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-scale.html
321. https://x.com/aardrian
322. https://adrianroselli.com/2015/10/dont-disable-zoom.html

Part II Chapter 9 : Accessibility

286 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/color-contrast-2019-2020-2021.png
https://almanac.httparchive.org/static/images/2021/accessibility/color-contrast-2019-2020-2021.png
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-scale.html
https://x.com/aardrian
https://adrianroselli.com/2015/10/dont-disable-zoom.html
https://adrianroselli.com/2015/10/dont-disable-zoom.html

We found that 24% of desktop home pages and 29% of mobile home pages attempt to disable

scaling by setting either maximum-scale to a value less than or equal to 1, or user-
scalable set to 0 or none .

Figure 9.2. Pages with zooming and scaling disabled.

Figure 9.3. Pages with zooming and scaling disabled by rank.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 287

https://almanac.httparchive.org/static/images/2021/accessibility/pages-zooming-scaling-disabled.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-zooming-scaling-disabled.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-zooming-scaling-disabled-by-rank.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-zooming-scaling-disabled-by-rank.png

When we consider the most popular sites in particular, the numbers for mobile are especially

concerning. Of the top 1,000 most trafficked sites, 22% of desktop sites and 45% of mobile sites

have code that attempts to disable user scaling. This may be a trend that comes from the

proliferation of web applications. People need to be able to customize their web browsing

experience (such as zooming and scaling) regardless of whether the content is a website or web

application.

Language identification

Setting an HTML lang attribute allows easy translation of a page and better screen reader

support, allowing some screen readers to apply the appropriate accent and inflection to the

text being read. The percentage of sites with a lang attribute increased this year to 81% (up

from 78% in 2020), and of the sites that have the attribute present, 99.7% had a valid lang
attribute.

Font size and line height

There is no specific requirement from the WCAG with respect to minimum font size or line

height, however there is a general consensus that a base font size of 16px323 or higher will help

everyone with readability, especially those who have low vision. There is, however, a

requirement that text can be zoomed in and resized up to 200%. Users can also set their own

minimum font size at the browser level and these customized settings need to be supported.

Figure 9.4. Mobile sites have a valid lang attribute.

80.5%

323. https://accessibility.digital.gov/visual-design/typography/

Part II Chapter 9 : Accessibility

288 2021 Web Almanac by HTTP Archive

https://accessibility.digital.gov/visual-design/typography/

When fonts are declared in px units, they are static sizes. The best way to ensure that fonts

scale appropriately when the browser is zoomed is to use relative units such as em and rem .

We found that 68% of desktop font size declarations are set in px , 17% are set in em and 5%

are set with rem units.

Focus Styles

Visible focus styles are helpful for everyone but are necessary for sighted keyboard users who

rely on their presence to navigate. The WCAG requires a visible focus indicator324 for all

interactive content.

Figure 9.5. Font unit usage.

324. https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-visible.html

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 289

https://almanac.httparchive.org/static/images/2021/accessibility/font-unit-usage.png
https://almanac.httparchive.org/static/images/2021/accessibility/font-unit-usage.png
https://www.24a11y.com/2019/pixels-vs-relative-units-in-css-why-its-still-a-big-deal/
https://www.24a11y.com/2019/pixels-vs-relative-units-in-css-why-its-still-a-big-deal/
https://www.24a11y.com/2019/pixels-vs-relative-units-in-css-why-its-still-a-big-deal/
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-visible.html

Often times, default focus indication is removed from interactive content such as buttons, form

controls, and links using the CSS property :focus { outline: none; } or :focus {
outline: 0; } , sometimes in conjunction with :focus-within and/or :focus-
visible . We found that 91% of desktop pages have :focus { outline: 0; } declared.

In some cases, it is removed so that a more effective custom style can be applied. Unfortunately,

in many cases it is simply removed and never replaced, which can render a page unusable for

keyboard users.

For more information about how to achieve accessible focus indication including some

limitations of browser default focus styles, we recommend Sara Soueidan325’s article, “A guide to

designing accessible, WCAG-compliant focus indicators”326.

User preference media queries and high contrast support

The CSS Media Queries Level 5 specification327, published in 2020, introduced a collection of

User Preference Media Features that allow a website to detect Accessibility features that a user

may have configured outside of the website itself. These features are typically configured

through operating system or platform preferences.

Figure 9.6. Pages overriding focus styles.

325. https://x.com/SaraSoueidan
326. https://www.sarasoueidan.com/blog/focus-indicators/
327. https://www.w3.org/TR/mediaqueries-5

Part II Chapter 9 : Accessibility

290 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/pages-overriding-focus-styles.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-overriding-focus-styles.png
https://x.com/SaraSoueidan
https://www.sarasoueidan.com/blog/focus-indicators/
https://www.sarasoueidan.com/blog/focus-indicators/
https://www.w3.org/TR/mediaqueries-5

prefers-reduced-motion is used by web authors to replace animations or other sources of

motion on the web page with a more static experience, typically by removing or replacing the

content. This can help a range of people that may be distracted or otherwise triggered by rapid

movement on the screen. We found that 32% of websites use the prefers-reduced-motion
media query.

prefers-reduced-transparency indicates that the end user has asked the operating

system to minimize or eliminate translucency and transparency effects. This affordance might

be turned on by end users to help with reading comprehension or to avoid common “halo

effects” that can negatively affect users with visual impairments. We do not have data on the

usage of this relatively new media query.

prefers-contrast (high or low) suggests that the end user would prefer a high-contrast

or low-contrast contrast theme. This can help with reading comprehension and eye strain. We

do not have data on the usage of this relatively new media query though we found that 25% of

websites use ms-high-contrast which is a Windows-specific approach to handling contrast

preferences.

prefers-color-scheme (light or dark) allows a user to request light color on a dark

background experience, or vice-versa. This was the earliest of the User Preference Media

Queries to be introduced. This capability, commonly known as “dark mode” support, rose to

prominence in 2019 after Apple standardized it328 in iOS 13 and iPadOS, though it had been a

Figure 9.7. User preference media queries.

328. https://wikipedia.org/wiki/Light-on-dark_color_scheme#History

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 291

https://almanac.httparchive.org/static/images/2021/accessibility/userpreference-media-queries.png
https://almanac.httparchive.org/static/images/2021/accessibility/userpreference-media-queries.png
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-reduced-motion
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-reduced-motion
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-contrast
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-contrast
https://developer.mozilla.org/docs/Web/CSS/@media/-ms-high-contrast
https://developer.mozilla.org/docs/Web/CSS/@media/-ms-high-contrast
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-color-scheme
https://developer.mozilla.org/docs/Web/CSS/@media/prefers-color-scheme
https://wikipedia.org/wiki/Light-on-dark_color_scheme#History

common accessibility feature for many years prior to that.

While dark mode is recognized by many developers and designers as an accessibility

affordance, it is important to note that dark mode may, in fact, reduce accessibility for certain

users. Some people with dyslexia or astigmatism might find light text on a dark background

harder to read329, and might find that it exacerbates the halo effect. The important takeaway

here is to let your user choose what works best for them. We found that 7% of websites use the

prefers-color-scheme media query.

Ease of page navigation

Navigating through web content is one of the fundamental ways we engage online and there

are many ways this is accomplished. For some people, this could mean visually scanning a page

while scrolling with a mouse. For others it might start by navigating through the headings on a

page with their screen reader. Websites need to be easy to navigate so users are not left feeling

lost or unable to find the content they are seeking.

Landmarks and page structure

Landmarks are designated HTML elements or ARIA roles we can apply to other HTML

elements that enable assistive technology users to quickly understand overall page structure

and navigation. For example a rotor menu330 can be used to navigate to different landmarks of

the page, and or a skip link can be used to target the <main> landmark.

Before the introduction of HTML5, ARIA landmark roles were needed to accomplish this.

However, we now have native HTML elements available to accomplish the majority of landmark

page structure. Leveraging the native HTML landmark elements is preferable to applying ARIA

roles, per the first rule of ARIA331. For more information, see the ARIA roles section of this

chapter.

329. https://www.boia.org/blog/dark-mode-can-improve-text-readability-but-not-for-everyone
330. https://webaim.org/articles/voiceover/mobile#rotor
331. https://www.w3.org/TR/using-aria/#rule1

Part II Chapter 9 : Accessibility

292 2021 Web Almanac by HTTP Archive

https://www.boia.org/blog/dark-mode-can-improve-text-readability-but-not-for-everyone
https://www.boia.org/blog/dark-mode-can-improve-text-readability-but-not-for-everyone
https://webaim.org/articles/voiceover/mobile#rotor
https://www.w3.org/TR/using-aria/#rule1

The most commonly expected landmarks that the majority of web pages should have, are

<main> , <header> , <nav> and <footer> . We found that only 28% of desktop pages have

a native HTML <main> element, 17% of desktop pages have an element with a

role="main" , and 35% of pages have either.

When a page has multiple instances of the same landmark, for example, a primary site

navigation and a breadcrumb secondary navigation, it is important that they each have a unique

accessible name. This will help an assistive technology user to better understand which

navigation landmark they have encountered. Techniques for accomplishing this are covered in

Scott O’Hara332’s comprehensive article about the various landmarks and how different screen

readers navigate them333.

Document titles

Descriptive page titles are helpful for context when moving between pages, tabs, and windows

with assistive technology because the change in context will be announced.

Figure 9.8. Landmark element and role usage (desktop).

HTML5
element

ARIA role
equivalent

Pages
with

element

Pages
with
role

Pages with
element or

role

<main> role="main" 27.68% 16.90% 35.00%

<header> role="banner" 62.13% 14.34% 63.49%

<nav> role="navigation" 61.69% 22.79% 65.53%

<footer> role="contentinfo" 63.35% 12.21% 64.52%

332. https://x.com/scottohara
333. https://www.scottohara.me/blog/2018/03/03/landmarks.html

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 293

https://x.com/scottohara
https://www.scottohara.me/blog/2018/03/03/landmarks.html
https://www.scottohara.me/blog/2018/03/03/landmarks.html

Our data shows 98% of web pages have a title. However, only 68% of those pages have a title

containing four or more words, meaning that it is likely that a significant percentage of web

pages do not have a unique, meaningful title that provides enough information about the

content of the page.

Secondary Navigation

Many users benefit from a secondary navigation method to help them find the content they are

looking for on a website. The WCAG has a requirement that complex websites have a

secondary navigation method334. One of the most common and helpful secondary navigation

methods is a search mechanism. We found that 24% of all sites used a search input.

Another approach to providing a secondary navigation method is to implement a site map,

which is a collection of all of the links available on a website clearly organized collection.

Although we do not have any data about the presence of site maps, this technique guide from

the W3C335 explains what they are in detail and how to implement one effectively.

Tabindex

tabindex is an attribute that can be added to elements to control whether it can be focused.

Figure 9.9. Title element statistics.

334. https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-mult-loc.html
335. https://www.w3.org/TR/WCAG20-TECHS/G63.html

Part II Chapter 9 : Accessibility

294 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/page_title-information.png
https://almanac.httparchive.org/static/images/2021/accessibility/page_title-information.png
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-mult-loc.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-mult-loc.html
https://www.w3.org/TR/WCAG20-TECHS/G63.html
https://www.w3.org/TR/WCAG20-TECHS/G63.html

Depending on its value, the element can also be in the keyboard focus, or “tab” order.

A tabindex value of 0 allows for an element to be programmatically focusable and in

keyboard focus order. Interactive content such as buttons, links, and form controls have the

equivalent of a tabindex value of 0 , meaning they are in the keyboard focus order natively.

Custom elements and widgets that are intended to be interactive and in the keyboard focus

order need an explicitly assigned tabindex="0" , or they will not be usable by keyboard.

If an element should be focusable but not in the keyboard focus order a tabindex value of

-1 (or any negative integer) can be used as a hook to enable programmatically setting focus on

the element with JavaScript without adding it to the keyboard focus order. This can be helpful

for cases where you’d like to assign focus, such as focusing a heading when navigating to new

page within a single page application as covered by Marcy Sutton336 in her post on accessible

client-side routing techniques337. Placing non-interactive elements in keyboard focus order

creates a confusing experience for blind and low vision users and should be avoided.

The focus order of the page should always be determined by the document flow meaning the

order of the HTML elements in the document. Setting the tabindex to a positive integer

value overrides the natural order of the page, often leading to failures of WCAG 2.4.3 - Focus

Order338. Respecting the natural focus order of a page generally leads to a more accessible

experience than over-engineering the keyboard focus order.

We found that 58% of desktop sites and 56% of mobile sites have some usage of the

tabindex attribute.

336. https://x.com/marcysutton
337. https://www.gatsbyjs.com/blog/2019-07-11-user-testing-accessible-client-routing/
338. https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 295

https://x.com/marcysutton
https://www.gatsbyjs.com/blog/2019-07-11-user-testing-accessible-client-routing/
https://www.gatsbyjs.com/blog/2019-07-11-user-testing-accessible-client-routing/
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html

When we look at desktop pages that have at least one instance of the tabindex attribute:

• 96.9% use a value of 0 , meaning elements are focusable and being added to the

keyboard focus order

• 68.2% use a negative integer, meaning elements are explicitly removed from the

keyboard focus order

• 8.7% have a positive integer value, meaning the web author is trying to control the

focus order rather than allowing the DOM structure to do so

While there are valid declarations for the tabindex attribute, incorrectly reaching for these

techniques leads to common accessibility barriers for many keyboard and assistive technology

users. For more information about the pitfalls of using a positive integer for tabindex we

recommend Karl Groves339’ article, “Why using tabindex values greater than “0” is bad”.

Skip links

Skip links help people who rely on keyboards to navigate. They enable a user to skip through

sections of content that repeat across multiple pages or navigation sections and go to another

destination, typically the <main> element of the page. Skip links are typically the first element

Figure 9.10. tabindex usage.

339. https://x.com/karlgroves

Part II Chapter 9 : Accessibility

296 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/tabindex-usage-and-values.png
https://almanac.httparchive.org/static/images/2021/accessibility/tabindex-usage-and-values.png
https://x.com/karlgroves
https://karlgroves.com/2018/11/13/why-using-tabindex-values-greater-than-0-is-bad
https://karlgroves.com/2018/11/13/why-using-tabindex-values-greater-than-0-is-bad

on a page and can be persistent in the UI or visibly hidden until they have keyboard focus. For

example, a lot of interactive content (such as a robust navigation system full of links), can be

incredibly cumbersome to tab through before reaching the main content of the screen,

especially as these tend to be repeated across multiple pages.

Some websites that are very information dense have several skip links to allow users to jump to

the commonly trafficked areas of the site. For example, the government of Canada’s website340

has “skip to main content”, “skip to about government” and “switch to basic HTML version”.

Skip links are considered a bypass for a block341. There is no way for us to query for all possible

skip link implementations, however we found that close to 20% of desktop and mobile sites

likely have a skip link. We determined this by looking for the presence of an href="#main"
attribute on one of the first three links on the page, which is a common implementation for a

skip link.

Heading hierarchy

Headings make it easier for screen readers to properly navigate a page by supplying a hierarchy

that can be jumped through like a table of contents.

Our audits revealed that 58% of the sites checked pass the test for properly ordered headings342

that do not skip levels. Over 85% of screen reader users surveyed in 2021 by WebAIM343

reported they find headings useful in navigating the web. Having headings in the correct

order–ascending without skipping levels–means that assistive technology users will have the

best experience.

Tables

Tables are an efficient way to display data with two axes of relationships, making them useful

for comparisons. Users of assistive technology rely on specific table markup that provides a

machine-readable structure so the user can effectively navigate, understand and interact with

them.

Figure 9.11. Mobile sites passing the Lighthouse audit for properly ordered headings.

58%

340. https://www.canada.ca/
341. https://www.w3.org/WAI/WCAG21/Understanding/bypass-blocks.html
342. https://web.dev/heading-order/
343. https://webaim.org/projects/screenreadersurvey9/#heading

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 297

https://www.canada.ca/
https://www.w3.org/WAI/WCAG21/Understanding/bypass-blocks.html
https://web.dev/heading-order/
https://webaim.org/projects/screenreadersurvey9/#heading

Tables should have a well-formatted structure with the appropriate elements and defined

relationships, including a caption, appropriate headers and footers, and a corresponding header

cell for every data cell. Screen reader users rely on such well-defined relationships through

what is announced, so an incomplete or an incorrectly declared structure can lead to misleading

or missing information.

Table captions

Table captions act as a heading for the full table to provide a summary of its information. When

labelling a table, the <caption> element is the correct semantic choice to provide the most

context to a screen reader user, though it should be noted that there are also other alternative

captioning techniques for tables344.

Heading elements for the full table are frequently unnecessary when a <caption> element

has been properly implemented, and the <caption> element can be styled and visually

positioned in a way that resembles a heading. Only 5% of desktop and mobile sites with table

elements present used a <caption> , which is a slight increase from 2020.

Tables for layout

The introduction of CSS methodologies such as Flexbox345 and Grid346 provided the capability for

web developers to easily create fluid responsive layouts. Prior to this development, developers

frequently used tables for layout instead of presenting data. Unfortunately, due to a

combination of legacy websites and legacy development techniques, websites still exist where

tables are used for layout. It is difficult to determine how widely this legacy development

technique is still used.

If there is an absolute need to reach for this technique, the role of presentation should be

Figure 9.12. Accessible table usage.

Table sites All sites

Desktop Mobile Desktop Mobile

Captioned tables 5.4% 4.6% 1.2% 1.0%

Presentational table 1.2% 0.9% 0.5% 0.4%

344. https://www.w3.org/WAI/tutorials/tables/caption-summary/
345. https://www.w3schools.com/css/css3_flexbox.asp
346. https://www.w3schools.com/css/css_grid.asp

Part II Chapter 9 : Accessibility

298 2021 Web Almanac by HTTP Archive

https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://www.w3.org/WAI/tutorials/tables/caption-summary/
https://www.w3schools.com/css/css3_flexbox.asp
https://www.w3schools.com/css/css_grid.asp

applied to the table such that assistive technology will ignore the table semantics. We found

that 1% of desktop and mobile pages contain a table with a role of presentation. It’s hard to

know if this is good or bad. It could indicate that there are not many tables used for

presentational purposes, but it is very likely that tables used for layout are just lacking this

needed role.

Tabs

Tabs are a very common interface widget but making them accessible presents a challenge for

many developers. A common pattern for accessible implementation comes from the WAI-ARIA

Authoring Practices Design Patterns347. Note that the ARIA Authoring Practices document is not

a specification and is meant to demonstrate idealized use of ARIA for common widgets. They

should not be used in production without testing with your users.

The Authoring Practice guidelines suggest always using the tabpanel role in conjunction with

role="tab" . We found that 8% of desktop pages have at least one element with a

role="tablist" , 7% of pages have elements with a role="tab" and 6% of pages have

elements with a role="tabpanel" . For more information see the ARIA roles section below.

Captchas

Public websites regularly have two different types of visitors—humans and computers that

crawl the web. To attract human visitors, websites hope to be featured prominently by search

engines. Search engines, in turn, send out automated programs called web crawlers to visit

websites, look around, and report their findings back to the search engine to classify and

organize their content.

For example, The Web Almanac is created each year by sending out a similar kind of web

crawler to gather information about roughly 8 million different websites. Authors then

summarize the results for your reading pleasure.

For cases where websites want to verify that the visitor is a human, one technique web authors

sometimes use is putting up a test that a human can theoretically pass, and a computer cannot.

These types of “human-only” tests are called a CAPTCHA— “Completely Automated Public

Turing Test, to Tell Computers and Humans Apart”.

347. https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 299

https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel
https://www.w3.org/TR/wai-aria-practices-1.1/#tabpanel

We found CAPTCHAs on roughly 10% of the websites visited, across both desktop and mobile

sites.

CAPTCHAs present a host of potential accessibility barriers. For example, one of the most

common forms of a CAPTCHA presents an image of wavy, distorted text and asks the user to

decipher the text and type it in. This type of test can be difficult to solve for everyone but would

likely be more difficult for people with low vision and other vision or reading related disabilities.

One usability survey found that roughly 1 out of 3 users failed to successfully decipher a

CAPTCHA on the first try348.

If CAPTCHAs include alt text, the test would be trivial to pass by a computer since the answer is

provided as plain text. However, by not including alt text, CAPCHAs are excluding screen

readers and the blind or low vision users who use them.

For more information on the accessibility barriers that CAPTCHAs present, we recommend the

W3C paper: “Inaccessibility of CAPTCHA: Alternatives to Visual Turing Tests on the Web”349.

From the paper: “It is important to acknowledge that using a CAPTCHA as a security solution is

becoming increasingly ineffective… Alternative security methods, such as two-step or multi-

device verification, along with emerging protocols for identifying human users with high

reliability should also be carefully considered in preference to traditional image-based

CAPTCHA methods for both security and accessibility reasons.”

Forms

Forms can make or break access to the web, which increasingly means access to participation in

society and essential services. Many people do their banking, grocery shopping, flight booking,

appointment scheduling, and work online, as well as many other activities.

Due to the effects of the COVID-19 pandemic, millions of children went to school online in

2021. All of these services require forms to register and sign in at a minimum, and many have

much more complex forms that require other sensitive information such as financial

information. Inaccessible forms are discriminatory and can cause serious harm.

Figure 9.13. Desktop sites using a CAPTCHA.

10.2%

348. https://baymard.com/blog/captchas-in-checkout
349. https://www.w3.org/TR/turingtest/

Part II Chapter 9 : Accessibility

300 2021 Web Almanac by HTTP Archive

https://baymard.com/blog/captchas-in-checkout
https://baymard.com/blog/captchas-in-checkout
https://www.w3.org/TR/turingtest/

The 2019 Click-Away Pound survey in the UK was designed “to explore the online shopping

experience of people with disabilities and examine the cost to business of ignoring disabled

shoppers.” It found that UK businesses missed out on over £17 billion of sales in abandoned

shopping carts due to website accessibility barriers. Profit should never be the primary reason

to respect the rights of people with disabilities, but the business case is very substantial.

The <label> element

One of the most important ways of making HTML forms accessible is using the <label>
element to programmatically link the short descriptive text that describes the form control350.

This is typically done by matching the for attribute on the <label> element with the id
attribute on the form control element. For example:

<label for="first-name">First Name</label>

<input type="text" id="first-name">

When a web developer fails to associate a <label> element with an input, they are missing

out on a number of key features that they would otherwise get for free. For example, when a

<label> is properly associated with an <input> field, tapping or clicking on the <label>
automatically puts focus in the <input> field. This is not only a major usability win—it is also

expected behavior on the web.

350. https://developer.mozilla.org/docs/Learn/Forms/Basic_native_form_controls

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 301

https://developer.mozilla.org/docs/Learn/Forms/Basic_native_form_controls

The <label> element was introduced with HTML 4 in 1999. Despite being available in all

modern browsers for the past 20+ years, only 27% of all <input> elements get their

accessible name from a programmatically associated label and 32% of input elements have no

accessible name at all.

Most importantly, without proper accessible names, screen readers and voice to text users may

not be able to target or identify the purpose of a form field. <label> elements associated with

an input are the most robust and expected way to do this.

This is not only important when the end user is filling in the form for the first time—it is equally

important if form validation finds an error with a specific field that the user must correct before

they can submit the form. For example, if a user forgot to provide the expiration date for their

credit card, they cannot complete their purchase. And they cannot complete their purchase if

they cannot find the errant field with the missing value and understand both the purpose of the

input and the steps needed to fix the error.

Figure 9.14. Where inputs get their accessible names from.

Part II Chapter 9 : Accessibility

302 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/form-input-name-sources.png
https://almanac.httparchive.org/static/images/2021/accessibility/form-input-name-sources.png

The improper use of the placeholder attribute for labeling inputs

The placeholder attribute was introduced in HTML5 in 2014. Its intended use is to provide

an example of the data that is expected to be provided by the user. For example, <input
type="text" id="credit-card" placeholder="1234-5678-9999-0000"> will display

the placeholder as faint text in the input field that will disappear the moment the user begins

typing in the field.

The improper use of a placeholder as a replacement for the <label> element is surprisingly

prevalent. Roughly 58% of desktop and mobile websites in this year’s survey used the

placeholder attribute. Of those sites, nearly 65% of them included the placeholder
attribute and failed to include a programmatically associated <label> element.

There are many accessibility issues that placeholder text can present351. For example, because it

disappears when the user begins to type, people with cognitive disabilities can be disoriented

and lose context for the purpose of the form element.

The HTML5 specification352 clearly states, “The placeholder attribute should not be used as an

alternative to a label.”

The W3C’s Placeholder Research353 lists 26 different articles that advise against the flawed

Figure 9.15. Use of placeholders on inputs.

351. https://www.smashingmagazine.com/2018/06/placeholder-attribute/
352. https://html.spec.whatwg.org/#the-placeholder-attribute
353. https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 303

https://almanac.httparchive.org/static/images/2021/accessibility/placeholder-but-no-label.png
https://almanac.httparchive.org/static/images/2021/accessibility/placeholder-but-no-label.png
https://www.smashingmagazine.com/2018/06/placeholder-attribute/
https://html.spec.whatwg.org/#the-placeholder-attribute
https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research

design approach of using a placeholder instead of the semantically correct <label> element.

It goes on to say:

Requiring information

When web developers gather input from their end users, they need a clear way to indicate what

information is optional, and what information is required to proceed. For example, a shipping

address is optional if the end user is buying something online that they can download. However,

the method of payment is most likely required in order to complete the sale.

Before HTML5 introduced the required attribute for <input> fields in 2014, web

developers were forced to solve this problem on an ad hoc, case-by-case basis. A common

convention is to put an asterisk (*) in the label for required input fields. This is purely a visual,

stylistic convention—labels with asterisks don’t enforce any kind of field validation.

Additionally, screen readers typically announce this character as “star” unless it is explicitly

hidden from assistive technology, which can be confusing.

There are two attributes that can be used to communicate the required state of a form field to

assistive technology. The required attribute will be announced by most screen readers and

actually prevents form submission when a required field has not been properly filled out. The

aria-required attribute can be used to indicate required fields to assistive technology, but

does not come with any associated behavior that would interfere with form submission.

— The W3C’s Placeholder Research354

Use of the placeholder attribute as a replacement for a label can reduce the

accessibility and usability of the control for a range of users including older

users and users with cognitive, mobility, fine motor skill or vision

impairments. "

354. https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research

Part II Chapter 9 : Accessibility

304 2021 Web Almanac by HTTP Archive

https://www.w3.org/WAI/GL/low-vision-a11y-tf/wiki/Placeholder_Research
https://developer.mozilla.org/docs/Web/HTML/Attributes/required
https://developer.mozilla.org/docs/Web/HTML/Attributes/required
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-required_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-required_attribute

We found that 21% of desktop websites had form elements that have either an asterisk (*) in

their label, the required attribute or the aria-required attribute or some combination of

these techniques. Two-thirds of these form elements used the required attribute. About a

third of all required inputs used the aria-required attribute. Roughly 22% had an asterisk

in their label.

Media on the web

Accessibility plays an increasingly important role in all media consumption on the web. For

people who are deaf or hard of hearing, captions provide access to video. For people who are

blind or have vision impairments, audio descriptions can describe a scene. Without removing

the barriers to access to media content, we are excluding people from the majority of what gets

visited on the web.

Figure 9.16. How required inputs are specified.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 305

https://almanac.httparchive.org/static/images/2021/accessibility/form-required-controls.png
https://almanac.httparchive.org/static/images/2021/accessibility/form-required-controls.png

According to this Streaming Media study355, “by 2022, video viewing will account for 82% of all

internet traffic”. Whenever you use media in your web content—images, audio, or video—you

must ensure it is accessible to all.

Overview of text alternatives

Every HTML media element allows you to provide text alternatives, but not every author takes

advantage of this accessibility capability.

The element for displaying pictures was introduced in the HTML 2.0 specification in

1995. The alt attribute—introduced at the same time—provides a clear mechanism for the

web developer to provide a text alternative for the image.

This alternative description of the image is used by screen readers to describe the image for

someone who can’t see the image. It is also used to describe the image to everyone if the image

cannot be downloaded or displayed. One type of “user” who can’t see the image is a search

engine—good alt text plays an important role in Search Engine Optimization (SEO), so that

web pages that show the image can be discovered by text searches.

The HTML5 specification introduced the <video> and <audio> elements in 2014 to provide

a standards-based way to incorporate rich media in your website that didn’t require a third-

party browser plugin. Both the <video> and <audio> elements allow a <track> element

to be included, so that closed captions, subtitles, and audio descriptions can provide alternate,

text-based ways to enjoy the rich media.

These tracks provide the same SEO benefits as alt text does for images, although in 2021,

less than 1% of the websites surveyed provided <track> elements.

Images

The alt attribute allows web authors to provide a text alternative for the visual information

communicated in an image. A screen reader can convey its visual meaning through audio by

announcing the image’s alternative text. Additionally, if images are unable to load, the

alternative text for a description will be displayed.

Images need to be described appropriately, in some cases short descriptions are helpful, and in

other cases a longer description is needed to capture the meaning or intent of the image.

The 2021 Lighthouse audit data shows that 57% of sites pass the test for images with alt
text, a small increase from 54% the year before. This test looks for the presence of at least one

355. https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=144177

Part II Chapter 9 : Accessibility

306 2021 Web Almanac by HTTP Archive

https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=144177
https://web.dev/image-alt/
https://web.dev/image-alt/
https://web.dev/image-alt/

of the alt , aria-label or aria-labelledby attributes on img elements. In most cases

using the alt attribute is the best choice.

Automated checks for the presence of alternative text usually do not assess the quality of this

text. One unhelpful pattern is describing the image with the file extension name. We found that

7.1% of desktop sites (with at least one instance of the alt attribute) had a file extension in

the value of at least one img element’s alt attribute, compared to 7.3% the previous year.

Figure 9.17. Pages containing an alt attribute with a file extension.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 307

https://almanac.httparchive.org/static/images/2021/accessibility/pages-containing-alt-with-file-extension.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-containing-alt-with-file-extension.png

The top 5 file extensions explicitly included in the alt text value (for sites with images that

have non-empty alt values) are jpg , png , ico , gif , and jpeg . This likely comes from a

CMS or another auto-generated alternative text mechanism. It is imperative that these alt
attribute values be meaningful, regardless of how they are implemented.

Figure 9.18. Most common file extensions in alt text.

Part II Chapter 9 : Accessibility

308 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/common-file-extensions-in-alt-text.png
https://almanac.httparchive.org/static/images/2021/accessibility/common-file-extensions-in-alt-text.png

We found that 27% of alt text attributes were empty. In an ideal world this would indicate

that the associated images are decorative356, and should not be described by assistive

technologies. However, the majority of images add value to an interface and as such, should be

described. We found that 15% have 10 or fewer characters, which would be a strangely short

description for most images, indicating that information parity has not been achieved.

Audio

<track> provides a way for a text equivalent to be provided for audio in <audio> and

<video> elements. This allows people with permanent or temporary hearing loss to be able to

understand audio content.

<track> loads one or more WebVTT files, which allows text content to be synchronized with

Figure 9.19. alt attribute lengths.

Figure 9.20. Desktop websites with an <audio> element have at least one accompanying

<track> element.

0.02%

356. https://www.w3.org/WAI/tutorials/images/
decorative/#:~:text=For%20example%2C%20the%20information%20provided,technologies%2C%20such%20as%20screen%20readers.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 309

https://almanac.httparchive.org/static/images/2021/accessibility/alt-attribute-lengths.png
https://almanac.httparchive.org/static/images/2021/accessibility/alt-attribute-lengths.png
https://www.w3.org/WAI/tutorials/images/decorative/#:~:text=For%20example%2C%20the%20information%20provided,technologies%2C%20such%20as%20screen%20readers.
https://developer.mozilla.org/docs/Web/HTML/Element/track
https://developer.mozilla.org/docs/Web/HTML/Element/track

the audio it is describing. We found 0.02% of all pages on desktop and 0.05% of all pages on

mobile with a detectable <audio> element had at least one accompanying <track>
element.

These data points do not include audio embedded via an <iframe> element, which is common

for content like podcasts that use a third-party service to host and list recordings.

Video

The <video> element was only present on roughly 5% of the websites included in the 2021

Web Almanac.

Similar to the results of the <audio> survey, the <track> element was included with a

corresponding <video> element less than 1% of the time—0.5% for desktop sites, and 0.6%

for mobile sites. In actual numbers, only 2,836 desktop sites out of 6.3 million included a

<track> element where a <video> element was present. Only 2,502 mobile sites out of 7.5

million made their videos accessible by including a corresponding <track> element with

content loaded via the <video> element.

Much like the <audio> element, this figure may not account for video content loaded by a

third party <iframe> , such as an embedded YouTube video. It should also be noted that most

popular third-party audio and video embedding services include the ability to add synchronized

text equivalents.

Supporting assistive technology with ARIA

Accessible Rich Internet Applications357—or ARIA—is a suite of web standards that was first

published by the Web Accessibility Initiative in 2014. ARIA provides a set of attributes we can

add to HTML markup to enhance the experience for users of assistive technology.

There are many nuances and complexities to the use of ARIA, as well as varying degrees of

assistive technology support. As a general rule, it should be used sparingly, and never in

Figure 9.21. Desktop websites with an <video> element have at least one accompanying

<track> element.

0.5%

357. https://www.w3.org/WAI/standards-guidelines/aria/

Part II Chapter 9 : Accessibility

310 2021 Web Almanac by HTTP Archive

https://www.w3.org/WAI/standards-guidelines/aria/

instances when there is an equivalent native HTML solution that could be leveraged. While

ARIA can provide helpful information to assistive technology, it comes with no associated

behavior such as keyboard operability.

The 5 rules of ARIA358 describe some helpful guiding principles for ARIA usage. In September of

2021, a W3 working group published ARIA in HTML359, a proposed specification with very

detailed information about how and when ARIA can be used.

ARIA roles

When assistive technology encounters an element, the element’s role communicates

information about how someone might interact with its content. For example, an <a> element

will expose a link role to assistive technology, which typically conveys that the element will

navigate somewhere when activated.

HTML5 introduced many new native elements, all which have implicit semantics360, including

roles. For example, the <nav> element has an implicit role="navigation" and does not

need to have this role added explicitly via ARIA in order to convey its purpose information to

assistive technology.

ARIA can be used to explicitly add roles to content that does not have a fitting native HTML

role. For example, when creating a tablist widget, a tablist role can be assigned to the

container element since there is no native HTML equivalent.

358. https://www.w3.org/TR/using-aria/
359. https://www.w3.org/TR/2021/PR-html-aria-20210930/#priv-sec
360. https://www.w3.org/TR/wai-aria-1.1/#implicit_semantics

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 311

https://www.w3.org/TR/using-aria/
https://www.w3.org/TR/2021/PR-html-aria-20210930/#priv-sec
https://www.w3.org/TR/wai-aria-1.1/#implicit_semantics

Currently 69% (up from 65% in 2020) of desktop pages have at least one instance of an ARIA

role attribute. The median site has 3 instances (up from 2 in 2020) of the role attribute.

The most commonly used roles are listed below.

Figure 9.22. Number of ARIA roles used by percentile.

Part II Chapter 9 : Accessibility

312 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/sites-using-role.png
https://almanac.httparchive.org/static/images/2021/accessibility/sites-using-role.png

Just use a button!

One of the most common misuses of ARIA roles is adding a button role to non-interactive

elements such as <div> s and s, or to <a> elements. A native HTML <button>
element comes with an implicit button role and the expected keyboard operability and behavior

and should be the first approach before reaching for ARIA.

We found that 29% (up from 25% in 2020) of desktop sites and 29% of mobile sites (up from

25% in 2020) had home pages with at least one element with an explicitly assigned

role="button" . This suggests that close to a third of websites are using the button role on

elements in order to change their semantics, with the exception of buttons that have been

explicitly assigned the button role, which is redundant.

If non-interactive elements such as <div> s and s have been assigned a button role,

there is a significant chance that the expected keyboard focus order and operability will not be

Figure 9.23. Top 10 most common ARIA roles.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 313

https://almanac.httparchive.org/static/images/2021/accessibility/top-10-aria-roles.png
https://almanac.httparchive.org/static/images/2021/accessibility/top-10-aria-roles.png

applied, which would result in WCAG 2.1.1 Keyboard361 and 2.4.3 Focus order problems362. In

addition, Windows High Contrast Mode will not honor ARIA363, so elements that are not native

HTML button elements may not appear to be interactable in this mode. We found that 11% of

desktop and mobile sites have either a <div> or a with an explicit button role.

When a button role is applied to an <a> element, it overrides the implicit link role that anchor

elements come with. This can lead to a confusing user experience because the expected

behavior for a button would be to trigger an in-page action, whereas a link would typically

navigate somewhere. There would also be a violation WCAG 2.1.1, Keyboard364 if the correct

keyboard behavior has not been implemented (links are not activated with the space key,

whereas buttons are). Additionally, when a button role is announced by a screen reader without

the expected corresponding behavior, it can create a confusing and disorienting experience for

an assistive technology user.

We found that 19% of desktop pages (up from 16% in 2020) and 18% (up from 15% in 2020) of

mobile pages contained at least one anchor element with role="button" . A native

<button> element would be a better choice, per the first rule of ARIA365.

This act of adding ARIA roles, or a “role-up”366, is usually less ideal than using the correct native

HTML element. Again, in the vast majority of these cases a better pattern than explicitly

defining role="button" on the element in question would be to leverage the native HTML

<button> element, as it comes with the expected semantics and behavior.

Using presentation role

When an element has role="presentation" declared on it, its semantics are stripped away,

as well as any of its child elements. For example, declaring role="presentation" on a

parent table or list element will cascade the role to any child elements. This will also strip the

semantics.

Removing an element’s semantics means that it is no longer that element in terms of its

behavior or how it is understood by assistive technology, leaving only its visual appearance. For

Figure 9.24. Desktop websites have at least one link with a button role.

18.6%

361. https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
362. https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html
363. https://ericwbailey.design/writing/truths-about-digital-accessibility/#windows-high-contrast-mode-ignores-aria
364. https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
365. https://www.w3.org/TR/using-aria/#rule1
366. https://adrianroselli.com/2020/02/role-up.html

Part II Chapter 9 : Accessibility

314 2021 Web Almanac by HTTP Archive

https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html
https://ericwbailey.design/writing/truths-about-digital-accessibility/#windows-high-contrast-mode-ignores-aria
https://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation-keyboard-operable.html
https://www.w3.org/TR/using-aria/#rule1
https://adrianroselli.com/2020/02/role-up.html

example, a list with a role="presentation" will no longer communicate any information to

a screen reader about the list structure. We found that 22% of desktop pages and 21% of

mobile pages have at least one element with role="presentation" . There are very few use

cases where this is particularly helpful for assistive technology users, so use this role sparingly

and thoughtfully.

Labelling and describing elements with ARIA

Parallel to the DOM there is a similar browser structure called the accessibility tree367. It

contains information about HTML elements including accessible names, descriptions, roles and

states. This information is conveyed to assistive technology through accessibility APIs.

The accessibility tree has a computation system that assigns the accessible name (if there is

one) to a control, widget, group, or landmark such that it can be announced or targeted by

assistive technology.

The accessible name can be derived from an element’s content (such as button text), an

attribute (such as an image alt text value), or an associated element (such as a

programmatically associated label for a form control). There is a specificity ranking that

happens to determine which value is assigned to the accessible name if there are multiple

potential sources.

For more information about accessible names visit Léonie Watson368’s article, What is an

accessible name?369

We can also use ARIA to provide accessible names for elements. There are two ARIA attributes

that accomplish this, aria-label and aria-labelledby . Either of these attributes will

“win” the accessible name computation and override the natively derived accessible name. It is

important to use these two attributes with caution and be sure to test with a screen reader or

look at the accessibility tree to confirm that the accessible name is what your users will expect.

When using ARIA to name an element, it is important to ensure that the WCAG 2.5.3, Label in

Name370 criterion has not been violated, which expects visible labels to be at least a part of its

accessible name.

367. https://developer.mozilla.org/docs/Glossary/Accessibility_tree
368. https://x.com/LeonieWatson
369. https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
370. https://www.w3.org/WAI/WCAG21/Understanding/label-in-name.html

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 315

https://developer.mozilla.org/docs/Glossary/Accessibility_tree
https://x.com/LeonieWatson
https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://developer.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA14.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA14.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA16.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA16.html
https://www.w3.org/WAI/WCAG21/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG21/Understanding/label-in-name.html

The aria-label attribute allows a developer to provide a string value, and this will be used

for the accessible name for the element. It is worth noting that voice to text users may have

difficulty targeting controls that are named without visible text as a reference. People with

cognitive disabilities often benefit from visible text as well. An invisible accessible name is

better than no accessible name, however, in most cases, a visible label should either supply the

accessible name or at a minimum be contained within an element’s accessible name.

We found that 53% of desktop pages (up from 40% in 2020) and 52% of mobile home pages (up

from 39% in 2020) had at least one element with the aria-label attribute, making it the

most popular ARIA attribute for providing accessible names, with a very large increase in usage

in 1 year. This could be a positive indication that more elements that previously were lacking an

accessible name now have one. However, it could also signify an increase in elements having no

visible label, which could negatively impact people with cognitive disabilities and voice to text

users.

The aria-labelledby attribute accepts an id reference as its value, which associates it

with another element in the interface to provide its accessible name. The element becomes

“labelled by” this other element which supplies its accessible name. We found that 21% of

desktop pages (up from 18% in 2020) and 20% of mobile pages (up from 16% in 2020) had at

Figure 9.25. Top 10 ARIA attributes.

Part II Chapter 9 : Accessibility

316 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/top10-aria-attributes.png
https://almanac.httparchive.org/static/images/2021/accessibility/top10-aria-attributes.png

least one element with the aria-labelledby attribute.

The aria-describedby attribute can be used in cases where a more robust description is

needed for an element. It also accepts an id reference as its value to connect with descriptive

text that exists elsewhere in the interface. It does not supply the accessible name; it should be

used in conjunction with an accessible name as a supplement, not a replacement. We found that

13% of desktop pages and 12% of mobile pages had at least one element with the aria-
describedby attribute.

Fun fact! We found 1,886 websites with the attribute aria-lavel , which is a misspelling of the

aria-label attribute! Be sure to run those automated checks to pick up these easily avoidable

errors.

Where do buttons get their accessible names from?

Buttons typically get their accessible names from their content or an ARIA attribute. Per the

first rule of ARIA371, if an element can derive its accessible name without the use of ARIA, this is

preferable. Therefore a <button> should get its accessible name from its text content rather

than an ARIA attribute if possible.

There is a common implementation where text content is not used to supply the accessible

name because the button is a graphical control using an image or icon. This can be problematic

for voice to text users who need to target the control without visible text and should not be

used if visible text is an option.

371. https://www.w3.org/TR/using-aria/#rule1

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 317

https://www.w3.org/TR/using-aria/#rule1

We found that 57% of buttons on both desktop and mobile sites get their accessible name from

content. We also found that 29% of buttons on desktop sites and 27% of buttons on mobile

sites get their accessible names from the aria-label attribute.

Hiding content

There are several ways to ensure that assistive technology will not discover content. We can

leverage CSS display: none; to omit the elements from the accessibility tree. If an author

wishes to hide content from screen readers specifically, they can use aria-hidden="true" .

Note that unlike display: none; a declaration of aria-hidden="true" will not visibly

remove an element and its children.

We found that 54% of desktop pages (up from 48% in 2020) and 53% of mobile pages (up from

Figure 9.26. Button accessible name source.

Figure 9.27. Desktop websites have at least one instance of the aria-hidden attribute.

53.8%

Part II Chapter 9 : Accessibility

318 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/button-name-sources.png
https://almanac.httparchive.org/static/images/2021/accessibility/button-name-sources.png

49% in 2020) had at least one instance of an element with the aria-hidden attribute.

These techniques are most helpful when something in the visual interface is redundant or

unhelpful to assistive technology users. Hiding content from assistive technology should never

be used to skip over content that is challenging to make accessible.

Hiding and showing content is a prevalent pattern in modern interfaces, and it can be helpful to

declutter hidden UI for everyone. Hide/show widgets should be making use of the aria-
expanded attribute to indicate to assistive technology that something can be revealed when

the control is activated and hidden when activated again. We found that 26% of desktop pages

(up from 21% in 2020) and 25% of mobile pages (up from 21% in 2020) had at least one element

with the aria-expanded attribute.

Screen reader-only text

A common technique that developers employ to supply additional information for screen

reader users is to use CSS to visually hide a passage of text but make it discoverable by a screen

reader. Since display: none; prevents content from being present in the accessibility tree,

there is a common pattern involving a specific set of declarations of CSS code.

The most common CSS class names for this code snippet372 (both by convention and throughout

libraries like Bootstrap) are sr-only and visually-hidden . We found that 14% of desktop

pages and 13% of mobile pages had one or both of these CSS class names. It is worth noting that

there are screen reader users who have some vision, therefore over-reliance on visually hidden

text could be confusing for some.

Dynamically-rendered content

The presence of new or updated content in the DOM sometimes needs to be communicated to

screen readers. Some thought needs to be put into which updates need to be conveyed to avoid

frustration. For example, form validation errors need to be conveyed whereas a lazy-loaded

image may not. Updates to the DOM also need to be done in a way that is not disruptive.

ARIA live regions allow us to listen for changes in the DOM, such that the updated content can

Figure 9.28. Desktop websites with a sr-only or visually-hidden class.

14.3%

372. https://css-tricks.com/inclusively-hidden/

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 319

https://css-tricks.com/inclusively-hidden/

be announced by a screen reader. We found that 21% of desktop pages (up from 17% in 2020)

and 20% of mobile pages (up from 16% in 2020) have live regions. For more information about

live region variants and usage check out the MDN live region documentation373 or play with this

live demo by Deque374.

Accessibility overlays

Accessibility overlays, sometimes referred to as accessibility plugins or overlay widgets, are

digital products that are marketed as tools to easily solve a website’s accessibility issues. The

Overlay Fact Sheet375 defines them as “a broad term for technologies that aim to improve the

accessibility of a website. They apply third-party source code (typically JavaScript) to automate

improvements to the front-end code of the website.”

Many of these products have deceptive marketing materials suggesting that one line of code

can make websites accessible, or at least legally compliant from an accessibility standpoint.

For example, accessiBe376, one of the most aggressive products in this space, explains their

process as being able to make sites accessible and compliant within 48 hours by simply pasting

their JavaScript installation code into production code.

Unfortunately, web accessibility is simply not possible to achieve with an out of the box solution

like this. If it were, we would likely not see the sobering statistics throughout this chapter.

373. https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
374. https://dequeuniversity.com/library/aria/liveregion-playground
375. https://overlayfactsheet.com/#what-is-a-web-accessibility-overlay
376. https://wikipedia.org/wiki/AccessiBe

Part II Chapter 9 : Accessibility

320 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://dequeuniversity.com/library/aria/liveregion-playground
https://overlayfactsheet.com/#what-is-a-web-accessibility-overlay
https://wikipedia.org/wiki/AccessiBe

We found that 0.96% of desktop websites—or well over 60,000—use one of these accessibility

overlays. It is worth noting that we have queried for a list of well-known products in this space.

However, this list is not exhaustive, so this metric is likely higher in reality.

Figure 9.29. Pages using accessibility apps.

Figure 9.30. Accessibility app usage by rank.

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 321

https://almanac.httparchive.org/static/images/2021/accessibility/pages-using-a11y-apps.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-using-a11y-apps.png
https://almanac.httparchive.org/static/images/2021/accessibility/a11y-app-usage-by-rank.png
https://almanac.httparchive.org/static/images/2021/accessibility/a11y-app-usage-by-rank.png

When considering domain rank, the top 1,000 websites have a lower percentage —0.1%— of

overlay usage. However, considering the reach of these top-ranking sites, the potential impact

of even one website with this much traffic using an overlay is very substantial.

The consequences of overlays

These tools often interfere with assistive technologies and actually make websites less

accessible for many, as is explored by a Vice article aptly titled “People with Disabilities Say This

AI Tool is Making the Web Worse for Them”377. There is even an open-source extension called

accessiByeBye378 that was specifically developed to block overlays so that assistive technology

users are not disrupted in their use of websites use a third-party overlay product.

As civil rights lawyer Haben Girma379 explains in this video about accessibility overlays380, “AI is a

tool and right now it is extremely limited in what it can do for accessibility”. She goes on to

explain how auto-generated captions of her name misinterpreted “Haben Girma” as “happen

grandma” and how this type of miscommunicated information can impact deaf users.

There have been tensions between some of these overlay companies and the disabled

communities they purport to serve. For example, The National Federation of the Blind banned

Figure 9.31. Pages using accessibility apps by rank.

377. https://www.vice.com/en/article/m7az74/people-with-disabilities-say-this-ai-tool-is-making-the-web-worse-for-them
378. https://www.accessibyebye.org/
379. https://x.com/HabenGirma
380. https://www.youtube.com/watch?v=R12Z1Sp-u4U

Part II Chapter 9 : Accessibility

322 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/accessibility/pages-using-a11y-apps-by-rank.png
https://almanac.httparchive.org/static/images/2021/accessibility/pages-using-a11y-apps-by-rank.png
https://www.vice.com/en/article/m7az74/people-with-disabilities-say-this-ai-tool-is-making-the-web-worse-for-them
https://www.vice.com/en/article/m7az74/people-with-disabilities-say-this-ai-tool-is-making-the-web-worse-for-them
https://www.accessibyebye.org/
https://x.com/HabenGirma
https://www.youtube.com/watch?v=R12Z1Sp-u4U
https://www.forbes.com/sites/gusalexiou/2021/06/26/largest-us-blind-advocacy-group-bans-web-accessibility-overlay-giant-accessibe/?sh=16621ec55a15

accessiBe from their national convention381 and released a this statement about the harm

caused by the company382.

Privacy concerns

Some of these tools have techniques for detecting the use of assistive technologies. This means

that personal data is potentially collected about a person’s disabilities without their consent.

From the Overlay Fact Sheet384:

This article by Léonie Watson386 explores the privacy concerns of this type of data tracking in

accessibility overlays.

Overlays and lawsuits

These widgets have been named as part of many accessibility lawsuits against companies who

— National Federation for the Blind383

It seems that accessiBe fails to acknowledge that blind experts and regular

screen reader users know what is accessible and what is not. The nation’s

blind will not be placated, bullied, or bought off. "
— Overlay Fact Sheet385

Some overlays have been found to persist users’ settings across sites which

use the same overlay. This is done by setting a cookie on the user’s computer.

When the user enables a setting for an overlay feature on one site, the

overlay will automatically turn on that feature on other sites… the big

privacy problem is that the user never opted in to be tracked and there’s also

no ability to opt-out. Due to this lack of an opt-out (other than explicitly

turning off that setting) this creates General Data Protection Regulation

(GDPR) and California Consumer Privacy Act (CCPA) risk for the overlay

customer.

"
381. https://www.forbes.com/sites/gusalexiou/2021/06/26/largest-us-blind-advocacy-group-bans-web-accessibility-overlay-giant-accessibe/?sh=16621ec55a15
382. https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
383. https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
384. https://overlayfactsheet.com/#privacy
385. https://overlayfactsheet.com/
386. https://tink.uk/accessibe-and-data-protection/

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 323

https://www.forbes.com/sites/gusalexiou/2021/06/26/largest-us-blind-advocacy-group-bans-web-accessibility-overlay-giant-accessibe/?sh=16621ec55a15
https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
https://nfb.org/about-us/press-room/national-convention-sponsorship-statement-regarding-accessibe
https://overlayfactsheet.com/#privacy
https://overlayfactsheet.com/
https://tink.uk/accessibe-and-data-protection/

use them. According to the UsableNet’s 2020 report on Digital Accessibility Lawsuits387, “Over

250 companies sued had invested in accessibility widgets or overlays”. Accessibility expert

Sherri Byrne-Haber cites388, “Ten percent of accessibility lawsuits filed at the end of 2020 were

against companies who have installed plugins, overlays, or widgets, thinking they would make

them bulletproof to ADA litigation”. It’s worth noting that accessibility laws are not limited to

the Americans with Disabilities Act, there are countries all over the world with laws pointing to

the WCAG389.

For more information about the legal implications of using these overlays, refer to Lainey

Feingold390’s article Honor the ADA: Avoid Web Accessibility Quick-Fix Overlays391 and Adrian

Roselli’s article #accessiBe Will Get You Sued392.

Why do some companies use overlays?

Fundamentally, and fueled by ableism393, overlays position themselves as solving a problem that

most organizations struggle with. The data is clear throughout this chapter—the internet is

largely inaccessible.

These products take advantage of gaps in organizational accessibility knowledge. Their framing

of the problem space aims to help avoid lawsuits by automating solutions, rather than

meaningfully removing barriers to access for people with disabilities. The reason these lawsuits

happen is that there are real Civil Rights violations when people’s right to access online is

infringed upon. For example, an AI tool supplying a poor accessible description for an image

might pass the checks of an automated tool, but this does not remove the barrier for a blind

person or offer information parity.

Organizations can be swayed by the deceptive marketing of some of these overlay companies

promising to make their products accessible and fully compliant with one line of code and a few

dollars a month. The unfortunate reality is that these tools introduce new barriers for people

with disabilities and can open the organization up to unforeseen legal issues.

There is no quick fix—the onus is on organizations and digital practitioners to prioritize actually

fixing the accessibility problems in their web content. A common saying amongst the disabled

community is, “nothing about us without us”. Overlays have been created without much

involvement from the disabled community, and some of these companies have further alienated

people with disabilities who have spoken out about this394. These products cannot achieve equal

access to the web for people with disabilities.

387. https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits
388. https://sheribyrnehaber.com/technology-doesnt-make-accessibility-hard-people-who-dont-care-do/
389. https://www.3playmedia.com/blog/countries-that-have-adopted-wcag-standards-map/
390. https://x.com/LFLegal
391. https://www.lflegal.com/2020/08/quick-fix/
392. https://adrianroselli.com/2020/06/accessibe-will-get-you-sued.html
393. https://www.forbes.com/sites/andrewpulrang/2020/10/25/words-matter-and-its-time-to-explore-the-meaning-of-ableism/?sh=7ab349837162
394. https://www.nbcnews.com/tech/innovation/blind-people-advocates-slam-company-claiming-make-websites-ada-compliant-n1266720

Part II Chapter 9 : Accessibility

324 2021 Web Almanac by HTTP Archive

https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits
https://sheribyrnehaber.com/technology-doesnt-make-accessibility-hard-people-who-dont-care-do/
https://sheribyrnehaber.com/technology-doesnt-make-accessibility-hard-people-who-dont-care-do/
https://www.3playmedia.com/blog/countries-that-have-adopted-wcag-standards-map/
https://www.3playmedia.com/blog/countries-that-have-adopted-wcag-standards-map/
https://x.com/LFLegal
https://x.com/LFLegal
https://www.lflegal.com/2020/08/quick-fix/
https://adrianroselli.com/2020/06/accessibe-will-get-you-sued.html
https://www.forbes.com/sites/andrewpulrang/2020/10/25/words-matter-and-its-time-to-explore-the-meaning-of-ableism/?sh=7ab349837162
https://www.nbcnews.com/tech/innovation/blind-people-advocates-slam-company-claiming-make-websites-ada-compliant-n1266720
https://www.nbcnews.com/tech/innovation/blind-people-advocates-slam-company-claiming-make-websites-ada-compliant-n1266720

Additional resources about overlays

• Connor Scott-Gardener’s experience using an overlay395

• Case study of an ADA lawsuit involving an overlay396

• The A11y Project - Should I Use an Accessibility Overlay?397

• There’s no such thing as fully automated web accessibility398

• Why Automated Tools Alone Can’t Make Your Website Accessible and Legally

Compliant399

• Should I Use an Accessibility Overlay?400

Conclusion

As accessibility advocate Billy Gregory once said401, “when UX doesn’t consider ALL users,

shouldn’t it be known as SOME User Experience, or SUX”. Too often accessibility work is seen as

an addition, an edge case, or even comparable to technical debt and not core to the success of a

website or product as it should be.

The entire product team and organization have to prioritize accessibility as part of their

accountabilities in order to succeed, all the way up to the C-suite. Accessibility work needs to

shift left in the product cycle402, meaning it needs to be baked into the research, ideation and

design stages before it is developed. And most importantly, people with disabilities need to be

included in this process.

The tech industry needs to move towards inclusion-driven development. Although this requires

some up-front investment, it is much easier and likely less expensive over time to build

accessibility into the entire cycle such that it can be baked into the product rather than trying to

retrofit sites and apps that were constructed without it in mind.

As an industry it is time that we acknowledge the story told by the numbers in this chapter; we

are failing people with disabilities. The numbers from 2021 have not moved substantially from

2020. We need to do better, and this has to come from a combination of top-down leadership

and investment (including the ongoing participation from browsers) and bottom-up effort to

395. https://catchthesewords.com/do-automated-solutions-like-accessibe-make-the-web-more-accessible/
396. https://uxdesign.cc/important-settlement-in-an-ada-lawsuit-involving-an-accessibility-overlay-748a82850249
397. https://www.a11yproject.com/posts/2021-03-08-should-i-use-an-accessibility-overlay/
398. https://uxdesign.cc/theres-no-such-thing-as-fully-automated-web-accessibility-260d6f4632a8
399. https://www.forbes.com/sites/gusalexiou/2021/10/28/why-automated-tools-alone-cant-make-your-website-accessible-and-legally-compliant/?sh=2e538b62364e
400. https://shouldiuseanaccessibilityoverlay.com/
401. https://x.com/thebillygregory/status/552466012713783297?s=20
402. https://feather.ca/shift-left/

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 325

https://catchthesewords.com/do-automated-solutions-like-accessibe-make-the-web-more-accessible/
https://uxdesign.cc/important-settlement-in-an-ada-lawsuit-involving-an-accessibility-overlay-748a82850249
https://www.a11yproject.com/posts/2021-03-08-should-i-use-an-accessibility-overlay/
https://uxdesign.cc/theres-no-such-thing-as-fully-automated-web-accessibility-260d6f4632a8
https://www.forbes.com/sites/gusalexiou/2021/10/28/why-automated-tools-alone-cant-make-your-website-accessible-and-legally-compliant/?sh=2e538b62364e
https://www.forbes.com/sites/gusalexiou/2021/10/28/why-automated-tools-alone-cant-make-your-website-accessible-and-legally-compliant/?sh=2e538b62364e
https://shouldiuseanaccessibilityoverlay.com/
https://x.com/thebillygregory/status/552466012713783297?s=20
https://feather.ca/shift-left/

push our practices forward and advocate for the needs, safety and inclusion of people with

disabilities using the web.

Authors

Alex Tait

@at_fresh_dev alextait1 https://atfreshsolutions.com

Alex Tait is an accessibility specialist whose passion lies in the intersection of

accessibility and modern JavaScript within interface architecture and design

systems. As a developer, she believes that inclusion driven development practices

with accessibility at the forefront lead to better products for everyone. As a

consultant and strategist, she believes that less is more, and that new feature

scope creep cannot be prioritized over core feature parity for disabled users. As

an educator, she believes in removing barriers to information so that tech can

become a more diverse, equitable and inclusive industry.

Scott Davis

@scottdavis99 scottdavis99 http://thirstyhead.com

Scott Davis is an author and Digital Accessibility Advocate with Thoughtworks403,

where he focuses on leading-edge / innovative / emerging / non-traditional

aspects of web development. “Digital Accessibility is so much more than a

compliance checkbox; Accessibility is a springboard for innovation.”

Olu Niyi-Awosusi

@oluoluoxenfree oluoluoxenfree https://olu.online/

Olu Niyi-Awosusi is a JavaScript engineer at Oddbird404 who loves lists, learning

new things, Bee and Puppycat, social justice, accessibility405 and trying harder every

day.

403. https://www.thoughtworks.com/
404. https://www.oddbird.net/
405. https://alistapart.com/article/building-the-woke-web/

Part II Chapter 9 : Accessibility

326 2021 Web Almanac by HTTP Archive

https://x.com/at_fresh_dev
https://github.com/alextait1
https://atfreshsolutions.com/
https://x.com/scottdavis99
https://github.com/scottdavis99
http://thirstyhead.com/
https://www.thoughtworks.com/
https://x.com/oluoluoxenfree
https://github.com/oluoluoxenfree
https://olu.online/
https://www.oddbird.net/
https://alistapart.com/article/building-the-woke-web/

Gary Wilhelm

gwilhelm

Gary Wilhelm is the Digital Solutions Manager for the Division of Finance and

Operations at UNC-Chapel Hill406, which is a fancy way of saying that he works on

websites and develops web applications. He started working to make his websites

accessible in 2013 by studying specifications and has been interested in

accessibility ever since, including spending large amounts of time learning about

PDF accessibility through remediating several thousand PDF documents. In his

spare time, he likes to travel, do yard work, run, watch sports, pester his wife and

two teenagers, and help his dog look for squirrels and rabbits.

Katriel Paige

kachiden https://www.flowerstorm.tech/

Kit Paige is an accessibility engineer and cat enthusiast who’s long and winding

path through tech has included QA, UX, frontend development, a love hate

relationship with CSS, and immeasurable coffee.

406. https://www.unc.edu/

Part II Chapter 9 : Accessibility

2021 Web Almanac by HTTP Archive 327

https://github.com/gwilhelm
https://www.unc.edu/
https://github.com/kachiden
https://www.flowerstorm.tech/

328 2021 Web Almanac by HTTP Archive

Part II Chapter 10

Performance

Written by Sia Karamalegos
Reviewed by Rick Viscomi, Kevin Farrugia, Estelle Weyl, Ziemek Bućko, Julia Yang, Fili Wiese, Barry
Pollard, Samar Panda, and Edmond W. W. Chan
Analyzed by Sia Karamalegos, Rick Viscomi, and Nitin Pasumarthy
Edited by Julia Yang

Introduction

Performance is important for user experience. Slow-to-load and slow-to-respond websites

frustrate users and cause lost conversions. This is the first year that the Core Web Vitals407 have

contributed to Google search rankings408. As such, we’ve seen greater interest in improving

website performance which is great news for users.

What are our top takeaways from this year’s report? First, we still have a long way to go in

providing a good user experience. For example, faster networks and devices have not yet

reached the point where we can ignore how much JavaScript we deliver to a site; and, we may

never get there. Second, sometimes we misuse new features for performance, resulting in

poorer performance. Third, we need better metrics for measuring interactivity, and those are

on the way. And fourth, CMS- and framework-level work on performance can significantly

407. https://web.dev/articles/vitals
408. https://developers.google.com/search/blog/2020/11/timing-for-page-experience

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 329

https://web.dev/articles/vitals
https://developers.google.com/search/blog/2020/11/timing-for-page-experience

impact user experience for the top 10M websites.

What’s new this year? We’re excited to share performance data by traffic ranking for the first

time. We also have all the core performance metrics from previous years. Finally, we added a

deeper dive into the Largest Contentful Paint (LCP) element.

Notes on Methodology

One thing that makes the performance chapter different from the others is that we rely heavily

on the Chrome User Experience Report409 (CrUX) for our analyses. Why? If our number one

priority is user experience, then the best way to measure performance is with real user data

(real user metrics, or RUM for short).

CrUX data only provides high-level field/RUM metrics and only for the Chrome browser.

Additionally, CrUX reports data by origin, or website, instead of by page.

We supplement our CrUX RUM data with lab data from WebPageTest in HTTP Archive.

WebPageTest includes very detailed information about each page, including the full Lighthouse

report. Note that WebPageTest measures performance in locations across the U.S. The

performance data in CrUX is global since it represents real user page loads.

When comparing performance year-over-year, keep in mind that:

• The Cumulative Layout Shift (CLS) calculation has changed411 since 2020.

• The First Contentful Paint (FCP) thresholds (“good”, “needs improvement”, and

“poor”) have changed412 since 2020.

• Last year’s report was based on August 2020 data, and this year’s report was based

on the July 2021 run.

Read the full methodology for the Web Almanac to learn more.

— Chrome User Experience Report410

The Chrome User Experience Report provides user experience metrics for

how real-world Chrome users experience popular destinations on the web. "
409. https://developers.google.com/web/tools/chrome-user-experience-report
410. https://developers.google.com/web/tools/chrome-user-experience-report
411. https://web.dev/articles/cls-web-tooling
412. https://web.dev/articles/cls-web-tooling#additional-updates

Part II Chapter 10 : Performance

330 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/articles/cls-web-tooling
https://web.dev/articles/cls-web-tooling#additional-updates
https://web.dev/articles/cls-web-tooling#additional-updates

High-Level Performance: Core Web Vitals

Before we dive into the individual metrics, let’s take a look at combined performance for Core

Web Vitals413 (CWV). Core Web Vitals (LCP, CLS, FID) are a set of performance metrics focused

on user experience. They focus on loading, interactivity, and visual stability.

Web performance is notorious for an alphabet soup of metrics, but the community is coalescing

on this framework.

This section focuses on websites that reached the “good” threshold on all three CWV metrics to

understand how the web is performing at a high level. In the Analysis by Metric section, we’ll

cover the same charts by each metric in detail, plus more metrics not in the CWV.

By Device

Note: As the CLS calculation changed since last year, this is not an apples-to-apples comparison.

Core Web Vitals for websites in the Chrome User Experience Report improved year-over-year.

But, a good part of this improvement could be due to a change in the CLS calculation, not

necessarily to a performance improvement in CLS. The resulting CLS “improvement” was 8

points on desktop (2 for mobile). LCP improved by 7 points for desktop (2 for mobile). FID was

already at 100% for desktop for both years and improved by 10 points on mobile.

Figure 10.1. Good Core Web Vitals by Device from 2020 to 2021.

413. https://web.dev/articles/vitals

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 331

https://web.dev/articles/vitals
https://web.dev/articles/vitals
https://almanac.httparchive.org/static/images/2021/performance/performance-1-good-cwv-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-1-good-cwv-by-device.png

As in previous years, performance was better on desktop machines than mobile devices. This is

why it’s crucial to test your site’s performance on real mobile devices and to measure real user

metrics (i.e., field data). Emulating mobile in developer tools is convenient in the lab (i.e.,

development) but not representative of real user experiences.

By Effective Connection Type

The data by connection type in CrUX can be difficult to understand. It is not based on traffic. If a

website has any experiences in a connection type, then it increases the denominator for that

connection type. If the experiences were good for that website in that connection type, then it

increases the numerator. Said another way, for all the websites which experienced page loads at

4G speed, 36% of those websites had good CWV:

Faster connections correlated with better Core Web Vitals performance. Offline performance

was better presumably because of service worker caching in progressive web apps. Yet, the

number of origins in the offline effective connection type category is negligible at 2,634 total

(0.02%).

The top takeaway is that 3G and lower speeds correlated with significant performance

degradation. Consider providing pared-down experiences for access at low connection speeds

(e.g., data saver mode414). Profile your site with devices and connections that represent your

Figure 10.2. Good CWV performance by effective connection type.

414. https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/

Part II Chapter 10 : Performance

332 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-2-good-cwv-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-2-good-cwv-by-ect.png
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/

users (based on your analytics data).

Earlier, we mentioned year-over-year improvements in LCP and FID improvements. These

could be partly due to faster mobile devices and mobile networks. The chart above shows total

origins accessed on 3G dropped by 2 percentage points while 4G access increased by 3

percentage points. Percent of origins is not necessarily correlated with traffic. But, I would

guess if people have more access to higher speeds, then more origins would be accessed from

that connection type.

Performance by connection type would be easier to understand if we could start tracking by

traffic and not just origin. It would also be nice to see data for higher speeds. However, the API

is currently limited415 to grouping anything above 4G as 4G.

Figure 10.3. Change in effective connection type 2020-2021 .

415. https://developer.mozilla.org/docs/Glossary/Effective_connection_type

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 333

https://almanac.httparchive.org/static/images/2021/performance/performance-3-change-in-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-3-change-in-ect.png
https://developer.mozilla.org/docs/Glossary/Effective_connection_type
https://developer.mozilla.org/docs/Glossary/Effective_connection_type

By Geographic Region

Regions in parts of Asia and Europe continued to have higher performance. This may be due to

higher network speeds, wealthier populations with faster devices, and closer edge-caching

locations. We should understand the dataset better before drawing too many conclusions.

CrUX data is only gathered in Chrome. The percent of origins by country does not align with

Figure 10.4. Top 30 regions for good CWV performance.

Part II Chapter 10 : Performance

334 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-4-top-cwv-country.png
https://almanac.httparchive.org/static/images/2021/performance/performance-4-top-cwv-country.png

relative population sizes. Reasons may include differences in browser share, in-app browsing,

device share, level of access, and level of use. Keep these caveats in mind when evaluating

regional-level differences and context for all CrUX analyses.

By Rank

This year for the first time, we have ranking data! CrUX determines ranking by the number of

page views per website measured in Chrome. In the charts, the categories are additive. The top

10,000 sites include the top 1,000 sites, and so forth. See the methodology for more details.

The top 1,000 sites significantly outperformed the rest in Core Web Vitals. An interesting

trough of poorer performance occurs in the middle of the chart which is due to CLS. FID was

flat across all groupings. All other metrics correlated with higher performance for higher

ranking.

Correlation is not causation. Yet countless companies have shown performance improvements

leading to bottom-line business impacts (WPO stats416). You don’t want performance to be the

reason you can’t achieve higher traffic and increased engagement.

Figure 10.5. Good CWV performance by rank.

416. https://wpostats.com/

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 335

https://almanac.httparchive.org/static/images/2021/performance/performance-7-cwv-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-7-cwv-by-rank.png
https://wpostats.com/

Analysis by Metric

In this section, we dive into each metric. For those who are less familiar, we’ve included links to

articles that explain each metric in depth.

Time-to-First-Byte (TTFB)

Time-to-first-byte417 (TTFB) is the time between the browser requesting a page and when it

receives the first byte of information from the server. It is the first metric in the chain for

website loading. A poor TTFB will result in a chain reaction impacting FCP and LCP. It’s why

we’re talking about it first.

TTFB was faster on desktop than mobile, presumably because of faster network speeds.

Compared to last year418, TTFB marginally improved on desktop and slowed on mobile.

Figure 10.6. TTFB performance by device.

417. https://web.dev/articles/ttfb
418. https://almanac.httparchive.org/en/2020/performance#fig-17_

Part II Chapter 10 : Performance

336 2021 Web Almanac by HTTP Archive

https://web.dev/articles/ttfb
https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-device.png
https://almanac.httparchive.org/en/2020/performance#fig-17_

We have a long way to go for TTFB. 75% of our websites were in the 4G connection group and

25% in the 3G group, with the remaining ones negligible. At 4G effective speeds, only 19% of

origins had “good” performance.

You may be asking yourself how TTFB can even occur with offline connections. Presumably,

most of the offline sites that record and send TTFB data use service worker caching419. TTFB

measures how long it takes the first byte of the response for the page to be received, even if

that response is coming from the Cache Storage API or the HTTP Cache. An actual server

doesn’t have to be involved. If the response requires action from the service worker, then the

time it takes the service worker thread to start up and handle the response can also contribute

to TTFB. But even considering service worker startup times, these sites on average receive

their first byte faster than the other connection categories.

Figure 10.7. TTFB performance by connection type.

419. https://developer.mozilla.org/docs/Web/Progressive_web_apps/Offline_Service_workers

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 337

https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-ect.png
https://developer.mozilla.org/docs/Web/Progressive_web_apps/Offline_Service_workers

For rank, TTFB was faster for higher-ranking sites. One reason could be that most of these are

larger companies with more resources to prioritize performance. They may focus on improving

server-side performance and delivering assets through edge CDNs. Another reason could be

selection bias - the top origins might be accessed more in regions with closer servers, i.e., lower

latency.

One more possibility has to do with CMS adoption. The CMS Chapter shows CMS adoption by

rank.

Figure 10.8. TTFB performance by rank.

Part II Chapter 10 : Performance

338 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-TTFB-by-rank.png

42% of pages (mobile) in the “all” group used a CMS whereas the top 1,000 sites only had 7%

adoption.

Then, if we look at the top 5 CMSs by rank, we see that WordPress has the highest adoption at

for 33.6% of “all” pages:

Figure 10.9. CMS adoption by rank.

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 339

https://almanac.httparchive.org/static/images/2021/performance/cms-adoption-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/cms-adoption-by-rank.png

Finally, if we look at the Core Web Vitals Technology Report420, we see how each CMS performs

by metric:

Only 5% of origins on WordPress experienced good TTFB in July 2021. Considering

WordPress’s large share of the top 10M sites, its poor TTFB could be a contributor to the TTFB

degradation by rank.

Figure 10.10. Top 5 CMSs by rank.

Figure 10.11. Origins having good TTFB by CMS (Core Web Vitals Technology Report421)

420. https://datastudio.google.com/s/o6zLzlTpWaI
421. https://datastudio.google.com/s/o6zLzlTpWaI

Part II Chapter 10 : Performance

340 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/top-cmss-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/top-cmss-by-rank.png
https://datastudio.google.com/s/o6zLzlTpWaI
https://datastudio.google.com/s/o6zLzlTpWaI
https://datastudio.google.com/s/o6zLzlTpWaI
https://datastudio.google.com/s/o6zLzlTpWaI

First Contentful Paint (FCP)

First Contentful Paint (FCP)422 measures the time from when a load first begins until the

browser first renders any contentful part of the page (e.g, text, images, etc.).

FCP was faster on desktop than mobile, likely due to both faster average network speeds and

faster processors. Only 38% of origins had good FCP on mobile. Render-blocking resources

such as synchronous JavaScript can be a common culprit. Because TTFB is the first part of FCP,

poor TTFB will make it difficult to achieve a good FCP.

Note: The thresholds for FCP have changed since last year. Be careful if you try to compare this year’s
data to last year’s data.

Figure 10.12. FCP performance by device.

422. https://web.dev/articles/fcp

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 341

https://web.dev/articles/fcp
https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-device.png

Origins at 3G and below speeds experienced significant degradations in FCP. Again, ensure that

you are profiling your website using real devices and networks that reflect your user data from

analytics. Your JavaScript bundles may not seem significant when you’re only profiling on high-

end desktops with fiber connections.

Offline connections were closer in performance to 4G though not quite as good. Service worker

start-up time plus multiple cache reads could have contributed. More factors come into play

with FCP than with TTFB.

Figure 10.13. FCP performance by connection type.

Part II Chapter 10 : Performance

342 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-ect.png

Like TTFB, FCP improved with higher rankings. Also like TTFB, only 19.5% of origins on

WordPress experienced good FCP performance423. Since their TTFB performance was poor, it is

not surprising that their FCP is also slow. It’s difficult to achieve good scores on FCP and LCP if

TTFB is slow.

Common culprits for poor FCP are render-blocking resources, server response times (anything

associated with a slow TTFB), large network payloads, and more.

Largest Contentful Paint (LCP)

Largest Contentful Paint (LCP)424 measures the time from start load to when the browser

renders the largest image or text in the viewport.

Figure 10.14. FCP performance by rank.

423. https://datastudio.google.com/s/kZ9K0d-sBQw
424. https://web.dev/articles/lcp

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 343

https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FCP-by-rank.png
https://datastudio.google.com/s/kZ9K0d-sBQw
https://datastudio.google.com/s/kZ9K0d-sBQw
https://web.dev/articles/lcp

LCP was faster on desktop than mobile. TTFB affects LCP like FCP. Comparisons by device,

connection type, and rank all mirror the trends of FCP. Render-blocking resources, total weight,

and loading strategies all affect LCP performance.

Figure 10.15. LCP performance by device.

Figure 10.16. LCP performance by connection type.

Part II Chapter 10 : Performance

344 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-ect.png

Offline origins with good LCP more closely matched 4G experiences, though poor LCP

experiences were higher for offline. LCP occurs after FCP, and the additional budget of 0.7

seconds could be why more offline websites achieved good LCP than FCP.

For LCP, the differences in performance by rank were closer than FCP. Also, a higher proportion

of origins in the top 1,000 had poor LCP. On WordPress, 28% of origins experienced good LCP425.

This is an opportunity to improve user experience as poor LCP is usually caused by a handful of

problems.

The LCP Element

Let’s take a deeper dive into the LCP element.

Figure 10.17. LCP performance by rank.

425. https://datastudio.google.com/s/kvq1oJ60jaQ

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 345

https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-LCP-by-rank.png
https://datastudio.google.com/s/kvq1oJ60jaQ

IMG, DIV, P, and H1 made up 83% of all LCP nodes (on mobile). This doesn’t tell us if the content

was an image or text, as background images can be applied with CSS.

Figure 10.18. Top 15 LCP HTML element nodes.

Part II Chapter 10 : Performance

346 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-top-15-lcp-nodes.png
https://almanac.httparchive.org/static/images/2021/performance/performance-top-15-lcp-nodes.png

We can see that 71-79% of pages had an LCP element that was an image, regardless of HTML

node. Furthermore, desktop devices had a higher rate of LCPs as images. This could be due to

less real estate on smaller screens pushing images out of the viewport resulting in heading text

being the largest element.

In both cases, images comprised the majority of LCP elements. This warrants a deeper dive into

how those images are loading.

Figure 10.19. LCP elements with images, by device.

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 347

https://almanac.httparchive.org/static/images/2021/performance/performance-lcp-with-image.png
https://almanac.httparchive.org/static/images/2021/performance/performance-lcp-with-image.png

For user experience, we want LCP elements to load as fast as possible. User experience is why

LCP was selected as one of the Core Web Vitals. We do not want it to be lazy-loaded as that

further delays the render. However, we can see that 9.3% of pages used the native loading=lazy

flag on the LCP element.

Not all browsers support native lazy loading. Popular lazy loading polyfills detect a “lazyload”

class on an image element. Thus, we can identify more possibly lazy-loaded images by adding

images with a “lazyload” class to the total. The percent of sites probably lazy loading their LCP

 element jumps up to 16.5% on mobile.

Lazy loading your LCP element will result in worse performance. Don’t do it! WordPress was an

early adopter of native lazy loading. The early method was a naive solution applying lazy

loading to all images, and the results showed a negative performance correlation426. They were

able to use this data to implement a more nuanced approach for better performance.

The decode attribute for images is relatively new. Setting it to async can improve load and

scroll performance. Currently, 0.4% of sites used the async decode directive for their LCP

image. The negative impact of asynchronous decode on an LCP image is currently unclear. Thus,

test your site before and after if you choose to set an LCP image to decode="async" .

Figure 10.20. LCP elements with potential performance anti-patterns.

426. https://web.dev/articles/lcp-lazy-loading

Part II Chapter 10 : Performance

348 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-lcp-antipatterns.png
https://almanac.httparchive.org/static/images/2021/performance/performance-lcp-antipatterns.png
https://web.dev/articles/lcp-lazy-loading
https://developer.mozilla.org/docs/Web/HTML/Element/img#attr-decoding
https://developer.mozilla.org/docs/Web/HTML/Element/img#attr-decoding

Interestingly, 354 origins on desktop attempted to use native lazy-loading on HTML elements

that do not support the loading attribute (e.g., <div>). The loading attribute is only supported

on and, in some browsers, <iframe> elements (see Can I use427).

Cumulative Layout Shift (CLS)

Cumulative Layout Shift (CLS)428 is characterized by how much layout shift a user experiences,

not how long it takes to visually see something like FCP and LCP. As such, performance by

device was fairly equivalent.

Figure 10.21. Websites attempted to use native lazy-loading on LCP elements that are not images or
iframes.

354

Figure 10.22. CLS performance by device.

427. https://caniuse.com/loading-lazy-attr
428. https://web.dev/articles/cls

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 349

https://caniuse.com/loading-lazy-attr
https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-device.png
https://web.dev/articles/cls

Performance degradation from 4G to 3G and below was not as pronounced as with FCP and

LCP. Some degradation exists, but it’s not reflected in the device data, only the connection type.

Offline websites had the highest CLS performance of all connection types. For sites with service

worker caching, some assets like images and ads that would otherwise cause layout shifts may

not be cached. Thus, they would never load and never cause a layout shift. Often fallback HTML

for these sites can be more basic versions of the online website.

Figure 10.23. CLS performance by connection type.

Part II Chapter 10 : Performance

350 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-ect.png

For ranking, CLS performance showed an interesting trough for the top 10,000 websites. In

addition, all the ranked groups above 1M performed worse than the sites ranked under 1M.

Since the “all” group had better performance than all the other ranked groupings the sub-1M

group performs better. WordPress may again play a role in this as 60% of origins on WordPress

experienced a good CLS429.

Common culprits for poor CLS include not reserving space for images, text shifts when web

fonts are loaded, top banners inserted after first paint, non-composited animations, and

iframes.

First Input Delay (FID)

First Input Delay (FID)430 measures the time from when a user first interacts with a page to the

time the browser begins processing event handlers in response to that interaction.

Figure 10.24. CLS performance by rank.

429. https://datastudio.google.com/s/qG00yMxSa3o
430. https://web.dev/articles/fid

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 351

https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-CLS-by-rank.png
https://datastudio.google.com/s/qG00yMxSa3o
https://datastudio.google.com/s/qG00yMxSa3o
https://web.dev/articles/fid

FID performance was better on desktop than on mobile devices likely due to device speeds

which can better handle larger amounts of JavaScript.

FID performance degraded some by connection type, but less so than the other metrics. The

Figure 10.25. FID performance by device.

Figure 10.26. FID performance by connection type.

Part II Chapter 10 : Performance

352 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-device.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-ect.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-ect.png

high distribution of scores seemed to reduce the amount of variance in the results.

Unlike the other metrics, FID was worse for offline websites than any other connection

category. This could be due to the more complex nature of many websites with service workers.

Having a service worker does not eliminate the impact of client-side JavaScript running on the

main thread.

FID performance by rank was flat.

For all FID metrics, we see very large bars in the “good” category which makes it less effective

unless we’ve truly hit peak performance. The good news is the Chrome team is evaluating this

now431 and would like your feedback.

If your site’s performance is not in the “good” category, then you definitely have a performance

problem. A common culprit for FID issues is too much long-running JavaScript. Keep your

bundle sizes small and pay attention to third-party scripts.

Figure 10.27. FID performance by rank.

431. https://web.dev/better-responsiveness-metric/

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 353

https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-rank.png
https://almanac.httparchive.org/static/images/2021/performance/performance-FID-by-rank.png
https://web.dev/better-responsiveness-metric/
https://web.dev/better-responsiveness-metric/

Total Blocking Time (TBT)

Total Blocking Time (TBT)433 is a lab-based metric that helps us debug potential interactivity

issues. FID is a field-based metric, and TBT is its lab-based analog. Currently, when evaluating

client websites, I reach for total blocking time TBT as another indicator of possible

performance issues due to JavaScript.

Unfortunately, TBT is not measured in the Chrome User Experience Report. But, we can still get

an idea of what’s going on using the HTTP Archive Lighthouse data (only collected for mobile):

Note: The groups in the chart are based off of the Lighthouse score for TBT (e.g., >= 0.9 results in
“good”). Due to rounding of the score, some TBT values slightly above 200ms get categorized as “good”
(and similarly at the 600ms threshold).

Remember that the data is a single, throttled-CPU Lighthouse run through WebPageTest and

— Web.dev432

The Total Blocking Time (TBT) metric measures the total amount of time

between First Contentful Paint (FCP) and Time to Interactive (TTI) where the

main thread was blocked for long enough to prevent input responsiveness. "

Figure 10.28. Lighthouse TBT scores.

432. https://web.dev/tbt/
433. https://web.dev/tbt/

Part II Chapter 10 : Performance

354 2021 Web Almanac by HTTP Archive

https://web.dev/tbt/
https://web.dev/tbt/
https://almanac.httparchive.org/static/images/2021/performance/performance-tbt.png
https://almanac.httparchive.org/static/images/2021/performance/performance-tbt.png

does not reflect real user experiences. Yet, potential interactivity looked much worse when

looking at TBT versus FID. The “real” evaluation of your interactivity is probably somewhere

between. Thus, if your FID is “good”, take a look at TBT in case you’re missing some poor user

experiences that FID can’t catch yet. The same issues that cause poor FID also cause poor TBT.

Conclusion

Performance improved since 2020. Though we still have a long way to go to provide great user

experience, we can take steps to improve it.

First, you cannot improve performance unless you can measure it. A good first step here is to

measure your site using real user devices and to set up real-user monitoring (RUM). You can get

a flavor of how your site performs with Chrome users with the CrUX dashboard launcher434 (if

your site is in the dataset). You should set up a RUM solution that measures across multiple

browsers. You can build this yourself or use one of many analytics vendors’ solutions.

Second, as new features in HTML, CSS, and JavaScript are released, make sure you understand

them before implementing them. Use A/B testing to verify that adopting a new strategy results

in improved performance. For example, don’t lazy-load images above the fold. If you have a

RUM tool implemented, you can better detect when your changes accidentally cause

regressions.

Third, continue to optimize for both FID (field/real-user data) and TBT (lab data). Take a look at

the proposal435 for a new responsiveness metric and participate by providing feedback. A new

animation smoothness metric436 is also being proposed. In our quest for a faster web, change is

inevitable and for the better. As we continue to optimize, you’re participation is key.

Finally, we saw that WordPress can impact the performance of the top 10M websites, and

maybe more. This is a lesson that every CMS and framework should heed. The more we can set

up smart defaults for performance at the framework level, the better we can make the web

while also make developers’ jobs easier.

What did you find most interesting or surprising? Share your thoughts with us on Twitter

(@HTTPArchive)!

Figure 10.29. Longest TBT.

67 seconds

434. https://rviscomi.github.io/crux-dash-launcher/
435. https://web.dev/responsiveness/
436. https://web.dev/smoothness/

Part II Chapter 10 : Performance

2021 Web Almanac by HTTP Archive 355

https://rviscomi.github.io/crux-dash-launcher/
https://web.dev/responsiveness/
https://web.dev/smoothness/
https://x.com/HTTPArchive

Author

Sia Karamalegos

@https://front-end.social/@sia @sia.codes siakaramalegos karamalegos

https://sia.codes

Sia Karamalegos is a web developer, international conference speaker, and writer.

She is a Google Developer Expert in Web Technologies, a Cloudinary Media

Developer Expert, a Stripe Community Expert, and co-organizes the Eleventy

Meetup. Check out her writing, speaking, and newsletter on sia.codes437 or find her

on Twitter438.

437. https://sia.codes/
438. https://x.com/thegreengreek

Part II Chapter 10 : Performance

356 2021 Web Almanac by HTTP Archive

https://front-end.social/@sia
https://bsky.app/profile/sia.codes
https://github.com/siakaramalegos
https://www.linkedin.com/in/karamalegos/
https://sia.codes/
https://sia.codes/
https://x.com/thegreengreek

Part II Chapter 11

Privacy

Written by Yana Dimova and Victor Le Pochat
Reviewed by Maud Nalpas
Analyzed by Victor Le Pochat and Max Ostapenko
Edited by Barry Pollard

Introduction

“On the Internet, nobody knows you’re a dog.” While it might be true that you could try to remain

anonymous to use the Internet as such, it can be quite hard to keep your personal data fully

private.

A whole industry439 is dedicated to tracking users online, to build detailed user profiles for

purposes such as targeted advertising, fraud detection, price differentiation, or even credit

scoring. Sharing geolocation data with websites can prove very useful in day-to-day life, but

may also allow companies to see your every movement440. Even if a service treats a user’s private

information diligently, the mere act of storing personal data provides hackers with an

opportunity to breach services and leak millions of personal records online441.

439. https://crackedlabs.org/en/corporate-surveillance/
440. https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
441. https://haveibeenpwned.com/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 357

https://en.wikipedia.org/wiki/On_the_Internet,_nobody_knows_you%27re_a_dog
https://crackedlabs.org/en/corporate-surveillance/
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://haveibeenpwned.com/

Recent legislative efforts such as the GDPR442 in Europe, CCPA443 in California, LGPD444 in Brazil,

or the PDP Bill445 in India all strive to require companies to protect personal data and implement

privacy by default, including online. Major technology companies such as Google, Facebook and

Amazon have already received massive fines446 for alleged violations of user privacy.

These new laws have given users a much larger say in how comfortable they are with sharing

personal data. You probably already have clicked through quite a few cookie consent banners

that enable this choice. Furthermore, web browsers are implementing technological solutions447

to improve user privacy, from blocking third-party cookies over hiding sensitive data to

innovative ways to balance legitimate use cases on personal attributes with individual user

privacy.

In this chapter, we give an overview of the current state of privacy on the web. We first consider

how user privacy can be harmed: we discuss how websites profile you through online tracking,

and how they access your sensitive data. Next, we dive into ways websites protect sensitive

data and give you a choice through privacy preference signals. We close with an outlook on the

efforts that browsers are making to safeguard your privacy in the future.

How websites profile you: online tracking

The HTTP protocol is inherently stateless, so by default there is no way for a website to know

whether two visits to two different websites, or even two visits to the same website, are from

the same user. However, such information could be useful for websites to build more

personalized user experiences, and for third parties building profiles of user behavior across

websites to fund content on the web through targeted advertising or providing services such as

fraud detection.

Unfortunately, obtaining this information currently often relies on online tracking, around

which many large and small companies have built their business448. This has even led to calls to

ban targeted advertising449, since invasive tracking is at odds with users’ privacy. Users might not

want anyone to follow their tracks across the web—especially when visiting websites on

sensitive topics. We’ll look at the main companies and technologies that make up the online

tracking ecosystem.

442. https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu
443. https://www.oag.ca.gov/privacy/ccpa
444. https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd
445. https://www.meity.gov.in/data-protection-framework
446. https://wikipedia.org/wiki/GDPR_fines_and_notices
447. https://privacysandbox.com/
448. https://crackedlabs.org/en/corporate-surveillance/
449. https://www.forbrukerradet.no/wp-content/uploads/2021/06/20210622-final-report-time-to-ban-surveillance-based-advertising.pdf

Part II Chapter 11 : Privacy

358 2021 Web Almanac by HTTP Archive

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu
https://www.oag.ca.gov/privacy/ccpa
https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd
https://www.meity.gov.in/data-protection-framework
https://wikipedia.org/wiki/GDPR_fines_and_notices
https://privacysandbox.com/
https://crackedlabs.org/en/corporate-surveillance/
https://www.forbrukerradet.no/wp-content/uploads/2021/06/20210622-final-report-time-to-ban-surveillance-based-advertising.pdf
https://www.forbrukerradet.no/wp-content/uploads/2021/06/20210622-final-report-time-to-ban-surveillance-based-advertising.pdf

Third-party tracking

Online tracking is often done through third-party libraries. These libraries usually provide some

(useful) service, but in the process some of them also generate a unique identifier for each user,

which can then be used to follow and profile users across websites. The WhoTracksMe450 project

is dedicated to discovering the most widely deployed online trackers. We use WhoTracksMe’s

classification of trackers but restrict ourselves to four categories451, because they are the most

likely to cover services where tracking is part of the primary purpose: advertising, pornvertising,

site analytics and social media.

We see that Google-owned domains are prevalent in the online tracking market. Google

Analytics, which reports website traffic, is present on almost two-thirds of all websites. Around

Figure 11.1. 10 most popular trackers and their prevalence.

450. https://whotracks.me/
451. https://whotracks.me/blog/tracker_categories.html

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 359

https://whotracks.me/
https://whotracks.me/blog/tracker_categories.html
https://almanac.httparchive.org/static/images/2021/privacy/most_common_trackers.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_trackers.png

30% of sites include Facebook libraries, while other trackers only reach single-digit

percentages.

Overall, 82.08% of mobile sites and 83.33% of desktop sites include at least one tracker, usually

for site analytics or advertising purposes.

Figure 11.2. Most common tracker categories.

Part II Chapter 11 : Privacy

360 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/most_common_tracker_categories.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_tracker_categories.png

Three out of four websites have fewer than 10 trackers, but there is a long tail of sites with

many more trackers: one desktop site contacted 133 (!) distinct trackers.

Third-party cookies

The main technical approach to store and retrieve cross-site user identifiers is through cookies

that are persistently stored in your browser. Note that while third-party cookies are often used

for cross-site tracking, they can also be used for non-tracking use cases, like state sharing for a

third-party widget across sites. We searched for the cookies that appear most often while

browsing the web, and the domains that set them.

Figure 11.3. The number of trackers per website.

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 361

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_nb_trackers.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_nb_trackers.png

Google’s subsidiary DoubleClick takes the top spot by setting cookies on 31.4% of desktop

websites and 28.7% on mobile websites. Another major player is Facebook, which stores

cookies on 21.4% of mobile websites. Most of the other top domains setting cookies are related

to online advertising.

Figure 11.4. Top 10 domains setting cookies from headers.

Part II Chapter 11 : Privacy

362 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/top100_domains_that_set_cookies_via_response_header.png
https://almanac.httparchive.org/static/images/2021/privacy/top100_domains_that_set_cookies_via_response_header.png

Looking at the specific cookies that these websites set, the most common cookie from a tracker

is the test_cookie from doubleclick.net. The next most common cookies are advertising-

related and remain on a user’s device much longer: Facebook’s fr cookie persists for 90

days452, while DoubleClick’s IDE cookie stays for 13 months in Europe and 2 years elsewhere453.

With Lax becoming the default value of the SameSite cookie attribute, sites that want to

continue sharing third-party cookies across websites must explicitly set this attribute to None .

For third parties, 85% have done this so far on mobile and 64% on desktop, potentially for

tracking purposes. You can read more about the SameSite cookie attribute over at the

Security chapter.

Figure 11.5. Top 10 cookies set from headers.

452. https://www.facebook.com/policy/cookies/
453. https://business.safety.google/adscookies/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 363

https://almanac.httparchive.org/static/images/2021/privacy/top100_cookies_set_from_header.png
https://almanac.httparchive.org/static/images/2021/privacy/top100_cookies_set_from_header.png
https://www.facebook.com/policy/cookies/
https://www.facebook.com/policy/cookies/
https://business.safety.google/adscookies/
https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/

Fingerprinting

With the rise of privacy-protecting tools such as ad blockers and initiatives to phase out third-

party cookies from major browsers such as Firefox454, Safari455, and by 2023 also Chrome456,

trackers are looking for more persistent and stealthy ways to track users across sites.

One such technique is browser fingerprinting. A website collects information about the user’s

device, such as the user agent457, screen resolution and installed fonts, and uses the often unique

combination of those values to create a fingerprint. This fingerprint is recreated every time a

user visits the website and can then be matched to identify the user. While this method can be

used for fraud detection, it is also used to persistently track recurring users, or to track users

across sites.

Detecting fingerprinting is complex: it is effective through a combination of method calls and

event listeners that may also be used for non-tracking purposes. Instead of focusing on these

individual methods, we therefore focus on five popular libraries that make it easy for a website

to implement fingerprinting.

From the percentage of websites using these third-party services, we can see that the most

Figure 11.6. Websites using each fingerprinting library.

454. https://blog.mozilla.org/en/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
455. https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
456. https://blog.google/products/chrome/updated-timeline-privacy-sandbox-milestones/#:~:text=Chrome%20could%20then%20phase%20out%20third-

party%20cookies%20over%20a%20three%20month%20period%2C%20starting%20in%20mid-2023%20and%20ending%20in%20late%202023
457. https://developer.mozilla.org/docs/Glossary/User_agent

Part II Chapter 11 : Privacy

364 2021 Web Almanac by HTTP Archive

https://blog.mozilla.org/en/products/firefox/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://blog.google/products/chrome/updated-timeline-privacy-sandbox-milestones/#:~:text=Chrome%20could%20then%20phase%20out%20third-party%20cookies%20over%20a%20three%20month%20period%2C%20starting%20in%20mid-2023%20and%20ending%20in%20late%202023
https://developer.mozilla.org/docs/Glossary/User_agent
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_fingerprinting.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_fingerprinting.png

widely used library, Fingerprint.js458, is used 19 times more on desktop than the second most

popular library. However, the overall percentage of websites that use an external library to

fingerprint their users is quite small.

CNAME tracking

Continuing with techniques that circumvent blocks on third-party tracking, CNAME tracking459

is a novel approach where a first-party subdomain masks the use of a third-party service using a

CNAME record at the DNS level460. From the viewpoint of the browser, everything happens

within a first-party context, so none of the third-party countermeasures are applied. Major

tracking companies such as Adobe and Oracle are already offering CNAME tracking solutions

to their customers. For the results on CNAME-based tracking included in this chapter, we refer

to research461 completed by one of this chapter’s authors (and others) where they developed a

method to detect CNAME-based tracking, based on DNS data and request data from HTTP

Archive.

458. https://fingerprintjs.com/
459. https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
460. https://adguard.com/en/blog/cname-tracking.html
461. https://sciendo.com/article/10.2478/popets-2021-0053

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 365

https://fingerprintjs.com/
https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
https://adguard.com/en/blog/cname-tracking.html
https://sciendo.com/article/10.2478/popets-2021-0053

The most popular company performing CNAME-based tracking is Adobe, which is present on

0.59% of desktop websites, and 0.41% of mobile websites. Also notable in size is Pardot462, with

0.41% and 0.26% respectively.

Those numbers may seem a small percentage, but that opinion changes when segregating the

data by site popularity.

Figure 11.7. Websites using CNAME-based tracking on a desktop client.

462. https://www.pardot.com/

Part II Chapter 11 : Privacy

366 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking.png
https://www.pardot.com/

When we look at the rank of the websites that use CNAME-based tracking, we see that 5.53%

of the top 1,000 websites on mobile embed a CNAME tracker. In the top 100,000, that number

falls to 2.78% of websites, and when looking at the full data set it falls to 0.52%.

Figure 11.8. Websites that use CNAME tracking by rank.

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 367

https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking_per_rank.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking_per_rank.png

Apart from the .com suffix, a large number of the websites using CNAME-based tracking have

a .edu domain. Also, a notable amount of CNAME trackers are prevalent on .jp and .org
websites.

CNAME-based tracking can be a countermeasure to when the user might have enabled

tracking protection against third-party tracking. Since few tracker-blocking tools and

browsers463 have already implemented a defense against CNAME tracking, it is prevalent on a

number of websites up to date.

(Re)targeting

Advertisement retargeting refers to the practice of keeping track of the products that a user

has looked at but has not purchased and following up with ads about these products on

Figure 11.9. Public suffix of sites with CNAME-based tracking.

463. https://www.cookiestatus.com/

Part II Chapter 11 : Privacy

368 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking_per_public_suffix.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_sites_with_cname_tracking_per_public_suffix.png
https://www.cookiestatus.com/

different websites. Instead of opting for an aggressive marketing strategy while the user is

visiting, the website chooses to nudge the user into buying the product by continuously

reminding them of the brand and product.

A number of trackers provide a solution for ad retargeting. The most widely used one, Google

Remarketing Tag, is present on 26.92% of websites on desktop and 26.64% of websites on

mobile, far and above all other services which are used by less than 1.25% of sites each.

How websites handle your sensitive data

Some websites request access to specific features and browser APIs that can impact the user’s

privacy, for instance by accessing the geolocation data, microphone, camera, etc. These

features usually serve very useful purposes, such as discovering nearby points of interest or

Figure 11.10. Percentage of pages using a retargeting service.

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 369

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_retargeting.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_retargeting.png

allowing people to communicate with each other. While these features are only activated when

a user consents, there is a risk of exposing sensitive data if the user does not fully understand

how those resources are used, or if a site misbehaves.

We looked at how often websites request access to sensitive resources. Moreover, any time a

service stores sensitive data, there is the danger of hackers stealing and leaking that data. We’ll

look at recent data breaches that prove that this danger is real.

Device sensors

Sensors can be useful to make a website more interactive but could also be abused for

fingerprinting users464. Based on the use of JavaScript event listeners, the orientation of the

device is accessed the most, both on mobile and on desktop clients. Note that we searched for

the presence of event listeners on websites, but we do not know if the code is actually executed.

Therefore, the access to device sensor events in this section is an upper bound.

Media devices

The MediaDevices API465 can be used to access connected media input such as cameras,

microphones and screen sharing.

Figure 11.11. 5 most used sensor events.

464. https://www.esat.kuleuven.be/cosic/publications/article-3078.pdf
465. https://developer.mozilla.org/docs/Web/API/MediaDevices

Part II Chapter 11 : Privacy

370 2021 Web Almanac by HTTP Archive

https://www.esat.kuleuven.be/cosic/publications/article-3078.pdf
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_device_sensor_events.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_device_sensor_events.png
https://developer.mozilla.org/docs/Web/API/MediaDevices

On 7.23% of desktop websites, and 5.33% of mobile websites the enumerateDevices()
method is called, which provides a list of the connected input devices.

Geolocation-as-a-service

Geolocation services provide GPS and other location data (such as IP address466) of the user and

can be used by trackers to provide more relevant content to the user among other things.

Therefore, we analyze the use of “geolocation-as-a-service” technologies on websites, based on

libraries detected through Wappalyzer.

We find that the most popular service, ipify467, is used on 0.09% of desktop websites and 0.07%

of mobile websites. So, it would appear that few websites use geolocation services.

Figure 11.12. Percent of desktop pages that used the MediaDevices EnumerateDevices API.

7.23%

Figure 11.13. Percentage of websites that use geolocation services.

466. https://developer.mozilla.org/docs/Glossary/IP_Address
467. https://www.ipify.org/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 371

https://developer.mozilla.org/docs/Glossary/IP_Address
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_geolocation.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_geolocation.png
https://www.ipify.org/

Geolocation data can also be accessed by websites through a web browser API468. We find that

0.59% of websites on a desktop client and 0.63% of websites on a mobile client access the

current position of the user (based on Blink features).

Data breaches

Poor security management within a company can have a significant impact on its customers’

private data. Have I Been Pwned469 allows users to check whether their email address or phone

number was leaked in a data breach. At the time of this writing, Have I Been Pwned has tracked

562 breaches, leaking 640 million records. In 2020 alone, 40 services were breached and

personal data about millions of users leaked. Three of these breaches were marked as sensitive,

referring to the possibility of a negative impact on the user if someone were to find that user’s

data in the breach. One example of a sensitive breach is “Carding Mafia470”, a platform where

stolen credit cards are traded.

Note that 40 breaches in the previous year is a lower bound, since many breaches are only discovered,
or made public, several months after they have occurred.

Figure 11.14. Percentage of websites that use geolocation features.

468. https://developer.mozilla.org/docs/Web/API/Geolocation_API
469. https://haveibeenpwned.com/
470. https://www.vice.com/en/article/v7m9jx/credit-card-hacking-forum-gets-hacked-exposing-300000-hackers-accounts

Part II Chapter 11 : Privacy

372 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_geolocation_blink_usage.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_geolocation_blink_usage.png
https://developer.mozilla.org/docs/Web/API/Geolocation_API
https://haveibeenpwned.com/
https://www.vice.com/en/article/v7m9jx/credit-card-hacking-forum-gets-hacked-exposing-300000-hackers-accounts

Every data breach tracked by Have I Been Pwned472 leaks email addresses, since this is how

users query whether their data was breached. Leaked email addresses are already a huge

privacy risk, since many users employ their full name or credentials to set up their email

address. Furthermore, a lot of other highly sensitive information is leaked in some breaches,

such as users’ genders, bank account numbers and even full physical addresses.

How websites protect your sensitive data

While you’re browsing the web, there is certain data that you might want to keep private: the

web pages that you visit, any sensitive data that you enter into forms, your location, and so on.

Over at the Security chapter, you can learn how 91.1% of mobile sites have enabled HTTPS to

protect your data from snooping while it traverses the Internet. Here, we’ll focus on how

websites can further instruct browsers to ensure privacy for sensitive resources.

Permissions Policy / Feature Policy

The Permissions Policy473 (previously called Feature Policy) provides a way for websites to

Figure 11.15. Number of impacted accounts in breaches per data class. (Source: Have I Been
Pwned471)

471. https://haveibeenpwned.com/
472. https://haveibeenpwned.com/
473. https://www.w3.org/TR/permissions-policy-1/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 373

https://almanac.httparchive.org/static/images/2021/privacy/data_breaches_pwned_accounts_per_class.png
https://almanac.httparchive.org/static/images/2021/privacy/data_breaches_pwned_accounts_per_class.png
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://www.w3.org/TR/permissions-policy-1/

define which web features they intend to use, and which features will need to be explicitly

approved by the user—when requested by third parties for instance. This gives websites

control over what features embedded third-party scripts can request to access. For example, a

permissions policy can be used by a website to ensure that no third-party requests microphone

access on their site. The policy allows developers to granularly choose web APIs they intend to

use, by specifying them with the allow attribute.

The most commonly used directives with relation to the feature policy are shown above. On

3,049 websites on mobile and 2,901 websites on desktop, the use of the microphone feature is

specified. A tiny subset of our dataset, showing this is still a niche technology. Other often

restricted features are geolocation, camera and payment.

To gain a deeper understanding of how the directives are used, we looked at the top 3 most

used directives and the distribution of the values assigned to these directives.

Figure 11.16. Number of websites accessing a feature policy directive.

Part II Chapter 11 : Privacy

374 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/most_common_featurepolicy_permissionspolicy_directives.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_featurepolicy_permissionspolicy_directives.png

none is the most used value. This specifies that the feature is disabled in top-level and nested

browsing contexts. The second most used value, self is used to specify that the feature is

allowed in the current document and within the same origin, while * allows full, cross-origin

access.

Referrer Policy

HTTP requests may include the optional Referer header, which indicates the origin or web

page URL a request was made from. The Referer header might be present in different types

of requests:

• Navigation requests, when a user clicks a link.

• Subresource requests, when a browser requests images, iframes, scripts, and other

resources that a page needs.

For navigations and iframes, this data can also be accessed via JavaScript using

document.referrer .

The Referer value can be insightful. But when the full URL including the path and query

string is sent in the Referer across origins, this can be privacy-hindering: URLs can contain

private information—sometimes even identifying or sensitive information. Leaking this silently

across origins can compromise users’ privacy and pose security risks. The Referrer-Policy

Figure 11.17. Values used for the 3 most popular feature policy directives.

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 375

https://almanac.httparchive.org/static/images/2021/privacy/most_common_featurepolicy_permissionspolicy_directive_values.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_featurepolicy_permissionspolicy_directive_values.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Referrer-Policy

HTTP header allows developers to restrict what referrer data is made available for requests

made from their site to reduce this risk.

A first point to note is that most sites do not explicitly set a Referrer Policy. Only 11.12% of

desktop websites and 10.38% of mobile websites explicitly define a Referrer Policy. The rest of

them (the other 88.88% on desktop and 89.62% on mobile) will fall back to the browser’s

default policy. Most major browsers474 recently introduced a default policy of strict-origin-
when-cross-origin , such as Chrome475 in August 2020 and Firefox476 in March 2021.

strict-origin-when-cross-origin removes the path and query fragments of the URL on

cross-origin requests, which reduces security and privacy risks.

Figure 11.18. Percentage of websites that specify a Referrer Policy.

474. https://web.dev/referrer-best-practices/#default-referrer-policies-in-browsers
475. https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
476. https://blog.mozilla.org/security/2021/03/22/firefox-87-trims-http-referrers-by-default-to-protect-user-privacy/

Part II Chapter 11 : Privacy

376 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_referrerpolicy.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_referrerpolicy.png
https://web.dev/referrer-best-practices/#default-referrer-policies-in-browsers
https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
https://blog.mozilla.org/security/2021/03/22/firefox-87-trims-http-referrers-by-default-to-protect-user-privacy/

The most common Referrer Policy that is explicitly set is no-referrer-when-downgrade .

It’s set on 3.38% of websites on mobile clients and 3.81% of websites on desktop clients. no-
referrer-when-downgrade is not privacy-enhancing. With this policy, full URLs of pages a

user visits on a given site are shared in cross-origin HTTPS requests (the vast majority of

requests), which makes this information accessible to other parties (origins).

In addition, around 0.5% of websites set the value of the referrer policy to unsafe-url , which

allows the origin, host and query string to be sent with any request, regardless of the security

level of the receiver. In this case, a referrer could be sent in the clear, potentially leaking private

information. Worryingly, sites are actively being configured to enable this behavior.

Note: Websites may also send the referrer information as a URL parameter to the destination site. We
did not measure usage of that mechanism for this report.

Figure 11.19. Percentage of pages using Referrer Policy values.

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 377

https://almanac.httparchive.org/static/images/2021/privacy/most_common_referrerpolicy_values.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_referrerpolicy_values.png

User-Agent Client Hints

When a web browser makes an HTTP request, it will include a User-Agent header that

provides information about the client’s browser, device and network capabilities. However, this

can be abused for profiling users or uniquely identifying them through fingerprinting.

User-Agent Client Hints477 enable access to the same information as the User-Agent string,

but in a more privacy-preserving way. This will in turn enable browsers to eventually reduce the

amount of information provided by default by the User-Agent string, as Chrome is proposing

with a gradual plan for User Agent Reduction478.

Servers can indicate their support for these Client Hints by specifying the Accept-CH header.

This header lists the attributes that the server requests from the client in order to serve a

device-specific or network-specific resource. In general, Client Hints provide a way for servers

to obtain only the minimum information necessary to serve content in an efficient manner.

However, at this point, few websites have implemented Client Hints. We also see a big

difference between the use of Client Hints on popular websites and on less popular ones. 3.67%

of the top 1,000 most popular websites on mobile request Client Hints. In the top 10,000

websites, the implementation rate drops to 1.44%.

Figure 11.20. Percentage of pages that use User-Agent Client Hints.

477. https://wicg.github.io/ua-client-hints/
478. https://www.chromium.org/updates/ua-reduction

Part II Chapter 11 : Privacy

378 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/docs/Web/HTTP/Headers/User-Agent
https://wicg.github.io/ua-client-hints/
https://www.chromium.org/updates/ua-reduction
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_user_agent_client_hints.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_user_agent_client_hints.png

How websites give you a privacy choice: Privacy
preference signals

In light of the recent introduction of privacy regulations, such as those mentioned in the

introduction, websites are required to obtain explicit user consent about the collection of

personal data for any non-essential features such as marketing and analytics.

Therefore, websites turned to the use of cookie consent banners, privacy policies and other

mechanisms (which have evolved over time479) to inform users about what data these sites

process, and give them a choice. In this section, we look at the prevalence of such tools.

Consent Management Platforms

Consent Management Platforms (CMPs) are third-party libraries that websites can include to

provide a cookie consent banner for users. We saw around 7% of websites using a Consent

Management Platform.

Figure 11.21. Percentage of websites that use a Consent Management Platform.

479. https://sciendo.com/article/10.2478/popets-2021-0069

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 379

https://sciendo.com/article/10.2478/popets-2021-0069
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_cmp.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_cmp.png

The most popular libraries are CookieYes480 and Osano481, but we found more than twenty

different libraries that allow websites to include cookie consent banners. Each library was only

present on a small share of websites, at less than 2% each.

IAB’s Consent Frameworks

The Transparency and Consent Framework482 (TCF) is an initiative of the Interactive Advertising

Bureau Europe (IAB) for providing an industry standard for communicating user consent to

advertisers. The framework consists of a Global Vendor List483, in which vendors can specify the

legitimate purpose of the processed data, and a list of CMPs who act as an intermediary

between the vendors and the publishers. Each CMP is responsible for communicating the legal

basis and storing the consent option provided by the user in the browser. We refer to the

stored cookie as the consent string.

TCF is meant as a GDPR-compliant mechanism in Europe, although a recent decision by the

Belgian Data Protection Authority484 found that this system is still infringing. When the CCPA

Figure 11.22. 10 most popular consent management platforms.

480. https://www.cookieyes.com/
481. https://www.osano.com/
482. https://iabeurope.eu/transparency-consent-framework/
483. https://iabeurope.eu/vendor-list/
484. https://iabeurope.eu/all-news/update-on-the-belgian-data-protection-authoritys-investigation-of-iab-europe/

Part II Chapter 11 : Privacy

380 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_cmp.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_using_each_cmp.png
https://www.cookieyes.com/
https://www.osano.com/
https://iabeurope.eu/transparency-consent-framework/
https://iabeurope.eu/vendor-list/
https://iabeurope.eu/all-news/update-on-the-belgian-data-protection-authoritys-investigation-of-iab-europe/
https://iabeurope.eu/all-news/update-on-the-belgian-data-protection-authoritys-investigation-of-iab-europe/

came into play in California, IAB Tech Lab US developed the U.S. Privacy485 (USP) technical

specifications, using the same concepts.

Above, we show the distribution of the usage of both versions of TCF and of USP. Note that the

crawl is US-based, therefore we do not expect many websites to have implemented TCF. Fewer

than 2% of websites use any TCF version, while twice as many websites use the US Privacy

framework.

Figure 11.23. Percentage of websites using IAB compliance frameworks.

485. https://iabtechlab.com/standards/ccpa/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 381

https://iabtechlab.com/standards/ccpa/
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_iab.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_iab.png

In the 10 most popular consent management platforms that are part of the framework, at the

top we find Quantcast486 with 0.34% on mobile. Other popular solutions are Didomi487 with

0.24%, and Wikia, with 0.30%.

In the USP framework, the website’s and user’s privacy settings are encoded in a privacy string.

Figure 11.24. 10 most popular consent management platforms for IAB.

486. https://www.quantcast.com/products/choice-consent-management-platform/
487. https://www.didomi.io/

Part II Chapter 11 : Privacy

382 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/privacy/most_common_cmps_for_iab_tcf_v2.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_cmps_for_iab_tcf_v2.png
https://www.quantcast.com/products/choice-consent-management-platform/
https://www.didomi.io/
https://github.com/InteractiveAdvertisingBureau/USPrivacy/blob/master/CCPA/US%20Privacy%20String.md

The most common privacy string is 1--- . This indicates that CCPA does not apply to the

website and therefore the website not obliged to provide an opt-out for the user. CCPA only

applies to companies whose main business involves selling personal data, or to companies that

process data and have an annual turnover of more than $25 million. The second most recurring

string is 1YNY . This indicates that the website provided “notice and opportunity to opt-out of

sale of data”, but that the user has not opted out of the sale of their personal data.

Privacy policies

Nowadays, most websites have a privacy policy, where users can learn about the types of

information that is stored and processed about them.

By looking for keywords such as “privacy policy”, “cookie policy”, and more, in a number of

Figure 11.25. Percentage of websites using IAB US privacy strings.

Figure 11.26. Percentage of mobile websites with a privacy policy link.

39.70%

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 383

https://almanac.httparchive.org/static/images/2021/privacy/most_common_strings_for_iab_usp.png
https://almanac.httparchive.org/static/images/2021/privacy/most_common_strings_for_iab_usp.png
https://github.com/RUB-SysSec/we-value-your-privacy/blob/master/privacy_wording.json

languages488, we see that 39.70% of mobile websites, and 43.02% of desktop sites refer to some

sort of privacy policy. While some websites are not required to have such a policy, many

websites handle personal data and should therefore have a privacy policy to be fully

transparent towards their users.

Do Not Track - Global Privacy Control

The Do Not Track489 (DNT) HTTP header can be used to communicate to websites that a user

does not wish to be tracked. We can see the number of sites that appear to access the current

value for DNT below, based on the presence of the Navigator.doNotTrack JavaScript call.

Around the same percentage of pages on mobile and desktop clients use DNT. However, in

practice hardly any websites actually respect the DNT opt-outs. The Tracking Protection

Working Group, which specifies DNT, closed down490 in 2018, due to “lack of support”491. Safari

then stopped supporting DNT492 to prevent potential abuse for fingerprinting.

DNT’s successor Global Privacy Control493 (GPC) was released in October 2020 and is meant to

provide a more enforceable alternative, with the hopes of better adoption. This privacy

Figure 11.27. Percentage of websites using Do Not Track (DNT).

488. https://github.com/RUB-SysSec/we-value-your-privacy/blob/master/privacy_wording.json
489. https://www.eff.org/issues/do-not-track
490. https://www.w3.org/2016/11/tracking-protection-wg.html
491. https://lists.w3.org/Archives/Public/public-tracking/2018Oct/0000.html
492. https://developer.apple.com/documentation/safari-release-notes/safari-12_1-release-

notes#:~:text=Removed%20support%20for%20the%20expired%20Do%20Not%20Track
493. https://globalprivacycontrol.org/

Part II Chapter 11 : Privacy

384 2021 Web Almanac by HTTP Archive

https://github.com/RUB-SysSec/we-value-your-privacy/blob/master/privacy_wording.json
https://www.eff.org/issues/do-not-track
https://developer.mozilla.org/docs/Web/API/Navigator/doNotTrack
https://developer.mozilla.org/docs/Web/API/Navigator/doNotTrack
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_dnt_blink_usage.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_dnt_blink_usage.png
https://www.w3.org/2016/11/tracking-protection-wg.html
https://lists.w3.org/Archives/Public/public-tracking/2018Oct/0000.html
https://developer.apple.com/documentation/safari-release-notes/safari-12_1-release-notes#:~:text=Removed%20support%20for%20the%20expired%20Do%20Not%20Track
https://globalprivacycontrol.org/

preference signal is implemented with a single bit in all HTTP requests. We did not yet observe

any uptake, but we can expect this to improve in future as major browsers are now starting to

implement GPC494.

How browsers are evolving their privacy approaches

Given the push to better protect users’ privacy while browsing the web, major browsers are

implementing new features that should better safeguard users’ sensitive data. We already

covered ways in which browsers have started enforcing more privacy-preserving default

settings for Referrer-Policy headers and SameSite cookies.

Furthermore, Firefox and Safari seek to block tracking through Enhanced Tracking Protection495

and Intelligent Tracking Prevention496 respectively.

Beyond blocking trackers, Chrome has launched the Privacy Sandbox497 to develop new web

standards that provide more privacy-friendly functionality for various use cases, such as

advertising and fraud protection. We’ll look more closely at these up-and-coming technologies

that are designed to reduce the opportunity for sites to track users.

Privacy Sandbox

To seek ecosystem feedback, early and experimental versions of Privacy Sandbox APIs are

made available initially behind feature flags498 for testing by individual developers, and then in

Chrome via origin trials. Sites can take part in these origin trials to test experimental web

platform features, and give feedback to the web standards community on a feature’s usability,

practicality, and effectiveness, before it’s made available to all websites by default.

Disclaimer: Origin trials are only available for a limited amount of time. The numbers below represent
the state or Privacy Sandbox origin trials at the time of this writing, in October 2021.

FLoC

One of the most hotly debated Privacy Sandbox experiments has been Federated Learning of

Cohorts, or FLoC for short. The origin trial for FLoC ended in July 2021.

Interest-based ad selection is commonly used on the web. FLoC provided an API to meet that

specific use case without the need to identify and track individual users. FLoC has taken some

494. https://www.washingtonpost.com/technology/2021/10/26/global-privacy-control-firefox/
495. https://developer.mozilla.org/docs/Web/Privacy/Tracking_Protection
496. https://webkit.org/tracking-prevention/
497. https://privacysandbox.com/
498. https://www.chromium.org/developers/how-tos/run-chromium-with-flags

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 385

https://www.washingtonpost.com/technology/2021/10/26/global-privacy-control-firefox/
https://www.washingtonpost.com/technology/2021/10/26/global-privacy-control-firefox/
https://developer.mozilla.org/docs/Web/Privacy/Tracking_Protection
https://webkit.org/tracking-prevention/
https://privacysandbox.com/
https://www.chromium.org/developers/how-tos/run-chromium-with-flags
https://developer.chrome.com/blog/origin-trials
https://privacysandbox.com/proposals/floc
https://privacysandbox.com/proposals/floc

flak499: Firefox500 and other Chromium-based browsers501 have declined to implement it, and the

Electronic Frontier Foundation has voiced concerns that it might introduce new privacy risks502.

However, FLoC was a first experiment. Future iterations of the API could alleviate these

concerns and see wider adoption.

With FLoC, instead of assigning unique identifiers to users, the browser determined a user’s

cohort: a group of thousands of people who visited similar pages and may therefore be of

interest to the same advertisers.

Since FLoC was an experiment, it was not widely deployed. Instead, websites could test it by

enrolling in an origin trial. We found 62 and 64 websites that tested FLoC across desktop and

mobile respectively.

Here is how the first FLoC experiment worked: as a user moved around the web, their browser

used the FLoC algorithm to work out its interest cohort, which was the same for thousands of

browsers with a similar recent browsing history. The browser recalculated its cohort

periodically, on the user’s device, without sharing individual browsing data with the browser

vendor or other parties. When working out its cohort, a browser was choosing between cohorts

that didn’t reveal sensitive categories503.

Individual users and websites could opt out of being included in the cohort calculation.

499. https://www.economist.com/the-economist-explains/2021/05/17/why-is-floc-googles-new-ad-technology-taking-flak
500. https://blog.mozilla.org/en/privacy-security/privacy-analysis-of-floc/
501. https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
502. https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
503. https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc#:~:text=web%20pages%20on%20sensitive%20topics

Part II Chapter 11 : Privacy

386 2021 Web Almanac by HTTP Archive

https://www.economist.com/the-economist-explains/2021/05/17/why-is-floc-googles-new-ad-technology-taking-flak
https://blog.mozilla.org/en/privacy-security/privacy-analysis-of-floc/
https://www.theverge.com/2021/4/16/22387492/google-floc-ad-tech-privacy-browsers-brave-vivaldi-edge-mozilla-chrome-safari
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc#:~:text=web%20pages%20on%20sensitive%20topics

We saw that 4.10% of the top 1,000 websites have opted out of FLoC. Across all websites,

under 1% have opted out.

Other Privacy Sandbox experiments

Within Google’s Privacy Sandbox initiative, a number of experiments are in various stages of

development.

The Attribution Reporting API (previously called Conversion Measurement) makes it possible to

measure when user interaction with an ad leads to a conversion—for example, when an ad click

eventually led to a purchase. We saw the first origin trial (which ended in October 2021)

enabled on 10 origins.

FLEDGE (First “Locally-Executed Decision over Groups” Experiment) seeks to address ad

targeting. The API can be tested in current versions of Chrome locally by individual

developers504 but there is no origin trial as of October 2021.

Trust Tokens enable a website to convey a limited amount of information from one browsing

context to another to help combat fraud, without passive tracking. We saw the first origin trial505

(which will end in May 2022) enabled on 7 origins that are likely embedded in a number of sites

as third-party providers.

Figure 11.28. Percentages of websites that opt out of FLoC cohorts.

504. https://developer.chrome.com/docs/privacy-sandbox/fledge
505. https://developer.chrome.com/blog/third-party-origin-trials

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 387

https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_floc_opt_out.png
https://almanac.httparchive.org/static/images/2021/privacy/nb_websites_with_floc_opt_out.png
https://developer.chrome.com/docs/privacy-sandbox/attribution-reporting
https://developer.chrome.com/docs/privacy-sandbox/fledge
https://developer.chrome.com/docs/privacy-sandbox/fledge
https://developer.chrome.com/docs/privacy-sandbox/fledge
https://developer.chrome.com/docs/privacy-sandbox/trust-tokens
https://developer.chrome.com/blog/third-party-origin-trials

CHIPS (Cookies Having Independent Partitioned State) allows websites to mark cross-site

cookies as “Partitioned”, putting them in a separate cookie jar per top-level site. (Firefox has

already introduced the similar Total Cookie Protection feature for cookie partitioning.) As of

October 2021, there is no origin trial for CHIPS.

Fenced Frames protect frame access to data from the embedding page. As of October 2021,

there is no origin trial.

Finally, First-Party Sets allow website owners to define a set of distinct domains that actually

belong to the same entity. Owners can then set a SameParty attribute on cookies that should

be sent across cross-site contexts, as long as the sites are in the same first-party set. A first

origin trial ended in September 2021. We saw the SameParty attribute on a few thousand

cookies.

Conclusion

Users’ privacy remains at risk on the web today: over 80% of all websites have some form of

tracking enabled, and novel tracking mechanisms such as CNAME tracking are being

developed. Some sites also handle sensitive data such as geolocation, and if they’re not careful,

potential breaches could result in users’ personal data being exposed.

Fortunately, increased awareness about the need for privacy on the web has led to concrete

Figure 11.29. Percentage of cookies with the SameParty cookie attribute.

Part II Chapter 11 : Privacy

388 2021 Web Almanac by HTTP Archive

https://github.com/WICG/CHIPS
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/
https://github.com/shivanigithub/fenced-frame
https://almanac.httparchive.org/static/images/2021/privacy/same_party_cookie_attribute.png
https://almanac.httparchive.org/static/images/2021/privacy/same_party_cookie_attribute.png
https://developer.chrome.com/docs/privacy-sandbox/first-party-sets

action. Websites now have access to features that allow them to safeguard access to sensitive

resources. Legislation across the globe enforces explicit user consent for sharing personal data.

Websites are implementing privacy policies and cookie banners to comply. Finally, browsers are

proposing and developing innovative technologies to continue supporting use cases such as

advertising and fraud detection in a more privacy-friendly way.

Ultimately, users should be empowered to have a say in how their personal data is treated.

Meanwhile, browsers and website owners should develop and deploy the technical means to

guarantee that users’ privacy is protected. By incorporating privacy throughout our

interactions with the web, users can feel more certain that their personal data is well protected.

Authors

Yana Dimova

ydimova

Yana Dimova is a PhD student at imec-DistriNet, working on web privacy. Her

general interests and work focus on online tracking, privacy vulnerabilities and

privacy legislation and policies.

Victor Le Pochat

@VictorLePochat VictorLeP victor-le-pochat https://lepoch.at

Victor Le Pochat is a PhD researcher at the imec-DistriNet506 research group of KU

Leuven in Belgium. His interests lie in the exploration of web ecosystems, and in

web security/privacy research methodology, both analyzing and improving

current methods.

506. https://distrinet.cs.kuleuven.be/

Part II Chapter 11 : Privacy

2021 Web Almanac by HTTP Archive 389

https://github.com/ydimova
https://x.com/VictorLePochat
https://github.com/VictorLeP
https://www.linkedin.com/in/victor-le-pochat/
https://lepoch.at/
https://distrinet.cs.kuleuven.be/

390 2021 Web Almanac by HTTP Archive

Part II Chapter 12

Security

Written by Saptak Sengupta, Tom Van Goethem, and Nurullah Demir
Reviewed by Caleb Queern, Edmond W. W. Chan, and Matteo Große-Kampmann
Analyzed by Gertjan Franken
Edited by Barry Pollard

Introduction

We are becoming more and more digital today. We are not only digitizing our business but also

our private life. We contact people online, send messages, share moments with friends, do our

business, and organize our daily routine. At the same time, this shift means that more and more

critical data is being digitized and processed privately and commercially. In this context,

cybersecurity is also becoming more and more important as its goal is to safeguard users by

offering availability, integrity and confidentiality of user data. When we look at today’s

technology, we see that web resources are increasingly used to provide digitally delivered

solutions. It also means that there is a strong link between our modern life and the security of

web applications due to their widespread use.

This chapter analyzes the current state of security on the web and gives an overview of

methods that the web community uses (and misses) to protect their environment. More

specifically, in this report, we analyze different metrics on Transport Layer Security (HTTPS),

such as general implementation, protocol versions, and cipher suites. We also give an overview

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 391

of the techniques used to protect cookies. You will then find a comprehensive analysis on the

topic of content inclusion and methods for thwarting attacks (e.g., use of specific security

headers). We also look at how the security mechanisms are adopted (e.g., by country or specific

technology). We also discuss malpractices on the web, such as Cryptojacking and, finally we

look at usage of security.txt URLs.

We crawl the analyzed pages in both desktop and mobile mode, but for a lot of the data they

give similar results, so unless otherwise noted, stats presented in this chapter refer to the set of

mobile pages. For more information on how the data has been collected, refer to the

Methodology page.

Transport security

Following the recent trend, we see continuous growth in the number of websites adopting

HTTPS this year as well. Transport Layer Security is important to allow secure browsing of

websites by ensuring that the resources being served to you and the data sent to the website

are untampered in the transit. Almost all major browsers now come with a HTTPS-only setting

and increasing warnings are shown to users when HTTP is used by a website instead of HTTPS,

thus pushing broader adoption forward.

Currently, we see that 91.9% of total requests for websites on desktop and 91.1% for mobile

are being served using HTTPS. We see an increasing number of certificates507 being issued every

day thanks to non-profit certificate authorities like Let’s Encrypt.

Figure 12.1. The percentage of requests that use HTTPS on mobile.

91.1%

507. https://letsencrypt.org/stats/#daily-issuance

Part II Chapter 12 : Security

392 2021 Web Almanac by HTTP Archive

https://letsencrypt.org/stats/#daily-issuance

Currently, 84.3% of website home pages in desktop and 81.2% of website home pages in mobile

are served over HTTPS so we still see a gap between websites using HTTPS and requests using

HTTPS. This is because a lot of the impressive percentage of HTTPS requests are often

dominated by third-party services like fonts, analytics, CDNs, and not the initial web page itself.

We do see a continuous improvement in sites using HTTPS (approximately 7-8% increase since

last year508), but soon a lot of unmaintained websites might start seeing warnings once browsers

start adopting HTTPS-only mode by default509.

Protocol versions

Transport Layer Security (TLS) is the protocol that helps make HTTP requests secure and private.

With time, new vulnerabilities are discovered and fixed in TLS. Hence, it’s not just important to

serve a website over HTTPS but also to ensure that modern, up-to-date TLS configuration is

being used to avoid such vulnerabilities.

As part of this effort to improve security and reliability by adopting modern versions, TLS 1.0

and 1.1 have been deprecated by the Internet Engineering Task Force (IETF)510 as of March 25,

2021. All upstream browsers have also either completely removed support or deprecated TLS

1.0 and 1.1. For example, Firefox has deprecated TLS 1.0 and 1.1 but has not completely

Figure 12.2. HTTPS usage for sites.

508. https://almanac.httparchive.org/en/2020/security#fig-3
509. https://blog.mozilla.org/security/2021/08/10/firefox-91-introduces-https-by-default-in-private-browsing/
510. https://datatracker.ietf.org/doc/rfc8996/

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 393

https://almanac.httparchive.org/static/images/2021/security/security-https-usage-by-site.png
https://almanac.httparchive.org/static/images/2021/security/security-https-usage-by-site.png
https://almanac.httparchive.org/en/2020/security#fig-3
https://blog.mozilla.org/security/2021/08/10/firefox-91-introduces-https-by-default-in-private-browsing/
https://blog.mozilla.org/security/2021/08/10/firefox-91-introduces-https-by-default-in-private-browsing/
https://datatracker.ietf.org/doc/rfc8996/
https://www.ghacks.net/2020/03/21/mozilla-re-enables-tls-1-0-and-1-1-because-of-coronavirus-and-google/

removed it511 because during the pandemic, users might need to access government websites

that often still run on TLS 1.0. The user may still decide to change

security.tls.version.min in browser config to decide the lowest TLS version they want

the browser to allow.

60.4% of pages in desktop and 62.1% of pages in mobile are now using TLSv1.3, making it the

majority protocol version over TLSv1.2. The number of pages using TLSv1.3 has increased

approximately 20% since last year512 when we saw 43.2% and 45.4% respectively.

Cipher suites

Cipher suites are a set of algorithms that are used with TLS to help make secure connections.

Modern Galois/Counter Mode513 (GCM) cipher modes are considered to be much more secure

compared to the older Cipher Block Chaining Mode514 (CBC) ciphers which have shown to be

vulnerable to padding attacks515. While TLSv1.2 did support use of both newer and older cipher

suites, TLSv1.3 does not support any of the older cipher suites516. This is one reason TLSv1.3 is

the more secure option for connections.

Figure 12.3. TLS versions usage for sites.

511. https://www.ghacks.net/2020/03/21/mozilla-re-enables-tls-1-0-and-1-1-because-of-coronavirus-and-google/
512. https://almanac.httparchive.org/en/2020/security#protocol-versions
513. https://en.wikipedia.org/wiki/Galois/Counter_Mode
514. https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_block_chaining_(CBC)
515. https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities
516. https://datatracker.ietf.org/doc/html/rfc8446#page-133

Part II Chapter 12 : Security

394 2021 Web Almanac by HTTP Archive

https://www.ghacks.net/2020/03/21/mozilla-re-enables-tls-1-0-and-1-1-because-of-coronavirus-and-google/
https://almanac.httparchive.org/static/images/2021/security/security-tls-version-by-site.png
https://almanac.httparchive.org/static/images/2021/security/security-tls-version-by-site.png
https://almanac.httparchive.org/en/2020/security#protocol-versions
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_block_chaining_(CBC)
https://blog.qualys.com/product-tech/2019/04/22/zombie-poodle-and-goldendoodle-vulnerabilities
https://datatracker.ietf.org/doc/html/rfc8446#page-133

Almost all modern cipher suites support Forward Secrecy key exchange, meaning in the case that

the server’s keys are compromised, old traffic that used those keys cannot be decrypted. 96.6%

in desktop and 96.8% in mobile use forward secrecy. TLSv1.3 has made forward secrecy

compulsory though it is optional in TLSv1.2—yet another reason it is more secure.

The other consideration apart from the cipher mode is the key size of the Authenticated

Encryption and Authenticated Decryption517 algorithm. A larger key size will take a lot longer to

compromise and the intensive computations for encryption and decryption of the connection

impose little to no perceptible impact to site performance

AES_128_GCM is still the most widely used cipher suite, by a long way, with 79.4% in desktop

and 78.9% in mobile usage. AES_128_GCM indicates that it uses GCM cipher mode with

Advanced Encryption Standard (AES) of key size 128-bit for encryption and decryption. 128-bit

key size is still considered secured, but 256-bit size is slowly becoming the industry standard to

better resist brute force attacks for a longer time.

Figure 12.4. Mobile sites using forward secrecy.

96.8%

Figure 12.5. Distribution of cipher suites.

517. https://datatracker.ietf.org/doc/html/rfc5116#section-2

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 395

https://en.wikipedia.org/wiki/Forward_secrecy
https://datatracker.ietf.org/doc/html/rfc5116#section-2
https://datatracker.ietf.org/doc/html/rfc5116#section-2
https://almanac.httparchive.org/static/images/2021/security/security-distribution-of-cipher-suites.png
https://almanac.httparchive.org/static/images/2021/security/security-distribution-of-cipher-suites.png

Certificate Authorities

A Certificate Authority is a company or organization that issues digital certificates which helps

validate the ownership and identity of entities on the web, like websites. A Certificate

Authority is needed to issue a TLS certificate recognized by browsers so that the website can be

served over HTTPS. Like the previous year, we will again look into the CAs used by websites

themselves rather than third-party services and resources.

Let’s Encrypt has changed their subject common name526 from “Let’s Encrypt Authority X3” to

just “R3” to save bytes in new certificates. So, any SSL certificates signed by R3 are issued by

Let’s Encrypt527. Thus, like previous years, we see Let’s Encrypt continue to lead the charts with

46.9% of desktop websites and 49.2% of mobile sites using certificates issued by them. This is

up 2-3% from last year. Its free, automated certificate generation has played a game-changing

role in making it easier for everyone to serve their websites over HTTPS.

Cloudflare continues to be in second position with its similarly free certificates for its

Figure 12.6. Top 10 certificate issuers for websites.

Issuer Algorithm Desktop Mobile

R3518 RSA 46.9% 49.2%

Cloudflare Inc ECC CA-3 ECDSA 11.7% 11.5%

Sectigo RSA Domain Validation Secure Server CA 519 RSA 8.3% 8.2%

cPanel, Inc. Certification Authority RSA 5.0% 5.5%

Go Daddy Secure Certificate Authority - G2520 RSA 3.6% 3.0%

Amazon521 RSA 3.4% 3.0%

Encryption Everywhere DV TLS CA - G1522 RSA 1.3% 1.6%

AlphaSSL CA - SHA256 - G2523 RSA 1.2% 1.2%

RapidSSL TLS DV RSA Mixed SHA256 2020 CA-1 524 RSA 1.2% 1.1%

DigiCert SHA2 Secure Server CA525 RSA 1.1% 0.9%

518. https://letsencrypt.org/certificates/
519. https://sectigo.com/knowledge-base/detail/Sectigo-Intermediate-Certificates/kA01N000000rfBO
520. https://certs.godaddy.com/repository
521. https://www.amazontrust.com/repository/
522. https://www.digicert.com/kb/digicert-root-certificates.htm
523. https://support.globalsign.com/ca-certificates/intermediate-certificates/alphassl-intermediate-certificates
524. https://www.digicert.com/kb/digicert-root-certificates.htm
525. https://www.digicert.com/kb/digicert-root-certificates.htm
526. https://letsencrypt.org/2020/09/17/new-root-and-intermediates.html#why-we-issued-an-ecdsa-root-and-intermediates
527. https://letsencrypt.org/certificates/

Part II Chapter 12 : Security

396 2021 Web Almanac by HTTP Archive

https://letsencrypt.org/certificates/
https://sectigo.com/knowledge-base/detail/Sectigo-Intermediate-Certificates/kA01N000000rfBO
https://certs.godaddy.com/repository
https://www.amazontrust.com/repository/
https://www.digicert.com/kb/digicert-root-certificates.htm
https://support.globalsign.com/ca-certificates/intermediate-certificates/alphassl-intermediate-certificates
https://www.digicert.com/kb/digicert-root-certificates.htm
https://www.digicert.com/kb/digicert-root-certificates.htm
https://letsencrypt.org/2020/09/17/new-root-and-intermediates.html#why-we-issued-an-ecdsa-root-and-intermediates
https://letsencrypt.org/certificates/

customers. Also, Cloudflare CDNs increase the usage of Elliptic Curve Cryptography (ECC)

certificates which are smaller and more efficient than RSA certificates but are often difficult to

deploy, due to the need to also continue to serve non-ECC certificates to older clients. Using a

CDN like Cloudflare takes care of that complexity for you. All the latest browsers528 are

compatible with ECC certificates, though some browsers like Chrome depend on the OS. So, if

someone uses Chrome in an old OS like Windows XP, then they need to fall back to non-ECC

certificates.

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a response header that tells the browser that it should

always use secure HTTPS connections to communicate with the website.

The Strict-Transport-Security header helps convert a http:// URL to a https://
URL before a request is made for that site. 22.2% of the mobile responses and 23.9% of desktop

responses have a HSTS header.

Out of the sites with HSTS header, 92.7% in desktop and 93.4% in mobile have a valid max-
age (that is, the value is non-zero and non-empty) which determines how many seconds the

browser should only visit the website over HTTPS.

33.3% of request responses for mobile, and 34.5% for desktop include includeSubdomain in

the HSTS settings. The number of responses with the preload directive is lower because it is

not part of the HSTS specification529 and needs a minimum max-age of 31,536,000 seconds (or

Figure 12.7. The percentage of requests that have HSTS header on mobile.

22.2%

Figure 12.8. Usage of HSTS directives.

HSTS Directive Desktop Mobile

Valid max-age 92.7% 93.4%

includeSubdomains 34.5% 33.3%

preload 17.6% 18.0%

528. https://developers.cloudflare.com/ssl/ssl-tls/browser-compatibility
529. https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security#preloading_strict_transport_security

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 397

https://www.digicert.com/faq/ecc.htm
https://developers.cloudflare.com/ssl/ssl-tls/browser-compatibility
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/docs/Web/HTTP/Headers/Strict-Transport-Security#preloading_strict_transport_security

1 year) and also the includeSubdomain directive to be present.

The median value for max-age attribute in HSTS headers over all requests is 365 days in both

mobile and desktop. https://hstspreload.org/ recommends a max-age of 2 years once the

HSTS header is set up properly and verified to not cause any issues.

Cookies

An HTTP cookie is a small piece of information about the user accessing the website that the

server sends to the web browser. Browsers store this information and send it back with

subsequent requests to the server. Cookies help in session management to maintain state

information of the user, such as if the user is currently logged in.

Without properly securing cookies, an attacker can hijack a session and send unwanted

changes to the server by impersonating the user. It can also lead to Cross-Site Request Forgery

attacks, whereby the user’s browser inadvertently sends a request, including the cookies,

unbeknownst to the user.

Several other types of attacks rely on the inclusion of cookies in cross-site requests, such as

Cross-Site Script Inclusion (XSSI) and various techniques in the XS-Leaks vulnerability class.

You can ensure that cookies are sent securely and aren’t accessed by unintended parties or

Figure 12.9. HSTS max-age values for all requests (in days).

Part II Chapter 12 : Security

398 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/security/security-hsts-max-age-values-in-days.png
https://almanac.httparchive.org/static/images/2021/security/security-hsts-max-age-values-in-days.png
https://hstspreload.org/
https://owasp.org/www-community/attacks/csrf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-lekies.pdf
https://xsleaks.dev/

scripts by adding certain attributes or prefixes.

Secure

Cookies that have the Secure attribute set will only be sent over a secure HTTPS connection,

preventing them from being stolen in a Manipulator-in-the-middle attack. Similar to HSTS, this

also helps enhance the security provided by TLS protocols. For first-party cookies, just over

30% of the cookies in both desktop and mobile have the Secure attribute set. However, we do

see a significant increase in the percentage of third-party cookies in desktop having the

Secure attribute from 35.2% last year530 to 67.0% this year. This increase is likely due to the

Secure attribute being a requirement for SameSite=none cookies, that we will discuss

below.

HttpOnly

A cookie that has the HttpOnly attribute set cannot be accessed through the

document.cookie API in JavaScript. Such cookies can only be sent to the server and helps in

mitigating client-side Cross-Site Scripting (XSS) attacks that misuse the cookie. It’s used for

cookies that are only needed for server-side sessions. The percentage of cookies with

Figure 12.10. Cookie attributes (desktop).

530. https://almanac.httparchive.org/en/2020/security#cookies

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 399

https://almanac.httparchive.org/static/images/2021/security/security-httponly-secure-samesite-cookie-usage.png
https://almanac.httparchive.org/static/images/2021/security/security-httponly-secure-samesite-cookie-usage.png
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://almanac.httparchive.org/en/2020/security#cookies
https://developer.mozilla.org/docs/Web/HTTP/Headers/Set-Cookie/SameSite#none
https://developer.mozilla.org/docs/Web/HTTP/Headers/Set-Cookie/SameSite#none

HttpOnly attribute has a smaller difference between first-party cookies and third-party

compared to the other cookie attributes being used by 32.7% and 20.0% respectively.

SameSite

The SameSite attribute in cookies allows the websites to inform the browser when and

whether to send a cookie with cross-site requests. This is used to prevent cross-site request

forgery attacks. SameSite=Strict allows the cookie to be sent only to the site where it

originated. With SameSite=Lax , cookies are not sent to cross-site requests unless a user is

navigating to the origin site by following a link. SameSite=None means cookies are sent in

both originating and cross-site requests.

We see that 58.5% of all first-party cookies with a SameSite attribute have the attribute set

to Lax while there is still a pretty daunting 39.1% cookies where SameSite attribute is set to

none —although the number is steadily decreasing. Almost all current browsers now default to

SameSite=Lax if no SameSite attribute is set. Approximately 65% of overall first-party

cookies have no SameSite attribute.

Prefixes

Cookie prefixes __Host- and __Secure- help mitigate attacks to override the session

Figure 12.11. Same site cookie attributes.

Part II Chapter 12 : Security

400 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/security/security-samesite-cookie-attributes.png
https://almanac.httparchive.org/static/images/2021/security/security-samesite-cookie-attributes.png

cookie information for a session fixation attack531. __Host- helps in domain locking a cookie by

requiring the cookie to also have Secure attribute, Path attribute set to / , not have

Domain attribute and to be sent from a secure origin. __Secure- on the other hand requires

the cookie to only have Secure attribute and to be sent from a secure origin.

Though both the prefixes are used in a significantly lower percentage of cookies, __Secure-
is more commonly found in first-party cookies due to its lower prerequisites.

Cookie age

Permanent cookies are deleted at a date specified by the Expires attribute, or after a period

of time specified by the Max-Age attribute. If both Expires and Max-Age are set, Max-
Age has precedence.

Figure 12.11. Usage of __Secure and __Host cookie prefixes in mobile.

Type of cookie __Secure __Host

First-party 0.02% 0.01%

Third-party < 0.01% 0.03%

531. https://owasp.org/www-community/attacks/Session_fixation

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 401

https://owasp.org/www-community/attacks/Session_fixation

We see that the median Max-Age is 365 days, as we see about 20.5% of the cookies with

Max-Age have the value 31,536,000. However, 64.2% of the first-party cookies have

Expires and 23.3% have Max-Age . Since Expires is much more dominant among cookies,

the median for real maximum age is the same as Expires (180 days) instead of Max-Age as

you would expect.

Content inclusion

Most websites have quite a lot of media and CSS or JavaScript libraries that more often than

not are loaded from various different external sources, CDNs or cloud storage services. It’s

important for the security of the website as well as the security of the users of a website to

ensure which source of content can be trusted. Otherwise, the website is vulnerable to cross-

site scripting attacks if untrusted content gets loaded.

Content Security Policy

Content Security Policy (CSP) is the predominant method used to mitigate cross-site scripting

and data injection attacks by restricting the origins allowed to load various content. There are

numerous directives that can be used by the website to specify sources for different kinds of

content. For instance, script-src is used to specify origins or domains from which scripts

can be loaded. It also has other values to define if inline scripts and eval() functions are

Figure 12.12. Cookie age usage in days (mobile).

Part II Chapter 12 : Security

402 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/security/security-cookie-age-usage-by-site-in-mobile-in-days.png
https://almanac.httparchive.org/static/images/2021/security/security-cookie-age-usage-by-site-in-mobile-in-days.png
https://developer.mozilla.org/docs/Web/HTTP/CSP

allowed.

We see more and more websites starting to use CSP with 9.3% home pages on mobile using

CSP now compared to 7.2% last year. upgrade-insecure-requests continues to be the

most frequent CSP used. The high adoption rate for this policy is likely because of the same

reasons mentioned last year532; it is an easy, low-risk, policy that helps in upgrading all HTTP

requests to HTTPS and also helps with to block mixed content being used on the page. frame-
ancestors is a close second, which helps one define valid parents that may embed a page.

The adoption of policies defining the sources from which content can be loaded continues to be

low. Most of these policies are more difficult to implement, as they can cause breakages. They

require effort to implement to define nonce , hashes or domains for allowing external content.

While a strict CSP is a strong defense against attacks, they can lead to undesirable effects and

prevent valid content from loading, if the policy is incorrectly defined. Different libraries and

APIs loading further content makes this even more difficult.

Lighthouse533 recently started flagging severity warnings when such directives are missing from

CSP, encouraging people to adopt a stricter CSP to prevent XSS attacks. We will discuss more

Figure 12.13. Most common directives used in CSP.

532. https://almanac.httparchive.org/en/2020/security#content-security-policy
533. https://web.dev/csp-xss/

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 403

https://almanac.httparchive.org/static/images/2021/security/security-csp-directives-usage.png
https://almanac.httparchive.org/static/images/2021/security/security-csp-directives-usage.png
https://almanac.httparchive.org/en/2020/security#content-security-policy
https://web.dev/csp-xss/

about how CSP helps in stopping XSS attacks in the thwarting attacks section of this chapter.

To allow web developers to evaluate the correctness of their CSP policy, there is also a non-

enforcing alternative, which can be enabled by defining the policy in the Content-Security-
Policy-Report-Only response header. The prevalence of this header is still fairly small:

0.9% in mobile. However, most of the time this header is added in the testing phase and later is

replaced by the enforcing CSP, so the low usage is not unexpected.

Sites can also use the report-uri directive to report any CSP violations to a particular link

that is able to parse the CSP errors. These can help after a CSP directive has been added to

check if any valid content is accidentally being blocked by the new directive. The drawback of

this powerful feedback mechanism is that CSP reporting can be noisy due to browser

extensions and other technology outside of the website owner’s control.

The median length of CSP headers continue to be pretty low: 75 bytes. Most websites still use

single directives for specific purposes, instead of long strict CSPs. For instance, 24.2% of

websites only have upgrade-insecure-requests directives.

Figure 12.14. CSP header length.

Figure 12.15. Bytes in the longest CSP observed.

43,488

Part II Chapter 12 : Security

404 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/security/security-csp-header-length.png
https://almanac.httparchive.org/static/images/2021/security/security-csp-header-length.png

On the other side of the spectrum, the longest CSP header is almost twice as long as last year’s

longest CSP header: 43,488 bytes.

The most common origins used in *-src directives continue to be heavily dominated by

Google (fonts, ads, analytics). We also see Cloudflare’s popular library CDN showing up in the

10th position this year.

Subresource Integrity

A lot of websites, load JavaScript libraries and CSS libraries from external CDNs. This can have

certain security implications if the CDN is compromised, or an attacker finds some other way to

replace the frequently used libraries. Subresource Integrity (SRI) helps in avoiding such

consequences, though it introduces other risks if the website may not function without that

resource for a non-malicious change. Self-hosting instead of loading from a third party is usually

a safer option where possible.

Figure 12.16. Most frequently allowed hosts in CSP policies.

Origin Desktop Mobile

https://www.google-analytics.com 0.29% 0.22%

https://www.googletagmanager.com 0.26% 0.22%

https://fonts.googleapis.com 0.22% 0.16%

https://fonts.gstatic.com 0.20% 0.15%

https://www.google.com 0.19% 0.14%

https://www.youtube.com 0.19% 0.13%

https://connect.facebook.net 0.16% 0.11%

https://stats.g.doubleclick.net 0.15% 0.11%

https://www.gstatic.com 0.14% 0.11%

https://cdnjs.cloudflare.com 0.12% 0.10%

Figure 12.17. Usage of SHA384 hash function for SRI in mobile.

66.2%

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 405

https://www.google-analytics.com/
https://www.googletagmanager.com/
https://fonts.googleapis.com/
https://fonts.gstatic.com/
https://www.google.com/
https://www.youtube.com/
https://connect.facebook.net/
https://stats.g.doubleclick.net/
https://www.gstatic.com/
https://cdnjs.cloudflare.com/

Web developers can add the integrity attribute to <script> and <link> tags which are

used to include JavaScript and CSS code to the website. The integrity attribute consists of a

hash of the expected content of the resource. The browser can then compare the hash of the

fetched content and hash mentioned in the integrity attribute to check its validity and only

render the resource if they match.

<script src="https://code.jquery.com/jquery-3.6.0.min.js"

 integrity="sha256-/xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4="

 crossorigin="anonymous"></script>

The hash can be computed with three different algorithms: SHA256 , SHA384 , and SHA512 .

SHA384 (66.2% in mobile) is currently the most used, followed by SHA256 (31.1% in mobile).

Currently, all three hashing algorithms are considered safe to use.

There has been some increase in the usage of SRI over the past couple of years, with 17.5%

elements in desktop and 16.1% elements in mobile containing the integrity attribute. 82.6% of

those were in the <script> element for mobile.

Figure 12.18. Percentage of SRI in <script> elements for mobile.

82.6%

Part II Chapter 12 : Security

406 2021 Web Almanac by HTTP Archive

However, it still is a minority option for <script> elements. The median percentage of

<script> elements on websites which have an integrity attribute is 3.3%.

Among the common hosts from which SRI-protected scripts are included, we see most of them

are made up of CDNs. We see that there are three very common CDNs that are used by

Figure 12.19. Subresource integrity: coverage per page.

Figure 12.20. Most common hosts from which SRI-protected scripts are included.

Host Desktop Mobile

www.gstatic.com 44.3% 44.1%

cdn.shopify.com 23.4% 23.9%

code.jquery.com 7.5% 7.5%

cdnjs.cloudflare.com 7.2% 6.9%

stackpath.bootstrapcdn.com 2.7% 2.7%

maxcdn.bootstrapcdn.com 2.2% 2.3%

cdn.jsdelivr.net 2.1% 2.1%

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 407

https://almanac.httparchive.org/static/images/2021/security/security-subresource-integrity-coverage-per-page.png
https://almanac.httparchive.org/static/images/2021/security/security-subresource-integrity-coverage-per-page.png
http://www.gstatic.com/

multiple websites when using different libraries: jQuery534, cdnjs535, and Bootstrap536. It is probably

not coincidental that all three of these CDNs have the integrity attribute in their example

HTML code, so when developers use the examples to embed these libraries, they are ensuring

that SRI-protected scripts are being loaded.

Permissions Policy

All browsers these days provide a myriad of APIs and functionalities, which can be used for

tracking and malicious purposes, thus proving detrimental to the privacy of the users.

Permissions Policy is a web platform API that gives a website the ability to allow or block the use

of browser features in its own frame or in iframes that it embeds.

The Permissions-Policy response header allows websites to decide which features they

want to use and also which powerful features they want to disallow on the website to limit

misuse. A Permissions Policy can be used to control APIs like Geolocation, User media, Video

autoplay, Encrypted media decoding and many more. While some of these APIs do require

browser permission from the user—a malicious script can’t turn on the microphone without the

user getting a permission pop up—it’s still good practice to use Permission Policy to restrict

usage of certain features completely if they are not required by the website.

This API specification was previously known as Feature Policy but as well as the rename there

have been many other updates. Though the Feature-Policy response header is still in use, it

is pretty low with only 0.6% of websites in mobile using it. The Permissions-Policy
response headers contains an allow list for different APIs. For example, Permissions-
Policy: geolocation=(self "https://example.com") means that the website

disallows the use of Geolocation API except for its own origin and those whose origin is

“ https://example.com ”. One can disable the use of an API entirely in a website by

specifying an empty list, e.g., Permissions-Policy: geolocation=() .

We see 1.3% of websites on the mobile using the Permissions-Policy already. A possible

reason for this higher than expected usage of this new header, could be some website admins

choosing to opt-out of Federated Learning of Cohorts or FLoC537 (which was experimentally

implemented in Chrome) to protect user’s privacy. The privacy chapter has a detailed analysis

of this.

534. https://code.jquery.com/
535. https://cdnjs.com/
536. https://www.bootstrapcdn.com/
537. https://privacysandbox.com/proposals/floc

Part II Chapter 12 : Security

408 2021 Web Almanac by HTTP Archive

https://code.jquery.com/
https://cdnjs.com/
https://www.bootstrapcdn.com/
https://www.w3.org/TR/permissions-policy-1/
https://privacysandbox.com/proposals/floc

One can also use the allow attribute in <iframe> elements to enable or disable features

allowed to be used in the embedded frame. 18.3% of 16.8 million frames in mobile contained

the allow attribute to enable permission or feature policies.

An earlier version of this chapter reported incorrect values for the total number of frames and the
percentage of frames with the allow attribute. These errors have now been corrected. More

information can be found in this GitHub PR538.

As in previous years, the most used directives in allow attributes on iframes are still related

to controls for embedded videos and media. The most used directive continues to be

encrypted-media which is used to control access to the Encrypted Media Extensions API.

Iframe sandbox

An untrusted third-party in an iframe could launch a number of attacks on the page. For

instance, it could navigate the top page to a phishing page, launch popups with fake anti-virus

advertisements and other cross-frame scripting attacks.

The sandbox attribute on iframes applies restrictions to the content, and therefore reduces

Figure 12.21. Prevalence of allow directives on frames.

Directive Desktop Mobile

encrypted-media 46.8% 45.0%

conversion-measurement 39.5% 36.1%

autoplay 30.5% 30.1%

picture-in-picture 17.8% 17.2%

accelerometer 16.4% 16.0%

gyroscope 16.4% 16.0%

clipboard-write 11.2% 10.9%

microphone 4.3% 4.5%

camera 4.2% 4.4%

geolocation 4.0% 4.3%

538. https://github.com/HTTPArchive/almanac.httparchive.org/pull/3912

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 409

https://github.com/HTTPArchive/almanac.httparchive.org/pull/3912

the opportunities for launching attacks from the embedded web page. The value of the

attribute can either be empty to apply all restrictions (the embedded page cannot execute any

JavaScript code, no forms can be submitted, and no popups can be created, to name a few

restrictions), or space-separated tokens to lift particular restrictions. As embedding third-party

content such as advertisements or videos via iframes is common practice on the web, it is not

surprising that many of these are restricted via the sandbox attribute: 19.7% of the iframes

on desktop pages have a sandbox attribute while on mobile pages this is 21.0%.

An earlier version of this chapter reported incorrect values for the percentage of frames with the
sandbox attribute. More information can be found in this GitHub PR539.

The most commonly used directive, allow-scripts , which is present in 99.98% of all

sandbox policies on desktop pages, allows the embedded page to execute JavaScript code. The

other directive that is present on virtually all sandbox policies, allow-same-origin , allows

the embedded page to retain its origin and, for example, access cookies that were set on that

origin.

Figure 12.22. Prevalence of sandbox directives on frames.

539. https://github.com/HTTPArchive/almanac.httparchive.org/pull/3912

Part II Chapter 12 : Security

410 2021 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/almanac.httparchive.org/pull/3912
https://almanac.httparchive.org/static/images/2021/security/security-prevalence-of-sandbox-directives-on-frames.png
https://almanac.httparchive.org/static/images/2021/security/security-prevalence-of-sandbox-directives-on-frames.png

Thwarting attacks

Web applications can be vulnerable to multiple attacks. Fortunately, there exist several

mechanisms that can either prevent certain classes of vulnerabilities (e.g., framing protection

through X-Frame-Options or CSP’s frame-ancestors directive is necessary to combat

clickjacking attacks540), or limit the consequences of an attack. As most of these protections are

opt-in, they still need to be enabled by the web developers—typically by setting the correct

response header. At large scale, the presence of the headers can tell us something about the

security hygiene of websites and the incentives of the developers to protect their users.

Security feature adoption

Perhaps the most promising and uplifting finding of this chapter is that the general adoption of

security mechanisms continues to grow. Not only does this mean that attackers will have a

more difficult time exploiting certain websites, but it is also indicative that more and more

Figure 12.23. Adoption of security headers for site requests in mobile pages.

540. https://pragmaticwebsecurity.com/articles/securitypolicies/preventing-framing-with-policies.html

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 411

https://pragmaticwebsecurity.com/articles/securitypolicies/preventing-framing-with-policies.html
https://pragmaticwebsecurity.com/articles/securitypolicies/preventing-framing-with-policies.html
https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-security-headers.png
https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-security-headers.png

developers value the security of the web products they build. Overall, we can see a relative

increase in the adoption of security features of 10-30% compared to last year. The security-

related mechanism with the most uptake is the Report-To header of the Reporting API541,

with almost a 4x increased adoption rate, from 2.6% to 12.2%.

Although this continued increase in the adoption rate of security mechanisms is certainly

outstanding, there still remains quite some room for improvement. The most widely used

security mechanism is still the X-Content-Type-Options header, which is used on 36.6% of

the websites we crawled on mobile, to protect against MIME-sniffing attacks. This header is

followed by the X-Frame-Options header, which is enabled on 29.4% of all sites.

Interestingly, only 5.6% of websites use the more flexible frame-ancestors directive of CSP.

Another interesting evolution is that of the X-XSS-Protection header. The feature is used

to control the XSS filter of legacy browsers: Edge542 and Chrome543 retired their XSS filter in July

2018 and August 2019 respectively as it could introduce new unintended vulnerabilities. Yet,

we found that the X-XSS-Protection header was 8.5% more prevalent than last year.

Features enabled in <meta> element

In addition to sending a response header, some security features can be enabled in the HTML

response body by including a <meta> element with the name attribute set to http-equiv .

For security purposes, only a limited number of policies can be enabled this way. More

precisely, only a Content Security Policy and Referrer Policy can be set via the <meta> tag.

Respectively we found that 0.4% and 2.6% of the mobile sites enabled the mechanism this way.

When any of the other security mechanisms are set via the <meta> tag, the browser will

actually ignore this. Interestingly, we found 3,410 sites that tried to enable X-Frame-
Options via a <meta> tag, and thus were wrongly under the impression that they were

protected from clickjacking attacks. Similarly, several hundred websites failed to deploy a

security feature by placing it in a <meta> tag instead of a response header (X-Content-
Type-Options : 357, X-XSS-Protection : 331, Strict-Transport-Security : 183).

Figure 12.24. Number of sites with X-Frame-Options in the <meta> tag, which is actually

ignored by the browser.

3,410

541. https://developers.google.com/web/updates/2018/09/reportingapi
542. https://blogs.windows.com/windows-insider/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204/
543. https://www.chromium.org/developers/design-documents/xss-auditor

Part II Chapter 12 : Security

412 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/updates/2018/09/reportingapi
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection
https://blogs.windows.com/windows-insider/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204/
https://www.chromium.org/developers/design-documents/xss-auditor

Stopping XSS attacks via CSP

CSP can be used to protect against a multitude of things: clickjacking attacks, preventing

mixed-content inclusion and determining the trusted sources from which content may be

included (as discussed above).

Additionally, it is an essential mechanism to defend against XSS attacks. For instance, by setting

a restrictive script-src directive, a web developer can ensure that only the application’s

JavaScript code is executed (and not the attacker’s). Moreover, to defend against DOM-based

cross-site scripting, it is possible to use Trusted Types, which can be enabled by using CSP’s

require-trusted-types-for directive.

Although we saw an overall moderate increase (17%) in the adoption of CSP, what is perhaps

even more exciting is that the usage of the strict-dynamic and nonces is either keeping the

same trend or is slightly increasing. For instance, for desktop sites the use of strict-
dynamic grew from 2.4% last year544, to 5.2% this year. Similarly, the use of nonces grew from

8.7% to 12.1%.

On the other hand, we find that the usage of the troubling directives unsafe-inline and

unsafe-eval is still fairly high. However, it should be noted that if these are used in

conjunction with strict-dynamic , modern browsers will ignore these values, while older

browsers without strict-dynamic support can still continue to use the website.

Defending against XS-Leaks

Various new security features have been introduced to allow web developers to defend their

websites against micro-architectural attacks, such as Spectre545, and other attacks that are

Figure 12.25. Prevalence of CSP keywords based on policies that define a default-src or

script-src directive.

Keyword Desktop Mobile

strict-dynamic 5.2% 4.5%

nonce- 12.1% 17.6%

unsafe-inline 96.2% 96.5%

unsafe-eval 82.9% 77.2%

544. https://almanac.httparchive.org/en/2020/security#preventing-xss-attacks-through-csp
545. https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 413

https://web.dev/trusted-types/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/require-trusted-types-for
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/require-trusted-types-for
https://almanac.httparchive.org/en/2020/security#preventing-xss-attacks-through-csp
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

typically referred to as XS-Leaks546. Given that many of these attacks were only discovered in

the last few years, the mechanisms used to tackle them obviously are very recent as well, which

might explain the relatively low adoption rate. Nevertheless, compared to last year547, the cross-

origin policies have significantly increased in adoption.

The Cross-Origin-Resource-Policy , which is used to indicate to the browser how a

resource should be included (cross-origin, same-site or same-origin), is now present on 106,443

(1.5%) sites, up from 1,712 sites last year548. The most likely explanation for this is that cross-

origin isolation549 is a requirement for using features such as SharedArrayBuffer and high-

resolution timers and that requires setting the site’s Cross-Origin-Embedder-Policy to

require-corp . In essence, this requires all loaded subresources to set the Cross-Origin-
Resource-Policy response header for those sites wishing to use those features.

Consequently, several550 CDNs551 now set the header with a value of cross-origin (as CDN

resources are typically meant to be included in a cross-site context). We can see that this is

indeed the case, as 96.8% of sites set the CORP header value to cross-origin , compared to

2.9% that set it to same-site and 0.3% that use the more restrictive same-origin .

With this change, it is no surprise that the adoption of Cross-Origin-Embedder-Policy is

also steadily increasing: in 2021, 911 sites enabled this header—significantly more than the 6

sites of last year. It will be interesting to see how this will further develop next year!

Finally, another anti-XS-Leak header, Cross-Origin-Opener-Policy , has also seen a

significant boost compared to last year. We found 15,727 sites that now enable this security

mechanism, which is a significant increase compared to last year when only 31 sites were

protected from certain XS-Leak attacks.

Web Cryptography API

Security has become one of the central issues in web development. The Web Cryptography

API552 W3C recommendation was introduced in 2017 to perform basic cryptographic

operations (e.g., hashing, signature generation and verification, and encryption and decryption)

on the client-side, without any third-party library. We analyzed the usage of this JavaScript API.

546. https://xsleaks.dev
547. https://almanac.httparchive.org/en/2020/security#defending-against-xs-leaks-with-cross-origin-policies
548. https://almanac.httparchive.org/en/2020/security#defending-against-xs-leaks-with-cross-origin-policies
549. https://web.dev/cross-origin-isolation-guide/
550. https://github.com/cdnjs/cdnjs/issues/13782
551. https://github.com/jsdelivr/bootstrapcdn/issues/1495
552. https://www.w3.org/TR/WebCryptoAPI/

Part II Chapter 12 : Security

414 2021 Web Almanac by HTTP Archive

https://xsleaks.dev/
https://almanac.httparchive.org/en/2020/security#defending-against-xs-leaks-with-cross-origin-policies
https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://almanac.httparchive.org/en/2020/security#defending-against-xs-leaks-with-cross-origin-policies
https://web.dev/cross-origin-isolation-guide/
https://web.dev/cross-origin-isolation-guide/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://github.com/cdnjs/cdnjs/issues/13782
https://github.com/jsdelivr/bootstrapcdn/issues/1495
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/

The popularity of the functions remains almost the same as the previous year: we record only a

slight increase of 0.7% (from 71.8% to 72.5%). Again, this year Cypto.getRandomValues is

the most popular cryptography API. It allows developers to generate strong pseudo-random

numbers. We still believe that Google Analytics has a major effect on its popularity since the

Google Analytics script utilizes this function.

It should be noted that since we perform passive crawling, our results in this section will be

limited by not being able to identify cases where any interaction is required before the

functions are executed.

Utilizing bot protection services

Many cyberattacks are based on automated bot attacks and interest in it seems to have

increased. According to the Bad Bot Report 2021553 by Imperva, the number of bad bots has

increased this year by 25.6%. Note that the increase from 2019 to 2020 was 24.1%—according

to the previous report554. In the following table, we present our results on using measures by

websites to protect themselves from malicious bots.

Figure 12.26. Top used cryptography APIs.

Cryptography API Desktop Mobile

CryptoGetRandomValues 70.4% 67.4%

SubtleCryptoDigest 0.4% 0.5%

SubtleCryptoEncrypt 0.4% 0.3%

CryptoAlgorithmSha256 0.3% 0.3%

SubtleCryptoGenerateKey 0.3% 0.2%

CryptoAlgorithmAesGcm 0.2% 0.2%

SubtleCryptoImportKey 0.2% 0.2%

CryptoAlgorithmAesCtr 0.1% < 0.1%

CryptoAlgorithmSha1 0.1% 0.1%

CryptoAlgorithmSha384 0.1% 0.2%

553. https://www.imperva.com/blog/bad-bot-report-2021-the-pandemic-of-the-internet/
554. https://www.imperva.com/blog/bad-bot-report-2020-bad-bots-strike-back/

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 415

https://www.imperva.com/blog/bad-bot-report-2021-the-pandemic-of-the-internet/
https://www.imperva.com/blog/bad-bot-report-2020-bad-bots-strike-back/

Our analysis shows that under 10.7% of desktop websites, and 9.9% of mobile websites use a

mechanism to fight malicious bots. Last year those numbers were 8.3% and 7.3%, so this is

approximately a 30% increase compared to the previous year. This year, too, we identified more

bot protection mechanisms for desktop versions than mobile versions (10.8% vs. 9.9%)

We also see new popular players as bot protection providers in our dataset (e.g., hCaptcha).

Drivers of security mechanism adoption

There are many different influences that might cause a website to invest more in their security

posture. Examples of such factors are societal (e.g., more security-oriented education in certain

countries, or laws that take more punitive measures in case of a data breach), technological

(e.g., it might be easier to adopt security features in certain technology stacks, or certain

vendors might enable security features by default), or threat-based (e.g., widely popular

websites may face more targeted attacks than a website that is little known). In this section, we

Figure 12.27. Usage of bot protection services by provider.

Service provider Desktop Mobile

reCAPTCHA 10.2% 9.4%

Imperva 0.3% 0.3%

Sift 0.1% 0.1%

Signifyd 0.03% 0.03%

hCaptcha 0.03% 0.02%

Forter 0.03% 0.03%

TruValidate 0.03% 0.02%

Akamai Web Application Protector 0.02% 0.02%

Kount 0.02% 0.02%

Konduto 0.02% 0.02%

PerimeterX 0.02% 0.01%

Tencent Waterproof Wall 0.01% 0.01%

Others 0.03% 0.04%

Part II Chapter 12 : Security

416 2021 Web Almanac by HTTP Archive

try to assess to what extent these factors influence the adoption of security features.

Where website’s visitors connect from

Although we can see that the adoption of HTTPS-by-default is generally increasing, there is still

a discrepancy in adoption rate between sites depending on the country most of the visitors

originate from.

We find that compared to last year555, the Netherlands has now made it into the top 5, which

means that the Dutch are relatively more protected against transport layer attacks: 95.1% of

Figure 12.28. Adoption of HTTPS per country.

555. https://almanac.httparchive.org/en/2020/security#country-of-a-websites-visitors

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 417

https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-https-per-country.png
https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-https-per-country.png
https://almanac.httparchive.org/en/2020/security#country-of-a-websites-visitors

the sites frequently visited by people in the Netherlands has HTTPS enabled (compared to

93.0% last year). In fact, not only the Netherlands improved in the adoption of HTTPS; we find

that virtually every country improved in that regard.

It is also very encouraging to see that several of the countries that performed worst last year,

made a big leap. For instance, 13.4% more sites visited by people from Iran (the strongest riser

with regards to HTTPS adoption) are now HTTPS-enabled compared to last year (from 74.3%

to 84.3%). Although the gap between the best-performing and least-performing countries is

becoming smaller, there are still significant efforts to be made.

When looking at the adoption of certain security features such as CSP and X-Frame-
Options , we can see an even more pronounced difference between the different countries,

where the sites from top-scoring countries are 2-4 times more likely to adopt these security

Figure 12.29. Adoption of CSP and XFO per country.

Part II Chapter 12 : Security

418 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-csp-and-xfo-per-country.png
https://almanac.httparchive.org/static/images/2021/security/security-adoption-of-csp-and-xfo-per-country.png

features compared to the least-performing countries. We also find that countries that perform

well on HTTPS adoption tend to also perform well on the adoption of other security

mechanisms. This is indicative that security is often thought of holistically, where all different

angles need to be covered. And rightfully so: an attacker just needs to find a single exploitable

vulnerability whereas developers need to ensure that every aspect is tightly protected.

Technology stack

Another factor that can strongly influence the adoption of certain security mechanisms is the

technology stack that’s being used to build a website. In some cases, security features may be

enabled by default, or for some blogging systems the control over the response headers may be

out of the hands of the website owner and a platform-wide security setting may be in place.

Figure 12.30. Security features adoption by various technology.

Technology Security features enabled by default

Automattic (PaaS) Strict-Transport-Security (97.8%)

Blogger (Blogs)
X-Content-Type-Options (99.6%),

X-XSS-Protection (99.6%)

Cloudflare (CDN) Expect-CT (93.1%), Report-To (84.1%)

Drupal (CMS)
X-Content-Type-Options (77.9%),

X-Frame-Options (83.1%)

Magento (E-commerce) X-Frame-Options (85.4%)

Shopify (E-commerce)

Content-Security-Policy (96.4%),

Expect-CT (95.5%),

Report-To (95.5%),

Strict-Transport-Security (98.2%),

X-Content-Type-Options (98.3%),

X-Frame-Options (95.2%),

X-XSS-Protection (98.2%)

Squarespace (CMS)
Strict-Transport-Security (87.9%),

X-Content-Type-Options (98.7%)

Sucuri (CDN)

Content-Security-Policy (84.0%),

X-Content-Type-Options (88.8%),

X-Frame-Options (88.8%),

X-XSS-Protection (88.7%)

Wix (Blogs)
Strict-Transport-Security (98.8%),

X-Content-Type-Options (99.4%)

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 419

Alternatively, CDNs may add additional security features, especially when these concern the

transport security. In the above table, we’ve listed the nine technologies that are used by at

least 25,000 sites, and that have a significantly higher adoption rate of specific security

mechanisms. For instance, we can see that sites that are built with the Shopify e-commerce

system have a very high (over 95%) adoption rate for seven security-relevant headers:

Content-Security-Policy , Expect-CT , Report-To , Strict-Transport-Security ,

X-Content-Type-Options , X-Frame-Options , and X-XSS-Protection .

It is great to see that despite the variability in these content that use these technologies, it is

still possible to uniformly adopt these security mechanisms.

Another interesting entry in this list is Drupal, whose websites have an adoption rate of 83.1%

for the X-Frame-Options header (a slight improvement compared to last year’s 81.8%). As

this header is enabled by default556, it is clear that the majority of Drupal sites stick with it,

protecting them from clickjacking attacks. Note that, while it makes sense to keep the X-
Frame-Options header for compatibility with older browsers in the near term, site owners

should consider transitioning to the recommended Content-Security-Policy header

directive frame ancestors for the same functionality.

An important aspect to explore in the context of the adoption of security features, is the

diversity. For instance, as Cloudflare is the largest CDN provider, powering millions of websites

(see the CDN chapter for further analysis on this). Any feature that Cloudflare enables by

default will result in a large overall adoption rate. In fact, 98.2% of the sites that employ the

Expect-CT feature are powered by Cloudflare, indicating a fairly limited distribution in the

adoption of this mechanism.

However, overall, we find that this phenomenon of a single actor like a Drupal or Cloudflare

being a top technological driver of a security feature’s adoption is an outlier and appears less

common over time. This means that an increasingly diverse set of websites is adopting security

Figure 12.31. The number of security features with over 95% adoption rate on Shopify sites.

7

Figure 12.32. The percentage of Drupal sites that keep the default XFO header.

83.1%

556. https://www.drupal.org/node/2735873

Part II Chapter 12 : Security

420 2021 Web Almanac by HTTP Archive

https://www.drupal.org/node/2735873

mechanisms, and that more and more web developers are becoming aware of their benefits. For

example, last year 44.3% of the sites that set a Content Security Policy were powered by

Shopify, whereas this year, Shopify is only responsible for 32.9% of all sites that enable CSP.

Combined with the generally growing adoption rate, this is great news!

Website popularity

Websites that have many visitors may be more prone to targeted attacks given that there are

more users with potentially sensitive data to attract attackers. Therefore, it can be expected

that widely visited websites invest more in security in order to safeguard their users. To

evaluate whether this hypothesis is valid, we used the ranking provided by the Chrome User

Experience Report, which uses real-world user data to determine which websites are visited

the most (ranked by top 1k, 10k, 100k, 1M and all sites in our dataset).

We can see that the adoption of certain security features, X-Frame-Options (XFO), Content

Security Policy (CSP), and Strict Transport Security (HSTS), is highly related to the ranking of

sites. For instance, the 1,000 top visited sites are almost twice as likely to adopt a certain

security header compared to the overall adoption. We can also see that the adoption rate for

each feature is higher for higher-ranked websites.

We can draw two conclusions from this: on the one hand, having better “security hygiene” on

sites that attract more visitors benefits a larger fraction of users (who might be more inclined to

share their personal data with well-known trusted sites). On the other hand, the lower adoption

Figure 12.33. Prevalence of security headers set in a first-party context by rank.

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 421

https://almanac.httparchive.org/static/images/2021/security/security-prevalence-of-headers-in-sites-by-rank.png
https://almanac.httparchive.org/static/images/2021/security/security-prevalence-of-headers-in-sites-by-rank.png

rate of security features on less-visited sites could be indicative that it still requires a

substantial investment to (correctly) implement these features. This investment may not always

be feasible for smaller websites. Hopefully, we will see a further increase in security features

that are enabled by default in certain technology stacks, which could further enhance the

security of many sites without requiring too much effort from web developers.

Malpractices on the web

Cryptocurrencies have become an increasingly familiar part of our modern community. Global

cryptocurrency adoption has been skyrocketing557 since the beginning of the pandemic. Due to

its economic efficiency, cybercriminals have also become more interested in cryptocurrencies.

That has led to the creation of a new attack vector: cryptojacking558. Attackers have discovered

the power of WebAssembly and exploited it to mine cryptocurrencies while website visitors

surf on a website.

We now show our findings in the following figure regarding cryptominer usage on the web.

According to our dataset, until recently, we found a very stable decrease in the number of

websites with Cryptominer. However, we are now seeing that the number of such websites has

increased more than tenfold in the past two months. Such picks are very typical, for example,

Figure 12.34. Cryptominer usage.

557. https://blog.chainalysis.com/reports/2021-global-crypto-adoption-index
558. https://en.wikipedia.org/wiki/Cryptojacking

Part II Chapter 12 : Security

422 2021 Web Almanac by HTTP Archive

https://blog.chainalysis.com/reports/2021-global-crypto-adoption-index
https://en.wikipedia.org/wiki/Cryptojacking
https://almanac.httparchive.org/static/images/2021/security/security-cryptominer-usage.png
https://almanac.httparchive.org/static/images/2021/security/security-cryptominer-usage.png

when widespread cryptojacking attacks take place or when a popular JS library has been

infected.

We now turn to cryptominer market share in the following figure.

We see that Coinhive559 has been surpassed by CoinImp as the dominant cryptomining service.

One of the main reasons for this was that Coinhive was shutdown in March 2019560.

Interestingly, the domain is now owned by Troy Hunt561 who is now displaying aggressive

banners on the website in an effort to make those sites still hosting the Coinhive script

(Desktop: 5.7%, mobile: 9.0%) aware that they are—often without their knowledge. This

reflects both the prevalence of Coinhive scripts even over two years after ceasing to operate,

and the risks of hosting third-party resources that can be taken over should that third party

cease to operate. With Coinhive’s demise, CoinImp has clearly become the market leader

(84.9% share).

Our results suggest that cryptojacking is still a serious attack vector, and necessary measures

should be used for it.

Note that not all of these websites are infected. Website operators may also deploy this

technique (instead of showing ads) to finance their website. But the use of this technique is also

heavily discussed technically, legally, and ethically.

Figure 12.35. Cryptominer market share (mobile).

559. https://en.wikipedia.org/wiki/Monero#Mining_malware
560. https://www.zdnet.com/article/coinhive-cryptojacking-service-to-shut-down-in-march-2019/
561. https://www.troyhunt.com/i-now-own-the-coinhive-domain-heres-how-im-fighting-cryptojacking-and-doing-good-things-with-content-security-policies/

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 423

https://almanac.httparchive.org/static/images/2021/security/security-cryptominer-market-share.png
https://almanac.httparchive.org/static/images/2021/security/security-cryptominer-market-share.png
https://en.wikipedia.org/wiki/Monero#Mining_malware
https://www.zdnet.com/article/coinhive-cryptojacking-service-to-shut-down-in-march-2019/
https://www.troyhunt.com/i-now-own-the-coinhive-domain-heres-how-im-fighting-cryptojacking-and-doing-good-things-with-content-security-policies/

Please also note that our results may not show the actual state of the websites infected with

cryptojacking. Since we run our crawler once a month, not all websites that run cryptominer

can be discovered. This is the case, for example, if a website remains infected for only X days

and not on the day our crawler ran.

security.txt

security.txt is a file format for websites to provide a standard for vulnerability reporting.

Website providers can provide contact details, PGP key, policy, and other information in this

file. White hat hackers can then use this information to conduct security analyses on these

websites or report a vulnerability.

We see that just under 5% of the websites return a response when asking for the /.well-
known/security.txt URL. However investigating many of these show they are basically 404

pages that are incorrectly returning a 200 status code so usage is likely much lower.

Figure 12.36. Use of security.txt .

Part II Chapter 12 : Security

424 2021 Web Almanac by HTTP Archive

https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-12
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-12
https://almanac.httparchive.org/static/images/2021/security/security-usage-of-well-known-security.png
https://almanac.httparchive.org/static/images/2021/security/security-usage-of-well-known-security.png

We see that Policy is the most used property in the security.txt files, but even then it’s

only used in 6.4% of sites with a security.txt URL. This property includes a link to the

vulnerability disclosure policy for the website that helps researchers understand the reporting

practices they need to follow. This is therefore likely a better indicator of the real usage of

security.txt since most file are expected to have a Policy value, meaning likely closer to

0.3% of all sites have a “real” security.txt file, rather than the 5% measured above.

Another interesting point is that when we look at just this subset of “real” security.txt URLs,

Tumblr makes up 63%-65% of the usage. It looks like this is set by default for these domains to

the Tumblr contact details. This is great on one hand to show how a single platform can drive

adoption of these new security features, but on the other hand indicates a further reduction in

actual site usage.

The other most used properties include Canonical and Encryption . Canonical is used

to indicate where the security.txt file is located. If the URI used to retrieve the

security.txt file doesn’t match the list URIs in the Canonical fields, then the contents of

the file should not be trusted. Encryption provides the security researchers with an

encryption key that they can use for encrypted communication.

Conclusion

Our analysis shows that the situation of web security concerning the provider side is improving

Figure 12.37. Use of security.txt properties.

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 425

https://almanac.httparchive.org/static/images/2021/security/security-usage-of-properties-in-well-known-security.png
https://almanac.httparchive.org/static/images/2021/security/security-usage-of-properties-in-well-known-security.png

compared to previous years. For example, we see that the use of HTTPS has increased by

almost 10% in the last 12 months. We also find an increase in the protection of cookies and the

use of security headers.

These increases indicate we are moving safer web environment, but they do not mean our web

is secure enough today. We still have to improve our situation. For example, we believe that the

web community should value security headers more. These are very effective extensions to

protect web environments and web users from possible attacks.

The bot protection mechanisms can also be adopted more to protect the platforms from

malicious bots. Furthermore, our analysis from last year562 and another study using the HTTP

Archive dataset about the update behavior of websites563 showed that the website components

are not diligently maintained, which increases the attack surface on web environments.

We should not forget that attackers are also working diligently to develop new techniques to

bypass the security mechanisms we adopt.

With our analysis, we have tried to crystallize an overview of the security of our web. As

extensive as our investigation is, our methodology only allows us to see a subset of all aspects of

modern web security. For example, we do not know what additional measures a site may

employ to mitigate or prevent attacks such as Cross-Site-Request-Forgery (CSRF) or certain types

of Cross-Site-Scripting (XSS). As such, the picture portrayed in this chapter is incomplete yet a

solid directional signal of the status of web security today.

The takeaway from our analysis is that we, the web community, must continue to invest more

interest and resources in making our web environments much safer—in the hope of better and

safer tomorrow for all.

Authors

Saptak Sengupta

@Saptak013 saptaks https://saptaks.website/

Saptak S is a human rights centered web developer, focusing on usability, security,

privacy and accessibility topics in web development. He is a contributor and

maintainer of various different open source projects like The A11Y Project564,

OnionShare565 and Wagtail566. You can find him blogging at saptaks.blog567.

562. https://almanac.httparchive.org/en/2020/security#software-update-practices
563. https://www.researchgate.net/publication/349027860_Our_inSecure_Web_Understanding_Update_Behavior_of_Websites_and_Its_Impact_on_Security
564. https://www.a11yproject.com
565. https://onionshare.org/
566. https://wagtail.io/

Part II Chapter 12 : Security

426 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/security#software-update-practices
https://www.researchgate.net/publication/349027860_Our_inSecure_Web_Understanding_Update_Behavior_of_Websites_and_Its_Impact_on_Security
https://x.com/Saptak013
https://github.com/saptaks
https://saptaks.website/
https://www.a11yproject.com/
https://onionshare.org/
https://wagtail.io/
https://saptaks.blog/

Tom Van Goethem

@tomvangoethem tomvangoethem https://tom.vg/

Tom Van Goethem is a researcher at the DistriNet group568 of the university of

Leuven, Belgium. His research is focused on discovering new side-channel attacks

on the web that lead to security or privacy issues and figuring out how to patch the

leaks that cause them.

Nurullah Demir

@nrllah nrllh https://ndemir.com

Nurullah Demir is a security researcher and PhD Student at Institute for Internet

Security569. His research focuses on robust web security mechanisms and

adversarial machine learning.

567. https://saptaks.blog
568. https://distrinet.cs.kuleuven.be/
569. https://www.internet-sicherheit.de/en/

Part II Chapter 12 : Security

2021 Web Almanac by HTTP Archive 427

https://x.com/tomvangoethem
https://github.com/tomvangoethem
https://tom.vg/
https://distrinet.cs.kuleuven.be/
https://x.com/nrllah
https://github.com/nrllh
https://ndemir.com/
https://www.internet-sicherheit.de/en/
https://www.internet-sicherheit.de/en/

428 2021 Web Almanac by HTTP Archive

Part II Chapter 13

Mobile Web

Written by Jamie Indigo, Dave Smart, and Ashley Berman Hale
Reviewed by David Fox and Fili Wiese
Analyzed by Ruth Everett and David Fox
Edited by Shaina Hantsis

Introduction

In January 2021, 59.5% of the global population was on the internet. Of the global 4.66 billion

active internet users, 92.6% accessed the internet on a mobile device570.

With the ubiquity of mobile web tucked in our pockets, Statista571 reports that 80.8% of the

global population owns a smartphone. This is a relatively minor growth of 0.0% year over year.

In comparison, 49.4% of the population in 2016 owned a smartphone.

In this chapter, we looked at recent trends on the mobile web including worldwide connectivity,

technology adoption, and mobile-friendly feature usage.

570. https://www.statista.com/statistics/617136/digital-population-worldwide/
571. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 429

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

A note on methodology

When considering the challenge of how to categorize tablet experiences in relation to the

mobile web, we decided to omit the data set from our analysis. Often, tablet data will be

grouped into desktop or mobile. There is no uniform standard as to which it should default.

A note on our data sources

We’ve used a few different data sources in this chapter:

• CrUX

• HTTP Archive

• Lighthouse

• Wappalyzer

• Akamai572

It is worth noting that HTTP Archive and Lighthouse data is limited to the data identified from

websites’ home pages only, and not site-wide. Learn more in our Methodology page.

Worldwide connectivity

2021 is another year affected by the global COVID-19 pandemic, which has both affected

different regions of the world differently, and the measures to combat the pandemic have

varied from area to area too. Has this changed how people use their mobile devices versus

laptops and computers?

Cost of mobile web access

The financial cost of mobile web access varied greatly in 2021. One analysis573 showed that the

average price of 1 GB is only $0.05 USD in Israel. The same data cost usage in Equatorial Guinea

would cost a user $49.67 USD.

Data from the Performance chapter shows the median site now weighs 2,205 KB. Using market

data, What Does My Site Cost574 calculated the best-case scenario price to load the median site.

572. https://x.com/paulcalvano/status/1454866401781587969
573. https://www.cable.co.uk/mobiles/worldwide-data-pricing/
574. https://whatdoesmysitecost.com/#usdCost

Part II Chapter 13 : Mobile Web

430 2021 Web Almanac by HTTP Archive

https://x.com/paulcalvano/status/1454866401781587969
https://www.cable.co.uk/mobiles/worldwide-data-pricing/
https://whatdoesmysitecost.com/#usdCost

The most expensive paid loads cost Canadian users $0.26 USD, followed by Brazil at $0.18

USD. The same page loaded on a commonly available data plan in Poland or Russia would barely

register on a users’ bill, costing less than $0.01 USD.

Traffic to a site from mobile versus desktop (CrUX)

What percentage of traffic comes from mobile devices vs. desktop? Predicting this for any

individual site can be hard, and the type of site and the industry it is in can vastly change the

make-up of these different users.

Traffic use by popularity

New this year, the CrUX dataset allows us to query the most popular sites ranked by

magnitude575, by traffic recorded to these origins.

Figure 13.1. Percent of the 817,4923 origins in the July 2021 data received more mobile traffic
than desktop traffic.

77.4%

575. https://developers.google.com/web/updates/2021/03/crux-rank-magnitude

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 431

https://developers.google.com/web/updates/2021/03/crux-rank-magnitude
https://developers.google.com/web/updates/2021/03/crux-rank-magnitude

When grouped by CrUX ranking (the top 1,000, 10,000 and so on origins by traffic in the

dataset), the more traffic a site receives, there is a slight increase of the percentage of traffic it

gets from mobile, all except the top 1,000, which get slightly less (84.9% vs. 85.1%) mobile vs.

desktop.

Figure 13.2. Percentage of Sites with more mobile than desktop traffic.

Part II Chapter 13 : Mobile Web

432 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-more-mobile-than-desktop-traffic.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-more-mobile-than-desktop-traffic.png

Traffic distribution

The distribution shows a similar, mobile heavy trend. At the 50th percentile, 79.4% of traffic

comes from mobile devices, an increase over 77.6% in 2020, and catching up with the 79.9%

percentage in 2019.

Beyond CrUX data

A limitation of the CrUX dataset is that it can only collect data from Chrome users, who are

signed in, have syncing enabled and have not disabled the Make searches and browsing better /

Sends URLs of pages you visit to Google setting. This means that:

• Other major browsers, like Firefox and Safari are missing

• There is no data from iOS users at all (Chrome uses WebKit on iOS, like all other

browsers on iOS devices)

Fortunately, there are a few other sources. Paul Calvano ran some analysis on the Akamai

mPulse576 real user monitoring data for July 2021. It found a slightly more even match between

Mobile and Desktop traffic, at 59.4% being from mobile devices. The mPulse data is aggregated

hourly, so it reveals some interesting trends

Figure 13.3. Distribution of mobile vs other traffic.

576. https://www.akamai.com/products/mpulse-real-user-monitoring

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 433

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-mobile-traffic-distribution.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-mobile-traffic-distribution.png
https://www.akamai.com/products/mpulse-real-user-monitoring
https://www.akamai.com/products/mpulse-real-user-monitoring

Not all days are equal

Weekend days show a greater proportion of mobile traffic, climbing somewhere around 10%

from around 55 - 56% to 65 - 67%. Globally, not every country has Monday to Friday work

weeks - Sunday to Thursday is also another common pattern577, something that can be seen with

a slight ramp up on Fridays, leading to a bigger jump in mobile usage on Saturdays and Sundays.

Not all times are equal

On weekdays, mobile usage decreases, and desktop usage increases as an overall percentage of

traffic. This indicates that internet users are switching between mobile and desktop devices.

Around 5 AM UTC and starts climbing again at 7 PM UTC (with a small bump around 10 / 11

AM). This aligns with working hours.

Figure 13.4. Device type distribution by day - mPulse July 2021.

577. https://wikipedia.org/wiki/Workweek_and_weekend

Part II Chapter 13 : Mobile Web

434 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-day.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-day.png
https://wikipedia.org/wiki/Workweek_and_weekend

On weekends the split between mobile and desktop traffic remains more stable.

Figure 13.5. Device type distribution by hour on weekend - mPulse July 2021.

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 435

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-hour-weekdays.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-hour-weekdays.png

This all suggests that people who have the choice between different devices are more likely to

use mobile ones in their personal time.

Cloudflare also released a great study. Like the Akamai data, this study shows a much closer

split between mobile and desktop devices than the CrUX dataset. In the 30 days leading up to

October 4th, 52% of traffic was mobile.

Cloudflare’s Radar579 trend reports allow them to segment traffic by geographic region, and it’s

interesting to see the variations regionally between the split of mobile vs. desktop, from Sudan

Figure 13.6. Device type distribution by hour on weekend - mPulse July 2021.

— João Tomé, Where is mobile traffic the most and least popular?578

We looked for, in the past month, the country with the highest proportion of

mobile Internet traffic. And the answer is… Sudan, with 83% of Internet

traffic is done using mobile devices — actually it’s a tie with Yemen. "
578. https://blog.cloudflare.com/where-mobile-traffic-more-and-less-popular/
579. https://radar.cloudflare.com/

Part II Chapter 13 : Mobile Web

436 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-hour-weekends.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-akamai-device-distribution-by-hour-weekends.png
https://blog.cloudflare.com/where-mobile-traffic-more-and-less-popular/
https://radar.cloudflare.com/

and Yemen tying at 83% usage, compared to the Seychelles at just 29% mobile.

Drawing conclusions

Mobile device usage remains strong, and it’s apparent that despite a global trend of people

being at home more than ever before (due to restrictions and advice from health authorities

and governments), mobile devices remain the most popular way to access websites. The

popularity of mobile over desktop seems to have regained most of the ground lost last

year—itself a fairly small regression.

Naturally the figures cannot tell us the reasons behind that, but it’s worth remembering that for

a large amount of web users, mobile devices may be the only device available to them, and there

is no choice between using a mobile or a desktop.

Whilst it can be hard to predict if your mobile traffic percentage is expected, if it seems low vs.

your region and sector, it could be an indication you are under-serving this portion of your user

base.

Mobile methodology & tech stacks

While mobile web is highly used, these experiences typically have less processing power and

slower internet interconnectivity. Many technologies have emerged to mitigate these

limitations. These include Client Hints and APIs that identify the connection type and serve

assets best suited for the connection.

In this section we will also look at overall app usage for the mobile web and how the

programming languages, content management systems, and web servers compare to desktop

experiences.

Client Hints

Client Hints are a collection of HTTP request header fields a server can request from the client

accessing it to get information on the device, its capabilities, the network conditions and other

agent settings and preferences.

This gives the ability to make decisions and serve code, content and experience that’s more

tailored to that device.

For the mobile web, poor network conditions and lower powered devices are much more

common, and sites that are proactively requesting this information are likely to be thinking

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 437

https://developer.mozilla.org/docs/Glossary/Client_hints

beyond merely squeezing down their desktop pages to fit on a mobile screen.

HTTP Client Hints are a relatively new, and somewhat experimental feature, with the RFC only

published in February this year580. It’s therefore fairly encouraging that we found 1.4% of sites

are requesting at least one of these Client Hints from mobile users, compared with just 1.0% for

desktop users.

Whilst we are not able to tell what the sites might do with that information, and exactly how

they use these hints to tailor the experience to mobile users, asking is a good first sign.

These hints can be roughly assigned into three groups:

• Device Client Hints: Details of the capabilities and features of the device accessing

the site.

• Network Client Hints: Details of the network connection between the device and

the server.

• User-Agent Hints: Details about the agent accessing the site.

Device Client Hints

Figure 13.7. Usage of Device Client Hint directives.

580. https://www.rfc-editor.org/rfc/rfc8942#section-3.1

Part II Chapter 13 : Mobile Web

438 2021 Web Almanac by HTTP Archive

https://www.rfc-editor.org/rfc/rfc8942#section-3.1
https://www.rfc-editor.org/rfc/rfc8942#section-3.1
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-device-client-hints.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-device-client-hints.png

Uptake here is low, with DPR and Viewport-Width leading with 0.15% of mobile sites

requesting this, Device-Memory a little behind at 0.14% and Width at just 0.0%, but this is

now deprecated, the proposed replacement being Sec-CH-Width, we detected no sites

requesting this.

Currently, only Chrome, (and Chromium based browsers like Microsoft’s Edge), and Opera

support these headers, with Safari and Firefox not yet onboard581.

Network Client Hints

Network Client Hints show a similar uptake to Device Client Hints, with Downlink582 and ECT583

(effective connection type) being requested by 0.2% of loads on mobile, and RTT584 (round trip

time) on 0.1% of loads on mobile.

Save-Data is surprisingly present less, at just 0.1% of mobile requests, seemingly a missed

opportunity, given the user benefits possible, as detailed in the Google Web Fundamentals

article, Delivering Fast and Light Applications with Save-Data585.

Figure 13.8. Usage of Network Client Hint directives.

581. https://caniuse.com/client-hints-dpr-width-viewport
582. https://developer.mozilla.org/docs/Web/HTTP/Headers/Downlink
583. https://developer.mozilla.org/docs/Web/HTTP/Headers/ECT
584. https://developer.mozilla.org/docs/Web/HTTP/Headers/RTT
585. https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 439

https://developer.mozilla.org/docs/Web/HTTP/Headers/DPR
https://developer.mozilla.org/docs/Web/HTTP/Headers/DPR
https://developer.mozilla.org/docs/Web/HTTP/Headers/Viewport-Width
https://developer.mozilla.org/docs/Web/HTTP/Headers/Viewport-Width
https://developer.mozilla.org/docs/Web/HTTP/Headers/Device-Memory
https://developer.mozilla.org/docs/Web/HTTP/Headers/Device-Memory
https://developer.mozilla.org/docs/Web/HTTP/Headers/Width
https://developer.mozilla.org/docs/Web/HTTP/Headers/Width
https://caniuse.com/client-hints-dpr-width-viewport
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-network-client-hints.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-network-client-hints.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Downlink
https://developer.mozilla.org/docs/Web/HTTP/Headers/ECT
https://developer.mozilla.org/docs/Web/HTTP/Headers/RTT
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/save-data/

User-Agent Client Hints

Major browsers like Chrome586, Safari587 and Firefox588 reducing and capping the User-Agent
string to reduce passive fingerprinting589.

Traditionally, sites may have used this information to tailor the experience to those devices.

This approach has always had some drawbacks in trying to keep up with the ever-changing

landscape of devices, and the fact the user-agent string is easily changeable and spoofable.

User-Agent Client Hints offer a way to get this information, but unlike the Device and Network

Hints do not require the server to request this via the Accept-CH header. This is perhaps why

we detected only a tiny handful of sites requesting this.

Network Information API and Device Memory API usage

The Network Information API and Navigator.deviceMemory offer an interface to JavaScript

to gather device and connection information, similar in scope to those exposed with Client

Hints.

586. https://blog.chromium.org/2021/05/update-on-user-agent-string-reduction.html
587. https://bugs.webkit.org/show_bug.cgi?id=216593
588. https://bugzilla.mozilla.org/show_bug.cgi?id=1679929
589. https://www.w3.org/2001/tag/doc/unsanctioned-tracking/#unsanctioned-tracking-tracking-without-user-control

Part II Chapter 13 : Mobile Web

440 2021 Web Almanac by HTTP Archive

https://blog.chromium.org/2021/05/update-on-user-agent-string-reduction.html
https://bugs.webkit.org/show_bug.cgi?id=216593
https://bugzilla.mozilla.org/show_bug.cgi?id=1679929
https://www.w3.org/2001/tag/doc/unsanctioned-tracking/#unsanctioned-tracking-tracking-without-user-control
https://developer.mozilla.org/docs/Web/API/Network_Information_API
https://developer.mozilla.org/docs/Web/API/Navigator/deviceMemory
https://developer.mozilla.org/docs/Web/API/Navigator/deviceMemory

Network Information API

We focused of mobile vs. desktop page loads making use of

NetworkInformation.effectiveType , which returns a string based on the effective

connection type, slow-2g , 2g , 3g , or 4g . The top tier is 4g , so could really be seen as “4g

or faster”, including 5g and broadband, fixed connections.

18.2% of mobile requests had page loads utilizing NetworkInformation.effectiveType ,

but surprisingly, a very slightly higher 18.4% of desktop requests detected use of this API.

Figure 13.9. Usage of NetworkInformation.effectiveType .

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 441

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-networkinformation-effectivetype.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-networkinformation-effectivetype.png
https://developer.mozilla.org/docs/Web/API/NetworkInformation/effectiveType
https://developer.mozilla.org/docs/Web/API/NetworkInformation/effectiveType

Device Memory API

This API returns an approximate amount of device memory, useful to judge what the client

might be capable of handling and adapt accordingly.

10.9% of mobile page loads utilized this API, slightly higher than 10.2% for desktop loads.

Much like Client Hints, these APIs are still experimental, and also do not have universal support

across browsers (source: Network Information API590 & Navigator.deviceMemory but have

much wider adoption.

One reason for wider adoption could be third-party scripts requesting these on page loads.

Another reason may be ease of implementation. Setting and reading HTTP headers may be

seen as more complex and more likely to involve changes to infrastructure.

Client Hints, Network Information API and Device Memory API
conclusions

For experimental APIs and features, there are already some encouraging take up of these

features. Hopefully as browser support grows and the APIs move from experimental status,

uptake will grow further.

Figure 13.10. Usage of Navigator.deviceMemory .

590. https://caniuse.com/netinfo

Part II Chapter 13 : Mobile Web

442 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-navigator-devicememory.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-usage-of-navigator-devicememory.png
https://caniuse.com/netinfo
https://caniuse.com/mdn-api_navigator_devicememory
https://caniuse.com/mdn-api_navigator_devicememory

If you have a network or device capability limited web app, and you have a significant

proportion of users accessing from lower powered devices, and/or poor network connections,

now might be the time to investigate if these APIs can let you offer a better user experience for

them.

App usage on the mobile web

The most commonly used libraries and technologies found on the mobile web impact

performance and inform us on technology adoption.

According to Wappalyzer591 data, JavaScript library JQuery is the dominant library of the mobile

web, present in 84.4% of tested sites. Google is the dominant provider, holding three of the top

five spots.

Of the top five mobile web technologies, adoption rates for three were higher on desktop sites.

It is reasonable to attribute lower mobile adoption rates of these apps to mobile performance

initiatives as these apps are frequently flagged by Lighthouse, the open-source auditing tool

recommended by Google to diagnose performance issues.

In 2021, Google added the Page Experience Ranking Signal592 to its algorithm. This ranking

signal is specific to search engine results pages served on mobile devices and uses aggregated

data from real user page loads to measurement performance.

JavaScript library JQuery is the dominant library of the mobile web, present in 84.4% of mobile

page loads. Google is the dominant provider, holding three of the top five spots.

Figure 13.11. Popular technology usage.

App Mobile Desktop Diff desktop v mobile use

jQuery 84.4% 84.4% 1.0%

Google Analytics 65.4% 68.6% 3.2%

PHP 50.5% 50.5% -0.4%

Google Font API 47.6% 47.6% -0.1%

Google Tag Manager 43.4% 43.4% 2.6%

591. https://www.wappalyzer.com/
592. https://developers.google.com/search/docs/advanced/experience/page-experience

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 443

https://www.wappalyzer.com/
https://developers.google.com/search/docs/advanced/experience/page-experience

Content Management Systems

Content management systems allow site owners to publish, update, and control content

through an authenticated backend. The top five content management systems on the mobile

web in 2021 were:

WordPress, an open-source CMS written in PHP, was the dominant CMS in 2021. The

technology appeared on 33.6% of sites.

Comparing desktop technology adoption rates

Technology adoption rates for the mobile web moved in step with desktop. The most notable

difference came in the form of third-party pixel use. 68.6% of desktop sites used Google

Analytics compared to 65.4% of mobile sites.

Figure 13.12. Prominent mobile vs. desktop CMS.

CMS Mobile Desktop

WordPress 33.6% 32.9%

Joomla 2.0% 1.7%

Drupal 1.8% 2.1%

Wix 1.6% 1.2%

Squarespace 1.0% 1.2%

Figure 13.13. Technology with higher desktop adoption rates.

Category Technology Desktop Mobile
% higher desktop adoption

rate

Analytics Google Analytics 68.6% 65.4% 3.2%

Tag managers
Google Tag

Manager
46.0% 43.4% 2.6%

Analytics Facebook Pixel 20.6% 18.9% 1.7%

Widgets Facebook 28.0% 26.3% 1.6%

JavaScript

libraries
jQuery UI 23.8% 22.2% 1.5%

Part II Chapter 13 : Mobile Web

444 2021 Web Almanac by HTTP Archive

Given the changes to performance measurement and prioritization, it’s reasonable to consider

the absence of these JavaScript-heavy, third-party, assets as part of an intentional effort to

improve mobile page experience. The Facebook Pixel analytics script was found on -1.7% fewer

mobile sites than desktop.

Mobile sites were more likely to adopt certain technologies, but with a smaller margin. Blogger

was found on 3.1% of mobile sites and 1.7% of desktop sites

Drawing conclusions on mobile web app usage

JavaScript via JQuery permeated the mobile web in 2021. Third-party analytics tools had a

lower adoption rate on mobile.

One thing that shines through in the data is that at a CMS and web server level, mobile and

desktop share a close correlation in how people develop sites, perhaps in large part to the lower

overheads of responsive design, meaning one codebase for all experiences.

With WordPress not only maintaining, but extending its popularity for mobile sites, and other

CMSs enjoying a similar share to the desktop experience, there’s a great opportunity for CMS

core improvements and optimizations to bring an outsized benefit to the whole mobile web.

This makes drives like the proposed WordPress Performance Team593 important and valuable.

Interacting with the mobile web

Attention to mobile design and friendliness are critical to reducing friction in the user journey.

Figure 13.14. Technology with higher mobile adoption rates.

Category Technology Desktop Mobile
% higher mobile adoption

rate

Blogs Blogger 1.7% 3.1% 1.5%

Web servers OpenGSE 1.7% 3.2% 1.5%

Programming

languages
Python 2.2% 3.6% 1.4%

Programming

languages
Java 2.8% 4.0% 1.2%

593. https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 445

https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/

Users navigate the mobile web with taps of their fingers rather than the more refined control

provided by a mouse or trackpad.

Alternative protocol links

The web is built on links. On the mobile web, Unique Resource Identifier594 schemes beyond

http/s, can allow users to complete tasks like dialing a phone number using tel: or starting an

email with minimal friction.

The most prevalent URI schemes were https: , found on 93.2% of sites, and its non-secure

equivalent, http: , appearing on 56.7%. The high use of non-secure link protocols is

noteworthy as 2020 saw major announcements from browsers to protect users’ safety by

alerting them when content is not secure.

After web page links, the next five most used protocols in anchor href values on the mobile web

are as follows:

Mobile devices whilst limited in some aspects do tend to be better connected, they are a phone,

have SMS and other messaging services where desktop clients may not. Usage of other link

protocols past the standard http: / https: can help unlock some of these capabilities.

Providing a tappable link to call or send a message without having to copy and paste makes for a

Figure 13.15. Popular alternative protocol links.

594. https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Part II Chapter 13 : Mobile Web

446 2021 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://developers.google.com/web/fundamentals/native-hardware/click-to-call
https://developers.google.com/web/fundamentals/native-hardware/click-to-call
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-popular-link-protocols.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-popular-link-protocols.png

smoother, more integrated user interaction.

mailto

mailto: invokes the users chosen email client, clicking:

<a href="mailto:enquiries@example.com?subject=Enquiring about Red

Widgets">

 enquiries@example.com

Would prefill an email with the specified email address and subject line. Helpful on mobile, but

also relevant for desktop too.

tel

tel: invokes a call:

 Call +44 (0)123 4567890

Would open the phone app, ready to dial that number. This saves copy / paste and reduces

friction if your business values phone leads or enquiries.

sms

sms: invokes the clients default SMS messaging app:

 Text Us

When clicked would prefill a message with the right number, you can also prefill the message

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 447

body. This fell out of the top 5, with just 0.3% of mobile site loads utilizing this.

Other messaging apps

Other messaging apps can register a protocol to have a open them, as seen in

the table above, WhatsApp and Viber are the two leading ones here, outstripping the native

sms: app usage.

Alternative protocol links conclusions

mailto: has a long history on the internet, right back to 1994595, but it’s encouraging to see

tel: reach 24% usage, not a long way behind, given its additional usefulness on mobile

devices.

It’s surprising to see sms with such small uptake, and disappointing that its uptake is below

proprietary apps like WhatsApp and Viber.

SMS is more likely to be available as default and require no additional installations, so

seemingly more accessible. However, WhatsApp and Viber messages are free, while SMS

messages may incur charges from the user’s mobile provider. This could explain that relative

popularity.

If you aren’t using some of the extended capabilities for communication that protocols past

https: can offer your users, and it’s a good fit for your mobile website, these could offer a

simple, user friendly, low development benefit.

Input fields

While URI schemes allow users to take actions from a website, input fields allow users to

provide information to a website.

Input elements are one of the most powerful and complex features in HTML. Input elements

are used to create interactive controls for web-based forms. Web users experience these

elements such as buttons, checkboxes, calendars, search, and other elements which allow

control of a page’s content based on user input.

595. https://datatracker.ietf.org/doc/html/rfc1738#section-3

Part II Chapter 13 : Mobile Web

448 2021 Web Almanac by HTTP Archive

https://datatracker.ietf.org/doc/html/rfc1738#section-3

71.5% of mobile pages tested contained inputs. This is slightly higher than the 71.1% of

desktop.

Type declarations

We can track occurrences of interactive controls created by input by looking for the type
attribute. The type attribute is the most important because it controls how the input element

works. The type attribute value was declared on 70.9% of tested sites.

If the type attribute is not present the input defaults to text , a single line text field. In

analysis of pages using input elements, 27.1% of those pages did not declare an input type and

used the default text string value.

Out of all pages using inputs, 72.6% contained at least one text input type. This was the most

used.

The declared text value combined with the fallback value indicates that 99.7% of sites using

Figure 13.16. Percent of mobile pages using inputs.

71.5%

Figure 13.17. Popular mobile input types.

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 449

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-popular-input-types.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-popular-input-types.png

input elements capture a text value.

Advanced input types

Of pages with at least one input, 44.8% of them use one or more “advanced input types”.

Advanced input types include color , date , datetime-local , email , month , number ,

range , reset , search , tel , time , url , week , datalist .

Telephone

5.4% of pages asked users for their telephone number. For mobile users, navigating from the

alpha to numeric keyboard is a high friction point. 62.6% of pages soliciting a telephone number

used an input field missing the type=tel value.

Email

The email input type requires the user to submit a valid email address. A non-email value

entered in the form prompts an error to display when the form is submitted.

25.1% of pages contained at least one field asking users for their email.

Email collection is often a key micro conversion in the user journey so capturing it with minimal

friction benefits the site with a higher conversion rate. Even with this clear business value, 42%

of pages which ask for user emails do not use the type=email input type on at least one

instance.

Search input

Site search is a powerful tool in navigating users to their desired content. Search inputs are text

fields functionally identical to text. The main difference between search and text input fields is

how they are handled by the browser.

Use of the search input type can trigger a cross icon which allows users to quickly clear existing

query text. Many modern browsers also store search queries across domains. When the search

Figure 13.18. Percent of mobile pages using inputs.

44.8%

Part II Chapter 13 : Mobile Web

450 2021 Web Almanac by HTTP Archive

type is denoted, stored queries can be used to autocomplete the field.

23.9% of tested pages contained a search input field. It is worth noting that these fields may be

present though using a text or undeclared input type. This is a slight increase over 2020 which

saw 17% of sites using search input.

Business value appears to impact input type adoption. Ecommerce sites have a vested interest

in swiftly moving users to a desired product in order to meet the business goal of a transaction.

43.3% of tested ecommerce sites use search input on their mobile experience. Interestingly,

this is higher than 42.6% of sites using the input type for desktop clients.

Autocomplete

The autocomplete attribute allows some control over how forms and inputs work with

browsers autofill features. There are a number of options, from disabling it entirely, to

providing hints as to what to autofill, like a name, or street address.

Inputting text and data on mobile devices is a generally more tedious process than on a device

with a full keyboard, so autofill becomes an even more useful and time saving feature than for

desktop users. Google discovered596 a 25% increase in form submission when autofill is used.

For mobile page loads, 24.8% of pages utilized the autocomplete attribute, lower than the

27% of desktop page loads.

As the HTTP Archive data captures only home pages, usage could be much higher in checkout,

contact and other places that are likely to require inputs, but it is perhaps disappointing to see

lower usage on mobile experiences, where arguably it is the most useful.

Input field conclusions

Input type declarations are critical in reducing friction. If an input element is marked up using

the appropriate type, input elements can prompt different keyboards to improve the

experience. The boon to user experience makes the low-lift adoption of input types a

meaningful investment.

The low rates of adoption for input types like telephone and email are surprising given the

ubiquity of input fields on the mobile web. This gap between business goals and the user

experience illustrates that user experience on the mobile web is critical. The greatest

opportunities from websites may not come from in-house feature development, but rather

596. https://www.youtube.com/watch?v=m2a9hlUFRhg&t=1433s

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 451

https://developer.mozilla.org/docs/Web/HTML/Attributes/autocomplete
https://developer.mozilla.org/docs/Web/HTML/Attributes/autocomplete
https://www.youtube.com/watch?v=m2a9hlUFRhg&t=1433s

leveraging the growing functionalities natively available in modern browsers.

Accessibility on the mobile web

The pandemic forced humans around the world to isolate themselves from friends, family, and

community. The number of persons facing disabilities also increased due to post-COVID

conditions597. This shift forced digital spaces to the new default as in-person services, commerce,

and communication were disrupted.

The goal of accessibility is to create web experiences which provide feature and information

parity to all users. Users on the mobile benefit from accessibility as accessibility practices make

information available to people using slow internet connections, or who have limited or

expensive data plans.

ARIA roles

Accessible Rich Internet Applications (ARIA) is a set of attributes that supplement HTML so

that commonly used interactions and widgets can be passed to assistive technologies. These

attributes are also useful to search engines in understanding page content598.

When a site is accessed using assistive technology, an element’s ARIA role communicates

information about how the user can interact.

597. https://www.hhs.gov/civil-rights/for-providers/civil-rights-covid19/guidance-long-covid-disability/index.html#footnote10_0ac8mdc
598. https://webaim.org/blog/web-accessibility-and-seo/

Part II Chapter 13 : Mobile Web

452 2021 Web Almanac by HTTP Archive

https://www.hhs.gov/civil-rights/for-providers/civil-rights-covid19/guidance-long-covid-disability/index.html#footnote10_0ac8mdc
https://www.hhs.gov/civil-rights/for-providers/civil-rights-covid19/guidance-long-covid-disability/index.html#footnote10_0ac8mdc
https://webaim.org/blog/web-accessibility-and-seo/

The most prevalent ARIA role in 2021 was button which appeared on 29% of sites. The

button role indicates a clickable element that triggers a response when activated by users.

While over 71% of mobile sites have interactive-controls for web-based forms, the most

commonly adopted ARIA attribute, aria-label, only appeared on 11.2% of tested sites. This

accessibility-focused attribute is used to label input with a text string.

Color contrast

A lack of color contrast impacts users with color blindness as well as low color sensitivity, a

condition common in older people. Sufficient color contrast allows for equal access to content

and a positive impact to business goals. In a case study by Google, ecommerce site Eastpak saw

a 20% increase in click through rate599 when call-to-action buttons used sufficient contrast

between text color and its background.

Figure 13.19. Top 10 most common ARIA roles.

599. https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 453

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-most-common-mobile-aria-roles.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-most-common-mobile-aria-roles.png
https://www.thinkwithgoogle.com/intl/en-154/marketing-strategies/app-and-mobile/5-lessons-eastpak-learned-its-mobile-audience/

Despite the potential for increased conversion, 77.8% of sites failed Lighthouse audits for use

of sufficient color contrast. This is a slight improvement year over year.

Tap targets

Tap targets are elements that respond to user input. These include links, buttons, form fields,

and many others.

In order for effective user interactions, tap targets need to be both appropriately sized and

spaced apart from other tap targets on the page. Interactive elements should be at least 48x48

pixels and have a padding of at least 8 pixels separating them from other interactive elements.

Overall, 39.3% of sites tested used sufficiently-sized mobile tap targets. Tap target adoption

was consistent across domain rank groupings. This is a slight increase from 2020, which saw

36.3% of tap targets properly sized.

Figure 13.20. Mobile Sites with sufficient color contrast.

Figure 13.21. Percent of mobile sites using sufficiently-sized tap targets.

39.3%

Part II Chapter 13 : Mobile Web

454 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-sufficient-color-contrast.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-sufficient-color-contrast.png

Zoom and scaling

The Viewport meta element is important to inform a browser how to lay out the page on a

user’s device. It’s also possible to configure this by adding the user-scalable="no" or a

small maximum-scale: parameter to either prevent totally, or limit the ability for users to

zoom in on the content. On mobile devices, this is commonly pinch zooming.

Preventing the ability to zoom in is an issue for low vision users and is something that would

fail600 the WCAG 2.0 guidance.

Disappointingly, 29.4% of mobile page loads fail this requirement, and contained a viewport

that prevented zooming, this is a slight improvement over the 30.7% (source: 2020 Web

Almanac Accessibility601 chapter).

Things look even worse when looking at the usage by domain ranking.

The more popular sites are more likely to fail this, meaning that overall, more users are reaching

mobile sites that are not compliant.

Figure 13.22. Disabled zooming and scaling by domain rank.

600. https://dequeuniversity.com/rules/axe/3.3/meta-viewport
601. https://almanac.httparchive.org/en/2020/accessibility#zooming-and-scaling

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 455

https://dequeuniversity.com/rules/axe/3.3/meta-viewport
https://dequeuniversity.com/rules/axe/3.3/meta-viewport
https://almanac.httparchive.org/en/2020/accessibility#zooming-and-scaling
https://almanac.httparchive.org/en/2020/accessibility#zooming-and-scaling
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-zoom-blocking-viewport-tags.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-zoom-blocking-viewport-tags.png

Accessibility conclusions

When the web is accessible, more people can perceive, understand, navigate, interact with, and

contribute to the web. Equal and inclusive access must be prioritized in order to keep pace with

the growth and necessity of web access.

The areas we’ve covered here are a small part of accessibility. ARIA, zooming, and color

contrasts are bare minimum requirements. A study from W3C’s Web Accessibility Initiative602

show that 15% of the world’s population (over 1 billion people) have a recognized disability. Far

more may go unregistered or will develop a disability at some point in their lives that may affect

their ability to access your sites. Accessibility isn’t for a tiny minority.

The poor adoption of good accessibility practice creates a technical barrier to these users that

should disturb us as humans, aside from the clear commercial opportunity of properly catering

for this sizable group of potential users.

In many jurisdictions, accessibility is not just good practice.

To learn more about accessibility on the mobile web, visit the Accessibility chapter.

Mobile Search Engine Optimization (SEO)

For any website, acquisition is a critical step, the best optimized mobile website is no different

to the worse if no one finds and visits it.

The primary avenue of discovery is quite likely to be from a search engine, along with social

media and links from other websites.

With search engines being the primary source of acquisition for many sites, and a still sizeable

one for many more, SEO is an important consideration for pretty much every site.

There are some mobile specific areas and concerns in SEO.

— Web Almanac 2021 Accessibility Chapter

Last year lawsuits related to the Americans with Disabilities Act were up

20%603. "
602. https://www.w3.org/WAI/business-case/#increase-market-reach
603. https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits

Part II Chapter 13 : Mobile Web

456 2021 Web Almanac by HTTP Archive

https://www.w3.org/WAI/business-case/#increase-market-reach
https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits
https://info.usablenet.com/2020-report-on-digital-accessibility-lawsuits

Mobile-first index

Google recognizes that the predominant method of accessing the web is now mobile, and now

index websites predominately with a mobile user-agent604. Since July 2019, all new sites have

been indexed this way, and most existing sites have now transitioned to mobile-first indexing

too.

This means that if you have content or markup that’s only served to desktop devices, google will

no longer index that part.

Mobile-friendliness

Both Google605 and Bing606, among other search engines, use some concept of mobile friendliness

as a direct ranking signal. This mostly comprises testing to make sure that the content fits in the

viewport, text is legible and tap targets are of a reasonable size.

Google offers a mobile-friendly test607, as does Bing608 to help diagnose if your pages are passing.

The recommended way of achieving this is using responsive web design, web.dev have a great

learning resource609.

Core Web Vitals & Page Experience

On July 15th 2021, Google announced that they were rolling out the Page Experience Ranking

Update610. This comprises a few different signals, including mobile-friendliness, with the major

new additions being the Core Web Vitals metrics611.

Of particular interest to the mobile web is that the Core Web Vitals part is mobile specific612,

these metrics only play a part in the mobile results so far, although a roll out to desktop is

planned in February 2022613.

You can learn more about the role of mobile-friendliness and the Core Web Vitals in SEO over

in the SEO chapter.

604. https://developers.google.com/search/mobile-sites/mobile-first-indexing
605. https://developers.google.com/search/blog/2015/04/rolling-out-mobile-friendly-update
606. https://blogs.bing.com/webmaster/2015/11/12/mobile-friendly-test
607. https://search.google.com/test/mobile-friendly
608. https://www.bing.com/webmaster/tools/mobile-friendliness
609. https://web.dev/learn/design/
610. https://developers.google.com/search/blog/2021/04/more-details-page-experience
611. https://web.dev/articles/vitals
612. https://support.google.com/webmasters/thread/104436075/core-web-vitals-page-experience-faqs-updated-march-2021
613. https://developers.google.com/search/blog/2021/11/bringing-page-experience-to-desktop

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 457

https://developers.google.com/search/mobile-sites/mobile-first-indexing
https://developers.google.com/search/blog/2015/04/rolling-out-mobile-friendly-update
https://blogs.bing.com/webmaster/2015/11/12/mobile-friendly-test
https://search.google.com/test/mobile-friendly
https://www.bing.com/webmaster/tools/mobile-friendliness
https://web.dev/learn/design/
https://web.dev/learn/design/
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://developers.google.com/search/blog/2021/04/more-details-page-experience
https://web.dev/articles/vitals
https://support.google.com/webmasters/thread/104436075/core-web-vitals-page-experience-faqs-updated-march-2021
https://developers.google.com/search/blog/2021/11/bringing-page-experience-to-desktop

Mobile performance

A mobile device is likely to be lower powered, and on a slower and less reliable network

connection than desktop devices. Given these circumstances, performance can be a bigger

challenge and a bigger priority.

Loading performance

Grabbing the attention of your newly acquired user or keeping the attention of a returning user

begins with making sure they see the important content of the site quickly.

Largest Contentful Paint

Largest Contentful Paint614 (LCP) is a metric designed to capture this experience (and is one of

the Core Web Vitals). It’s a measure of when the largest element in the viewport is rendered,

it’s limited to , <image> inside an <svg> , <video> (if the poster is set), a block

element with a background image, or a text block.

An LCP of 2.5 seconds or less is considered a good score.

Figure 13.23. LCP performance by device. Data from the Performance chapter.

614. https://web.dev/articles/lcp

Part II Chapter 13 : Mobile Web

458 2021 Web Almanac by HTTP Archive

https://web.dev/articles/lcp
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-largest-contentful-paint.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-largest-contentful-paint.png

The data shows that just 45% of mobile page loads recorded in the CrUX dataset are meeting

the 2.5 second or under target, far lower than the 60% desktop achieves.

It does represent a small improvement from 2020, where only 43% of mobile page loads615 met

the 2.5 second or under threshold.

There are clearly bigger challenges to achieving good LCP scores for the mobile demographic,

but one worth chasing. A recent study from Vodafone616 showed that a reduction of just 8% in

LCP times lead to increased conversions of 31%. Performance can have a direct effect on

revenue.

Images

Many different assets can and do affect load times on mobile, CSS & JavaScript can all play a big

part. But a big factor remains images.

Too often an approach to responsive web design is to supply an image whose native size is

appropriate for desktop users, and just scale it to the screen with CSS.

Appropriately sized images

This is sadly a step back from 58.8% in 2020. That’s 43.4% of mobile users getting the wrong

size images.

Responsive images

Images can be served responsively617 too, the srcset attribute, and the <picture> element

allow appropriately sized, and appropriately formatted images to be specified, allowing the

browser to download the one that best matches the screen and device.

Figure 13.24. Percent of mobile page loads that had appropriately sized images.

56.6%

615. https://almanac.httparchive.org/en/2020/performance#lcp-by-device
616. https://web.dev/vodafone/
617. https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 459

https://almanac.httparchive.org/en/2020/performance#lcp-by-device
https://web.dev/vodafone/
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images

Just 6.2% of mobile page loads that included images used the <picture> element, slightly

lower than desktop.

A healthier 32% of mobile page loads including images use the srcset attribute. It is worth

mentioning here that this attribute can be used in both the <picture> element and the

 element, so there’s likely to be some crossover here.

Lazy loading

Deferring, or lazy loading, images that aren’t in the initial viewport is a good strategy to help

resources be focused on loading things that are visible. The native lazy-load attribute,

supported in Chrome, Opera, and from September 2021 Firefox for Android (source:

caniuse.com618) allows this to happen without JavaScript workarounds.

This is a big jump up from just 4.1% in 2020.

Figure 13.25. Use of <picture> and srcset to serve responsive images.

Figure 13.26. Mobile page loads that contained images used loading="lazy"

18.4%

618. https://caniuse.com/loading-lazy-attr

Part II Chapter 13 : Mobile Web

460 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-responsive-images.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-responsive-images.png
https://caniuse.com/loading-lazy-attr

Looking at the HTTP Archive’s Native Image Lazy Loading Report619, uptake of using the

attribute on the tag specifically shows the same, impressive growth.

A driving factor in this growth can be attributed to the prevalence of WordPress (source: Rick

Viscomi on Twitter620). WordPress added support for native lazy-loading in version 5.5621 which

rolled out to the public on August 11th, 2020.

It’s also worth mentioning that incorrectly used, Lazy Loading LCP Candidates622 can harm

performance. Making sure to apply loading="lazy" only to images below the fold is best

practice.

Image conclusions

It’s disappointing to see that more mobile page loads this year had images that were not

correctly sized. <picture> uptake remains low too, perhaps based on the complexity

compared to the element.

But great strides have been made in adoption of the loading="lazy" attribute, a huge jump

in just one year.

Figure 13.27. Usage of Lazy Loading attribute over time.

619. https://httparchive.org/reports/state-of-images#imgLazy
620. https://x.com/rick_viscomi/status/1344380340153016321?s=20
621. https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/
622. https://web.dev/articles/lcp-lazy-loading

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 461

https://httparchive.org/reports/state-of-images#imgLazy
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-native-lazy-loading-over-time.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-native-lazy-loading-over-time.png
https://x.com/rick_viscomi/status/1344380340153016321?s=20
https://x.com/rick_viscomi/status/1344380340153016321?s=20
https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/
https://web.dev/articles/lcp-lazy-loading

Images remain a vital part of the web, and that doesn’t change for mobile users. If your site

doesn’t take advantage of some of the available approaches to serve mobile appropriate

images, it’s time to investigate this.

Layout stability

With a generally smaller form factor, and limited screen real estate, unexpected shifting

content can be particularly jarring on mobile devices.

Reading an article, only to have the paragraph you are on jump down the screen as an ad loads

in above, or shift around as a font loads in and changes before your eyes, is an uncomfortable

and negative experience.

Cumulative Layout Shift

One of the Core Web Vitals, Cumulative Layout Shift623 (CLS) is a metric designed to capture the

impact of this kind of shifting of elements.

The metric is a calculation of impact fraction multiplied by distance fraction. The impact

fraction is how much of the area of the screen is shifted and the distance fraction is how much

of the screen it moved by.

A CLS score of 0.1 or under is considered good, under 0.25 considered indeed of improvement,

and over that it’s considered a poor experience

Smaller screen sizes are susceptible to greater shifts, at 360 x 640px, this example block causes

a CLS score of 0.22

623. https://web.dev/articles/cls

Part II Chapter 13 : Mobile Web

462 2021 Web Almanac by HTTP Archive

https://web.dev/articles/cls

At desktop screen sizes, the same element appearing leads to a CLS score of just 0.07.

The CrUX dataset shows that 62% of mobile page loads had a CLS of 0.1 or under:

Figure 13.28. Screen capture mock-up showing an ad causing CLS on a mobile sized screen.

Figure 13.29. Screen capture mock-up showing an ad causing CLS on a desktop sized screen.

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 463

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-cls-example-static.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-cls-example-static.png
https://almanac.httparchive.org/static/images/2021/mobile-web/desktop-cls-example-static.png
https://almanac.httparchive.org/static/images/2021/mobile-web/desktop-cls-example-static.png

This is a big step over the 43% achieved last year, but direct comparison is hard, as the metric

changed on the 1st of June 2021624to better capture the experience on long-lived pages, so some

of this jump could be attributable to this.

Response to user interaction

When a user interacts with a site, long delays from clicking on something, to something actually

happening make a website or app feel sluggish and slow. This lag between input and the action

happening is often down to heavy JavaScript processes blocking the main thread, leaving the

browser unable to process the command the user issued until it had completed those

processes.

Mobile devices are generally much lower powered than desktop and laptops, so the effect of

this can be amplified.

First Input Delay

First input delay625 (FID) is the third Core Web Vital metric designed to capture this. It measures

the time between the first interaction (a tap or a click on an element) until the browser can start

processing that it has happened. It doesn’t measure how long the process that tap may have

Figure 13.30. CLS performance by device.

624. https://web.dev/evolving-cls/
625. https://web.dev/articles/fid

Part II Chapter 13 : Mobile Web

464 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-cumulative-layout-shift.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-cumulative-layout-shift.png
https://web.dev/evolving-cls/
https://web.dev/articles/fid

triggered takes.

A good FID score is 100 ms or under, a poor FID score is over 300 ms.

Encouragingly, 90% of mobile page loads in the CrUX dataset had a good FID score, up from

80% from 2020.

Efforts are being made to better capture responsiveness, with the Chrome Speed Metrics team

sharing some plans and inviting feedback626 on a new responsiveness metric.

If you are looking to learn more about Core Web Vitals in general, the Performance chapter has

plenty of details about the Core Web Vitals.

Service workers

Service workers627 while not only applying to mobile devices do become uniquely useful in their

ability to add offline capabilities, and better control of loading from caches to web apps, both

features which are often more relevant to mobile users, who are more likely to encounter poor

or total loss of connectivity.

14.8% of sites register a service worker, a sizeable uptake since 2020’s 0.9%

Figure 13.31. FID performance by device.

626. https://web.dev/responsiveness/
627. https://developer.mozilla.org/docs/Web/API/Service_Worker_API

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 465

https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-first-input-delay.png
https://almanac.httparchive.org/static/images/2021/mobile-web/mobile-web-first-input-delay.png
https://web.dev/responsiveness/
https://developer.mozilla.org/docs/Web/API/Service_Worker_API

To learn more about service workers and PWA (progressive web apps), visit the PWA chapter.

Mobile performance conclusions

Overall, performance has taken a step forward over 2020, with a particularly strong

improvement in layout stability.

There are some good, positive signs too in impressive usage growth in loading="lazy" and

the uptake of service workers. The fact developers are embracing these is a positive sign that

performance is being taken seriously.

It does however seem that improving Large Contentful Paint, and handing images are areas

developers are struggling with more than other areas. Hopefully tooling and libraries like next/

image628 for the Next.js framework, and adoption by popular CMSs like WordPress will help

developers overcome these pain points.

Conclusion

In 2021, the perception of a distinct “mobile web” is outdated.

Across multiple data sources, it seems that the mobile is one of many ways a user can interact

with digital content—and in fact comprises the majority of digital interactions.

For many users, mobile devices are their primary or only means of interacting with the web.

Despite this, adoption of methodologies, performance strategies, accessibility principles and

adoption of browser-supported features is low.

There has been great progress in some areas, most performance metrics are an improvement

over 2020’s data. There do remain areas where there’s lots of room for growth too.

Accessibility remains an area where it would be great to see more effort and time spent, and

image best practices still have some way to go.

With the continuing growth and size of the mobile user sector, for many industries it’s no longer

a case of having to make a business case to support the mobile web, it is a case of fully

embracing it and making use of the many tools and techniques available to a developer in 2021.

628. https://nextjs.org/docs/api-reference/next/image

Part II Chapter 13 : Mobile Web

466 2021 Web Almanac by HTTP Archive

https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image

Authors

Jamie Indigo

@Jammer_Volts @not-a-robot.com fellowhuman1101 jamie-indigo

https://not-a-robot.com

Jamie Indigo isn’t a robot, but speaks bot. As a technical SEO consultant at

Deepcrawl629, they study how search engines crawl, render, and index the web.

They love to tame wild JavaScript frameworks and optimize rendering strategies.

When not working, Jamie likes horror movies, graphic novels, and Dungeons &

Dragons.

Dave Smart

@https://seocommunity.social/@dwsmart @tamethebots.com dwsmart davewsmart

https://tamethebots.com

Dave Smart is a developer and technical search engine consultant at Tame the

Bots630. They love building tools and experimenting with the modern web and can

often be found at the front in a gig or two.

Ashley Berman Hale

ashleyish

Ashley Berman Hale is a technical SEO and VP of professional services at

Deepcrawl631. She is a mom to plants, animals, and tiny humans. Ashley plays in her

local roller derby league and mentors upcoming SEOs.

629. https://www.deepcrawl.com
630. https://tamethebots.com
631. https://www.deepcrawl.com

Part II Chapter 13 : Mobile Web

2021 Web Almanac by HTTP Archive 467

https://x.com/Jammer_Volts
https://bsky.app/profile/not-a-robot.com
https://github.com/fellowhuman1101
https://www.linkedin.com/in/jamie-indigo/
https://not-a-robot.com/
https://www.deepcrawl.com/
https://seocommunity.social/@dwsmart
https://bsky.app/profile/tamethebots.com
https://github.com/dwsmart
https://www.linkedin.com/in/davewsmart/
https://tamethebots.com/
https://tamethebots.com/
https://tamethebots.com/
https://github.com/ashleyish
https://www.deepcrawl.com/

468 2021 Web Almanac by HTTP Archive

Part II Chapter 14

Capabilities

Written by Christian Liebel
Reviewed by Thomas Steiner and Hemanth HM
Analyzed by Thomas Steiner
Edited by Barry Pollard

Introduction

Capabilities are new web platform APIs that unlock entirely new use cases for web

applications. Those new APIs are essential for Progressive Web Apps (PWA), a web-based

application model. A PWA is a web app that users can install to their system. PWAs run even

offline and launch quickly. To integrate with the underlying operating system, PWAs can only

use web platform APIs. While browsers have already exposed some lower-level features to the

web (e.g., geolocation632, gamepad633, or webcam634 access), many APIs were still missing or were

clumsy to use (e.g., file system or clipboard access).

632. https://developer.mozilla.org/docs/Web/API/Geolocation_API
633. https://developer.mozilla.org/docs/Web/API/Gamepad_API
634. https://developer.mozilla.org/docs/Web/API/MediaDevices/getUserMedia

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 469

https://developer.mozilla.org/docs/Web/API/Geolocation_API
https://developer.mozilla.org/docs/Web/API/Gamepad_API
https://developer.mozilla.org/docs/Web/API/MediaDevices/getUserMedia

Project Fugu

The Capabilities Project635 (codename Fugu) is a joint effort by Microsoft, Intel, Google, and

other Chromium contributors. It tries to bridge the gap between platform-specific applications

and web apps by designing and implementing new powerful web platform APIs in a secure and

privacy-preserving manner (see also the Privacy chapter). As capabilities unlock more and more

use cases, they lay the path for entire new application categories to finally make the shift to the

web (e.g., IDEs, image editors, or office applications).

Over the last two years, the focus for the Fugu team has been on capabilities for desktop

productivity applications and hardware-related APIs. This chapter briefly introduces several

new capabilities and analyzes how many different desktop and mobile websites use them. As

capabilities are particularly interesting for app-like websites, their relative usage is

comparatively low. This is why absolute website numbers are used in this chapter. For each

capability, there will be a demo website or app that makes use of it.

Methodology

This chapter uses the HTTP Archive data set. For security reasons, some APIs require a user

gesture (i.e., a click or keypress) to function. As the HTTP Archive crawler does not support

detecting those APIs during runtime, the source code of the websites is parsed statically

instead: For instance, the regular expression /navigator\.share\s*\(/g is matched

against the website’s source code to determine if it (potentially) makes use of the Web Share API.

This method is not perfectly accurate, as it doesn’t measure the actual use of an API, and

developers may invoke an API using a different syntax or work with minified code. However,

this approach should provide a sufficiently good overview. You can find the exact regular

expressions for the 30 supported capabilities in this source file637.

All usage data in this chapter is based on the July 2021 crawl. You can find the raw data in the

— Web Capabilities Team636

Project Fugu is an effort to close gaps in the web’s capabilities enabling new

classes of applications to run on the web… APIs that Project Fugu is

delivering enable new experiences on the web while preserving the web’s core

benefits of security, low-friction, and cross-platform delivery. All Project Fugu

API proposals are made in the open and on the standards track. "

635. https://www.chromium.org/teams/web-capabilities-fugu
636. https://www.chromium.org/teams/web-capabilities-fugu
637. https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/fugu-apis.js

Part II Chapter 14 : Capabilities

470 2021 Web Almanac by HTTP Archive

https://www.chromium.org/teams/web-capabilities-fugu
https://www.chromium.org/teams/web-capabilities-fugu
https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/fugu-apis.js

Capabilities 2021 Results Sheet638.

For the two more commonly used APIs in this chapter, additional data from Chrome Platform

Status is presented. This data shows how the API usage has changed over the last 12 months

prior to the publication of this chapter.

Status of the presented APIs

Please note that most of the APIs presented here are so-called incubations. Unless noted, they

are not (yet) W3C Recommendations, i.e., official web standards. Instead, these APIs are being

worked on in the Web Platform Incubator Community Group (WICG), where browser vendors

and developers can discuss new features.

Some APIs have already shipped in several browsers; others are only available on Chromium-

based ones. These browsers include Google Chrome, Microsoft Edge, Opera, Brave, or Samsung

Internet. Please note that vendors of Chromium-based browsers can choose to disable specific

capabilities, so not all APIs may be available in all browsers based on Chromium. Some

capabilities may also only be available after activating a flag in the browser settings.

Async Clipboard API

The Async Clipboard API allows you to read and write data from or to the clipboard. Due to its

asynchronous nature, it enables use cases like scaling down an image while pasting it—all

without blocking the UI. It replaces less capable APIs like document.execCommand() that

were previously used to interact with the clipboard.

Write access

The Async Clipboard API offers two methods to copy data to the clipboard: The shorthand

method writeText() takes plain text as an argument which the browser then copies to the

clipboard. The write() method takes an array of clipboard items that could contain arbitrary

data. Browsers can decide to only implement certain data formats. The Clipboard API

specification specifies a list of mandatory data types639 browsers must support as a minimum,

including plain text, HTML, URI lists, and PNG images.

await navigator.clipboard.writeText('hello world');

638. https://docs.google.com/spreadsheets/d/1b4moteB9EiLYkH1Ln9qfi1tnU-E4N2UQ87uayWytDKw/
639. https://www.w3.org/TR/clipboard-apis/#mandatory-data-types-x

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 471

https://docs.google.com/spreadsheets/d/1b4moteB9EiLYkH1Ln9qfi1tnU-E4N2UQ87uayWytDKw/
https://developer.mozilla.org/docs/Web/API/Clipboard_API
https://developer.mozilla.org/docs/Web/API/Clipboard/writeText
https://developer.mozilla.org/docs/Web/API/Clipboard/writeText
https://developer.mozilla.org/docs/Web/API/Clipboard/write
https://developer.mozilla.org/docs/Web/API/Clipboard/write
https://www.w3.org/TR/clipboard-apis/#mandatory-data-types-x

const blob = new Blob(['hello world'], { type: 'text/plain' });

await navigator.clipboard.write([

 new ClipboardItem({

 [blob.type]: blob,

 }),

]);

Read access

Similar to copying data to the clipboard, there are two methods to paste data back from the

clipboard: First, another shorthand method called readText() that returns plain text from

the clipboard. Using the read() method, you access all items in the clipboard in the data

formats supported by the browser.

const item = await navigator.clipboard.readText();

const items = await navigator.clipboard.read();

The browser may show a permission prompt or a different UI for privacy reasons before

granting the website access to the clipboard contents. The Async Clipboard API is available in

Chrome, Edge, and Safari (current browser support for the Async Clipboard API640). Firefox only

supports the writeText() method.

With 560,359 (8.91%) desktop and 618,062 (8.25%) mobile sites, the Async Clipboard API

(writeText() method) is one of the most used Fugu APIs. The write() method is used on

1,180 desktop and 1,227 mobile sites. As an example, the commercial website Clipping Magic641

allows you to remove the background of an image with the help of an AI algorithm. Just paste an

image from the clipboard, and the website will remove its background.

The high usage of this API is probably related to a script that is included with embedded

Figure 14.1. Desktop websites using the Async Clipboard API.

560,359

640. https://caniuse.com/async-clipboard
641. https://clippingmagic.com/

Part II Chapter 14 : Capabilities

472 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Clipboard/readText
https://developer.mozilla.org/docs/Web/API/Clipboard/readText
https://developer.mozilla.org/docs/Web/API/Clipboard/read
https://developer.mozilla.org/docs/Web/API/Clipboard/read
https://caniuse.com/async-clipboard
https://clippingmagic.com/

YouTube videos. The writeText() method is called when the user clicks the “copy link”

button in the video player.

In recent months, the use of the API has increased sharply at a low level. While the read()
method was active on only 0.00032 percent of all page loads in November 2020, usage

increased exponentially to 0.002921 percent by October 2021. The write() method

increased from 0.000674 to 0.001601 percent in the same period.

Figure 14.2. Clipping Magic uses artificial intelligence to remove the background of images pasted
via the Async Clipboard API.

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 473

https://almanac.httparchive.org/static/images/2021/capabilities/async-clipboard-api.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/async-clipboard-api.jpg

File System Access API

The next productivity-related API is the File System Access API. Web apps could already deal

with files644: <input type="file"> allows the user to open one or more files via a file picker.

Also, they could already save files to the Downloads folder via <a download> . The File

System Access API adds support for additional use cases: Opening and modifying directories,

saving files to a location specified by the user, and overwriting files that were opened by them. It

is also possible to persist file handles to IndexedDB to allow for continued (permission-gated)

access, even after a page reload. In particular, the API does not grant random access to the file

system and certain system folders are blocked by default.

Write access

When calling the showSaveFilePicker() method on the global window object, the

browser will show the operating system’s file picker. The method takes an optional options

object where you can specify which file types are allowed for saving (types , default: all types),

and whether the user can disable this filter via an “accept all” option

Figure 14.3. Percentage of page loads in Chrome using Async Clipboard API.
(Sources: Async Clipboard Read642, Async Clipboard Write643)

642. https://chromestatus.com/metrics/feature/timeline/popularity/2369
643. https://chromestatus.com/metrics/feature/timeline/popularity/2370
644. https://web.dev/browser-fs-access/#the-traditional-way-of-dealing-with-files

Part II Chapter 14 : Capabilities

474 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/capabilities/async-clipboard-api-page-loads.png
https://almanac.httparchive.org/static/images/2021/capabilities/async-clipboard-api-page-loads.png
https://chromestatus.com/metrics/feature/timeline/popularity/2369
https://chromestatus.com/metrics/feature/timeline/popularity/2370
https://developer.mozilla.org/docs/Web/API/File_System_Access_API
https://web.dev/browser-fs-access/#the-traditional-way-of-dealing-with-files
https://web.dev/browser-fs-access/#the-traditional-way-of-dealing-with-files
https://developer.mozilla.org/docs/Web/API/Window/showSaveFilePicker
https://developer.mozilla.org/docs/Web/API/Window/showSaveFilePicker

(excludeAcceptAllOption , default: false).

When the user successfully picks a file from the local file system, you will receive its handle.

With the help of the createWritable() method on the handle, you can access a stream

writer. In the following example, this writer writes the text hello world to the file and closes

it afterward.

const handle = await window.showSaveFilePicker({

 types: [{

 description: 'PNG files',

 accept: { 'image/png': ['.png'] }

 }],

 excludeAcceptAllOption: true

});

const writable = await handle.createWritable();

await writable.write('hello world');

await writable.close();

Read access

To show an open file picker, call the showOpenFilePicker() method on the global window
object. This method also takes an optional options object with the same properties from above

(types , excludeAcceptAllOption). Additionally, you can specify if the user can select one

or multiple files (multiple , default: false).

As the user could potentially select more than one file, you will receive an array of file handles.

Using the array destructuring expression [handle] , you will receive the handle of the first

selected file as the first element in the array. By calling the getFile() method on the file

handle, you will receive a File object which gives you access to the file’s binary data. By

calling the text() method, you will receive the plain text from the opened file.

const [handle] = await window.showOpenFilePicker({

 multiple: false

});

const blob = await handle.getFile();

const text = await blob.text();

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 475

https://developer.mozilla.org/docs/Web/API/Window/showOpenFilePicker
https://developer.mozilla.org/docs/Web/API/Window/showOpenFilePicker

console.log(text);

Opening directories

Finally, the API allows web apps (e.g., integrated development environments) to get a handle for

an entire directory. Using this handle, you can create, update, or delete existing files or folders

within the opened directory. This time, the method is called showDirectoryPicker() :

const handle = await window.showDirectoryPicker();

The File System Access API is only available on Chromium-based browsers and desktop

systems (current browser support for the File System Access API645). Fortunately, the web

platform offers the aforementioned fallback approaches to provide similar functionality on

mobile devices and other browsers. Developers can use the Google-developed library browser-

fs-access646 that uses the File System Access API if present and otherwise falls back to the

alternative implementation.

Out of all 6,286,373 desktop and 7,491,840 mobile websites in the HTTP Archive, the File

System Access API is used on 29 desktop and 23 mobile sites. Examples for those sites are the

image editor Excalidraw647, which allows you to sketch diagrams in a hand-drawn look and save

them to the disk. Another example is CorelDRAW.app648, a web version of the image editing

software CorelDRAW.

Figure 14.4. Desktop websites using the File System Access API.

29

645. https://caniuse.com/native-filesystem-api
646. https://github.com/GoogleChromeLabs/browser-fs-access
647. https://excalidraw.com/
648. https://coreldraw.app/

Part II Chapter 14 : Capabilities

476 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/window/showDirectoryPicker
https://developer.mozilla.org/docs/Web/API/window/showDirectoryPicker
https://caniuse.com/native-filesystem-api
https://github.com/GoogleChromeLabs/browser-fs-access
https://github.com/GoogleChromeLabs/browser-fs-access
https://excalidraw.com/
https://coreldraw.app/

Web Share API

The Web Share API allows you to share text, a URL, or files from a website or web application

with other applications, e.g., mail clients or messengers. To do so, call the

navigator.share() method. It takes an object with the data to share with another

application. The browser then opens the built-in share sheet, where the user can select the

target application from. The method returns a promise that resolves in case the content was

successfully shared; otherwise, it will be rejected.

await navigator.share({

 files: picturesArray,

 title: 'Holiday pictures',

 text: 'Our holiday in the French Alps'

})

The Web Share API is supported by Safari on iOS and macOS, and Chrome and Edge on

Figure 14.5. The Excalidraw PWA uses the File System Access API to save images to the local file
system via the built-in save dialog.

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 477

https://almanac.httparchive.org/static/images/2021/capabilities/file-system-access-api.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/file-system-access-api.jpg
https://developer.mozilla.org/docs/Web/API/Navigator/share
https://developer.mozilla.org/docs/Web/API/Navigator/share
https://developer.mozilla.org/docs/Web/API/Navigator/share

Windows and Chrome OS (current browser support for the Web Share API649). It’s currently a

Working Draft650 at the Web Applications Working Group. This is one of the first stages of the

track to becoming a W3C Recommendation.

With 566,049 (9.00%) desktop and 642,507 (8.58%) mobile sites, the Web Share API is the

most used Fugu API. For example, the beta version of the PaintZ app651 allows you to share a

drawing with another locally installed application via the save dialog.

The high usage of this API is probably related to a script that is included with embedded

YouTube videos. If the Web Share API is available on the device, it is executed when the user

clicks the “Share” button in the video player.

In recent months, the overall use of the Web Share API has increased: The Chrome Platform

Status data shows a rather linear growth in the period from November 2020, where the API

Figure 14.6. Desktop websites using the Web Share API.

566,049

Figure 14.7. The beta version of PaintZ uses the Web Share API to share drawings with local
applications.

649. https://caniuse.com/web-share
650. https://www.w3.org/TR/web-share/
651. https://beta.paintz.app/

Part II Chapter 14 : Capabilities

478 2021 Web Almanac by HTTP Archive

https://caniuse.com/web-share
https://www.w3.org/TR/web-share/
https://beta.paintz.app/
https://almanac.httparchive.org/static/images/2021/capabilities/web-share-api.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/web-share-api.jpg

was called on 0.0097% of all page loads, to 0.0136% in October 2021.

URL Handlers and Declarative Link Capturing

The last two productivity-related capabilities described in this chapter are URL Handlers and

Declarative Link Capturing, additional methods for even deeper integration with the operating

system.

URL Handling

With the help of URL Handling653, PWAs can register themselves as handlers for certain URL

schemes upon installation, e.g., for https://*.example.com . When the user opens a URL

that matches this scheme, the installed PWA will open instead of a new browser tab. URL

Handling is an extension of the Web Application Manifest, a file that contains metadata for web

applications654. To register for URL schemes, you have to add the url_handlers property to

your manifest. This property takes an array containing objects with an origin property.

Figure 14.8. Percentage of page loads in Chrome using Web Share API. (Source652)

652. https://chromestatus.com/metrics/feature/timeline/popularity/1501
653. https://web.dev/pwa-url-handler/
654. https://developer.mozilla.org/docs/Web/Manifest

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 479

https://almanac.httparchive.org/static/images/2021/capabilities/web-share-api-page-loads.png
https://almanac.httparchive.org/static/images/2021/capabilities/web-share-api-page-loads.png
https://chromestatus.com/metrics/feature/timeline/popularity/1501
https://web.dev/pwa-url-handler/
https://www.w3.org/TR/appmanifest/
https://developer.mozilla.org/docs/Web/Manifest
https://developer.mozilla.org/docs/Web/Manifest

{

 "url_handlers": [{

 "origin": "https://*.example.com"

 }]

}

If you want to register for origins other than your web app’s origin, you need to verify your

ownership of them655. The capability is at a relatively early stage: it’s only supported on Chrome

and Edge on the desktop. URL Handling is currently available as an Origin Trial656. This means

that the capability is not generally available yet. Instead, developers need to opt-in to using this

experimental API by registering for an Origin Trial token first and deliver this token along with

their website to use this capability. You can find more information in the Origin Trials Guide for

Web Developers657.

44 desktop and 41 mobile websites make use of URL Handling. For example, the Pinterest PWA

registers itself as a URL handler for the different Pinterest origins (e.g., *.pinterest.com
and *.pinterest.de) on installation.

Declarative Link Capturing

With the help of Declarative Link Capturing658, you can further control how PWAs should

behave when the user opens them. For instance, an office application may want to open another

window for a new document, while a music player wants to keep its single window open.

Therefore, Declarative Link Capturing defines three different modes:

1. none does not capture the link at all (the default)

2. new-client opens a new window for the PWA

3. existing-client-navigate navigates an existing client to the new URL or

opens a new window if no client exists

Figure 14.9. Desktop websites use URL Handling.

44

655. https://web.dev/pwa-url-handler/#the-web-app-origin-association-file
656. https://developer.chrome.com/blog/origin-trials
657. https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md
658. https://web.dev/declarative-link-capturing/

Part II Chapter 14 : Capabilities

480 2021 Web Almanac by HTTP Archive

https://web.dev/pwa-url-handler/#the-web-app-origin-association-file
https://web.dev/pwa-url-handler/#the-web-app-origin-association-file
https://developer.chrome.com/blog/origin-trials
https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md
https://github.com/GoogleChrome/OriginTrials/blob/gh-pages/developer-guide.md
https://web.dev/declarative-link-capturing/

Declarative Link Capturing also is an extension of the Web Application Manifest. To use it, you

need to add the capture_links property to your manifest. This property takes a string or an

array of strings matching the three modes from above. If you use an array, the browser will fall

back to the next entry if it doesn’t support a particular mode.

{

 "capture_links": [

 "existing-client-navigate",

 "new-client",

 "none"

]

}

This capability is at an early stage as well. It is only supported on Chrome OS. Currently, 36

desktop sites and 11 mobile sites use this capability, for example, Periodex659, a PWA showing

the periodic table of elements. This app uses the capture_links configuration as shown in

the listing above meaning that, if supported, the browser should reuse the existing window,

otherwise, open a new one, and if that’s not supported, it should behave as normal.

Hardware APIs

The next set of capabilities focuses on hardware-related APIs. In Chromium-based browsers,

there are many APIs to access hardware interfaces, including but not limited to USB, Bluetooth,

and serial devices. Furthermore, the Generic Sensor API allows you to read from device

sensors. All capabilities discussed in this section are only available on Chromium-based

browsers and on systems where the respective hardware interface or sensor is present.

Web USB API

The Web USB API allows developers to access USB devices without any drivers or third-party

Figure 14.10. Desktop websites use Declarative Link Capturing.

36

659. https://periodex.co/

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 481

https://periodex.co/
https://web.dev/usb/

applications. For instance, this capability is interesting for firmware updates that developers

otherwise would have to implement as separate platform-specific apps for different platforms.

You need to call the navigator.usb.requestDevice() method to access USB devices. It

takes an object which defines filters for the list of all connected USB devices. You need to

specify the vendorId at least. The browser shows a device picker where the user can choose a

matching device. From there, you can begin a device session.

try {

 const device = await navigator.usb.requestDevice({

 filters: [{ vendorId: 0x8086 }]

 });

 console.log(device.productName);

 console.log(device.manufacturerName);

} catch (err) {

 console.log(err);

}

The API has been generally available on Chromium-based browsers since version 61 (current

browser support for the Web USB API660). 182 desktop and 155 mobile sites use this API, for

example, the PWA Vysor661 that allows you to mirror the screen of an Android or iOS device—all

without installing any additional software on your computer.

Figure 14.11. Desktop websites use Web USB.

182

660. https://caniuse.com/webusb
661. https://app.vysor.io/#/

Part II Chapter 14 : Capabilities

482 2021 Web Almanac by HTTP Archive

https://caniuse.com/webusb
https://caniuse.com/webusb
https://app.vysor.io/#/

Web Bluetooth API

The Web Bluetooth API allows you to communicate with nearby Bluetooth Low Energy devices

using the Generic Attribute Profile (GATT)662. To find a matching device, call the

navigator.bluetooth.requestDevice() method. In the following example, the list of

Bluetooth devices is filtered by whether they offer a battery service or not. The browser shows

a device picker where the user can choose a Bluetooth device. Afterward, you can connect to

the remote device and gather the data.

try {

 const device = await navigator.bluetooth.requestDevice({

 filters: [{ services: ['battery_service'] }]

 });

 console.log(device.name);

} catch (err) {

 console.log(err);

Figure 14.12. The Vysor PWA uses Web USB to connect to USB devices and project their screen
contents onto the desktop.

662. https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-gap-gatt/

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 483

https://almanac.httparchive.org/static/images/2021/capabilities/web-usb.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/web-usb.jpg
https://web.dev/bluetooth/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-gap-gatt/

}

The API is generally available on Chromium-based browsers on Chrome OS, Android, macOS,

and Windows starting from version 56 (current browser support for the Web Bluetooth API663).

On Linux, the API is provided behind a flag. 71 desktop and 45 mobile sites make use of this

capability. For instance, the Brewfather664 PWA targeted at home brewers allows them to send a

beer recipe wirelessly over to a Bluetooth-enabled brewing system. Again, all without installing

any third-party software.

Web Serial API

The Web Serial API allows you to connect with serial devices such as microcontrollers. To do so,

call the navigator.serial.requestPort() method. You can optionally pass in a method

to filter the device list. The browser shows a device picker where the user can choose a device.

Figure 14.13. Desktop websites using the Web Bluetooth API.

71

Figure 14.14. The Brewfather app uses Web Bluetooth to send recipes to a brew controller.

663. https://caniuse.com/web-bluetooth
664. https://web.brewfather.app/

Part II Chapter 14 : Capabilities

484 2021 Web Almanac by HTTP Archive

https://caniuse.com/web-bluetooth
https://web.brewfather.app/
https://almanac.httparchive.org/static/images/2021/capabilities/web-bluetooth.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/web-bluetooth.jpg
https://web.dev/serial/

Next, you can open the connection by calling the port’s open() method.

try {

 const port = await navigator.serial.requestPort();

 await port.open({ baudRate: 9600 });

} catch (err) {

 console.log(err);

}

This capability is relatively new, as it shipped with Chromium 89 in March 2021 (current

browser support for the Web Serial API665). Currently, 15 desktop and 14 mobile sites use the

Web Serial API, including the Duino App666 that allows you to develop programs for Arduino and

ESP microcontrollers right in your browser. They are compiled on a remote server and then

uploaded to a connected board via the Web Serial API.

Figure 14.15. Desktop websites using the Web Serial API.

15

665. https://caniuse.com/web-serial
666. https://duino.app/

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 485

https://caniuse.com/web-serial
https://caniuse.com/web-serial
https://duino.app/

Generic Sensor API

Finally, the Generic Sensor API allows you to read sensor data from the device’s sensors, such as

the accelerometer, gyroscope, or orientation sensor. To access a sensor, you create a new

instance of a sensor class, e.g., Accelerometer . The constructor takes a configuration object

with the requested frequency. By attaching to the onreading and onerror events, you can

get notified for updated sensor values, or errors respectively. Finally, you need to start the

reading by calling the start() method.

try {

 const accelerometer = new Accelerometer({ frequency: 10 });

 accelerometer.onerror = (event) => {

 console.log(event);

 };

 accelerometer.onreading = (e) => {

 console.log(e);

 };

 accelerometer.start();

Figure 14.16. The Duino app is a web-based IDE that uses Web Serial to upload programs to
Arduino microcontrollers.

Part II Chapter 14 : Capabilities

486 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/capabilities/web-serial.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/web-serial.jpg
https://web.dev/generic-sensor/

} catch (err) {

 console.log(err);

}

The capability is supported by Chromium browsers starting from version 67 (current browser

support for the Generic Sensor API667). The relative orientation sensor is used by 824 desktop

and 831 mobile sites, the linear acceleration sensor by 257 desktop and 237 mobile sites, and

the gyroscope by 36 desktop and 22 mobile sites. An example application that uses all three of

them is VDO.Ninja668, the former OBS Ninja. This software allows you to remotely connect with

video broadcasting software such as OBS. The app allows the connected broadcasting software

to read sensor data from the device. For example, to capture a smartphone’s movements when

streaming virtual reality content. Fugu contributor Intel provides additional demos for the

Generic Sensor API669.

Figure 14.17. Usage of Generic Sensor APIs on desktop and mobile websites.

667. https://caniuse.com/mdn-api_sensor
668. https://obs.ninja/
669. https://intel.github.io/generic-sensor-demos/

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 487

https://almanac.httparchive.org/static/images/2021/capabilities/generic-sensor-api-usage.png
https://almanac.httparchive.org/static/images/2021/capabilities/generic-sensor-api-usage.png
https://caniuse.com/mdn-api_sensor
https://caniuse.com/mdn-api_sensor
https://obs.ninja/
https://intel.github.io/generic-sensor-demos/
https://intel.github.io/generic-sensor-demos/

Sites using the most capabilities

The analysis also identified the websites using the most capabilities from the HTTP Archive

data set. The detection script is capable of identifying 30 Fugu APIs in total. So, let’s give an

award to the websites that use the most Fugu APIs. The excitement is building!

Figure 14.18. The Generic Sensor API can be used to rotate 3D models according to the orientation
of the device.

Part II Chapter 14 : Capabilities

488 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/capabilities/generic-sensor-api.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/generic-sensor-api.jpg

1. The first place goes to whatwebcando.today670, which uses 28 capabilities. It

showcases different HTML5 device integration APIs by providing a live demo for

every capability. Naturally, the number of used APIs is very high. In the result set, a

similar site called whatpwacando.today671 showcases PWA capabilities and uses

eight APIs.

2. The runner-up is the PolisNotis672 PWA which shows police notices in Sweden. It

uses ten APIs, including the Declarative Link Capturing API to define that the PWA

should always open a new window when clicking a PWA-related link. The Web

Share API is used in the source code, but the sharing functionality is not exposed to

the UI. The app also uses the Badging API to alert the user via the app icon if there is

a new notice.

3. Closely followed in third place is the website System Scanner673, that uses nine APIs:

It shows an overview of the system information exposed by the browser, including

sensor information provided by the Generic Sensor API.

4. Eight sites use eight Fugu APIs: One of them is the aforementioned Excalidraw674, an

online drawing tool for creating drawings in a hand-drawn style. As a traditional

productivity app, it benefits from the new capabilities.

Some websites from the result set are Internet forums based on Discourse675. This forum

software supports a total of eight Fugu APIs. Discourse-based forums are installable and

support, among others, the Badging API to show the number of unread notifications.

The results also include sites that aren’t proactively using the APIs. For example, some sites ship

library code that could theoretically access the capabilities. Some sites check for the presence

Figure 14.19. The three websites that use the most Fugu APIs.

670. https://whatwebcando.today/
671. https://whatpwacando.today/
672. https://polisnotis.se/
673. https://system-scanner.net/
674. https://excalidraw.com/
675. https://www.discourse.org/

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 489

https://almanac.httparchive.org/static/images/2021/capabilities/fugu-podium.jpg
https://almanac.httparchive.org/static/images/2021/capabilities/fugu-podium.jpg
https://whatwebcando.today/
https://whatpwacando.today/
https://polisnotis.se/
https://system-scanner.net/
https://excalidraw.com/
https://www.discourse.org/

of Fugu APIs to determine the user’s browser.

Conclusion

Capabilities help move the web forward by unlocking more and more use cases for developers.

As this chapter shows, developers use the new web platform APIs to build powerful

applications. In contrast to their platform-specific counterparts, those applications don’t

necessarily need to be installed to the system and don’t require any additional third-party

runtimes or plugins to work. They run on any platform that can run a powerful browser.

One example of this concept working is Visual Studio Code. This application has always been

web-based, but it still relied on platform-specific application wrappers like Electron. Thanks to

capabilities like the File System Access API, Microsoft was able to release the application as a

browser application (vscode.dev676) in October 2021. Almost all features work here, except

debugging or terminal access since there is no capability for this (yet!).

Another example is Adobe Photoshop677, which was also released as a web application678 in

October 2021. Photoshop uses several of the capabilities presented here, as well as

WebAssembly, to migrate existing code to the web. Its vector-based counterpart Illustrator is

currently available as a closed beta and will be released at a later date. While the first editions

will still have a limited feature set, Adobe has already announced that it won’t stop there, but

that further expansion to the web is planned679.

Thus, the Capabilities project paves the way for entire categories of applications to finally

migrate to the web.

676. https://vscode.dev
677. https://photoshop.adobe.com
678. https://web.dev/ps-on-the-web/
679. https://web.dev/ps-on-the-web/#what's-next-for-adobe-on-the-web

Part II Chapter 14 : Capabilities

490 2021 Web Almanac by HTTP Archive

https://vscode.dev/
https://photoshop.adobe.com/
https://web.dev/ps-on-the-web/
https://web.dev/ps-on-the-web/#what's-next-for-adobe-on-the-web

Author

Christian Liebel

@christianliebel @https://mastodon.cloud/@christianliebel christianliebel

christianliebel https://christianliebel.com

Christian Liebel is a consultant at Thinktecture680, supporting clients from various

business areas in implementing great web applications. He is a Microsoft MVP for

Developer Technologies, Google GDE for Web/Capabilities and Angular, and

participates in the W3C Web Applications Working Group.

680. https://thinktecture.com

Part II Chapter 14 : Capabilities

2021 Web Almanac by HTTP Archive 491

https://x.com/christianliebel
https://mastodon.cloud/@christianliebel
https://github.com/christianliebel
https://www.linkedin.com/in/christianliebel/
https://christianliebel.com/
https://thinktecture.com/

492 2021 Web Almanac by HTTP Archive

Part II Chapter 15

PWA

Written by Demian Renzulli
Reviewed by Barry Pollard, Maxim Salnikov, Jeff Posnick, André Cipriani Bandarra, Kai Hollberg,
Hemanth HM, Pascal Schilp, and Adriana Jara
Analyzed by Barry Pollard and Demian Renzulli
Edited by Rick Viscomi

Introduction

Six years have passed since Frances Berriman681 and Alex Russell682 coined the term “Progressive

Web App” (PWA)683, which represented their vision for web apps that can be just as immersive as

native apps. The following attributes were listed to distinguish these types of experiences from

traditional websites:

• Responsive

• Progressively enhanced with service workers

• Having app-like interactions

681. https://x.com/phae
682. https://x.com/slightlylate
683. https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 493

https://x.com/phae
https://x.com/slightlylate
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

• Fresh

• Safe

• Discoverable

• Re-engageable

• Linkable

Over the last several years, the web platform has continued to evolve, reducing the gap

between web apps and OS-specific experiences, and allowing developers to provide users with

richer capabilities and new ways to stay engaged.

Despite that, it’s still difficult to draw a clear line between what is a PWA or not; some experts

might give more importance to creating an “appy” experience, characteristic of the shell and

content application model684, while others focus more on certain components and behaviors, like

having a service worker and a web app manifest, providing an offline experience, or other

advanced functionalities.

In this year’s PWA chapter, we’ll focus on all the measurable aspects of a PWA: usage of service

workers and its related APIs, web app manifests, and the most popular libraries and tools to

build PWAs. A PWA can use all or some of these functionalities. We’ll look at the level of

adoption of each component and API to get an idea of the level of penetration of these

technologies in the web ecosystem.

Note: This chapter will focus mostly on service worker related APIs in common use. For more cutting-
edge APIs, make sure to check out the Capabilities chapter.

Service workers

Service workers685 (introduced in December 2014) are one of the core components of a PWA.

They act as a network proxy and allow for features like offline, push notifications, and

background processing, which are characteristic of “app-like” experiences.

It took some time for service workers to become widely adopted, but today they are supported

by most major browsers686. However, this doesn’t mean that all service worker features work

across browsers. For example, while most of the core functionalities like network proxying are

available, APIs like Push are not yet available in WebKit687.

684. https://developers.google.com/web/fundamentals/architecture/app-shell
685. https://developer.mozilla.org/docs/Web/API/Service_Worker_API
686. https://caniuse.com/serviceworkers
687. https://caniuse.com/push-api

Part II Chapter 15 : PWA

494 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://caniuse.com/serviceworkers
https://caniuse.com/push-api

Service workers usage

We estimate that between 1.22% to 3.22% of sites use service workers in 2021, depending on

the type of measurement used. This year we have decided to take the 3.22% as the closest

approximation—for reasons we’ll explain next.

Measuring whether a service worker is used is not as simple as might seem. For example,

Lighthouse detects 1.5%, however it adds some extra checks in that definition688 rather than just

service worker usage so could be seen as a lower bound. Chrome itself measures 1.22% sites

using service workers689, which is strangely less than Lighthouse for reasons that we have not

been able to ascertain.

For this year’s PWA chapter, we’ve updated our measurement techniques by creating a new set

of metrics690. For example, we’re now using heuristics that check for several service worker

characteristics, like having service worker registration691 calls and use of service worker specific

methods, libraries, and events.

From the data we gathered, we can see that about 3.05% of desktop sites and 3.22% of mobile

sites use service workers features, which suggests that service worker usage might be higher

than measured in last year’s chapter692 (0.88% in desktop and 0.87% in mobile).

One might think that having a little more than 3% of sites registering a service worker in mobile

and desktop is a low number, but how does this translate to web traffic?

Chrome Platform Status693 provides usage statistics obtained from the Chrome browser.

According to those stats, service workers control 19.26% of page loads in July 2021694.

Compared to last year’s measurement of 16.6%695, this represents a yearly growth of 12% in

page loads controlled by service workers.

Figure 15.1. Percent of mobile sites that use service workers.

3.22%

688. https://web.dev/service-worker
689. https://httparchive.org/reports/progressive-web-apps#swControlledPages
690. https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/pwa.js
691. https://developer.mozilla.org/docs/Web/API/ServiceWorkerRegistration
692. https://almanac.httparchive.org/en/2020/pwa#service-worker-usage
693. https://www.chromestatus.com/features
694. https://www.chromestatus.com/metrics/feature/timeline/popularity/990
695. https://almanac.httparchive.org/en/2020/pwa#service-worker-usage

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 495

https://web.dev/service-worker
https://httparchive.org/reports/progressive-web-apps#swControlledPages
https://httparchive.org/reports/progressive-web-apps#swControlledPages
https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/pwa.js
https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/pwa.js
https://developer.mozilla.org/docs/Web/API/ServiceWorkerRegistration
https://almanac.httparchive.org/en/2020/pwa#service-worker-usage
https://www.chromestatus.com/features
https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://almanac.httparchive.org/en/2020/pwa#service-worker-usage

And how can we explain that approximately 3% of sites represent around 19% of the web

traffic? Intuitively, one might think that high traffic websites have more reasons to adopt

service workers. Having a larger user base means that users might arrive at the site from a

variety of devices and connectivities, so the incentives to adopt APIs that provide performance

benefits and reliability are higher. Also, these companies often have native apps, so there are

more reasons to bridge the UX gap between platforms, by implementing advanced capabilities

via service workers. The following data helps us prove that assumption:

When measuring the top 1,000 sites, 8.62% of them use service workers. As we broaden the

number of sites under analysis, the overall percentage starts to decrease. This indicates that

the most popular sites are more prone to use features like service workers and advanced

capabilities.

Figure 15.2. Percent of page views on a page that registers a service worker. (Source: Chrome
Platform Status696)

19.26%

Figure 15.3. Service worker controlled pages by rank.

696. https://www.chromestatus.com/metrics/feature/timeline/popularity/990

Part II Chapter 15 : PWA

496 2021 Web Almanac by HTTP Archive

https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://almanac.httparchive.org/static/images/2021/pwa/pwa-service-worker-controlled-pages-by-rank.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-service-worker-controlled-pages-by-rank.png

Service worker features

In this section, we’ll analyze the adoption of various service worker features (events697,

properties698, methods699) for most common PWA tasks (offline, push notifications, background

processing, etc.).

Service worker events

The ServiceWorkerGlobalScope700 interface represents the global execution context of a service

worker and is governed by different events701. One can listen to them in two ways: via event

listeners or service worker properties.

For example, here are two ways of listening to the install event in a service worker:

// Via event listener:

this.addEventListener('install', function(event) {

 // …

});

// Via properties:

this.oninstall = function(event) {

 // …

};

We have measured and combined both ways of implementing event listeners and obtained the

following stats:

697. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#events
698. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#properties
699. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#methods
700. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope
701. https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#events

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 497

https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#events
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#properties
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#methods
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#events

We can divide these events results into 3 subcategories:

• Lifecycle events

• Notification-related events

• Background processing events

Lifecycle events

The first two event listeners in the chart belong to lifecycle events702. Implementing these event

listeners allows you to optionally perform additional tasks when these events run. install is

triggered as soon as the worker executes, and it’s only called once per service worker, allowing

you to cache everything you need before the service worker takes control. activate fires

once a new service worker can control clients and the old service worker is gone. This is a good

time to do things such as clearing up old caches used by the previous service worker needed but

that are no longer necessary.

Both event listeners have a high adoption: 70.40% of mobile and 70.73% of desktop PWAs

implement an install event listener and 63.00% of mobile and 64.85% of desktop listen to

activate . This is expected as the tasks that can be performed inside these events are critical

Figure 15.4. Most used service worker events.

702. https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle

Part II Chapter 15 : PWA

498 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-most-used-service-worker-events.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-most-used-service-worker-events.png
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle

for performance and reliability (for example, precaching703). Reasons for not listening to lifecycle

events include: using service workers only for notifications (without any caching strategy) or

applying caching techniques only to requests made by the site while it is running, a technique

called runtime caching704 which is frequently (but not exclusively) used in combination with

precaching techniques.

Notification-related events

As shown in Figure 16.4 the next group of event listeners in popularity are push ,

notificationclick and notificationclose , which are related to Web Push

Notifications705. The most widely adopted is push , which lets you listen for push events sent by

the server, and it is used by 43.88% of desktop and 45.44% of mobile sites with service workers.

This demonstrates how popular web push notifications are in PWAs even when they are not yet

available in all browsers706.

Background processing events

The last group of events in Figure 16.4 allow you to run certain tasks in service workers in the

background, for example, to synchronize data or retry tasks when the connectivity fails.

Background Sync707 (via sync event listener) allows a web app to delegate a task to the service

worker and automatically retry it if it fails or there’s no connectivity (in which case the service

worker waits for connectivity to be back to automatically retry). Periodic Background Sync708

(via periodicSync) allows running tasks at periodic intervals in the service worker (for

example, fetching and caching the top news every morning). Other APIs like Background

Fetch709, don’t show up in the chart, as their usage is still quite low.

As seen, background sync techniques don’t have wide adoption yet compared to the others.

This is in part because use cases for background sync are less frequent, and the APIs are not yet

available across all browsers. Periodic Background Sync710 also requires the PWA to be installed

for it to be used, which makes it unavailable for sites that don’t provide “add to home screen”711

functionality.

Despite that, there are some important reasons for using background sync in modern web apps:

one of them being offline analytics (Workbox Analytics uses Background Sync for this712), or

703. https://developers.google.com/web/tools/workbox/modules/workbox-precaching
704. https://web.dev/runtime-caching-with-workbox/
705. https://developers.google.com/web/fundamentals/push-notifications
706. https://caniuse.com/push-api
707. https://developers.google.com/web/updates/2015/12/background-sync
708. https://web.dev/periodic-background-sync/
709. https://developers.google.com/web/updates/2018/12/background-fetch
710. https://developer.mozilla.org/docs/Web/API/Web_Periodic_Background_Synchronization_API
711. https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen
712. https://developers.google.com/web/tools/workbox/modules/workbox-google-analytics

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 499

https://developers.google.com/web/tools/workbox/modules/workbox-precaching
https://web.dev/runtime-caching-with-workbox/
https://developers.google.com/web/fundamentals/push-notifications
https://developers.google.com/web/fundamentals/push-notifications
https://caniuse.com/push-api
https://caniuse.com/push-api
https://developers.google.com/web/updates/2015/12/background-sync
https://web.dev/periodic-background-sync/
https://developers.google.com/web/updates/2018/12/background-fetch
https://developers.google.com/web/updates/2018/12/background-fetch
https://developer.mozilla.org/docs/Web/API/Web_Periodic_Background_Synchronization_API
https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen
https://developers.google.com/web/tools/workbox/modules/workbox-google-analytics

retrying failed queries due to lack of connectivity (as some search engines do713).

Note: Unlike previous years, we have decided not to include the fetch and message events in this

analysis, as those can also appear outside service workers, which could lead to a high number of false
positives. So, the above analysis is for service worker-specific events. According to 2020 data, fetch
was used almost as much as install .

Other popular service worker features

Besides event listeners, there are other important service worker functionalities that are

interesting to call out, given their usefulness and popularity.

The following two events are quite popular and frequently used in tandem:

• ServiceWorkerGlobalScope.skipWaiting()

• Clients.claim()

ServiceWorkerGlobalScope.skipWaiting() is usually called at the beginning of the

install event and allows a newly installed service worker to immediately move to the

active state, even if there’s another active service worker. Our analysis showed that it is used

in 60.47% of desktop and 59.60% of mobile PWAs.

Clients.claim() is frequently used in combination with skipWaiting() , and it allows

active service workers to “claim control” of all the clients under its scope. Appears in 48.98% of

desktop pages and 47.14% of mobile.

Combining both of the previous events means that a new service worker will immediately come

into effect, replacing the previous one, without having to wait for active clients (for example,

Figure 15.5. Percent of mobile sites with service workers that call skipWaiting() .

59.60%

Figure 15.6. Percent of mobile sites with service workers that call clients.claim() .

47.14%

713. https://web.dev/google-search-sw/

Part II Chapter 15 : PWA

500 2021 Web Almanac by HTTP Archive

https://web.dev/google-search-sw/
https://almanac.httparchive.org/en/2020/pwa#service-worker-events
https://almanac.httparchive.org/en/2020/pwa#service-worker-events
https://almanac.httparchive.org/en/2020/pwa#service-worker-events
https://almanac.httparchive.org/en/2020/pwa#service-worker-events
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting
https://developer.mozilla.org/docs/Web/API/Clients/claim
https://developer.mozilla.org/docs/Web/API/Clients/claim

tabs) to be closed and reopen at a later point (for example, a new user session), which is the

default behavior. Developers find this technique useful to ensure that every critical update goes

through immediately, which explains its wide adoption.

Another interesting aspect to analyze are caching operations, which are frequently used in

service workers and are at a core of a PWA experience, since they enable features like offline

and help improving performance. The ServiceWorkerGlobalScope.caches property

returns the CacheStorage object714 associated with a service worker allowing access to the

different caches715. We’ve found that it is used in 57.41% desktop and in 57.88% mobile sites

that use service workers.

Its high usage is not unexpected as caching allows for reliable and performant web applications,

which is often one of the main reasons why developers work on PWAs.

Finally, it’s worth taking a look at Navigation Preloads716, which allows you to make the requests

in parallel with the service worker boot-up time to avoid delaying the requests in those

situations. The NavigationPreloadManager interface provides a set of methods to

implement this technique, and according to our analysis, it is currently used in 11.02% of

desktop and 9.78% of mobile sites that use service workers.

Navigation Preloads counts with a decent level of adoption, despite the fact that it’s not yet

available in all browsers717. It’s a technique that many developers could benefit from, and they

can implement it as a progressive enhancement718.

Figure 15.7. Percent of mobile sites with service workers that use the service worker cache.

57.88%

Figure 15.8. Percent of mobile sites with use navigation preloads.

9.78%

714. https://developer.mozilla.org/docs/Web/API/CacheStorage
715. https://developer.mozilla.org/docs/Web/API/Cache
716. https://developers.google.com/web/updates/2017/02/navigation-preload
717. https://caniuse.com/?search=navigation%20preload%20manager
718. https://developer.mozilla.org/docs/Glossary/Progressive_Enhancement

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 501

https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/caches
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope/caches
https://developer.mozilla.org/docs/Web/API/CacheStorage
https://developer.mozilla.org/docs/Web/API/Cache
https://developers.google.com/web/updates/2017/02/navigation-preload
https://developer.mozilla.org/docs/Web/API/NavigationPreloadManager
https://developer.mozilla.org/docs/Web/API/NavigationPreloadManager
https://caniuse.com/?search=navigation%20preload%20manager
https://caniuse.com/?search=navigation%20preload%20manager
https://developer.mozilla.org/docs/Glossary/Progressive_Enhancement

Web App Manifests

The Web App Manifest719 is a JSON file that contains metadata about a web application and it’s

one of the main components of a PWA, as publishing a web app manifest is one of the

preconditions to provide the “add to home screen” functionality, which allows users to install a

web app on their device. Other conditions include serving the site via HTTPS, having an icon,

and in some browsers (like Chrome and Edge), having a service worker. Take into account that

different browsers have different criteria for installation720.

Here are some usage stats about Web App Manifests. It’s useful to visualize them along with

the service worker ones, to start having an idea of the potential percentage of “installable” web

applications:

Manifests are used on more than twice as many pages as service workers. One of the reasons

being that some platforms (like CMSs) automatically generate manifest files for sites, even

those without service workers.

On the other hand, service workers can be used without a manifest. For example, some

developers might want to add push notifications, caching or offline functionality to their sites,

but might not be interested in installability, and therefore, not create a manifest.

Figure 15.9. Service worker and manifest usage.

719. https://developer.mozilla.org/docs/Web/Manifest
720. https://web.dev/installable-manifest/#in-other-browsers

Part II Chapter 15 : PWA

502 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Manifest
https://web.dev/installable-manifest/#in-other-browsers
https://almanac.httparchive.org/static/images/2021/pwa/pwa-service-worker-and-manifest-usage.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-service-worker-and-manifest-usage.png

In the figure above, we can see that 1.57% of desktop and 1.71% of mobile sites have both a

service worker and a manifest. This is a first approximation to the potential percentage of

“installable” websites.

Besides having a web app manifest and service worker, the content of the manifest also needs

to meet some additional installability criteria721 for a web application to be installable. We’ll

analyze each of its properties next.

Manifest properties

The following chart shows the usage of standard manifest properties722, in the group of sites that

also have a service worker.

This chart is interesting when combined with the Lighthouse Installable Manifests criteria723.

Lighthouse724 is a popular tool to analyze the quality of websites and, as we’ll see in the

Lighthouse Insights section, 61.73% of PWA sites have an installable manifest based on these

criteria.

Next we’ll analyze each of the Lighthouse installability requirements, one by one, according to

the previous chart:

Figure 15.10. Top PWA manifest properties.

721. https://web.dev/installable-manifest/
722. https://w3c.github.io/manifest/#web-application-manifest
723. https://web.dev/installable-manifest/
724. https://developers.google.com/web/tools/lighthouse

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 503

https://web.dev/installable-manifest/
https://w3c.github.io/manifest/#web-application-manifest
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-pwa-manifest-properties.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-pwa-manifest-properties.png
https://web.dev/installable-manifest/
https://developers.google.com/web/tools/lighthouse

• A name or short_name : The name property is present in 90% of sites, while the

short_name appears on 83.08% and 84.69% of desktop and mobile sites

respectively. The high usage of these properties makes sense as both are key

attributes: the name is displayed in the user’s home screen, but if it’s too long or

the space in the screen is too small, the short_name might end up being displayed

instead.

• icon : This property appears in 84.69% of desktop and 86.11% of mobile sites.

Icons are used in various places: the home screen, the OS task switcher, etc. This

explains its high adoption.

• start_url : This property exists in 82.84% of desktop and 84.66% mobile sites.

This is another important property for PWAs, as it indicates what URL will be

opened when the user launches the web application.

• display : This property is declared in 86.49% of desktop and 87.67% of mobile

sites. It’s used to indicate the display mode of the website. If it’s not indicated, the

default value is browser , which is the conventional browser tab, so most PWAs

declare it to indicate that it should be opened in standalone mode instead. The

ability to open in standalone mode is one of the things that help create an “app-like”

experience.

• prefer_related_applications : This property appears in 6.87% of desktop

and 7.66% of mobile sites, which seems like a low percentage compared to the rest

of the properties in this list. The reason is that Lighthouse doesn’t require it to be

present, it only suggests against having it set with a value of true .

Next, we’ll dig deeper into the properties that allow us to define a set of values. To understand

which ones are the most widely used.

Part II Chapter 15 : PWA

504 2021 Web Almanac by HTTP Archive

Top manifest icon sizes

The most popular icon sizes, by far, are: 192x192 and 512x512, which are the sizes that

Lighthouse recommends725. In practice, developers also provide a variety of sizes, to make sure

that they look good on various device screens.

Figure 15.11. Top PWA manifest icon sizes.

725. https://web.dev/add-manifest/#icons

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 505

https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-pwa-manifest-icon-sizes.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-pwa-manifest-icon-sizes.png
https://web.dev/add-manifest/#icons

Top manifest display values

The display property determines the developer’s preferred mode for the website. The

standalone mode makes installed PWAs open without any browser UI element, making it

“feel like an app”. The chart shows that the most sites with a service worker and manifest uses

this value: 74.83% on desktop and 79.02% on mobile.

Manifests preferring native

Finally, we’ll analyze prefer_related_applications . If the value of this property is set to

true , the browser might suggest installing one of the related applications instead of the web

app.

Figure 15.12. PWA manifest display values.

Part II Chapter 15 : PWA

506 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-manifest-display-values.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-manifest-display-values.png

prefer_related_applications appears only in 6.87% of desktop and 7.66% of mobile

sites. The chart shows that 97.92% of desktop and 93.03% of mobile sites that defined this

property have a value of false . This indicates that most PWA developers prefer to offer the

PWA experience rather than a native app.

Despite the fact that the vast majority of PWA developers prefer promoting their PWA

experiences to native applications, some well-known PWAs (like Twitter), still prefer

recommending the native app over the PWA experience. This might be due to a preference of

the teams building these experiences, or some specific business needs (lack of some API in the

web).

Note: Instead of making this decision statically at configuration, developers can also create more
dynamic heuristics726 to promote an experience, for example, based on the user’s behavior or other
characteristics (device, connection, location, etc.).

Top manifest categories

In last year’s PWA chapter we included a section about manifest categories727, showing the

percentage of PWAs per industry, based on the manifest categories728 property.

This year we decided not to rely on this property to determine how many PWAs of each

Figure 15.13. Manifests preferring native app.

726. https://web.dev/define-install-strategy/
727. https://almanac.httparchive.org/en/2020/pwa#top-manifest-categories
728. https://developer.mozilla.org/docs/Web/Manifest/categories

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 507

https://almanac.httparchive.org/static/images/2021/pwa/pwa-manifests-preferring-native-app.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-manifests-preferring-native-app.png
https://web.dev/define-install-strategy/
https://web.dev/define-install-strategy/
https://almanac.httparchive.org/en/2020/pwa#top-manifest-categories
https://developer.mozilla.org/docs/Web/Manifest/categories

category are out there, since the usage of this property is incredibly low (less than 1% of sites

have this property set).

Given our lack of data on categories and industries using PWAs, we turn to external sources for

this information. Mobsted recently published their own analysis of the use of PWAs729, which

analyzed the percentage of PWAs by industry, among other things:

According to Mobsted’s analysis, the most common categories are “Business & Industrial”, “Arts

& Entertainment”, and “Home & Garden”.This seems to correlate with last year’s analysis of the

“category” web manifest property731, where the top three values were “shopping”, “business” and

Figure 15.14. PWA industry categories (Source: Mobsted PWA 2021 report730).

729. https://mobsted.com/world_state_of_pwa_2021
730. https://mobsted.com/world_state_of_pwa_2021
731. https://almanac.httparchive.org/en/2020/pwa#top-manifest-categories

Part II Chapter 15 : PWA

508 2021 Web Almanac by HTTP Archive

https://mobsted.com/world_state_of_pwa_2021
https://almanac.httparchive.org/static/images/2021/pwa/pwa-industry-categories.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-industry-categories.png
https://mobsted.com/world_state_of_pwa_2021
https://almanac.httparchive.org/en/2020/pwa#top-manifest-categories
https://almanac.httparchive.org/en/2020/pwa#top-manifest-categories

“entertainment”.

Lighthouse insights

In the manifest properties section we mentioned the installability requirements732 that

Lighthouse has on web app manifest files. Lighthouse also provides checks for other aspects

that make a PWA. It should be noted that the HTTP Archive currently only runs the Lighthouse

tests as part of its mobile crawl, as noted in our Methodology.

The following chart shows the percentage of sites that pass each criteria, where “PWA sites”

contains stats for sites that have a service worker and a manifest, “All sites” contains data for all

the totality sites:

As expected, the table shows that the group of sites that we have identified as PWAs (those

having a service worker and manifest) tend to pass each Lighthouse PWA audit. While some

audits that are non-PWA specific (for example, setting viewports, or redirecting HTTP to

HTTPS) are scored highly by all sites, there is a distinct difference for the PWA-specific audits,

with these really only being used by PWA sites.

It’s interesting to note that maskable icons733 have a low pass-rate even for PWA sites compared

Figure 15.15. Lighthouse PWA audits.

732. https://web.dev/installable-manifest/
733. https://web.dev/maskable-icon/

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 509

https://web.dev/installable-manifest/
https://almanac.httparchive.org/static/images/2021/pwa/pwa-lighthouse-pwa-audits.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-lighthouse-pwa-audits.png
https://web.dev/maskable-icon/

to the rest of the PWA audits. Using maskable icons lets you enhance the look and feel of icons

in Android devices, making them fill up the entire shape assigned to it (like a responsive feature

for icons). This feature is optional and mostly interesting for PWAs that offer an installable

experience. Unlike other PWA features (like offline), sites that are not PWAs will rarely be

interested in it.

Lighthouse also provides a PWA score734, based on the “pass rate” of all these audits. The

following chart compares the resulting scores among the two groups analyzed before:

Here are some observations:

• The median score for “PWA sites” is 83, versus 42 for “All sites”.

• At the top end we see that for the “PWA sites”, at least 10% score the maximum

(100) score for PWA. When looking at “All sites” the 75th and 90th percentile reach

a value of, at most, 50.

• Taking a look at the lower end of the chart, 90% of “PWA sites” have a Lighthouse

PWA score of, at least 50, compared to 25 when we look across all sites.

Once again, the difference between both groups is expected, as “PWA sites” are naturally prone

to pass the PWA-specific requirements more often than “All sites”. In any case, the median score

Figure 15.16. Lighthouse PWA scores.

734. https://web.dev/lighthouse-pwa/

Part II Chapter 15 : PWA

510 2021 Web Almanac by HTTP Archive

https://web.dev/lighthouse-pwa/
https://almanac.httparchive.org/static/images/2021/pwa/pwa-lighthouse-pwa-scores.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-lighthouse-pwa-scores.png

of 83 for PWA sites, suggests that a good portion of PWA developers are aligned with best

practices.

Service worker libraries

Service workers can use libraries to take care of common tasks, functionalities and best

practices (e.g., to implement caching techniques, push notifications, etc.). The most common

way of doing this is by using importScripts()735, which is the way of importing JavaScript libraries

in workers. In other cases, build tools can also inject the code of libraries directly into service

workers at build time.

Take into account that not all libraries can be used in worker contexts. Workers don’t have

access to the Window736, and therefore, the Document737 object, and have limited access to

browser APIs. For that reason, service worker libraries are specifically designed to be used in

these contexts.

In this section we’ll analyze the popularity of various service worker libraries.

Popular import scripts

The following chart shows the percentage of usage for the various libraries imported via

importScripts() .

735. https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
736. https://developer.mozilla.org/docs/Web/API/Window
737. https://developer.mozilla.org/docs/Web/API/Document

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 511

https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
https://developer.mozilla.org/docs/Web/API/Window
https://developer.mozilla.org/docs/Web/API/Document

Workbox is still the most popular library, being used by 15.43% of desktop and 16.58% of

mobile sites with service workers, although this may be interpreted as a proxy for Workbox

adoption in general. The next section takes a more holistic and accurate approach to measuring

adoption.

It’s also important to note that the Workbox predecessor sw_toolbox , which had 13.92% of

usage in desktop and 12.84% in mobile last year738 dropped to 0.51% and 0.36% respectively this

year. This is in part due to the fact that sw_toolbox was deprecated in 2019739. It might have

taken some time for some popular frameworks and build tools to remove this package, so we

are seeing the drop in adoption more clearly this year. Also, our measurement has changed

compared to 2020, by adding more sites, which made this metric decrease even more, making it

difficult to do a direct year on year comparison.

Note: Take into account that importScripts() is an API of WorkerGlobalScope that can be

used in other types of worker context like Web Workers740. reCaptcha741, for example, appears as the
second most widely used library, as it uses a web worker that contains an importScripts() call to

retrieve the reCaptcha JavaScript code. For that reason, we should consider Firebase742 instead as the
second most widely used library in service worker contexts.

Figure 15.17. Popular PWA libraries and scripts.

738. https://almanac.httparchive.org/en/2020/pwa#popular-import-scripts
739. https://github.com/GoogleChromeLabs/sw-toolbox/pull/288
740. https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
741. https://www.google.com/recaptcha/about/
742. https://firebase.google.com/docs/web/setup

Part II Chapter 15 : PWA

512 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-libraries-and-scripts.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-libraries-and-scripts.png
https://almanac.httparchive.org/en/2020/pwa#popular-import-scripts
https://almanac.httparchive.org/en/2020/pwa#popular-import-scripts
https://github.com/GoogleChromeLabs/sw-toolbox/pull/288
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope
https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
https://www.google.com/recaptcha/about/
https://firebase.google.com/docs/web/setup

Workbox usage

Workbox743 is a set of libraries that packages a set of common tasks and best practices for

building PWAs. According to the previous chart, Workbox is the most popular library in service

workers. So, let’s take a closer look at how it’s used in the wild.

Starting with Workbox 5744, the Workbox team has encouraged developers to create custom

bundles of the Workbox runtime instead of using importScripts() to load workbox-sw
(the runtime). The Workbox team will continue supporting workbox-sw , but the new

technique is now the recommended approach. In fact, the defaults for the build tools have

switched to prefer that method.

Based on that, we measured sites using any type of Workbox features and found that the

number of sites with service workers using it is much higher than noted above: 33.04% of

desktop and 32.19% of mobile PWAs.

Figure 15.18. Percentage of mobile sites with service workers that use the Workbox library.

32.19%

743. https://developers.google.com/web/tools/workbox
744. https://github.com/GoogleChrome/workbox/releases/tag/v5.0.0

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 513

https://developers.google.com/web/tools/workbox
https://github.com/GoogleChrome/workbox/releases/tag/v5.0.0
https://developers.google.com/web/tools/workbox/modules/workbox-sw
https://developers.google.com/web/tools/workbox/modules/workbox-sw

Workbox versions

The chart shows that version 6.1.15745 has the highest level of adoption compared to others.

That version was released on April 13th, 2021, and was the latest version at the time of our

crawl in July 2021.

There were more versions746 released since that time, and based on the behavior observed on

the chart, we expect them to become the most widely used shortly after being launched.

There are also older versions that still count with wide adoption. The reason for that is that

some popular tools have adopted older Workbox versions in the past and continue providing it,

namely:

• Version 4.3.1 usage is mostly driven by create-react-app version 3747.

• Version 3.0.0 similarly, is included in create-react-app version 2748.

Figure 15.19. Top 10 workbox versions.

745. https://github.com/GoogleChrome/workbox/releases/tag/v6.1.5
746. https://github.com/GoogleChrome/workbox/releases
747. https://github.com/facebook/create-react-app/blob/v3.4.4/packages/react-scripts/package.json#L82
748. https://github.com/facebook/create-react-app/blob/v2.1.8/packages/react-scripts/package.json#L72

Part II Chapter 15 : PWA

514 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-workbox-versions.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-workbox-versions.png
https://github.com/GoogleChrome/workbox/releases/tag/v6.1.5
https://github.com/GoogleChrome/workbox/releases
https://github.com/facebook/create-react-app/blob/v3.4.4/packages/react-scripts/package.json#L82
https://github.com/facebook/create-react-app/blob/v2.1.8/packages/react-scripts/package.json#L72

Workbox packages

The Workbox library is provided as a set of packages or modules749 that contain specific

functionalities. Each package serves a specific need and can be used together or on its own.

The following table shows the usage of Workbox of the most popular packages:

The chart above shows that the following packages are the four most widely used:

• Workbox Core750: This package contains the common code that each Workbox

module relies on (for example, the code to interact with the console and throw

meaningful errors). That’s why it’s the most widely used.

• Workbox Routing751: This package allows to intercept requests and respond to them

in different ways. It’s also a very common task inside a service worker, so it’s quite

popular.

• Workbox Precaching752: This package allows sites to save some files to the cache

while the service worker is installing. This set of files usually constitute the “version”

of a PWA (similar to the version of a native app).

Figure 15.20. Top workbox packages.

749. https://developers.google.com/web/tools/workbox/modules
750. https://developers.google.com/web/tools/workbox/modules/workbox-core
751. https://developers.google.com/web/tools/workbox/modules/workbox-routing
752. https://developers.google.com/web/tools/workbox/modules/workbox-precaching

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 515

https://developers.google.com/web/tools/workbox/modules
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-workbox-packages.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-top-workbox-packages.png
https://developers.google.com/web/tools/workbox/modules/workbox-core
https://developers.google.com/web/tools/workbox/modules/workbox-routing
https://developers.google.com/web/tools/workbox/modules/workbox-precaching

• Workbox Strategies753: Unlike precaching, which takes place at the service worker

“install” event, this package enables runtime caching strategies to determine how a

service worker generates a response after receiving a fetch event.

Workbox strategies

As mentioned, Workbox provides a set of built-in strategies to respond to network requests.

The following chart helps us see the adoption of the most popular runtime caching strategies:

NetworkFirst , CacheFirst and Stale While Revalidate are, by far, the most widely

used. These strategies let you respond to requests by combining the network and the cache in

different ways. For example: the most popular runtime caching strategy: NetworkFirst will

try to fetch the latest response from the network. If the result is successful, it will put the result

in the cache. If the network fails, the cache response will be used.

Other strategies, like NetworkOnly and CacheOnly will resolve a fetch() request by

going either to the network or cache, without combining these two options. This might make

them less attractive for PWAs, but there are still some use cases where they make sense. For

example, they can be combined with plugins754 to extend their functionality.

Figure 15.21. Top Workbox runtime caching strategies.

753. https://developers.google.com/web/tools/workbox/modules/workbox-strategies
754. https://developers.google.com/web/tools/workbox/modules/workbox-strategies#using_plugins

Part II Chapter 15 : PWA

516 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/workbox/modules/workbox-strategies
https://almanac.httparchive.org/static/images/2021/pwa/pwa-workbox-runtime-caching-strategies.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-workbox-runtime-caching-strategies.png
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#network_first_network_falling_back_to_cache
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#network_first_network_falling_back_to_cache
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#cache_first_cache_falling_back_to_network
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#cache_first_cache_falling_back_to_network
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#stale-while-revalidate
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#stale-while-revalidate
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#network_only
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#network_only
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#cache_only
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#cache_only
https://developers.google.com/web/tools/workbox/modules/workbox-strategies#using_plugins

Web Push notifications

Web Push notifications are one of the most powerful ways of keeping users engaged in a PWA.

They can be sent to mobile and desktop users and can be received even when the web app is

not in the foreground or even opened (either as a standalone app or in a browser tab).

Here are some usage stats for some most popular notification-related APIs:

Pages subscribe to notifications via the PushManager interface of the Push API755, which is

accessed via the pushManager property of the ServiceWorkerRegistration interface.

It’s used by 44.14% of desktop and 45.09% of mobile PWAs.

Also as shown in Figure 16.4 related to service worker events, the push event listener, which

is used to receive push messages, is used by 43.88% of desktop and 45.44% of mobile PWAs.

The service worker interface also allows listening to some events to handle user interactions on

notifications. Figure 16.4 shows that notificationclick (which captures clicks on

notifications) is used by 45.64% of desktop and 46.62% of mobile PWAs.

notificationclose is used less frequently: 5.98% of desktop and 6.34% of mobile PWAs.

This is expected as there are fewer use cases where it makes sense to listen for the notification

“close” event, than for notification “clicks”.

Note: It’s interesting to see that service worker notification events (e.g., push ,

notificationclick) have even more usage the pushManager property, which is used, for

example, to request permission for web push notifications (via pushManager.subscribe). One of

the reasons for this might be that some sites have implemented web push and decided to roll them
back at some point, by eliminating the code to request permission for them, but leaving the service
worker code unchanged.

Web Push notification acceptance rates

For a notification to be useful it has to be timely, precise, and relevant756. At the moment of

showing the prompt to request permission, the user needs to understand the value of the

Figure 15.22. Percent of mobile sites with service workers that used some method of the
pushManager property.

45.09%

755. https://developer.mozilla.org/docs/Web/API/Push_API
756. https://developers.google.com/web/fundamentals/push-notifications

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 517

https://developer.mozilla.org/docs/Web/API/PushManager
https://developer.mozilla.org/docs/Web/API/PushManager
https://developer.mozilla.org/docs/Web/API/Push_API
https://developer.mozilla.org/docs/Web/API/ServiceWorkerRegistration
https://developer.mozilla.org/docs/Web/API/ServiceWorkerRegistration
https://developers.google.com/web/fundamentals/push-notifications

service. Good notification updates have to provide something useful to the users and related to

the reason why the permission was granted.

The following chart comes from the Chrome UX Report and shows the acceptance rates for

notifications permission prompts:

Mobile has a higher acceptance rate than desktop (20.67% vs 8.28%). This suggests that users

tend to find mobile notifications more useful. We can attribute this to two reasons: (1) Users

are more familiar with notifications on phones than on desktops, and the utility of a notification

in the mobile context is more obvious and (2) the mobile UI for the notification prompt is

typically more prominent.

Mobile also has a higher “deny” rate than desktop (45.32% vs 10.70%), and desktop users tend

to “ignore” notifications more frequently (19.45% in mobile vs. 29.21 in desktop). The reason

for this is that the mobile enrollment UI is much more intrusive than desktop, making the user

more frequently decide for either accepting or rejecting the notification. Also, on Desktop

devices there are situations when, if a user navigates away from the tab the prompt is

dismissed, and the decision is recorded as “ignore” the space to click outside of the prompt to

“ignore” the prompt is much bigger.

Figure 15.23. Notification acceptance rates.

Part II Chapter 15 : PWA

518 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-notification-acceptance-rates.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-notification-acceptance-rates.png

Distribution

An important aspect of a PWA is that it allows users to access the web experience in ways

beyond typing a URL in the browser URL bar. Users can also install the web app in various ways

and access it via a home screen icon. This is one of the most engaging features of native apps,

that PWAs also make possible.

Ways to distribute this installable experience include:

• Prompting the user to install the PWA via the add to home screen757 functionality.

• Uploading the PWA to App Stores by packaging it with Trusted Web Activity

(TWA)758 (currently available in any Android app store, including Google Play and

Microsoft Store).

Next, we’ll share some stats related to these techniques, to have an idea of the usage and

growth of these trends.

Add to home screen

So far, we have analyzed the pre-conditions for add to home screen, like having a service worker

and an installable web app manifest.

In addition to the browser-provided install experience, developers can provide their own

custom install flow directly within the app.

The onbeforeinstallprompt property of the Window object allows the document to

capture the event fired when the user is about to be prompted to install a web application.

Developers can then decide if they want to show the prompt directly or defer it to show it when

they think it’s more appropriate.

Our analysis showed that beforeinstallprompt is being used in 0.48% of desktop and

0.63% of mobile sites that have a service worker and a manifest.

757. https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen
758. https://developer.chrome.com/docs/android/trusted-web-activity

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 519

https://developer.mozilla.org/docs/Web/Progressive_web_apps/Add_to_home_screen
https://developer.chrome.com/docs/android/trusted-web-activity
https://developer.chrome.com/docs/android/trusted-web-activity
https://developer.mozilla.org/docs/Web/API/Window/onbeforeinstallprompt
https://developer.mozilla.org/docs/Web/API/Window/onbeforeinstallprompt

The BeforeInstallPromptEvent API is not yet available in all browsers759, which explains

the relatively low usage. Let’s take a look now at the percentage of traffic that this represents:

Figure 15.24. PWA install events.

Figure 15.25. Percentage of page view on a page that use beforeinstallprompt (Source:

Chrome Platform Status760)

759. https://caniuse.com/mdn-api_beforeinstallpromptevent
760. https://www.chromestatus.com/metrics/feature/timeline/popularity/1436

Part II Chapter 15 : PWA

520 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/pwa/pwa-install-events.png
https://almanac.httparchive.org/static/images/2021/pwa/pwa-install-events.png
https://caniuse.com/mdn-api_beforeinstallpromptevent
https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
https://www.chromestatus.com/metrics/feature/timeline/popularity/1436

According to Chrome Platform Status761, the percentage of page loads using this feature is near

4%762, which suggests that some high traffic sites might be using it. Additionally, we can see that

there was a 2.5 percentage point growth in adoption compared to last year.

App Store distribution

Historically, developers have built web-based mobile applications and uploaded them to App

Stores as an alternative to building apps with OS-specific languages (Java or Kotlin for Android,

Objective-C or Swift for iOS). The most common approach is to use a cross-platform, hybrid

solution like Cordova763 that allows one to write the code once and generate multiple versions of

it for various platforms. The resulting code usually uses the WebView764 to render web content,

but also provides a series of non-standard APIs that can access features from the device.

WebView-based apps may look similar to native apps, but certainly there are some caveats.

Since a WebView is just a rendering engine, users may have different experiences than in a full

browser. The latest browser APIs might not be available and most importantly, cookies are not

shareable between WebViews and browsers.

TWAs allow you to package your PWA into a native application shell and upload it to some App

Stores. Unlike WebView-based solutions, a TWA is not just a rendering engine; it’s the full

browser running in fullscreen mode. For that reason, it’s feature-complete and evergreen,

meaning that it’s always up to date and will give you access to the latest web APIs.

Developers can package their PWAs into native apps with TWA directly, by using Android

Studio765, but there are several tools that make this task much easier. Next, we’ll analyze two of

them: PWA Builder and Bubblewrap.

PWA Builder

PWA Builder766 is an open-source project that can help web developers to build Progressive

Web Apps and package them for app stores like the Microsoft Store and Google Play Store. It

starts by reviewing a provided URL to check for an available manifest, service worker, and SSL.

PWA Builder reviewed 200k URLs over a 3-month timeslot767 and discovered that:

• 75% had a manifest detected

761. https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
762. https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
763. https://cordova.apache.org/
764. https://developer.android.com/reference/android/webkit/WebView
765. https://developer.chrome.com/docs/android/trusted-web-activity/integration-guide
766. https://www.pwabuilder.com/
767. https://x.com/pwabuilder/status/1454250060326318082?s=21

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 521

https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
https://www.chromestatus.com/metrics/feature/timeline/popularity/1436
https://cordova.apache.org/
https://developer.android.com/reference/android/webkit/WebView
https://developer.chrome.com/docs/android/trusted-web-activity/integration-guide
https://developer.chrome.com/docs/android/trusted-web-activity/integration-guide
https://www.pwabuilder.com/
https://x.com/pwabuilder/status/1454250060326318082?s=21

• 11.5% had a service worker detected

• 9.6% are installable PWAs from the browser (manifest and SW and https)

Bubblewrap

Bubblewrap768 is a set of tools and libraries designed to help developers to create, build, and

update projects for Android apps that launch PWAs using TWA.

By using Bubblewrap, developers don’t need to be aware of any details around Android tools

(like Android Studio), which makes it very easy to use for web developers.

While we don’t have usage stats for Bubblewrap, there are some notable tools that are known

to rely on it. For example, PWA Builder and PWA2APK769 are powered by Bubblewrap.

Conclusion

Six years after the term “Progressive Web Apps” was coined, the adoption of its core

technologies continues to grow. Service workers will soon control 20% of web traffic, and sites

continue adding more capabilities each year.

In 2021, developers have a diverse range of options to build and distribute their web

applications, including tools that allow them to take on the most common tasks, and offer easy

ways of uploading these experiences to app stores.

Year over year the web continues demonstrating that applications that used to be built only

with OS-specific languages can be developed with web technologies and companies continue

investing770 in bringing these app-like experiences to the web.

We hope this analysis will assist you in making more informed decisions around your PWA

projects. We are looking forward to seeing how much all these trends will grow in 2022!

768. https://github.com/GoogleChromeLabs/bubblewrap
769. https://appmaker.xyz/pwa-to-apk
770. https://www.theverge.com/2021/10/26/22738125/adobe-photoshop-illustrator-web-announced

Part II Chapter 15 : PWA

522 2021 Web Almanac by HTTP Archive

https://github.com/GoogleChromeLabs/bubblewrap
https://appmaker.xyz/pwa-to-apk
https://www.theverge.com/2021/10/26/22738125/adobe-photoshop-illustrator-web-announced
https://www.theverge.com/2021/10/26/22738125/adobe-photoshop-illustrator-web-announced

Author

Demian Renzulli

@drenzulli demianrenzulli

Demian is a member of Google’s Web Ecosystems Consulting team, born in

Buenos Aires, Argentina and currently based in New York. His focus is on

Progressive Web Apps and Advanced Capabilities. He often writes at web.dev771.

771. https://web.dev/authors/demianrenzulli/

Part II Chapter 15 : PWA

2021 Web Almanac by HTTP Archive 523

https://x.com/drenzulli
https://github.com/demianrenzulli
https://web.dev/authors/demianrenzulli/

524 2021 Web Almanac by HTTP Archive

Part III Chapter 16

CMS

Written by Alon Kochba
Reviewed by Alan Kent, Andrey Lipattsev, Chris Sater, and John Teague
Analyzed by Rick Viscomi and Tosin Arasi
Edited by Shaina Hantsis

Introduction

In this chapter, we seek to help understand the current state of the CMS ecosystems and the

growing role they play in shaping users’ perception of how content can be consumed and

experienced on the web. Our goal is to discuss aspects related to the CMS landscape in general,

and the characteristics of web pages generated by these systems.

There are many interesting and important aspects to analyze and questions to answer in our

quest to understand the CMS space and its role in the present and the future of the web. We

acknowledge the vastness and complexity of the CMS platform space and bring to it our

curiosity along with deep expertise on some of the major players in the space.

These platforms play a key role for us to succeed in our collective quest for a fast and resilient

web. This has become increasingly apparent in the past year, and we expect it to continue to be

the case going forward.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 525

It is important to take some of these comparisons with a grain of salt, considering the variability

between CMSs, and the differing types of user content which are built on these platforms.

In some of the sections, we focus only on the top CMSs in terms of adoption, due to the large

number of CMS platforms.

TLDR; We discover that almost half of all the sites in the world are created using a CMS. While

the top 10 most popular CMS list remains relatively stable year-over-year, there are some

interesting changes in market share. The performance of CMS-built sites has improved

dramatically since the last time we checked.

Let’s dive into our analysis.

Disclaimer: Alon works at Wix where he leads the web performance efforts, but opinions are his own.

What is a CMS?

The term Content Management System (CMS) refers to systems enabling individuals and

organizations to create, manage, and publish content. A CMS for web content, specifically, is a

system aimed at creating, managing, and publishing content to be consumed and experienced

via the web.

Each CMS implements some subset of a wide range of content management capabilities and

the corresponding mechanisms for users to build websites easily and effectively around their

content. CMSs also provide administrative capabilities aimed at making it easy for users to

upload and manage content as needed.

There is great variability in the type and scope of the support CMSs provide for building sites;

some provide ready-to-use templates which are supplemented with user content, and others

require much more user involvement for designing and constructing the site structure.

When we think about CMSs, we need to account for all the components that play a role in the

viability of such a system for providing a platform for publishing content on the web. All of

these components form an ecosystem surrounding the CMS platform, and they include hosting

providers, extension developers, development agencies, site builders, etc. Thus, when we talk

about a CMS, we usually refer to both the platform itself and its surrounding ecosystem.

Our definition of a CMS in this chapter uses Wappalyzer’s definition772 of a CMS.

We encourage CMSs to contribute to this open-source project773 to improve detection and

772. https://www.wappalyzer.com/technologies/cms
773. https://github.com/AliasIO/wappalyzer

Part III Chapter 16 : CMS

526 2021 Web Almanac by HTTP Archive

https://www.wappalyzer.com/technologies/cms
https://github.com/AliasIO/wappalyzer

classification in the future.

Shopify, Magento, Webflow, and some other platforms do not appear in this chapter’s analysis,

because they are not marked as a CMS in Wappalyzer.

Ecommerce platforms make a substantial part of non-CMS sites and are covered in the

Ecommerce chapter. For example, Shopify grew substantially in the past year and accounted for

3.7% of websites in July according to W3Techs774.

Our research identified over 200 individual CMSs, with these ranging from a single install to

millions on a single CMS.

Some of them are open source (e.g., WordPress and Joomla) and some of them are proprietary

(e.g., Wix and Squarespace). Some CMS platforms can be used on “free” hosted or self-hosted

plans, and there are also options for using these platforms on higher-tiered plans even at the

enterprise level.

The CMS space as a whole is a complex, federated universe of CMS ecosystems, all separated

and at the same time intertwined.

CMS adoption

Our analysis throughout this work looks at desktop and mobile websites. The vast majority of

URLs we looked at are in both datasets, but some URLs are only accessed by desktop or mobile

devices. This can cause small divergences in the data, and we thus look at desktop and mobile

results separately.

774. https://w3techs.com/technologies/history_overview/content_management/all/q

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 527

https://w3techs.com/technologies/history_overview/content_management/all/q

As of July 2021, over 45% of public websites are powered by a CMS platform, indicating growth

of over 7% from 2020775. This breaks down to 45% on desktop, up from 42% in 2019, and 46%

on mobile, up from 42% in 2020.

It is interesting to compare these numbers with another commonly used dataset, such as

W3Techs776, which reported that as of July 2021, 64.6% of websites are created using a CMS, up

from 59.2% in July 2020, which is an increase of over 9%.

The deviation between our analysis and W3Techs’ analysis can be explained by a difference in

research methodologies, and the definition of what is a CMS.

W3Techs definition is the following: “Content Management Systems are applications for creating

and managing the content of a website. We include all such systems in this category, also systems that

are often classified as wikis, blog engines, discussion boards, static site generators, website editors or

any type of software that provides website content.”

As mentioned previously, Wappalyzer has a stricter definition of a CMS, which excludes some

major CMSs which appear in W3Techs reports.

You can read more about ours on the Methodology page.

Figure 16.1. CMS adoption year-over-year.

775. https://almanac.httparchive.org/en/2020/cms#cms-adoption
776. https://w3techs.com/technologies/history_overview/content_management/all/q

Part III Chapter 16 : CMS

528 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/cms-adoption.png
https://almanac.httparchive.org/static/images/2021/cms/cms-adoption.png
https://almanac.httparchive.org/en/2020/cms#cms-adoption
https://w3techs.com/technologies/history_overview/content_management/all/q

CMS adoption by geography

CMS platforms are extensively used around the world, with some variance by country.

Among the geographies with the highest number of websites, CMS adoption percentage is the

highest in the US, Italy, and Spain, where 46%–47% of mobile sites visited by users are built

with a CMS. India and Brazil have the lowest adoption with only 35% and 37%.

We can also split this data into subregions777 around the globe, sorted by the most popular

regions, to better identify macro-trends:

Figure 16.2. CMS adoption by country.

777. https://github.com/GoogleChrome/CrUX/blob/main/utils/countries.json

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 529

https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-geo.png
https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-geo.png
https://github.com/GoogleChrome/CrUX/blob/main/utils/countries.json

Adoption is highest in Southern Europe where half of the sites are using a CMS, and lowest in

Eastern Asia where only a third of sites in our dataset use a CMS.

CMS adoption by rank

We also examined CMS adoption by the estimated rank of the sites.

Figure 16.3. CMS adoption by subregion.

Part III Chapter 16 : CMS

530 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-geo-region.png
https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-geo-region.png

CMSs account for only 7% of the top 1,000 mobile websites, compared to 42% of the complete

dataset of all sites in our analysis. This can be explained by the fact that smaller businesses and

websites tend to use a CMS due to the ease of use, and the higher ranked websites tend to be

built with proprietary solutions by professional web developers. With the continuing growth in

usage of CMS platforms, it would be interesting to see if CMS platforms will also be able to

increase adoption rates among the higher-ranking sites in the coming years.

Figure 16.4. CMS adoption by rank.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 531

https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-rank.png
https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-rank.png

Top CMSs

Among all websites that use a CMS, WordPress sites account for a large part of the relative

market share, with over 75% adoption, followed by Joomla, Drupal, Wix, and Squarespace.

Figure 16.5. CMS adoption share.

Figure 16.6. Top 5 CMSs year-over-year.

Part III Chapter 16 : CMS

532 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-share.png
https://almanac.httparchive.org/static/images/2021/cms/cms-adoption-share.png
https://almanac.httparchive.org/static/images/2021/cms/top-cms.png
https://almanac.httparchive.org/static/images/2021/cms/top-cms.png

Drilling into the adoption by CMS across all websites, out of 218 different CMS platforms only

5 platforms had over 1% of usage.

WordPress, the most commonly used platform, is used by 33.6% of these websites, up from

31.4% in 2020, a 7% increase in total adoption.

In percentage terms, Joomla and Drupal adoption is dropping–Joomla sites accounted for 1.9%

of websites, down from 2.1% last year (9.5% decrease), and Drupal dropped from 2% to 1.8%

(10% decrease). Absolute adoption did increase in terms of number of sites measured, but as a

percentage of both overall CMS usage and of our (ever increasing!) data set, it is smaller.

Wix adoption grew from 1.2% to 1.6% (33% increase) and Squarespace grew from 0.9% to 1%

(11% increase).

Examining the adoption of these sites built on CMS platforms by their rank magnitude778 reveals

an interesting distribution between platforms.

3.1% of mobile sites in the top 1K are built with WordPress, and 33.6% of all sites. Drupal

maintains a higher adoption rate within the mid-ranged rankings (10K–1M), while most of Wix

and Squarespace sites are ranked outside the top 1M sites.

Figure 16.7. Top 5 CMSs by rank.

778. https://developers.google.com/web/updates/2021/03/crux-rank-magnitude

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 533

https://developers.google.com/web/updates/2021/03/crux-rank-magnitude
https://almanac.httparchive.org/static/images/2021/cms/top-cms-by-rank.png
https://almanac.httparchive.org/static/images/2021/cms/top-cms-by-rank.png

CMS user experience

An important aspect of CMSs is the user experience they provide, for users visiting sites built

on these platforms. We attempt to examine these experiences through Real User

Measurements (RUM), provided by the Chrome User Experience Report779 (CrUX), and

synthetic testing using Lighthouse.

Core Web Vitals

2021 was a great year for web performance, with a growing focus on Core Web Vitals780, which

helped nudge many platforms in the right direction to focus on improving their user experience

and loading times. More importantly, it provides users with the right tools and guidance to

monitor and improve their website performance. As a result, we saw large performance

improvements from many platforms, which continue to evolve, gradually making user

experience better across the web, which is a big win for all of us.

The Core Web Vitals Technology Report781 can be used to drill into this data and view the

progress of each technology updated on a monthly basis.

In this section we focused on data from July 2021 to provide a consistent timeframe for data

presented across the Web Almanac, and examined three important factors provided by the

Chrome User Experience Report, which can shed light on our understanding of how users are

experiencing CMS-powered web pages in the wild:

• Largest Contentful Paint (LCP)

• First Input Delay (FID)

• Cumulative Layout Shift (CLS)

These metrics aim to cover the core elements which are indicative of a great web user

experience. The Performance chapter covers these in more detail, but here we are interested in

looking at these metrics specifically in terms of CMSs.

Initially, let’s review the 10 CMS platforms with the highest number of origins, and examine

what percentage of sites on each platform have a passing grade, meaning that the 75th

percentile of each of the above metrics must be in the “good” (green) range for each site.

779. https://developers.google.com/web/tools/chrome-user-experience-report
780. https://web.dev/articles/vitals#core-web-vitals
781. https://httparchive.org/reports/cwv-tech

Part III Chapter 16 : CMS

534 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/articles/vitals#core-web-vitals
https://httparchive.org/reports/cwv-tech

We can see that desktop visitors generally score slightly better than mobile, which can be

explained by weaker mobile devices and poorer connections.

The large difference between mobile and desktop in certain platforms also suggests

considerably different pages that are served to users on different devices.

In July, for mobile devices, TYPO3 CMS (used mostly in European countries) had the largest

percentage of passing sites, with 46% of mobile sites passing all three CWVs. WordPress,

Squarespace, and Adobe Experience Manager had less than 20% of their sites pass.

Desktop device experience was slightly better, with 1C-Bitrix (used mostly in Russia) having the

largest percentage of 56% sites passing CWVs. WordPress had the lowest ratio of passing sites,

with only 26%.

Duda deserves an honorable mention, with 47% sites passing in August and overall great progress
since last year. They were not included in this report due to broken data collection in July, related to a

Figure 16.8. Top 10 CMSs core web vitals performance.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 535

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals.png

wrong detection in Wappalyzer782, incorrectly inflating their origins, and reducing their CWV
percentage.

We can also evaluate the progress of these CMS platforms compared to last year’s data,

focusing on mobile views:

All of these CMSs showed an improvement in the percentage of origins with good CWVs since

August 2020. Wix and Squarespace made the most noticeable progress, closing the gap from

the other CMSs.

Let’s drill into the three Core Web Vitals, to see where each platform has room to improve, and

which metrics improved the most since last year:

Figure 16.9. Top 10 CMSs core web vitals performance for mobile views year-over-year.

782. https://github.com/AliasIO/wappalyzer/pull/4189

Part III Chapter 16 : CMS

536 2021 Web Almanac by HTTP Archive

https://github.com/AliasIO/wappalyzer/pull/4189
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-yoy.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-yoy.png

Largest Contentful Paint (LCP)

Largest Contentful Paint (LCP) measures the point in time when the page’s main content has

likely loaded and thus the page is useful to the user. It does this by measuring the render time of

the largest image or text block visible within the viewport.

A “good” LCP is regarded as being under 2.5 seconds.

TYPO3 CMS had the best LCP scores with 69% of origins having a “good” LCP experience, while

WordPress and Adobe Experience Manager have the worst LCP scores, with only 28% of

origins having a good LCP score.

In general, it seems that most platforms are struggling with the LCP metric. This probably

relates to the fact that the LCP is dependent on the download of image/font/CSS and then

displaying the appropriate HTML elements. Achieving this in under 2.5 seconds for all device

Figure 16.10. Top 10 CMSs LCP performance.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 537

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-lcp.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-lcp.png

types and connection speeds can be challenging. Improving LCP scores usually involves the

correct use of caching, pre-loading, resource prioritization, and lazy loading of other competing

resources.

We can see that all CMSs improved their LCP in the past year, but most of them had modest

improvements. The largest jump came from Wix and Squarespace, who had very low LCP

scores last year. Tilda also seems to have made considerable progress.

First Input Delay (FID)

First Input Delay (FID) measures the time from when a user first interacts with the page (i.e.,

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

when the browser is able to process that interaction. A “fast” FID from a user’s perspective

would be almost immediate feedback from their actions on a site rather than a stalled

Figure 16.11. Top 10 CMSs LCP performance for mobile views year-over-year.

Part III Chapter 16 : CMS

538 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-lcp-yoy.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-lcp-yoy.png

experience.

Any delay is a pain point and could correlate with interference from other aspects of the site

loading when the user tries to interact with the site.

A “good” FID is regarded as being under 100 milliseconds.

FID is very good for most CMSs on desktop, with all platforms scoring a perfect 100%. Most

CMSs also deliver a good mobile FID of over 90%, except Bitrix and Joomla with only 83% and

85% of origins having a good FID.

The fact that almost all platforms manage to deliver a good FID, has recently raised questions

about the strictness of this metric. The Chrome team recently published an article783, which

detailed the thoughts towards having a better responsiveness metric in the future.

Figure 16.12. Top 10 CMSs FID performance.

783. https://web.dev/responsiveness/

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 539

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-fid.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-fid.png
https://web.dev/responsiveness/

Yearly data shows that all these CMSs managed to improve their FID over the past year. Wix

had the most catching up to do on FID, and considerably improved their numbers. Joomla and

Bitrix had the lowest FID scores this year, but still managed to improve.

Cumulative Layout Shift (CLS)

Cumulative Layout Shift (CLS) measures the visual stability of content on a web page,

measuring the largest burst of layout shift scores for every unexpected layout shift that occurs

during the entire lifespan of a page that was not caused by direct user interactions.

A layout shift occurs any time a visible element changes its position from one rendered frame to

the next.

Figure 16.13. Top 10 CMSs FID performance for mobile views year-over-year.

Part III Chapter 16 : CMS

540 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-fid-yoy.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-fid-yoy.png

The CLS metric has evolved784 in the past year, mainly introducing the concept of Session

Windows, to be fairer to long-lived pages and Single Page Apps (SPAs).

A score of 0.1 or below is measured as “good”, over 0.25 as “poor”, and anything in between as

“needs improvement”.

Wix had the best CLS score, with 81% of mobile origins having a “good” CLS. Adobe Experience

Manager had the lowest CLS scores, with only 44% of mobile origins having a good CLS.

Because layout shifts can usually be avoided, regardless of connection speeds–all platforms

should strive to improve these numbers by reducing layout shifts785 to the bare minimum.

Figure 16.14. Top 10 CMSs CLS performance.

784. https://web.dev/evolving-cls/
785. https://web.dev/articles/optimize-cls

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 541

https://web.dev/evolving-cls/
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-cls.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-cls.png
https://web.dev/articles/optimize-cls

Comparing yearly data, we can see that most CMSs made some progress, or benefited from the

change to a windowed CLS metric. However, we can see that certain CMSs such as Weebly

regressed in CLS scores over the past year.

Lighthouse

Lighthouse786 is an open-source, automated tool for improving the quality of web pages. One key

aspect of the tool is that it provides a set of audits to assess the status of a website in terms of

performance, accessibility, SEO, best practices, and more. Lighthouse reports provide lab data,

a way developers can get suggestions on how to improve website performance, but the

Lighthouse score has no direct implications on the actual field data collected by CrUX787. You can

read more on Lighthouse and the correlation between its lab scores and field data788.

Figure 16.15. Top 10 CMSs CLS performance for mobile views year-over-year.

786. https://developers.google.com/web/tools/lighthouse/
787. https://developers.google.com/web/tools/chrome-user-experience-report
788. https://web.dev/lab-and-field-data-differences/

Part III Chapter 16 : CMS

542 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-cls-yoy.png
https://almanac.httparchive.org/static/images/2021/cms/core-web-vitals-cls-yoy.png
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/lab-and-field-data-differences/

HTTP Archive runs Lighthouse on all its mobile web pages (unfortunately, no desktop results),

which are also throttled to emulate a slow 4G connection with a CPU slowdown.

We can analyze this data to provide another perspective on CMS performance, using the

results of these synthetic tests, which also include metrics that are not tracked in CrUX.

Performance score

The Lighthouse performance score789 is a weighted average of several metric scores.

We can see that the median performance scores for all the top platforms on mobile are low,

ranging from 17 to 33. As we saw above, this does not directly imply bad results790 in mobile field

data but does imply that all platforms have room for improvements, especially for low-end

Figure 16.16. Top 10 CMSs median Lighthouse performance score.

789. https://web.dev/performance-scoring/
790. https://philipwalton.com/articles/my-challenge-to-the-web-performance-community/

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 543

https://web.dev/performance-scoring/
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-performance.png
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-performance.png
https://philipwalton.com/articles/my-challenge-to-the-web-performance-community/

devices and network connections similar to those Lighthouse attempts to emulate.

SEO score

Search Engine Optimization (or SEO) is the practice of improving a website to make it more

easily found in search engines. This is covered more in-depth in our SEO chapter, but one part

involves ensuring the site is coded in such a way to serve as much information to search engine

crawlers to make it as easy as possible for them to show a site appropriately in search engine

results. Compared to a custom-created website, one might expect a CMS to provide good SEO

capabilities, and the Lighthouse scores in this category are appropriately high.

The median SEO score in all of the top 10 platforms is over 84, with Drupal scoring the lowest

and Wix scoring the highest with a median score of 95.

Figure 16.17. Top 10 CMSs median Lighthouse SEO score.

Part III Chapter 16 : CMS

544 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/lighthouse-seo.png
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-seo.png

Accessibility score

An accessible website is a site designed and developed so that people with disabilities can use

them. Web accessibility also benefits people without disabilities, such as those on slow internet

connections. Read more in our Accessibility chapter.

Lighthouse provides a set of accessibility audits, and it returns a weighted average of all of them

(see Scoring Details791 for a full list of how each audit is weighted).

Each accessibility audit is either a pass or a fail, but unlike other Lighthouse audits, a page

doesn’t get points for partially passing an accessibility audit. For example, if some elements

have screen reader-friendly names, but others don’t, that page gets a 0 for the screen reader-

friendly-names audit.

Figure 16.18. Top 10 CMSs median Lighthouse accessibility score.

791. https://web.dev/accessibility-scoring/

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 545

https://web.dev/accessibility-scoring/
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-accessibility.png
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-accessibility.png

The median Lighthouse accessibility score for the top 10 CMSs ranges between 76 and 91.

Squarespace and Weebly have the highest scores of 91, while Tilda had the lowest accessibility

scores.

Best practices

The Lighthouse best practices792 try to ensure that web pages are following best practices for

the web, for a variety of different metrics, such as supporting HTTPS, no errors logged in the

console, and more.

Wix had the highest median best practices score of 93, while many of the other top 10

platforms share the lowest score of 73.

Figure 16.19. Top 10 CMSs median Lighthouse best practices score.

792. https://web.dev/lighthouse-best-practices/

Part III Chapter 16 : CMS

546 2021 Web Almanac by HTTP Archive

https://web.dev/lighthouse-best-practices/
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-best-practices.png
https://almanac.httparchive.org/static/images/2021/cms/lighthouse-best-practices.png

Resource weights

We can also use HTTP Archive data to analyze the weight of resources used across different

platforms, to highlight possible opportunities. Page loading performance does not exclusively

depend on the number of downloaded bytes, but fewer bytes necessary to load a page results in

reduced costs, carbon emissions, and potentially faster performance, especially for slower

connections.

Most of the top 5 CMSs deliver a median page weight of around ~2 MB, except Squarespace

which delivers a larger ~3.3 MB. Squarespace is the only platform that delivers more bytes in

mobile views than on desktop.

Figure 16.20. Top 5 CMSs median page weight.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 547

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-page.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-page.png

The distribution of page weight in each platform’s percentiles is substantial, probably related to

the difference in user content across different web pages, the number of images used, plugins,

etc. The smallest pages delivered per platform come from Drupal, which only sends 595 KB for

their 10th percentile of visits. The largest pages come from Squarespace, with ~9.6 MB

delivered for their 90th percentile of visits.

Page Weight Breakdown

Page Weight is a sum of resources used. We can attempt to evaluate these different resource

sizes across different CMSs.

Images

Images, which are usually the heaviest resource, account for a large portion of the resource

weight.

Figure 16.21. Top 5 CMSs median page weight.

Part III Chapter 16 : CMS

548 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-distribution.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-distribution.png

Wix delivers substantially fewer image bytes, with only 357 KB delivered on the median of

mobile views, suggesting good use of image compression and lazy image loading. All of the

other top 5 platforms deliver over 1 MB of images, with Squarespace delivering the largest ~1.7

MB.

Advanced image formats provide a considerable improvement in compression, enabling

resource savings and faster site loading. WebP is commonly supported in all major browsers

today, with over 95% support793. In addition, there are several newer image formats gaining

popularity and adoption, namely AVIF794, and JPEG-XL795 which is still not complete but has

outstanding potential.

We can examine the usage of the different image formats across the top CMSs:

Figure 16.22. Top 5 CMSs median image weight.

793. https://caniuse.com/webp
794. https://caniuse.com/avif
795. https://jpegxl.info/

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 549

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-images.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-images.png
https://caniuse.com/webp
https://caniuse.com/avif
https://jpegxl.info/

GoDaddy Website Builder and Wix make the most use of WebP, with ~58% and 33% adoption

respectively, while WordPress, Joomla, and Drupal barely serve WebP–only ~5.7% of images

served by WordPress sites are WebP. AVIF is barely used by these platforms, with less than

~0.1% on all platforms.

With the growing support of WebP796, it seems all platforms have work to do to reduce the usage

of the older JPEG and PNG formats, where it is applicable without compromising on image

quality.

Figure 16.23. Top 15 CMSs image format popularity.

796. https://caniuse.com/webp

Part III Chapter 16 : CMS

550 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/image-formats.png
https://almanac.httparchive.org/static/images/2021/cms/image-formats.png
https://caniuse.com/webp

JavaScript

The largest five CMSs all deliver pages that rely on JavaScript, with Drupal delivering the least

amount of JavaScript bytes–372 KB on mobile, while Wix delivers the most JavaScript bytes,

over 1.1 MB.

Figure 16.24. Top 5 CMSs median JavaScript weight.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 551

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-javascript.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-javascript.png

HTML document

Examining the HTML document sizes, we can see that most of the top CMSs deliver a median

HTML size of ~22 KB–34 KB, except Wix which delivers substantially more HTML of ~123 KB.

This can suggest extensive use of inlined resources and shows an area that can be further

improved.

Figure 16.25. Top 5 CMSs median HTML weight.

Part III Chapter 16 : CMS

552 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-html.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-html.png

CSS

Next, we examine the use of explicit CSS resources that are downloaded. Here we can see a

different distribution between platforms, strengthening the differences in inlining approaches.

Wix delivers the fewest CSS resources, with only ~25 KB sent on mobile views; WordPress

delivers the most with ~115 KB.

Figure 16.26. Top 5 CMSs median CSS weight.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 553

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-css.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-css.png

Fonts

To display text, web developers often choose to use a variety of fonts. Joomla delivers the

fewest font bytes, with 75 KB on mobile views, and Squarespace delivers the most with 212 KB.

WordPress specific

WordPress is the most commonly used CMS today–almost 3 out of 4 sites built with a CMS are

using WordPress, thus deserving further discussion.

WordPress is an open-source project, which has been around since 2003. Many sites built on

WordPress use various themes and plugins, sometimes through page builders such as

Elementor or Divi.

The WordPress community maintains the CMS and services requirements for additional

functionality through custom services and products (themes and plugins). This community has

an outsized impact, with a relatively small number of people maintaining both the CMS itself

and providing the additional functionality which makes WordPress sufficiently powerful and

flexible that it can service most types of websites. This flexibility is important when explaining

the market share, but also complicates the discussion around WordPress based site

performance.

Figure 16.27. Top 5 CMSs median fonts weight.

Part III Chapter 16 : CMS

554 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/resource-weights-fonts.png
https://almanac.httparchive.org/static/images/2021/cms/resource-weights-fonts.png

Contributors from the WordPress community recently acknowledged the current state of

performance, in this proposal797 to create a performance dedicated core team, which can

hopefully improve the current performance of the average WordPress sites.

Adoption

First, we examined WordPress adoption by geography, across all sites in our dataset.

In the top 10 countries with the most sites in our dataset, WordPress had over 27% adoption.

Spain had the highest WordPress adoption among these countries with 37% of mobile pages

using WordPress, compared with Germany where only 28% of mobile pages used WordPress.

Figure 16.28. WordPress adoption by country.

797. https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 555

https://make.wordpress.org/core/2021/10/12/proposal-for-a-performance-team/
https://almanac.httparchive.org/static/images/2021/cms/wordpress-adoption-geo.png
https://almanac.httparchive.org/static/images/2021/cms/wordpress-adoption-geo.png

Passing CWVs by geography

Next, let’s look at the amount of WordPress origins with passing Core Web Vitals, but this time,

breakdown by geography, for mobile devices.

We can see that while WordPress was passing on 19% of the total origins counted across all

countries, WordPress sites are passing in a very different percentage in various countries. In

Japan, 38% of sites have good CWVs for mobile visitors, but in Brazil, only 5% have good CWVs.

This exposes a very interesting view of Core Web Vitals and hints at a geographical bias when

comparing CWV for different platforms. If a CMS only has a presence in certain countries,

comparing the aggregate percentage isn’t a fair comparison.

WordPress, with a very large adoption around the world, including countries with less powerful

devices and slower connections, may suffer from this comparison in some cases, but likely has

Figure 16.29. WordPress origins passing CWV by geography.

Part III Chapter 16 : CMS

556 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cms/wordpress-passing-cwv.png
https://almanac.httparchive.org/static/images/2021/cms/wordpress-passing-cwv.png

room to improve in all geographies. On the other hand, CMSs should strive to offer the best

experience in the geography they are targeting, which sometimes means making sites fast

enough to work well even under stricter conditions.

Plugins

We explored how WordPress sites use external resources and separated them between

resources that are included in plugins, themes, and shipped in WordPress core (wp-includes).

The median mobile WordPress page loads 24 resources under the /plugins/ path, 18

resources under the /themes/ path, and 12 resources under the /wp-includes/ path. In

the 90th percentile, we see a huge amount of resource requests, with 78 plugin resources, 56

themes, and 24 wp-includes!

WordPress’s extension ecosystem provides extraordinary flexibility and may be a major

contributor to its high adoption rate. On balance it also appears detrimental to performance in

many cases, due to the number of plugins available and the many resources they depend on.

Conclusion

CMS platforms continue to grow and are becoming more ubiquitous year-over-year. They are

Figure 16.30. Distribution of WordPress resources loaded by type.

Part III Chapter 16 : CMS

2021 Web Almanac by HTTP Archive 557

https://almanac.httparchive.org/static/images/2021/cms/wordpress-resources-loaded.png
https://almanac.httparchive.org/static/images/2021/cms/wordpress-resources-loaded.png

essential for easily creating and consuming content on the internet, especially as more people

and businesses establish an online presence.

The introduction of Core Web Vitals, along with the advancements in performance data

visibility, has generated a focus on web performance across the web, and we hope these

insights will help us all get a better understanding of the current state of the web, ultimately

making the web a better place.

CMSs are doing great work and have a huge opportunity to further improve user experiences

on the web at scale, by striving to enhance their infrastructure, experiment and integrate with

new standards as they evolve, and follow best practices.

On the other hand, Core Web Vitals still have some progress and evolving to do.

We mentioned the thoughts towards a better responsiveness metric798 above. In addition,

navigations between pages in a site should be better tracked and take into account the

difference between Single-Page Applications (SPAs) and Multi-Page Applications (MPAs)799

architectures.

Let’s continue pushing forward.

Author

Alon Kochba

@alonkochba alonkochba alonkochba

Alon Kochba is a software developer at Wix, where he heads the performance

efforts. Alon comes from a back-end background, with extensive experience in

networking, and enjoys making the web faster at scale.

798. https://web.dev/responsiveness/
799. https://web.dev/articles/vitals-spa-faq

Part III Chapter 16 : CMS

558 2021 Web Almanac by HTTP Archive

https://web.dev/responsiveness/
https://web.dev/articles/vitals-spa-faq
https://x.com/alonkochba
https://github.com/alonkochba
https://www.linkedin.com/in/alonkochba/

Part III Chapter 17

Ecommerce

Written by Tom Robertshaw
Reviewed by Rockey Nebhwani, Alan Kent, Manuel Garcia, and Fili Wiese
Analyzed by Rajiv Ramnath
Edited by Shaina Hantsis

Introduction

In this chapter, we review the state of ecommerce on the web. An ecommerce website is an

“online store” that sells physical or digital products. When building your online store, there are

several types to choose from:

• Software-as-a-Service (SaaS) platforms such as Shopify minimize the technical

knowledge required to open and manage an online store. They do this by restricting

access to the codebase as well as removing the need to worry about hosting.

• Platform-as-a-service (PaaS) platforms such as Adobe Commerce (Magento)

provide an optimized technology stack & hosting environment while still providing

full codebase access.

• Self-hosted platforms such as WooCommerce

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 559

• There are also headless platforms like CommerceTools that are “API-as-a-service”.

They provide the ecommerce backend as a SaaS and the retailer is responsible for

building and hosting the frontend experience.

Note that platforms may fall into more than one of these categories. For example, Shopware

has SaaS, PaaS, and self-hosted options.

Platform detection

We used an open-source tool called Wappalyzer800 to detect technologies used by websites. It

can detect content management systems, ecommerce platforms, JavaScript frameworks and

libraries, and more.

For this analysis, we considered any of the following to indicate that a website is an ecommerce

website:

• Use of a known ecommerce platform (see limitations)

• Use of a technology that implies an online store, e.g., Google Analytics Enhanced

Ecommerce801

You can learn more about the Methodology.

Limitations

Our methodology has some limitations which affect its accuracy.

Firstly, there are limitations to our ability to recognize an ecommerce site:

• Wappalyzer must have detected an ecommerce platform.

• The detection of a payment processor such as PayPal was insufficient for a website

to be considered to be ecommerce. This is because there are sites that accept online

payments which are not online stores, e.g., B2B SaaS.

• If the ecommerce platform is hosted within a sub-directory of the website, it cannot

be detected as only home pages are analyzed.

• A headless implementation reduces our ability to detect the platform in use. One of

800. https://github.com/AliasIO/wappalyzer/
801. https://developers.google.com/tag-manager/enhanced-ecommerce

Part III Chapter 17 : Ecommerce

560 2021 Web Almanac by HTTP Archive

https://github.com/AliasIO/wappalyzer/
https://developers.google.com/tag-manager/enhanced-ecommerce
https://developers.google.com/tag-manager/enhanced-ecommerce

the primary methods to detect an ecommerce platform is to recognize common

HTML or JavaScript components. So, a headless website that does not use the

ecommerce platform frontend makes it hard to detect as ecommerce.

Next, the accuracy of metrics or commentary may also be affected by the following limitations:

• Any trends seen may be influenced by changes in detection accuracy and not

entirely a reflection of industry trends. For example, an ecommerce platform may

appear to become more popular because the detection method has improved.

• All website requests were made from the United States. If a website redirects to a

more appropriate website based on geographic location, the final location will be

analyzed.

• The sites crawled are from the Chrome UX Report which has a bias towards

websites visited by users of the Chrome browser.

Ecommerce platforms

Our analysis considered mobile and desktop websites. These sites are those that are actively

visited by Chrome users, see the Methodology for more information. Most of the websites

visited are in both result sets but some are only in one. We will often share statistics for mobile

and desktop. When there is little variation, we may choose to only show one. In this case, unless

otherwise noted, only the mobile metrics will be shown.

The mobile analysis received responses from 7.5 million sites and found that 1.5 million (19.5%)

of them had some form of ecommerce functionality. Similarly, the desktop analysis received

responses from 6.3 million sites and found that 1.3 million (20.2%) were ecommerce.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 561

The overall share of ecommerce sites shrunk by 1.8% on mobile (1.6% on desktop) compared to

last year’s report which found 21.3% of sites were ecommerce (21.7% on desktop). The number

of ecommerce sites still increased, with 4.5% more found this year on desktop (8.3% on mobile)

compared to last year. However, this growth didn’t keep pace with the growth in the overall list

of sites visited by Chrome users.

Comparing this with the 2019 results802 where 9.45% of mobile sites were ecommerce, we can

see that while the change in the last year has been insignificant, over the last 2 years the

increase is dramatic and sustained.

However, this should not be considered as evidence of ecommerce growth in response to

COVID-19. As was reported last year803, this increase comes from our improved ability to detect

ecommerce platforms: from increased platform coverage, to also using secondary signals such

as the presence of Google Analytics Enhanced Ecommerce to indicate that a site is ecommerce.

Top ecommerce platforms

Our analysis detected 215 ecommerce platforms, a 48% increase in platforms compared to the

145 that were found last year. Despite this, only 10 platforms have greater than 0.1% usage on

either desktop or mobile.

Figure 17.1. Ecommerce comparison 2019 to 2021.

802. https://almanac.httparchive.org/en/2019/ecommerce#platform-detection
803. https://almanac.httparchive.org/en/2020/ecommerce#ecommerce-platforms

Part III Chapter 17 : Ecommerce

562 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-comparison-2019-to-2021.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-comparison-2019-to-2021.png
https://almanac.httparchive.org/en/2019/ecommerce#platform-detection
https://almanac.httparchive.org/en/2020/ecommerce#ecommerce-platforms

WooCommerce804, a plugin for WordPress805, is the most prevalent ecommerce platform with

almost 6% of all websites using it. This represents 30% of the ecommerce market on mobile.

Shopify806, a SaaS solution, is the second most popular solution with approximately half as many

websites as WooCommerce. It has a 14% share of the ecommerce market on mobile.

PrestaShop807 is an open-source platform and is the third most used platform at around one-

sixth the prevalence of WooCommerce.

4 of the top 10 platforms have open-source and self-hosted editions: WooCommerce,

PrestaShop, Magento808, and Shopware809. We do not detect different versions of platforms, and

so cannot distinguish between the open-source and commercial versions of Magento and

Shopware.

6 of the 10 platforms are SaaS (or have SaaS versions): Shopify, Wix eCommerce810, Squarespace

Figure 17.2. Top ecommerce platforms.

804. https://woocommerce.com/
805. https://wordpress.org/
806. https://shopify.com/
807. https://www.prestashop.com/
808. https://magento.com/
809. https://www.shopware.com/
810. https://www.wix.com/ecommerce/website

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 563

https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms.png
https://woocommerce.com/
https://wordpress.org/
https://shopify.com/
https://www.prestashop.com/
https://magento.com/
https://www.shopware.com/
https://www.wix.com/ecommerce/website
https://www.squarespace.com/ecommerce-website

Commerce811, BigCommerce812, Shopware, and Loja Integrada813.

Note: There was an issue814 with the July 2021 HTTP Archive data which resulted in the number of
OpenCart815 sites being under-reported. It is worth acknowledging that in the September results
10,801 OpenCart sites were detected. If a similar number of OpenCart sites were to have been
detected in July, it would put it in between BigCommerce and Shopware in terms of popularity.

Top ecommerce platforms by website popularity

This year, the Chrome User Experience Report816 provided a popularity rank for each website.

This allowed us to break down top ecommerce platforms by their popularity in different

segments of the market. “All” refers to all 7.5 million sites that were profiled on mobile and 6.3

million sites for desktop.

With websites ranked, we can make observations on how platform popularity changes in

different segments of the market:

• WooCommerce is the most popular ecommerce platform overall and in the top 1

million.

Figure 17.3. Top 5 ecommerce platforms share by CRUX rank.

811. https://www.squarespace.com/ecommerce-website
812. https://www.bigcommerce.com/
813. https://lojaintegrada.com.br/
814. https://github.com/HTTPArchive/httparchive.org/issues/414
815. https://www.opencart.com/
816. https://developers.google.com/web/tools/chrome-user-experience-report/

Part III Chapter 17 : Ecommerce

564 2021 Web Almanac by HTTP Archive

https://www.squarespace.com/ecommerce-website
https://www.bigcommerce.com/
https://lojaintegrada.com.br/
https://github.com/HTTPArchive/httparchive.org/issues/414
https://www.opencart.com/
https://developers.google.com/web/tools/chrome-user-experience-report/
https://almanac.httparchive.org/static/images/2021/ecommerce/top-5-ecommerce-platforms-by-crux-rank.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-5-ecommerce-platforms-by-crux-rank.png

• Shopify is more popular among websites that are in the top 1 million (as a

percentage) compared to all sites analyzed.

• Magento is the most popular of the five shown amongst the top 10,000 sites.

• No Wix eCommerce sites were identified in the top 100,000. Only 164 on mobile

were identified in the top 1 million. Almost the entirety of the Wix eCommerce

footprint was on sites ranked lower than 1 million.

Top 1 million sites

Another way to look at the results is to consider the most popular platforms within each tier of

rankings. We expected to see different trends among the top tier e.g., top 10,000 sites

compared to those within the top 1 million sites.

In the top 1 million sites, WooCommerce and Shopify are still the leading platforms with 3.49%

and 2.76% of requests on mobile respectively. However, there’s a much smaller gap between

Figure 17.4. Top ecommerce platforms of 1 million sites.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 565

https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-1m-sites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-1m-sites.png

them when compared to all sites analyzed. Among all site requests on mobile, WooCommerce

was over twice as common as Shopify whereas in the top 1 million it’s only 25% more prevalent.

We also see Magento take the third spot over PrestaShop. Wix eCommerce and Squarespace

ecommerce are no longer in the top 7 platforms. Instead, we see Shopware, BigCommerce, and

Salesforce Commerce817 ahead of them.

Top 100,000 sites

When we consider the top 100,000 sites by CrUX rank the picture changes quite drastically.

Magento is now the most popular ecommerce platform vendor with 1.21% of mobile sites.

Shopify maintains second place (with 0.88%) while Salesforce Commerce Cloud is third (0.63%).

SAP Commerce Cloud818 rises up the leaderboard to sixth place to show that the enterprise

platforms are more competitive in this space.

Figure 17.5. Top ecommerce platforms of top 100,000 sites.

817. https://www.salesforce.com/uk/products/commerce-cloud/overview/
818. https://www.sap.com/uk/products/commerce-cloud.html

Part III Chapter 17 : Ecommerce

566 2021 Web Almanac by HTTP Archive

https://www.salesforce.com/uk/products/commerce-cloud/overview/
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-100k-sites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-100k-sites.png
https://www.sap.com/uk/products/commerce-cloud.html

Top 10,000 sites

The share of sites that are powered by an ecommerce platform in the top 10,000 sites is

noticeably smaller.

Salesforce Commerce Cloud and SAP Commerce lead and power a similar number of

ecommerce sites (0.70 and 0.68% respectively on mobile).

As we continue down the leaderboard, there are few surprises in this space. Quite a way off the

top two spots is Magento (an Adobe product) with 0.32% share of the top 10,000 sites.

Following that is HCL Commerce819 (previously known as IBM WebSphere Commerce) and

Oracle Commerce820. All of these platforms are commonly considered to be well suited to larger

enterprises.

Figure 17.6. Top ecommerce platforms of top 10,000 sites.

819. https://www.hcltechsw.com/commerce
820. https://www.oracle.com/uk/cx/ecommerce/

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 567

https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-10k-sites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ecommerce-platforms-top-10k-sites.png
https://www.hcltechsw.com/commerce
https://www.oracle.com/uk/cx/ecommerce/

The impact of COVID-19

It is hard to compare the total number of ecommerce sites found across years. As described

earlier, this is because the ability to detect whether a site is ecommerce has been improved

substantially. In part through the use of secondary signals such as Google Analytics Enhanced

Ecommerce integration.

So instead, last year’s report focused on a small number of platforms to see how their use had

changed. The early signs in the first half of 2020 were that there were measurable and notable

increases in Shopify and WooCommerce use. The growth was in the region of 20% between

January 2020 and July 2020 while other platforms like Magento did not see the same growth.

These platforms are known for their low entry costs and ease of use, while Magento is not.

Fast-forward to 2021, people and businesses around the world have continued to adapt.

Ecommerce in the US in 2020 saw revenue growth of 32.4% according to a report821 by the

Commerce Department. In the UK, the Office of National Statistics reported822 a 46% growth.

We can also look at results on a month-by-month basis between February 2019 and July 2021.

However, before conclusions are drawn, it must be noted that sometimes platform detection

issues are responsible for changes in market share. One specific issue was the drop in

WooCommerce market share between February and June 2021 which was identified as a

Figure 17.7. Ecommerce platform growth Covid-19 impact.

821. https://www.digitalcommerce360.com/article/coronavirus-impact-online-retail/
822. https://internetretailing.net/industry/industry/ecommerce-grew-by-46-in-2020---its-strongest-growth-for-more-than-a-decade--but-overall-retail-sales-fell-by-a-

record-19-ons-22603

Part III Chapter 17 : Ecommerce

568 2021 Web Almanac by HTTP Archive

https://www.digitalcommerce360.com/article/coronavirus-impact-online-retail/
https://internetretailing.net/industry/industry/ecommerce-grew-by-46-in-2020---its-strongest-growth-for-more-than-a-decade--but-overall-retail-sales-fell-by-a-record-19-ons-22603
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-vendor-growth-covid-19-impact.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-vendor-growth-covid-19-impact.png
https://github.com/HTTPArchive/almanac.httparchive.org/issues/1843

bug823).

With that in consideration, we may still note that on mobile:

• WooCommerce has grown from 3.48% to 5.93%. The majority of this growth

occurred immediately following the COVID-19 restrictions that Western countries

put in place.

• The rate of growth for Shopify increased significantly during 2020, growing from

1.61% to 2.50% during that year. However, this growth rate has not been sustained.

• Also, during this time, we see Magento, who previously was competing with Shopify,

drop below PrestaShop. Moving from 1.25% share of all sites to 0.72%.

In the author’s point of view, there was a rapid initial response by small businesses to add an

ecommerce channel to their business. This was achieved mostly in the first half of 2020 through

the use of cost-effective and easy-to-use platforms such WooCommerce and Shopify.

However, the vast majority of the increased online revenues reported is expected to have

benefited those businesses that were already ecommerce-enabled.

Ecommerce user experience

The objective of an ecommerce site is to generate revenue. A company will adopt multiple

strategies to fulfill this objective. At a high level, this might be to offer a feature-rich experience

that considers a breadth of buying journeys. They will also want the website to be as fast as

possible. It’s clear how both of these strategies work towards the objective but they can also

work against each other at the same time.

Later, we will look at some of the tools & tactics that are used for creating a feature-rich

experience.

First, we will evaluate site technical quality and performance. There is no single metric or tool

that can be used to definitively gauge either one, so we drew on multiple:

• Google Lighthouse

• Core Web Vitals from Chrome UX Report

• WebPageTest

823. https://github.com/HTTPArchive/almanac.httparchive.org/issues/1843

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 569

https://github.com/HTTPArchive/almanac.httparchive.org/issues/1843

Lighthouse

One way of measuring the technical quality of a web page is with Google Lighthouse824. A

lighthouse test provides a score out of 100 for each of five categories. The figure below shows

the median score for each category across all ecommerce websites requested.

The most important point to note here is that ecommerce sites are struggling to achieve a good

lighthouse score for performance. This may be because it takes a greater level of effort to

achieve a good score in this category.

Lighthouse scores by platform

When we broke the Lighthouse scores down by ecommerce platform vendors, there was

relatively little variation. This suggests that each ecommerce platform provides similar out-of-

the-box capabilities in each of these areas.

Performance

Performance is an emergent system property; it is not something that you can implement as

you would a new feature. It is something that has to be factored into everything you do. One

Figure 17.8. Median Lighthouse scores for ecommerce websites.

824. https://developers.google.com/web/tools/lighthouse/

Part III Chapter 17 : Ecommerce

570 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse/
https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-scores-for-ecommerce-websites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-scores-for-ecommerce-websites.png

simplistic view is that the more features that you add to your site, the slower it will be.

At the same time, it is now common knowledge that a faster site leads to a higher conversion

rate. So why do we see such poor performance scores for ecommerce sites? One reason for this

may be that the site speed and conversation rate statistics are always offered without any

consideration for the decisions that ecommerce businesses face. When revenue growth is

required every year, even the law of diminishing returns says that conversion rate

improvements cannot only be met through speed gains. This, together with the high consumer

demands on the ecommerce experience leads to a situation where more features become the

priority.

What’s more, there is often more nuance to the decision to include a feature. For example, do

the benefits of a live chat widget outweigh the performance impact? Does the answer change

depending on the context? Should you wait for a developer to install it to ensure that it’s lazy-

loaded or just use Google Tag Manager? What’s the opportunity cost of not using that

development time for something else?

Another way of viewing performance is that it is a shared resource that suffers from the

tragedy of the commons paradigm825. It’s at its highest level at the start of a project and is

depleted over time with requests from different stakeholders that all have a right to consume it.

The best results are likely to be found by those businesses that can find a balance between site

speed and user experience. They will minimize the impact of features on the initial page load,

while still being able to offer a great user experience.

825. https://www.investopedia.com/terms/t/tragedy-of-the-commons.asp

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 571

https://www.investopedia.com/terms/t/tragedy-of-the-commons.asp

The most variation between platforms was found for the performance scores. Shopify and Wix

eCommerce were the most performant with a median lighthouse performance score of 27/100

on mobile. The lowest scorers were Loja Integrada with 6/100, Squarespace Commerce with

16/100, and Magento with 18/100. To reiterate, these are all poor scores.

Shopify, to its credit, has recently added a requirement826 on all new marketplace themes to

achieve an average Lighthouse performance score of 60/100. It will be interesting to see how

this affects their results in future analyses.

Figure 17.9. Median Lighthouse performance scores for ecommerce websites.

826. https://shopify.dev/themes/store/requirements

Part III Chapter 17 : Ecommerce

572 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-performance-scores-for-ecommerce-websites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-performance-scores-for-ecommerce-websites.png
https://shopify.dev/themes/store/requirements

Accessibility

The top 8 platforms score very similarly on the median accessibility metric. We also expect

them to improve further as accessibility legislation and awareness increases.

Improvements may come from platforms increasing the accessibility of their standard themes.

BigCommerce, for example, has updated the default theme827 to meet Website Content

Accessibility828 Guidelines (or WCAG) 2.1 Level AA standards.

Platforms can also encourage the wider app and theme communities to provide a high standard

of technical quality. Shopify announced829 a minimum Lighthouse accessibility score

requirement for any new marketplace themes.

For more detailed research on accessibility scores across the web, read the Accessibility

chapter.

PWA

It appears that PWA support is not a priority for all ecommerce businesses. We might consider

two reasons why this may be the case:

Figure 17.10. Median Lighthouse accessibility scores for ecommerce websites.

827. https://support.bigcommerce.com/s/blog-article/aAn4O000000CdJDSA0/improvements-to-accessibility-coming-in-cornerstone-52?language=en_US
828. https://www.w3.org/WAI/standards-guidelines/wcag/#intro
829. https://www.shopify.com/partners/blog/theme-store-accessibility-requirements

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 573

https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-accessibility-scores-for-ecommerce-websites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-accessibility-scores-for-ecommerce-websites.png
https://support.bigcommerce.com/s/blog-article/aAn4O000000CdJDSA0/improvements-to-accessibility-coming-in-cornerstone-52?language=en_US
https://www.w3.org/WAI/standards-guidelines/wcag/#intro
https://www.w3.org/WAI/standards-guidelines/wcag/#intro
https://www.shopify.com/partners/blog/theme-store-accessibility-requirements

• There’s little research into the consumer adoption of PWA features such as adding

to their home screen.

• Safari on iOS does not support the Push Notification API or the ability to add a PWA

to the home screen. The significant size of the iOS market share reduces the payoff

of investing in PWA.

Best Practices

Wix Ecommerce achieves the highest median Lighthouse best practice score with 93/100.

While it is focused on small businesses and therefore may, on average, provide a simpler user

experience it is impressive that it scores so highly.

Core Web Vitals

In 2020 Google started an initiative under the term Core Web Vitals (CWV) which looked to

help website owners and developers focus on three performance metrics that are critical for a

good user experience. These metrics are:

Large Contentful Paint830 (LCP)

Figure 17.11. Median Lighthouse best practices scores for ecommerce websites.

830. https://web.dev/articles/lcp

Part III Chapter 17 : Ecommerce

574 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-best-practices-scores-for-ecommerce-websites.png
https://almanac.httparchive.org/static/images/2021/ecommerce/median-lighthouse-best-practices-scores-for-ecommerce-websites.png
https://web.dev/articles/lcp

• Measures loading performance. To provide a good user experience, LCP should

occur within 2.5 seconds of when the page first starts loading.

First Input Delay831 (FID)

• Measures interactivity. To provide a good user experience, pages should have an FID

of 100 milliseconds or less.

Cumulative Layout Shift832 (CLS)

• Measures visual stability. To provide a good user experience, pages should maintain

a CLS of 0.1. or less.

As Core Web Vitals are now ranking factors in Google’s search algorithm833 they have gained

increased attention from ecommerce businesses.

The Chrome User Experience report enables the collection of these metrics from real users. We

can therefore consider the results to be more accurate compared to traditional “lab” tests

which simulate a page load in a controlled environment.

In this section, we will review sites that have reached a “good” threshold on all three metrics:

LCP, FIP, and CLS.

831. https://web.dev/articles/fid
832. https://web.dev/articles/cls
833. https://developers.google.com/search/blog/2020/05/evaluating-page-experience

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 575

https://web.dev/articles/fid
https://web.dev/articles/cls
https://developers.google.com/search/blog/2020/05/evaluating-page-experience

Looking at the percentage of sites that have a “good” experience according to CWV by

platform, we find that Shopify performs the best with 32.64% on mobile. Whereas only 11.32%

of mobile sites on WooCommerce achieve a good experience.

We can compare this to the wider web by looking at the results from the Performance chapter.

It found 41% of sites on desktop and 29% of sites on mobile achieved a “good” CWV experience.

With this lens, we can say that on average a Shopify store performed better than the average

site based on mobile sites, and a WooCommerce site worse. However, it is important to point

out that this is correlation rather than causation.

Compared to last year we see an improvement in median CWV scores across all platforms. We

find the largest performance improvement was for sites on Shopify. Increasing from 21.24% of

sites on mobile having a good CWV experience to 32.64%.

One final point to make is that the percentage of sites achieving a good CWV experience is not

correlated with whether a platform is SaaS or self-hosted.

In the next section, we will consider each CWV metric independently to see whether what is

Figure 17.12. Real-user Core Web Vitals experiences.

Part III Chapter 17 : Ecommerce

576 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-core-web-vitals-experiences.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-core-web-vitals-experiences.png

the largest contributor to poor site performance on each platform.

Largest Contentful Paint (LCP)

Firstly, there is the Largest Contentful Paint834 which uses the time it takes for the main page

content to be loaded as a proxy for how long it takes for the page to be useful.

Shopify again leads the pack of top ecommerce platforms with 57.94% of Shopify sites on

mobile achieving a good LCP experience. Sites that use WooCommerce performed the worst

with only 17.53% achieving a good experience. This metric in particular appears to be the

largest contributor to WooCommerce poor overall CWV score.

Across the wider web, the Performance chapter found 45% of mobile sites had a good LCP

experience. Only Shopify of the top 6 most popular ecommerce platforms achieved better than

the average of all sites requested on mobile.

Figure 17.13. Real-user Largest Contentful Paint experiences.

834. https://web.dev/articles/lcp

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 577

https://web.dev/articles/lcp
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-largest-contentful-paint-experiences.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-largest-contentful-paint-experiences.png

Out of the three CWV metrics, the hosting setup primarily only affects the LCP score. So, at this

point, it is worth comparing platforms that are commonly self-hosted against SaaS platforms

where infrastructure is managed and optimized by the vendor. We can see that Shopify as a

SaaS leads the other platforms. However, the other two SaaS platforms listed, Wix eCommerce

and Squarespace Commerce, perform worse on mobile compared to popular self-hosted

platforms Magento & PrestaShop.

First Input Delay (FID)

The second metric, First Input Delay835, measures how much work the browser has to do once a

website visitor interacts with the site, e.g., clicks on a link or button. It can be seen as a proxy for

how responsive the site feels or whether it feels laggy and slow to react to user input.

Sites on all of the top ecommerce platforms performed well on this metric. On desktop, most of

the ecommerce platforms surveyed achieved 100% good FID experience. On mobile, we start

Figure 17.14. Real-user First Input Delay experiences.

835. https://web.dev/articles/fid

Part III Chapter 17 : Ecommerce

578 2021 Web Almanac by HTTP Archive

https://web.dev/articles/fid
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-first-input-delay-experiences.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-first-input-delay-experiences.png

to see some poor experiences, but the vast majority achieve a good FID experience. Shopify

(98.21%) and Squarespace Commerce (98%) perform the best of the top ecommerce platforms

with WooCommerce, PrestaShop, and Magento only slightly behind with 98%.

Wix eCommerce is a platform that we’ve typically seen perform well but FID is one area it falls

down on with only 92.05% of its websites having a good FID experience.

That being said, all six perform better than non-ecommerce sites. The Performance chapter

found that 90% of all sites on mobile achieved a good First Input Delay experience.

Cumulative Layout Shift (CLS))

The final of the three CWV metrics is Cumulative Layout Shift836. It is a measure of the amount

that items on the page “move around”, e.g., a new image appears and pushes the text you were

reading or the button you were about to click to a different place.

Figure 17.15. Real-user Cumulative Layout Shift experiences.

836. https://web.dev/articles/cls

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 579

https://web.dev/articles/cls
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-cumulative-layout-shift-experiences.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-real-user-cumulative-layout-shift-experiences.png

Of the top platforms, Wix eCommerce outperforms all with 76.26% of mobile sites on the

platform achieving a good Cumulative Layout Shift Experience. Whereas less than half as many

visitors have a good experience on Magento sites (36.46%).

Comparing these ecommerce sites metrics to the wider web, we see that the top ecommerce

platforms perform slightly worse. The Performance chapter found 62% of sites (on mobile and

desktop) had a good CLS experience.

Page anatomy

When it comes to understanding the reasons behind a site’s performance, some of the first

things that you will look into are the page weight (the number of kilobytes that need to be

downloaded), and the number of requests required to load the page.

Page requests

The 50th percentile of all ecommerce sites had 101 requests on the home page on mobile. This

is a very similar number to the 98 requests that were found last year. The number of requests

per page is very similar across all percentiles when compared to last year.

Figure 17.16. Page requests distribution.

Part III Chapter 17 : Ecommerce

580 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-requests-distribution.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-requests-distribution.png

Breaking these requests down by type and we can see that JavaScript is the most popular

resource to be requested with 37 requests on an average ecommerce mobile home page. This is

a 23% increase from last year where there were 30 JavaScript requests per page. Previously

images were the most requested resource with 34 requests per page on mobile, but this is

down slightly to 29 requests.

Page weight

The page weight of a site includes all HTML, CSS, JavaScript, JSON, XML, images, audio, and

video.

Figure 17.17. Median page requests by type.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 581

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-median-page-requests-by-type.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-median-page-requests-by-type.png

The median page weight of ecommerce home pages was 2.5 MB on mobile. This figure is the

same as last year’s results, so on average home pages are not getting heavier (or lighter).

The heaviest sites (90th percentile) are 4% heavier than 2020’s results so the worst offenders

have gotten slightly worse.

Figure 17.18. Page weight distribution.

Part III Chapter 17 : Ecommerce

582 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-weight-distribution.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-weight-distribution.png

To better understand why this might be, we can look at the page weight by resource type. Video

is the heaviest resource with 2.6 MB on mobile sites, followed by images (1.2 MB) and

JavaScript (0.6 MB). Compared to last year we see a 24% increase in the number of MB of video

loaded. Meanwhile, the MBs for all other resource types are steady.

This suggests that the heaviest sites may be those that use video which can quickly increase the

overall page weight quite substantially. Given that the median page weight has not changed

between 2020 and 2021, this would suggest that the number of sites using video has not

changed, but of those that are, they are using it more. An opportunity for further research in

this area would be to look at what has caused the video weight increase: are there more videos,

are they longer, or higher quality?

Figure 17.19. Median page kilobytes by type.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 583

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-median-page-kilobytes-by-type.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-median-page-kilobytes-by-type.png

We saw that the sites with the heaviest pages (17 MB on mobile) were much heavier than the

median (4.8 MB). If we look at the page weight by type specifically at the 90th percentile and

compare it with the 50th percentile we can see that the weight of all resource types has

increased.

The largest contributors to page weight at the 90th percentile continue to be video with 9 MB

and images (5.6 MB). It isn’t altogether surprising that the heaviest ecommerce home pages are

those that use a large amount of video and images. This page is often content-heavy, and these

resource types are the most effective way of communicating the brand. While video and images

continue to be an important part of the buying experience, in the author’s point of view, other

page types are unlikely to see these extremes quite as much.

HTML payload size

The HTML payload is the size of the document response. In addition to HTML, this may include

inline JavaScript and CSS.

Figure 17.20. Page requests by type at 90th percentile.

Part III Chapter 17 : Ecommerce

584 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-requests-by-type-at-90th-percentile.png
https://almanac.httparchive.org/static/images/2021/ecommerce/ecommerce-page-requests-by-type-at-90th-percentile.png

The median HTML payload was 38 KB on mobile and 39 KB on desktop. While at the 90th

percentile, payloads were almost four times larger at 144 KB on mobile and 141 KB on desktop.

Payload size was broadly consistent across both mobile and desktop suggesting that sites are

broadly delivering the same HTML to both device types.

Images

Images are the second most requested resource type as well as the second-largest contributor

to page weight.

Figure 17.21. Distribution of HTML bytes per ecommerce page.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 585

https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-html-bytes-per-ecommerce-page.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-html-bytes-per-ecommerce-page.png

We see the median number of images requested on a mobile home page is 28, while it is 31 on

desktop. 10% of sites load 76 images on mobile, however, this is down from a high of 91 images

last year.

Overall, there is a 10-20% reduction in the number of images requested. It is hard to provide a

definitive answer, but it may be due to the increased adoption of the lazy loading attribute837. As

no scrolling or interaction with the site is performed during testing, any assets that are lazy-

loaded will not be factored into measurements. Analysis by the JavaScript chapter did find that

17% of sites are using this attribute which gives some weight to this theory.

Figure 17.22. Distribution of image requests for ecommerce.

837. https://web.dev/browser-level-image-lazy-loading/

Part III Chapter 17 : Ecommerce

586 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-image-requests-for-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-image-requests-for-ecommerce.png
https://web.dev/browser-level-image-lazy-loading/

If we consider images by weight rather than count, we see a median page weight contribution of

1.2 MB (mobile). At the 90th percentile, this rises to 5.4 MB.

Overall, the weight of images on ecommerce home pages is very similar when compared to

2020’s analysis.

Given we have seen that the number of image requests is slightly down, the average weight of

each image must have slightly increased.

Figure 17.23. Distribution of image bytes for ecommerce.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 587

https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-image-bytes-for-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-image-bytes-for-ecommerce.png

Note that some image services or CDNs will automatically deliver WebP (rather than JPEG or PNG) to
platforms that support WebP, even for a URL with a .jpg or .png suffix. For example,

IMG_20190113_113201.jpg returns a WebP image in Chrome. However, the way HTTP Archive

detects image formats is to check for keywords in the MIME type first, then fall back to the file
extension. This means that the format for images with URLs such as the above will be given as WebP
since WebP is supported by HTTP Archive as a user agent.

The most popular image format was JPG with 54% of images being in this format on mobile.

This is an 8% increase on last year when 50% of images were JPGs.

27% of images were PNGs which is a similar proportion to last year. The use of other image

types is broadly the same however GIFs have decreased from 17% to 14% on mobile.

Unfortunately, there is still a disappointingly low uptake on WebP support. This is despite it

being a more file size efficient format, and is supported in all modern browsers838.

Third-party requests

Ecommerce platforms and sites often make use of third-party content. We use the Third Party

Web project to detect third-party usage.

Figure 17.24. Popular images formats on ecommerce websites.

838. https://caniuse.com/webp

Part III Chapter 17 : Ecommerce

588 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/poppular-image-formats-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/poppular-image-formats-ecommerce.png
https://caniuse.com/webp

The median ecommerce site on mobile made 30 requests to third parties. While last year’s

analysis saw an increase in third-party requests, this year the number is static with little change

almost across the board. There is a slight change where the top 10% of pages have reduced the

number of third-party requests from 98 to 91 on mobile and 103 to 96 on desktop.

Figure 17.25. Distribution of third-party requests.

Figure 17.26. Distribution of third-party bytes.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 589

https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-third-party-requests.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-third-party-requests.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-third-party-bytes.png
https://almanac.httparchive.org/static/images/2021/ecommerce/distribution-of-third-party-bytes.png

The weight of third-party content is also very similar to last year’s analysis. With sites in the

50th percentile requesting 495 KB of third-party content. The bottom 10% requested 75 KB

while the top 10% requested 2306 KB.

Tools

In addition to site performance and quality analysis, our Methodology enables us to review

other technologies used on ecommerce sites. This provides us with insight into the ecommerce

strategies adopted (e.g., internationalization), as well as typical development techniques (e.g.,

JavaScript libraries used).

JavaScript frameworks & libraries

Using JavaScript is a popular method of customizing the commerce experience, particularly on

SaaS platforms where the core product is a black box.

While we haven’t seen a marked increase in the amount of JavaScript used on the ecommerce

sites this year, we did want to look into which frameworks and libraries are most commonly

used. This may give insight into what JavaScript is being used to achieve.

Unfortunately, we are unable to make statements about the proliferation of headless frontend

implementations within ecommerce. One limitation of the methodology is that it is more

difficult to detect that a site is ecommerce when it is headless because the typical markers of an

ecommerce platform no longer exist. At this point, the analysis falls back on weaker secondary

signals.

Part III Chapter 17 : Ecommerce

590 2021 Web Almanac by HTTP Archive

Figure 17.27. Top JavaScript frameworks on ecommerce sites.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 591

https://almanac.httparchive.org/static/images/2021/ecommerce/top-javascript-frameworks-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-javascript-frameworks-ecommerce.png

We see that jQuery839 is still the most popular library. Reports of its demise are greatly

exaggerated. 93.66% of ecommerce websites profiled were still using it. Many of the popular

ecommerce vendors provide jQuery as part of the default frontend. On top of that platforms

also live and die by the app and plugin ecosystems where additional functionality can be bought

off of the shelf. These solutions also regularly use jQuery to provide functionality cost-

effectively.

Noticeably GSAP840 (GreenSock Animation Platform) is included on 15% of ecommerce websites

requested on mobile. That’s more common than Fancybox841 (12.48%), a popular Lightbox

library, and Slick842 (9.90%) a library used for creating carousels.

We recognized in the limitation section that the results are going to be skewed because all

requests are made to the home page. This means that the analysis won’t find any libraries used

for the product detail page media gallery where Slick may have proven even more popular.

Figure 17.28. Top JavaScript libraries on ecommerce sites.

839. https://jquery.com/
840. https://greensock.com/gsap/
841. https://fancyapps.com/docs/ui/fancybox/
842. http://kenwheeler.github.io/slick/

Part III Chapter 17 : Ecommerce

592 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/top-javascript-libraries-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-javascript-libraries-ecommerce.png
https://jquery.com/
https://greensock.com/gsap/
https://fancyapps.com/docs/ui/fancybox/
http://kenwheeler.github.io/slick/

Analytics

One of the beauties of ecommerce is that you can measure how well you’re doing by how many

people you convert after they visit the site. In theory, every change you make, every new pricing

offer, every new feature can be assessed objectively with analytics.

Google Analytics843 is the most popular analytics tool, found on 74.19% of websites (mobile).

Bemusedly, only 13.38% of mobile requests and 13.99% of desktop requests noted the use of

enhanced ecommerce844. However, as the main enhanced ecommerce features are for tracking

the ecommerce journey through product listing page, product detail page, cart, and checkout,

perhaps the reason that we do not see a greater percentage is due to a limitation of the survey

being restricted to home pages.

Figure 17.29. Top analytics solutions on ecommerce sites.

843. https://marketingplatform.google.com/about/analytics/
844. https://support.google.com/analytics/answer/6014872?hl=en#zippy=%2Cin-this-article

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 593

https://almanac.httparchive.org/static/images/2021/ecommerce/top-analytics-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-analytics-ecommerce.png
https://marketingplatform.google.com/about/analytics/
https://support.google.com/analytics/answer/6014872?hl=en#zippy=%2Cin-this-article

Tag managers

These tools provide ecommerce and marketing teams with reduced cycle time for launching

new features as they allow JavaScript changes to be made to the site without a core website

platform deployment (or indeed developer involvement).

Google Tag Manager845 is by far the market leader with 56.39% usage on desktop and 53.95% on

mobile. In second and third places were Tealium846 (0.26% mobile) and Adobe Experience

Platform Launch847 (0.20% mobile).

A/B Testing

In a similar vein to analytics, implementing an A/B testing solution enables hypotheses to be

tested. Providing a feedback mechanism for new features is the only way to understand which

strategies are working and which should no longer be invested in.

Figure 17.30. Top tag managers on ecommerce sites.

845. https://marketingplatform.google.com/intl/en_uk/about/tag-manager/
846. https://tealium.com/
847. https://business.adobe.com/uk/products/experience-platform/launch.html

Part III Chapter 17 : Ecommerce

594 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/top-tag-managers-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-tag-managers-ecommerce.png
https://marketingplatform.google.com/intl/en_uk/about/tag-manager/
https://tealium.com/
https://business.adobe.com/uk/products/experience-platform/launch.html
https://business.adobe.com/uk/products/experience-platform/launch.html

Google Optimize848 is the most popular A/B testing tool in use on 2.06% of mobile ecommerce

sites. VWO849 was the second most common solution but was found on less than one-tenth the

number of sites compared to Google Optimize (0.15% on mobile).

The obvious yet disappointing conclusion is the majority of ecommerce sites were not running

A/B tests at the time of the survey.

Web push notifications

Once a visitor gives their permission, the Push API enables ecommerce sites to send push

notifications even when the website is not open.

We tried to look at the adoption of web push notifications by ecommerce sites using the

Chrome User Experience report. As this is generated from real user data, we can also see the

approval rates for push permission requests. Please refer to this Google article850 for more

details on how this data is captured and what metrics are available.

Figure 17.31. Top A/B testing solutions on ecommerce sites.

848. https://marketingplatform.google.com/about/optimize/
849. https://vwo.com/
850. https://developers.google.com/web/updates/2020/02/notification-permission-data-in-crux

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 595

https://almanac.httparchive.org/static/images/2021/ecommerce/top-ab-testing-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/top-ab-testing-ecommerce.png
https://marketingplatform.google.com/about/optimize/
https://vwo.com/
https://developer.mozilla.org/docs/Web/API/Push_API
https://developers.google.com/web/updates/2020/02/notification-permission-data-in-crux

Only 0.43% of home pages on mobile (0.48% on desktop) requested the use of the Web Push

API. While, notably, Safari on iOS does not support the Push Notifications API, there is still wide

adoption in other browsers. Suggesting there is still a good opportunity to progressively

enhance experiences with push notifications at appropriate points in the ecommerce journey,

e.g., order updates.

What’s more, usage has measurably decreased since last year when 0.69% of mobile sites

requested permission to send Push notifications (0.68% on desktop).

We may explain away the low usage statistics by saying that it is from a lack of awareness.

However, the reduction in usage suggests a different trend; over a third of sites no longer use

push notifications. This may be due to their poor push notification acceptance rates.

The Push notification acceptance rates are very similar to last year’s results. The median

acceptance rate of push notification requests was 14.23% on mobile. Unfortunately, if there is

any trend across year’s, it’s downwards. At the 90th percentile last year 36.9% of push requests

were accepted compared to 29.80% this year on mobile.

Figure 17.32. Percentage of ecommerce sites using Web Push Notifications (mobile).

0.43%

Figure 17.33. Web Push Notification acceptance rates.

Part III Chapter 17 : Ecommerce

596 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/ecommerce/web-push-notification-acceptance-rates-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/web-push-notification-acceptance-rates-ecommerce.png

The author can offer multiple suggestions as to why the uptake is so low:

• The request is being made at the wrong time, e.g., initial page load, or

• It is made before sufficient motivation has been offered, e.g., without any prompt as

to the benefits of accepting notifications, or

• Perhaps more simply that visitors are simply still unaccustomed to web-based push

notifications.

Accessibility overlays

Making your website accessible should not be an afterthought. However, there is an increasing

number of technologies that claim to make your website more accessible. An accessibility

overlay is JavaScript that tries to apply automated accessibility fixes to the site. They are

typically not851 recommended852 by accessibility experts.

In our research, we found that less than 1% of websites had third-party accessibility tools on

their home page.

Further information on such tools can be found in the Accessibility chapter.

AMP

AMP from Google is commonly used within the media industry for providing the latest

information fast, but it has struggled to take off in ecommerce. This year we reported less than

0.7% of websites declared AMP compatibility or linked to AMP resources.

Figure 17.34. Percentage of ecommerce sites with accessibility overlays (mobile).

0.77%

Figure 17.35. AMP usage on ecommerce sites (mobile).

0.61%

851. https://www.a11yproject.com/posts/2021-03-08-should-i-use-an-accessibility-overlay/
852. https://overlayfactsheet.com/

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 597

https://www.a11yproject.com/posts/2021-03-08-should-i-use-an-accessibility-overlay/
https://overlayfactsheet.com/

Consent management

The EU Cookie policies and GDPR have increased the complexity of requested marketing

permission. This year, we saw 6.85% of ecommerce websites on mobile deploying a third-party

consent management app to facilitate collecting consent according to legislation (6.52% on

desktop).

Content Security Policies

On a site where a customer is expected to share sensitive information, it is even more

important to have confidence that there is no nefarious code that has made its way into the

system. Content Security Policies (CSPs) are a technique to monitor or block requests to third

party websites that aren’t on a whitelist.

As with many security policies, this form of control can be seen as the antagonist of ecommerce

businesses that wish to move quickly with tools such as tag managers whose primary purpose is

to add third-party code to sites quickly. In the author’s experience, the overhead in managing

CPSs has resulted in little usage.

On initial reading, we were surprised to find that 25.02% of requests on desktop and 23.28% of

mobile pages made use of a Content Security Policy. However, some ecommerce platform

vendors provide a lax content security policy out of the box. For example, Shopify sites have a

policy that blocks a site from being loaded within an iframe, as well as ensuring all requests are

over HTTPS. Without further research, we have not been able to identify how many

ecommerce sites are using CSPs as a form of control of third-party assets. Given that only

0.70% of sites are using the “Report Only” mode of CSP which is aimed at testing policy changes

before they are enforced, it is likely that very few are.

Figure 17.36. Third-party consent management solution usage on ecommerce sites (mobile).

6.85%

Figure 17.37. Percent of mobile ecommerce pages that use a Content Security Policy.

23.28%

Part III Chapter 17 : Ecommerce

598 2021 Web Almanac by HTTP Archive

Internationalization

A key growth strategy of successful ecommerce businesses is moving into new countries. To do

this well, you would want to provide localized language versions of your site.

In this year’s analysis, we looked for hreflang headers and link tags to see how many sites

were using them. These tags are not available out of the box on the most popular platforms (e.g.,

WooCommerce, Shopify, Magento), the existence of any suggests there would be more than

one.

A hreflang attribute is used to communicate the language that the page is targeting.

Optionally it can also narrow this recommendation to a particular country, e.g., en-gb for

English targeting Great Britain, as opposed to en-us for English targeting the United States.

The results identified 8.81% of requests on desktop to specify an English hreflang and 8.07% on

mobile ecommerce sites. The next most popular languages were German (3.28% on mobile),

French (2.82%), and Spanish (2.66%).

Figure 17.38. Top hreflang links used on ecommerce sites.

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 599

https://almanac.httparchive.org/static/images/2021/ecommerce/hreflang-links-ecommerce.png
https://almanac.httparchive.org/static/images/2021/ecommerce/hreflang-links-ecommerce.png

It is hard to draw too many conclusions from this data without further research. However, we

can say that it is still uncommon for ecommerce businesses to provide language-specific site

variations. Of those that do, they are most likely to declare support for one or more languages

used by Western European countries. In the author’s experience, the geographic proximity of

each of the UK, France, Germany, Spain, and Italy makes internationalization an attractive

growth strategy.

Further research could be performed here to better understand the internationalization

capabilities of ecommerce websites. For example, looking into the average number of

hreflang attributes declared may help determine the breadth of multi-region support.

Cross-referencing hreflang use with ranking data available from the CRUX metrics could

uncover trends of when businesses invest in multi-region support.

Conclusion

There was a measurable increase in the proportion of sites with ecommerce functionality

during Q2 and Q3 of 2020. This growth rate has not been maintained through to 2021. In fact,

the percentage of ecommerce sites decreased from 21.27% to 19.49% on mobile suggesting

that ecommerce has not grown at the same pace as the wider web.

WooCommerce and Shopify are the most popular ecommerce platforms. They also saw the

largest proportion of the growth in response to the pandemic.

For the first time, our analysis benefited from website popularity ranking data. This enabled the

review ecommerce platform popularity at different business sizes. In particular, within the

100,000 sites Magento is the most popular platform. It is followed by Shopify and Salesforce

Commerce Cloud.

Finally, in terms of site performance, Core Web Vitals has been a prominent industry discussion

over the last year because it is now a Google search engine ranking factor. We have seen

10-20% more sites achieve a good CWV on mobile across most of the top 5 platforms. Shopify

sites had the highest percentage of good CWV experiences at 33% on average. Despite this

improvement since last year, ecommerce sites still perform very poorly across all platforms for

Core Web Vitals.

Future analysis opportunities

One of the methodology limitations is that only the home page is tested. On an ecommerce site,

there will likely be some technologies that are not detectable site-wide, e.g., payments and

shipping providers will likely only be visible during the checkout process. This is likely to be

Part III Chapter 17 : Ecommerce

600 2021 Web Almanac by HTTP Archive

impractical to achieve given the necessary steps to get to this stage of the checkout process.

Evaluating only the home page also affects our ability to analyze site performance. Arguably

the product listing and product detail pages are more important to optimize for speed. Fetching

more than one page per site is being investigated853 and may be available for future editions of

the Web Almanac.

Wappalyzer tracks over 2,700 popular web technologies which already provides us with

incredible analysis opportunities. However, there is a very long tail of technologies, particularly

in ecommerce. At the current time, it’s not practical to review categories of technologies within

ecommerce, e.g., top personalization tools, top review apps, or top abandoned cart as there isn’t

enough coverage. This is partly due to the number of technologies that can be detected and

partly due to only requesting a single page per site.

As further technologies get supported by Wappalyzer, we may reach a point where further

analysis can be done that looks to see if there’s any correlation between technology usage,

performance, and the CrUX rank of a website.

Author

Tom Robertshaw

@bobbyshaw bobbyshaw tomrobertshaw https://www.space48.com

Tom is Innovation Director at Space 48854, an ecommerce agency for ambitious

retailers. He has over a decade of experience in ecommerce working with brands

such as Ordnance Survey, Betty’s & Taylors of Harrogate and Smythson. He is now

leading an initiative to launch a suite of apps for merchants on BigCommerce.

853. https://github.com/HTTPArchive/httparchive.org/issues/400
854. https://www.space48.com

Part III Chapter 17 : Ecommerce

2021 Web Almanac by HTTP Archive 601

https://github.com/HTTPArchive/httparchive.org/issues/400
https://x.com/bobbyshaw
https://github.com/bobbyshaw
https://www.linkedin.com/in/tomrobertshaw/
https://www.space48.com/
https://www.space48.com/

602 2021 Web Almanac by HTTP Archive

Part III Chapter 18

Jamstack

Written by Artem Denysov
Reviewed by Alba Silvente Fuentes, Thom Krupa, and Barry Pollard
Analyzed by Artem Denysov, Barry Pollard, and Rick Viscomi
Edited by Barry Pollard and Shaina Hantsis

Introduction

Jamstack stands on JavaScript, API, and Markup architecture. These 3 foundations are

decoupled, and the Jamstack site can be built purely using markup. Using pure HTML is “kinda”

Jamstack, but it’s really hard to scale. Lucky for us, there’s a huge ecosystem of Static Site

Generators (SSGs).

— Jamstack.wtf855

Jamstack has revolutionized the way we think about building for the web by

providing a simpler developer experience, better performance, lower cost and

greater scalability. "
855. https://jamstack.wtf/

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 603

https://jamstack.wtf/

JavaScript based SSGs:

• Next.js

• Gatsby

• Nuxt.js

• etc

Traditional:

• Eleventy

• Hugo

• Jekyll

• Hexo

• etc

And there are many more SSGs beyond these856. They allow building sites converted to “pure”

HTML and JavaScript goodness if needed.

For more complex sites, data has to be structured. There are several ways to store and manage

data using headless CMSs857 via APIs.

Moreover, Jamstack sites need support for server interactions such as form submissions or user

input processing. Services like Netlify provide serverless functions858 support to address this

need.

The goal of this chapter is to identify what are the main SSGs used on Jamstack and look at the

adoption of Jamstack technology year over year. We looked at how they are distributed around

the world, the level of performance of Jamstack sites, and how it is growing. We also explored

data of different CDN providers for Jamstack sites. Additionally we dived into results of

resources used for Jamstack sites and their impact on user experience.

It’s worth mentioning some data disclaimers to consider when reading this chapter:

1. HTTP Archive data of detected SSGs is based on Wappalyzer technology, which has

some limitations. It can’t detect whether the site was built with certain SSGs such as

Eleventy. Also, it can’t detect if the site was generated by Next.js Static Rendering859

856. https://jamstack.org/generators/
857. https://jamstack.org/headless-cms/
858. https://www.netlify.com/products/functions/

Part III Chapter 18 : Jamstack

604 2021 Web Almanac by HTTP Archive

https://jamstack.org/generators/
https://jamstack.org/headless-cms/
https://www.netlify.com/products/functions/
https://nextjs.org/docs/basic-features/pages#static-generation-recommended

or Server Side Rendering860.

2. In our analysis, we can’t get any info related to headless CMSs, hence we will not

cover this either.

3. We visualize SSG data using top 5 used SSGs based on number of sites built with

these SSGs.

More information can be found in the methodology selection.

Adoption of SSGs

SSG adoption is growing in general by 2x in year over year. In 2019 it was just 0.4% mobile and

0.3% desktop sites. In 2020 the number almost doubled, to 0.6% on mobile and 0.7% on

desktop sites. In 2021 they have grown again: 1.1% of mobile and 0.9% of desktop sites. That

underlines the trend of that technology. For example, this year Vercel raised a $102M in series

C round861 and a further $150M in round D862 of investment to build a better web with modern

technologies like Next.js. Jamstack oriented CDN provider Netlify raised $105M in their series

D863 of investment. Hence, it’s expected that numbers of Jamstack adoption will grow even

higher next year.

Figure 18.1. SSG adoption year over year.

859. https://nextjs.org/docs/basic-features/pages#static-generation-recommended
860. https://nextjs.org/docs/basic-features/pages#server-side-rendering
861. https://vercel.com/blog/series-c-102m-continue-building-the-next-web
862. https://vercel.com/blog/vercel-funding-series-d-and-valuation
863. https://www.netlify.com/press/netlify-raises-usd105-million-to-transform-development-for-the-modern-web

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 605

https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://vercel.com/blog/series-c-102m-continue-building-the-next-web
https://vercel.com/blog/series-c-102m-continue-building-the-next-web
https://vercel.com/blog/vercel-funding-series-d-and-valuation
https://www.netlify.com/press/netlify-raises-usd105-million-to-transform-development-for-the-modern-web
https://www.netlify.com/press/netlify-raises-usd105-million-to-transform-development-for-the-modern-web
https://almanac.httparchive.org/static/images/2021/jamstack/year-over-year-adoption.png
https://almanac.httparchive.org/static/images/2021/jamstack/year-over-year-adoption.png

In 2020 the amount of desktop websites increased 2.76 times, while mobile just 1.5 times. In

2021 mobile availability for SSGs built sites became way better than in 2020, and this year

there are ~1.9 times more sites than 2020.

Which SSGs are the most popular

Let’s begin with understanding which SSG is most popular. Next.js covers 43.6% of Jamstack

sites. Nuxt.js is in second place with 31.1%, third is Gatsby with 16.0%, followed by Hugo at

6.0%.

Please note the original publication of this chapter had different figures due to incorrect over-counting
of Nuxt and Next sites. This has been corrected in above figures and, to a lesser degree, in other figures
in this chapter.

All top 3 SSGs are JavaScript based: Next.js and Gatsby use React.js864 at it’s core and

supplements this by adding their own functionality on top of it. Nuxt.js is based on Vue.js865.

Having these popular front-end frameworks with huge ecosystems out of the box makes

development way easier. Node.js866 allows JavaScript to run on the server as well as the browser

where it has traditionally been used, enabling developers stick to one language. That makes

adopting these SSGs easier from a server perspective, comparing to Hugo which is based on the

Figure 18.2. SSG adoption share.

864. https://reactjs.org/
865. https://vuejs.org
866. https://nodejs.org/en/

Part III Chapter 18 : Jamstack

606 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/adoption-share.png
https://almanac.httparchive.org/static/images/2021/jamstack/adoption-share.png
https://reactjs.org/
https://vuejs.org/
https://nodejs.org/en/

Go programming language867, and Jekyll based on Ruby868.

We will take a look what’s the adoption rate of SSGs among web sites.

Adoption by rank

Next.js remains a popular SSG across all ranks, but for the top 10k in particular.

Geographic adoption

In this section we will cover geographic adoption for Jamstack and explore distribution over

countries and regions.

Adoption by country

SSGs are heavily used around the world. The figure belows shows the top 10 countries with the

highest number of sites.

Figure 18.3. SSG adoption share by rank.

867. https://go.dev/
868. https://go.dev/

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 607

https://go.dev/
https://go.dev/
https://almanac.httparchive.org/static/images/2021/jamstack/rank-adoption.png
https://almanac.httparchive.org/static/images/2021/jamstack/rank-adoption.png

In the USA, between 1.2 and 1.4%% of all sites pages (which is about 22k pages for desktop and

16k for mobile), are created with SSG. India has a lower number of pages, with just 6k for

desktop and 7k for mobile, but 1.7% of all pages is covered by Jamstack technologies. In third

place is the United Kingdom, which also has 1.7% of pages.

Figure 18.4. SSG adoption by country.

Part III Chapter 18 : Jamstack

608 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-country.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-country.png

USA has a larger Next.js adoption compared to Nuxt.js and Gatsby. It trends similarly in almost

all countries. In most countries, Next.js is a preferable choice. Interestingly Gatsby has no data

for 3 of the top 10 countries using Jamstack technologies, but in 2 of them Japan and Russian

Federation Nuxt.js is more preferable.

Adoption by region

We also looked at the adoption levels by regions.

Figure 18.5. SSG distribution by country.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 609

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-by-country.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-by-country.png

The number of sites in Europe for desktop is 23k versus mobile 26k, which is 1.1% of all web

sites in that region. In the Americas, there are 26k desktop sites and 24k mobiles sites (1.2% of

sites). Asia has almost the same numbers with 21k desktop and 22k mobile as the leading

region with greater Jamstack adoption at 1.45%. Oceania and Africa have way lower overall

numbers, but they have way greater Jamstack adoption. Oceania 2.19% and Africa 2%. Overall

site adoption is at 1.1%.

Adoption by subregion

We can further break down by subregions to observe additional trends.

Figure 18.6. SSG distribution by region.

Part III Chapter 18 : Jamstack

610 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-region.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-region.png

The list is ordered by the total number of SSG sites, but shows those as a percentage of all sites

in that region. It’s no surprise that top of the list is Northern America as most companies who

invented SSGs are in the USA. However, as a percentage of all sites they are a a lower regions

with only 1.1% of sites having adopted Jamstack. But surprisingly, Western Europe is in second

place and has a similar low percentage adoption compared to some of the sub regions further

Figure 18.7. SSG distribution by sub region.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 611

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-subregion.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-adoption-by-subregion.png

down the list.

The tail also shows great results. Subregions with lower number of sites in general adopt

technology at a broader based, for example, 4.8% of Micronesia sites.

SSGs distribution among CDN providers

We described how SSGs are adopted in different countries, so let’s analyze which SSG is most

popular among different CDN providers.

The 7 most popular CDN providers for SSGs are:

• Netlify

• Vercel

• Cloudflare

• AWS

• Azure

• Akamai

• GitHub

Jamstack CDN services are not just for network delivery. They provide a lot of functionality to

allow developers to easy deploy and manage Jamstack sites. For example, Netlify provide easy

to use functionality to deploy sites in scope of their service so developers can just update the

code and the continuous deployment process is managed for them. Jamstack CDNs provide

many other features869 such as serverless functions, A/B testing etc.

On the other hand, Cloudflare, Akamai, AWS are not only used purely for content deliver either,

but can also provide protection service, DNS balancing and more. However, since we can’t

detect how exactly Cloudflare, Akamai, and AWS are used, results could be false positives if we

look at them as Jamstack enablers. The “Jamstack” part could be handled on origin servers and

so not actually on these services.

869. https://bejamas.io/compare/netlify-vs-vercel/

Part III Chapter 18 : Jamstack

612 2021 Web Almanac by HTTP Archive

https://bejamas.io/compare/netlify-vs-vercel/
https://bejamas.io/compare/netlify-vs-vercel/

Next.js, is the most popular, mostly served by Cloudflare, Vercel, and AWS. Most of Gatsby’s

sites use Netlify, AWS, and Cloudflare. Nuxt.js sites preferred to be served by Cloudflare, AWS,

and Netlify. Hugo mostly uses Netlify, and it’s no surprised that Jekyll is used mostly on GitHub.

On the following graph we show the relative split of CDNs used for popular CDNs:

Figure 18.8. SSG distribution over CDN.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 613

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-over-cdn.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-over-cdn.png

Next.js is mostly served by Vercel (the company that invented Next.js). We can see that more

generalized CDNs like AWS are not serving significant percentages of Jamstack sites, as

opposed to more Jamstack-focussed services like Netlify and Vercel.

GitHub as CDN provider might seem unusual, but GitHub Pages allow users to deploy sites on

github.io subdomains built in Jekyll SSG.

User experience and performance

In our analysis we wanted to explore what the user experience for the 1.1% of sites that have

adopted Jamstack technology. We looked at Lighthouse and Core Web Vitals results.

Lighthouse

All Lighthouse scores are simulated testing data from our crawl. Hence, real-user results might

be influenced depending on the mobile data providers and devices actually used.

Figure 18.9. SSG distribution over CDN.

Part III Chapter 18 : Jamstack

614 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-over-cdn-stacked.png
https://almanac.httparchive.org/static/images/2021/jamstack/ssg-distribution-over-cdn-stacked.png
https://pages.github.com/

Performance score

The median performance score for all SSGs across mobile varies. The top 3 SSGs with by

popularity can’t even surpass a score of 40. Since they are used in top ranking sites and since

users a likely distributed all around the world, we can assumed that they are used across many

different devices and networks. We can expect more out-of-the-box improvements like Next.js

image component870 to help performance.

Jekyll is a stand out, achieving a score of almost 70 which is a great result for such a mastodon

in the SSG area. Learn more about Lighthouse performance audit871 to understand exactly what

measures are included in this score.

Figure 18.10. Median Lighthouse performance score.

870. https://nextjs.org/docs/basic-features/image-optimization
871. https://web.dev/lighthouse-performance/

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 615

https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-performance-score.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-performance-score.png
https://nextjs.org/docs/basic-features/image-optimization
https://nextjs.org/docs/basic-features/image-optimization
https://web.dev/lighthouse-performance/

Accessibility score

Lighthouse also runs audits to measure accessibility872 and here we seem to have better results:

There are limits to what can be checked in an automated accessibility check, but this is still a

positive sign. Read the Accessibility chapter for more on this subject.

Figure 18.11. Median Lighthouse accessibility score.

872. https://web.dev/lighthouse-accessibility/

Part III Chapter 18 : Jamstack

616 2021 Web Almanac by HTTP Archive

https://web.dev/lighthouse-accessibility/
https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-accessibility-score.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-accessibility-score.png

SEO score

Similarly, all Jamstack sites provide great SEO scores from 90 to 92. Using static content always

was SEO-friendly technique by default. Moreover, SSGs allow additional out of the box

functionality to optimize sites for search engines.

The bottom line here is that Lighthouse results in general are good, but performance and PWA

should be the main target for SSGs, these categories need some work to improve developer

experience out of the box, hence the end result of sites performance will be improved.

Figure 18.12. Median Lighthouse SEO score.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 617

https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-seo-score.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-lighthouse-seo-score.png

Core Web Vitals

Core Web Vitals873 (CWV) is an initiative to provide unified guidance for quality signals that are

essential to delivering a great user experience on the web. CWV itself uses 3 performance

metrics:

• Largest Contentful Paint (LCP) - which measures the load time of the presumed

main content of the page.

• First Input Delay (FID) - which measure interaction delays.

• Cumulative Layout Shift (CLS) - which measures visual stability so content is not

moving around as the page loads and the user reads the content.

We used the Chrome UX Experience Report (CrUX) which gathers real-user data of these values

and so is a better measure of actual user experience than the lab-based performance metric

that Lighthouse provides.

We analyzed data for the SSGs, but this also reflects how those are delivered. As we saw above

some sites are used more or less on different CDNs which may have a better (or worse!) impact

on performance because of that so we also look at that data.

In the overall assessment for SSGs we can understand the basic performance level of Jamstack

sites. CWV assessment contains data of 75% percentile of page loads which have a good score

of CWV across all metrics.

873. https://web.dev/learn-web-vitals/

Part III Chapter 18 : Jamstack

618 2021 Web Almanac by HTTP Archive

https://web.dev/learn-web-vitals/

Looking at mobile results, Jekyll and Hugo have the best results over SSGs—34.3% and 31.8%

of all sites scored good. Gatsby is third with 21.9%, but it’s the first of the JavaScript-based

SSGs. Next.js with 13.6% of good performance pages and Nuxt.js has 11.0%.

Largest Contentful Paint

The Largest Contentful Paint874 (LCP) metric reports the render time of the largest image or text

block visible within the viewport, relative to when the page first started loading.

Figure 18.13. Real-user Core Web Vitals compliance.

874. https://web.dev/articles/lcp

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 619

https://almanac.httparchive.org/static/images/2021/jamstack/cwv-compliance.png
https://almanac.httparchive.org/static/images/2021/jamstack/cwv-compliance.png
https://web.dev/articles/lcp

Above we see the same results are approved by percent of sites with good LCP experience. The

best results show Jekyll and Hugo with 76.4% and 70.3% of mobile sites having a “good” LCP of

under 2.5s. The JavaScript based SSGs (Gatsby, Next.js, and Nuxt.js) fair worse.

Figure 18.14. Real-user Core Web Vitals LCP.

Figure 18.15. LCP distribution for CDNs.

Part III Chapter 18 : Jamstack

620 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/cwv-lcp.png
https://almanac.httparchive.org/static/images/2021/jamstack/cwv-lcp.png
https://almanac.httparchive.org/static/images/2021/jamstack/LCP-distribution-CDN.png
https://almanac.httparchive.org/static/images/2021/jamstack/LCP-distribution-CDN.png

GitHub tops the stats when measuring on CDN level, likely reflecting the simpler sites hosted

here. Netlify, a Jamstack-oriented CDN, comes next with 66.8% of sites having a good LCP

followed by Vercel with 63.4% followed by AWS with 59.2% and Cloudflare at 54.2%.

First Input Delay

First Input Delay875 (FID) measures the time from when a user first interacts with a page (i.e.

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

when the browser is actually able to begin processing event handlers in response to that

interaction.

On a real user experience, All SSG show great FID results across different SSGs.

Figure 18.16. Real-user Core Web Vitals FID.

875. https://web.dev/articles/fid

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 621

https://web.dev/articles/fid
https://almanac.httparchive.org/static/images/2021/jamstack/cwv-fid.png
https://almanac.httparchive.org/static/images/2021/jamstack/cwv-fid.png

All CDNs deliver Jamstack sites with 88% good FID or above, though interesting that the

Cloudflare and AWS sites fare slightly worse than the Jamstack-orientated CDNs.

Cumulative Layout Shift

Cumulative Layout Shift876 (CLF) is a measure of the largest burst of layout shift scores for every

unexpected layout shift that occurs during the entire lifespan of a page.

Figure 18.17. FID distribution for CDNs.

876. https://web.dev/articles/cls

Part III Chapter 18 : Jamstack

622 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/FID-distribution-CDN.png
https://almanac.httparchive.org/static/images/2021/jamstack/FID-distribution-CDN.png
https://web.dev/articles/cls

Again, Jekyll shows great performance here. 81.1% of mobile are good results. Followed by

Hugo at 74.2%, Gatsby at 65.7%, Next.js at 50.0%, and Nuxt.js trailing the pack at 48.7%.

Here’s the same results as with previously for CDNs. GitHub, Netlify, Vercel.

Figure 18.18. Real-user Core Web Vitals CLS.

Figure 18.19. CLS distribution for CDNs.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 623

https://almanac.httparchive.org/static/images/2021/jamstack/cwv-cls.png
https://almanac.httparchive.org/static/images/2021/jamstack/cwv-cls.png
https://almanac.httparchive.org/static/images/2021/jamstack/CLS-distribution-CDN.png
https://almanac.httparchive.org/static/images/2021/jamstack/CLS-distribution-CDN.png

In general CWV results reflect Lighthouse results. Huge and Jekyll have better real user

performance data. We can’t detect how complicated sites were built with these SSGs. We can

bet that with modern SSGs like Next.js, Nuxt.js, Gatsby there are a lot of JavaScript delivered,

more data to render including images. Hence, it affects performance results. Nevertheless, an

interesting correlation between GitHub and Jekyll, which in tandem shows great results.

Resources

Let’s dive into resource weights between top fives SSGs to understand their influence on

performance. The results represent median values.

Resources weight

JavaScript based SSGs have almost 2 times larger amount of resources than Hugo and Jekyll.

The top one is ~2 MB for Nuxt.js, followed by Next.js and Gatsby with almost 1.8 MB and 1.7

MB.

As we mentioned above, JavaScript-based SSGs include JavaScript frameworks out of the box.

That makes development easier, but requires more responsibility. The JavaScript ecosystem

makes it ease to add more and more libraries to a site, for various purposes, which can lead to

large bundle sizes.

Figure 18.20. Median page weight.

Part III Chapter 18 : Jamstack

624 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/median-page-weight.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-page-weight.png

JavaScript

A big chunk of resources are for JavaScript. Again, for JavaScript-based SSGs it’s a much bigger

compared to others - around 700 KB compared to around 150 KB for non-JavaScript based

SSGs. While this is not surprising, it’s interesting to see the actual differences laid out in this

way. Next.js based sites use more JavaScript than others. Hugo and Jekyll developers on other

hand seem to be using JavaScript more responsibly and keeping their bundles tight. Another

reason for that might be site complexity. Hugo and Jekyll sites are not represented as much in

top ranking sites, so they might have simpler use cases than, for example, Next.js sites which do

appear more often in the top ranking sites.

We analyzed which third party libraries were used among SSGs. We excluded React and Vue to

have a clear picture of other libraries and frameworks represented among SSGs.

Figure 18.21. Median JavaScript weight.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 625

https://almanac.httparchive.org/static/images/2021/jamstack/median-js-weight.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-js-weight.png

A big surprise for us was jQuery. It wasn’t a surprise that it’s used for Hugo and Jekyll based

sites (more than 60%), but that it’s used inside React and Vue based sites wasn’t expected!

Next.js, Many Nuxt,js, and Gatsby sites use jQuery too.

Styled-components was used for Next.js - 20% and Gatsby takes 34% from all of third party

libraries. Nuxt.js sites almost don’t use it.

Lodash is heavily used and was present among all SSGs up to 10% for Gatsby.

Figure 18.22. JavaScript 3rd parties distribution over SSGs.

Part III Chapter 18 : Jamstack

626 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/3rd-party-libs-distribution-over-ssgs.png
https://almanac.httparchive.org/static/images/2021/jamstack/3rd-party-libs-distribution-over-ssgs.png

CSS

On the other hand, CSS is slightly heavier than Hugo and Jekyll. Since of the benefits of styled-

components is clean, non-repetitive CSS, this could explain why CSS size for these JavaScript

SSGs are lower. One more hypothesis is that old fashioned SSGs use old fashion methods for

handling interactions and animations using CSS. JavaScript-based SSGs use more JavaScript in

general, hence they might more often be used to replace functionality that could be

implemented with CSS.

Images

Images weights distributed differently. There’s no correlation between SSG groups.

Figure 18.23. Median CSS weight.

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 627

https://almanac.httparchive.org/static/images/2021/jamstack/median-css-weight.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-css-weight.png

Nuxt.js has the highest value at 645 KB. Hugo is next with 522 KB. Next.js and Gatsby are

almost the same at 465 KB and 545 KB respectively. Jekyll has the lowest value at 295 KB.

Images format adoption

Images are one of the bottlenecks of good User Experience (UX). If they are large, then the user

has to wait for a long time for the image to be delivered. It can lead to layout shifts and other

problems.

Figure 18.24. Median image weight.

Part III Chapter 18 : Jamstack

628 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/jamstack/median-image-weight.png
https://almanac.httparchive.org/static/images/2021/jamstack/median-image-weight.png

As one of the newer generation of image formats, WebP877 has 5.1% of usage among Jamstack

sites. Compared to last year’s results878, when WebP had only 3%, we can say it’s a good

improvement over one year.

Still, the most used is PNG at 29.0% and JPEG at 26.2%, GIF at 19.5%, and SVG is used on 18.0%

of web pages.

What the resources tells us

This analysis of resource weights confirms that performance of Next.js, Nuxt.js and Gatsby are

likely struggling because of huge resources. 2 MB of page weight and ~ 700KB of JavaScript

that will definitely have an impact on performance scores, especially for average mobile devices

and slower networks. Heavy usage of styled-components for Next.js and Gatsby sites might be

another cause of of lesser performance879. A positive signal is that image adoption of next-

generation image formats is growing, and this should improve UX for end users in the long run.

Conclusion

Despite limitations on not being able to include headless CMSs, and for some well-known SSGs

Figure 18.25. Adoption of image format.

877. https://developers.google.com/speed/webp/
878. https://almanac.httparchive.org/en/2020/jamstack#image-formats
879. https://pustelto.com/blog/css-vs-css-in-js-perf/

Part III Chapter 18 : Jamstack

2021 Web Almanac by HTTP Archive 629

https://almanac.httparchive.org/static/images/2021/jamstack/image-adoption.png
https://almanac.httparchive.org/static/images/2021/jamstack/image-adoption.png
https://developers.google.com/speed/webp/
https://almanac.httparchive.org/en/2020/jamstack#image-formats
https://pustelto.com/blog/css-vs-css-in-js-perf/
https://pustelto.com/blog/css-vs-css-in-js-perf/

(Eleventy or Next.js detection mode), we still have a lot of data to analyze here to draw some

interesting conclusions. The Jamstack trend is growing year over year: now more than 1% of all

websites are Jamstack based.

We know that Next.js covers around 40% of measurable Jamstack sites. It’s not only trending,

but also used in 3.8% of the top 1,000 sites followed by the other popular SSGs such as Nuxt.js

and Gatsby. These are all relatively new players just a few years in the space but they have

solidified their place by good usage among top ranked sites as well.

SSGs are used all around the world, and are not confined to those countries with the founding

companies of this model are based. In fact it seems that some of the fastest-growing adopters

of Jamstack technology, with up to 5% of sites, are those regions furthest away from the tech

hubs of Silicon valley.

Like all websites, maintaining good performance of Jamstack sites requires knowledge of best

practices and experienced developer level to achieve good results, but SSGs can improve this by

working on out-of-the-box solutions to improve in that area. Hope you enjoyed the data and

give Jamstack a try.

Author

Artem Denysov

@denar90_ denar90

Artem Denysov is Software Engineer, Open-Source contributor, proud Mozillians

member, speaker, and writer. Makes developers and users live easier helping them

with webperf & tools. Works at Stackbit880 to empower developers build Jamstack

websites easily. You can find him on Twitter881 and Linkedin882.

880. https://stackbit.com
881. https://x.com/denar90_
882. https://www.linkedin.com/in/denar90/

Part III Chapter 18 : Jamstack

630 2021 Web Almanac by HTTP Archive

https://x.com/denar90_
https://github.com/denar90
https://stackbit.com/
https://x.com/denar90_
https://www.linkedin.com/in/denar90/

Part IV Chapter 19

Page Weight

Written by John Teague
Reviewed by Sia Karamalegos and Rebecca Holmlund
Analyzed by Jess Peck
Edited by Barry Pollard

Introduction

Unless you’re a web performance junkie like me, the weight of a web page is about as exciting as

licking stamps. But, I’m going to try my best to convince you as to why page weight is not only

important but arguably the most important factor affecting creators, hosting providers, and

consumers. To that end, we’ll use real data to show how the weight of a page influences the

performance of the website or web application, how page weight can impact user experience,

and some ways we can reduce the weight of our web pages.

In the past decade, average web page weight883 has grown a whopping 356 percent, from an

average of about 484 kilobytes to 2,205 kilobytes. That increase can be explained as a function

of supply and demand. Faster computer processors, data transmission, and how data is stored

and made available have all advanced to keep up with increased use of images, video, audio,

fonts, data collection and processing, and connected services like analytics, monitoring, and

883. https://httparchive.org/reports/page-weight

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 631

https://httparchive.org/reports/page-weight

alerting functionality for web sites and web applications.

All seems well, if you’re fortunate enough to own a high end smartphone, desktop or laptop

computer costing thousands of dollars, and you’re connected to an expensive high speed

internet provider or 5G data plan. But the pleasure of belonging to that class of internet user

starts to break down when you’re relegated to using a slow 3G or 4G data plan with

unpredictable internet connectivity. For a large segment of internet users, waiting for a page

that may never fully load breaks the promise of the internet even to the point of putting lives at

risk during emergencies884.

A lot of energy is used to power data centers and the devices they serve. We can help reduce

overall energy demands by keeping our file payloads smaller which also keeps payload

transmission faster and more efficient.

Google now penalizes a website’s search ranking for those that fail to achieve good Core Web

Vitals. One of their metrics for assessing success or failure is page weight. If you are interested,

you can test your site using Google PageSpeed Insights885 and Google Measure886. Both provide

valuable insights into how to solve performance and user experience problems caused by heavy

web pages.

To understand and find opportunities to keep web pages lighter and faster, it’s instructive to

examine what page weight actually is. So let’s delve deeper.

What is page weight?

Page weight describes the total number of bytes of a particular web page. A web page is

comprised of specific elements and assets that can be rendered and viewed in a web browser,

including:

• The HTML that makes up the page itself.

• Images and other media (video, audio, etc) embedded into the page.

• Cascading Style Sheets (CSS) used for styling the page.

• JavaScript to provide interactivity

• Third-Party resource containing one or more of the above.

Each of those resources exact a cost in weight (byte size), and computational resources to

884. https://www.nbcnews.com/tech/tech-news/verizon-admits-throttling-data-calif-firefighters-amid-blaze-n902991
885. https://pagespeed.web.dev/
886. https://web.dev/measure/

Part IV Chapter 19 : Page Weight

632 2021 Web Almanac by HTTP Archive

https://www.nbcnews.com/tech/tech-news/verizon-admits-throttling-data-calif-firefighters-amid-blaze-n902991
https://pagespeed.web.dev/
https://web.dev/measure/

transmit, process and render in a web browser. While they have similar cost in some regards

(storage and transmission), the CPU cost of some resource types may be more costly in those

regards than others.

The process of managing web page resources for use when requested have rapidly changed

over the past decades. Part of those changes were predicated on making web page resources

more efficient and more quickly transmittable when requested. Let’s examine three impacts of

page weight for resources:

Storage

Page resources need to be stored ready for retrieval when requested. Image, video, CSS,

JavaScript, and font files assets are stored in multiple places: on servers, on local devices, and in

memory. Each file, ranging from a few bytes to many megabytes in size, therefore has a cost

impact in multiple places. While server storage costs may seem relatively cheap, limited storage

on devices can result in assets being evicted from caches or memory resulting in more

downloads and more costs.

Many people don’t understand, or pay little attention to, the negative impact those types of

unoptimized assets have on page loading performance. When reviewing today’s websites, I

routinely discover images that exceed four megabytes in size, and embedded video files that are

many times that value.

Fortunately, there are also options and optimizations that can be applied that can significantly

lower the size of files stored at rest from compression, to using the appropriate file format for

media to offloading content to a dedicated CDN who can handle this for your to lighten the

weight of a web page, often at little to no cost.

Transmission

When a user requests a web page via HTTP, all files needed by the page are then requested.

Files are located and sent back to the requesting device and, if all goes well, the requester’s

browser will take the payload, and process and render it as part of the larger web page on the

requesting user’s screen. Page weight becomes important during the transmission process

because the size of the file determines how long it will take to complete the transfer of the

resources, which will then ultimately impact the rendering of the results.

A negative effect of large page weight is due to latency and bandwidth constraints. Latency

measures the time it takes for the request to connect to the server storing the files and begin

the process of transporting those files, while bandwidth measures the time it takes to download

the resources. If a bunch of files are requested, no matter the technology, there is a limit on how

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 633

https://developer.mozilla.org/docs/Web/Performance/Understanding_latency

much can be processed and transferred in any given period. I’ve audited WordPress sites that

request as many as 170 files or more, which ensures terrible page loading performance starting

with high latency periods.

Many optimizations can improve transfer/loading time, such as compressing and combining

certain file requests, using HTTP/2—or the newer HTTP/3—protocols, and using a modern

browser’s ability to preconnect to and preload certain files to speed the whole process up, but

ultimately page weight will still have an impact here. The Performance chapter covers a wide

range of factors that effect page loading performance.

Rendering

A web browser is ultimately software that makes requests to for resources on behalf of users

(hence the term user agent). The results of those requests are handed off to the browser’s

rendering engine to process and then recreate the web page you asked for. It’s not hard to

deduce that the larger the total amount of page weight, the more the browser engine must

process and render to the browser screen, and so the longer it’s going to take.

If too many files, especially large media and large complex scripts must get retrieved, read,

processed, and then finally rendered by the browser before the content becomes available,

then this increase the chance that pages will take so long to load that users will abandon them.

Large payloads can also overwhelm the amount of client-side resources available on the users

smartphone or computer causing it to stall and even crash the device. Users who have the good

fortune to subscribe to high speed cable internet services, or 5G data plans for high end devices

will seldom experience these problems. But again, a large percentage of internet users don’t

have access to those levels of internet services and devices.

Assets

As explained in last years chapter887, we have not really changed what types of assets are used

on web pages over the years, but there are some notable exceptions.

Images

Static files reside by themselves and are used as resources to help build out and render web

pages. Images, video, audio, and font files are all examples of static assets. Images make a large

percentage of the average web page’s weight so, let’s use images for our example.

887. https://almanac.httparchive.org/en/2020/page-weight#assets

Part IV Chapter 19 : Page Weight

634 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/page-weight#assets

Image formats like PNG and JPEG are widely supported by all browsers. More recent image

formats, such as WebP and AVIF offer higher quality with smaller file sizes have gained

popularity. WebP is supported by most modern browsers, while AVIF is newer and less

supported. With the <picture> tag, you can use modern image formats while providing JPEG

and PNG fallbacks. Make sure your images are optimized for the web-the Media chapter covers

this in much more detail. Failing to properly size and compress images for your site will exact a

high price on performance.

Note: If you need an online service that will optimize and allow you to compare different image sizes
formats, there is no better source I’ve found than Google’s Squoosh888 application. Similarly, Jake
Archibald889’s SVGOMG890 is great for optimizing SVG’s.

A word about the proliferation in the use of JavaScript

JavaScript can be a wonderful tool to use for creating a dynamic website, but using it

unchecked can create serious performance problems and a horrible experience for the user.

There’s been a proliferation in the use of complex JavaScript web frameworks and libraries over

the past decades and the sheer amount of JavaScript is a large percentage of total page weight.

Some JavaScript can cause sizes for a site to skyrocket leading to serious performance

bottlenecks. Some are so bad that a site can become unstable or even unusable. Blocking

scripts, that must be transmitted, processed, and executed before the page can finish rendering

enough page assets for users to interact with it. That can cause confusion, frustration, and

abandonment by the user.

Nine times out of ten when a site stalls, it is a blocking JavaScript that is causing your

smartphone to run out of processing resources or memory is to blame. The judicious, expert use

of JavaScript can create great user experiences. But remember this: JavaScript is executed on

the client side. It’s using the client computers resources to process and execute the script, and

there is a finite amount of resources on every device. Once again, not everyone is glued to the

newest Google Pixel or Apple smartphone. The JavaScript chapter contains a wealth of

information about this issue.

Third-party services

Page weight can also be affected by external services called by web page. Some of those

services include CDN’s, analytics, chat bots, forms, and other data collection and processing

methods. I find this to be one of the fastest growing problem areas that result in bloated page

weight. Many of these third-party services use outdated, poorly-written JavaScript and

888. https://squoosh.app/
889. https://x.com/jaffathecake
890. https://jakearchibald.github.io/svgomg/

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 635

https://squoosh.app/
https://x.com/jaffathecake
https://x.com/jaffathecake
https://jakearchibald.github.io/svgomg/

querying techniques that take much longer to execute than they should, and the site owner has

little control over how that third party impacts the loading of a page. Suffice it to say that

inquiring about how a service will affect your page loading performance is very important. So is

testing their impact.

Caching

Caches, are allow resources to be served quickly, thus avoiding the cost of the download again.

Caches exist on both users’ browser, but also on servers. Caching of optimized assets

dramatically lowers page weight and page loading time because the asset is immediately

available, removing the need to execute and entire request process. While not reducing the

overall page weight, they can help reduce the impact.

Page weight by the numbers

Looking at the page weight on both desktop and mobile devices, the difference is generally

small between them despite the often-different capabilities of these devices:

We are closing in on 6.9 MB of page weight on mobile and 8.1 MB on desktop at the 90th

percentile.

Figure 19.1. Distribution of total bytes per page.

Part IV Chapter 19 : Page Weight

636 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/page-weight/bytes-distribution.png
https://almanac.httparchive.org/static/images/2021/page-weight/bytes-distribution.png

A closer inspection at the median, shows that the images remain the largest resource followed

by JavaScript.

Let’s look at the growth over time:

Figure 19.2. Median bytes per page by content type.

Figure 19.3. Median page weight over time.

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 637

https://almanac.httparchive.org/static/images/2021/page-weight/bytes-distribution-content-type.png
https://almanac.httparchive.org/static/images/2021/page-weight/bytes-distribution-content-type.png
https://almanac.httparchive.org/static/images/2021/page-weight/median-page-weight-trend.png
https://almanac.httparchive.org/static/images/2021/page-weight/median-page-weight-trend.png

The trend of page weight growth couldn’t be clearer. We’re on an upward trajectory that shows

no sign of abating.

Requests

As previously explained in this chapter, as well as the size of resource, the number of requests

can have negative impact on page loading performance and so are another measure of page

weight.

The request distribution shows that the difference between desktop and mobile is not

significant, with desktop leading the way.

The difference between current results for this year and last actually shows a tiny decrease in

the average number of GET requests across most of the percentiles. Let’s hope that trend

continues downward.

Something else worth noting: the median request on desktop at this time is the same as last

year891 (74), yet the page weight has ticked up (141 kb).

Figure 19.4. Distribution of requests per page.

891. https://almanac.httparchive.org/en/2020/page-weight#requests

Part IV Chapter 19 : Page Weight

638 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/page-weight/requests-distribution.png
https://almanac.httparchive.org/static/images/2021/page-weight/requests-distribution.png
https://almanac.httparchive.org/en/2020/page-weight#requests
https://almanac.httparchive.org/en/2020/page-weight#requests

Images again make up the largest number of requests, though JavaScript is closing in as the gap

has narrowed slightly in the last year. Images shows a reduction of 4 requests between the two

years—perhaps a result of more lazy-loading892 since this was made available natively via simple

HTML attributes?

Figure 19.5. Median number of requests by content type.

892. https://developer.mozilla.org/docs/Web/Performance/Lazy_loading

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 639

https://almanac.httparchive.org/static/images/2021/page-weight/requests-content-type.png
https://almanac.httparchive.org/static/images/2021/page-weight/requests-content-type.png
https://developer.mozilla.org/docs/Web/Performance/Lazy_loading

File formats

We know images are responsible for a large percentage of web page weight. The above graphic

shows the top sources of image weight and the weight distribution. Top 3: JPG, WebP and PNG.

Compared to last year, we see an increase in WebP usage now it is finally supported in all major

browsers. PNG remains popular for use cases such as icons and logos.

Figure 19.6. Distribution of image sizes by format.

Part IV Chapter 19 : Page Weight

640 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/page-weight/response-distribution-format.png
https://almanac.httparchive.org/static/images/2021/page-weight/response-distribution-format.png

Image bytes

Looking at total image bytes shows us that this metric has remained virtually unchanged from

the previous year893. One reason for this could be an increase in the number images being served

by content distribution networks (CDN), which apply strong optimizations to images as they

are uploaded to their servers thus keeping any growth in check for new images.

Conclusion

How important is it to keep web pages light? Overall page weight affects page loading speed,

and page loading speed affects user experience. Google’s Web Vitals program focuses on user

experience, especially for mobile users, with a direct impact on Google Search rankings. So,

there is a real incentive and a real consequence to keep web pages as light as possible.

But will impact on search rankings translate into direct pressure to lighten page loads? What

about web titans, like Amazon? Is there incentive for hugely popular web sites to worry about

page weight? Perhaps. The Amazon’s may want to take advantage of reducing the size of page

assets and services to reduce the spend required to serve those pages, or maybe they want to

move into newly emerging markets where users may not be able to buy super-fast smartphones

or have access to 5G data networks or high-speed cable providers. Time will tell.

Figure 19.7. Distribution of image response sizes per page.

893. https://almanac.httparchive.org/en/2020/page-weight#file-formats

Part IV Chapter 19 : Page Weight

2021 Web Almanac by HTTP Archive 641

https://almanac.httparchive.org/static/images/2021/page-weight/response-distribution-images.png
https://almanac.httparchive.org/static/images/2021/page-weight/response-distribution-images.png
https://almanac.httparchive.org/en/2020/page-weight#file-formats
https://almanac.httparchive.org/en/2020/page-weight#file-formats

Author

John Teague

@jtteag logicalphase https://gemservers.com

John currently works as a Google Cloud Platform894 senior developer and architect.

He started his technology journey as a web developer focused on web

performance and leveraging browser standards. He applied those principles as a

freelance WordPress895 developer, and as an architect and engineer for several

managed hosting providers. He is a firm believer in open web standards and

sustainable web best practices. To that end, John has worked on several open

source projects, including Google’s Lit896 project, and is a strong advocate for

emerging web technologies such as Web Components897 and other performance

based solutions.

894. https://cloud.google.com
895. https://wordpress.org
896. https://lit.dev/
897. https://developer.mozilla.org/docs/Web/Web_Components

Part IV Chapter 19 : Page Weight

642 2021 Web Almanac by HTTP Archive

https://x.com/jtteag
https://github.com/logicalphase
https://gemservers.com/
https://cloud.google.com/
https://wordpress.org/
https://lit.dev/
https://developer.mozilla.org/docs/Web/Web_Components

Part IV Chapter 20

Resource Hints

Written by Kevin Farrugia
Reviewed by Sia Karamalegos, Barry Pollard, Andy Davies, Samar Panda, and Weston Ruter
Analyzed by Nitin Pasumarthy
Edited by Rick Viscomi

Introduction

Resource hints are instructions to the browser that you may use to improve a website’s

performance. This set of instructions enable you to assist the browser in prioritizing origins or

resources which need to be fetched and processed.

Let’s take a closer look at how resource hints are implemented, what are the most common

pitfalls, and what we can do to make sure we are using resource hints as effectively as possible.

The Link directive

The most widely adopted resource hints are implemented through the Link directive’s rel
attribute. These are dns-prefetch , preconnect , prefetch , prerender and preload .

These may be implemented in one of two ways:

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 643

https://www.w3.org/TR/resource-hints/#dfn-dns-prefetch
https://www.w3.org/TR/resource-hints/#dfn-dns-prefetch
https://www.w3.org/TR/resource-hints/#dfn-preconnect
https://www.w3.org/TR/resource-hints/#dfn-preconnect
https://www.w3.org/TR/resource-hints/#dfn-prefetch
https://www.w3.org/TR/resource-hints/#dfn-prefetch
https://www.w3.org/TR/resource-hints/#dfn-prerender
https://www.w3.org/TR/resource-hints/#dfn-prerender
https://www.w3.org/TR/preload/
https://www.w3.org/TR/preload/

HTML element

<link rel="dns-prefetch" href="https://example.com">

HTTP header

Link: <https://example.com>; rel=dns-prefetch

It is also possible to dynamically inject the HTML element through the use of JavaScript:

const link = document.createElement("link");

link.rel="prefetch";

link.href="https://example.com";

document.head.appendChild(link);

Adoption for HTTP headers is significantly lower than having resource hints implemented as

part of the document markup; with less than 1.5% of the pages analyzed implementing

resource hints through HTTP headers. This is likely attributed to the ease with which they may

be added or modified from within the HTML source, when compared to adding an HTTP header

on the server.

Part IV Chapter 20 : Resource Hints

644 2021 Web Almanac by HTTP Archive

Using our current methodology, it is not possible to reliably measure resource hints that are

added following user-interaction, such as those added through QuickLink898, though that

particular library featured on less than 0.1% of pages analyzed, according to the Core Web

Vitals Technology Report899.

Considering that the adoption of resource hints using HTTP headers is markedly smaller than

adoption for the <link> HTML element, the rest of this chapter will focus on analyzing the

usage of resource hints through the HTML element.

Types of resource hints

There are five resource hint link relationships supported by most browsers today: dns-
prefetch , preconnect , prefetch , prerender and preload .

dns-prefetch

<link rel="dns-prefetch" href="https://example.com/">

Figure 20.1. Popularity of resource hints as HTTP headers and HTML markup.

898. https://github.com/GoogleChromeLabs/quicklink
899. https://datastudio.google.com/s/uMbv5CQfW4Q

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 645

https://almanac.httparchive.org/static/images/2021/resource-hints/http-headers-vs-html-markup.png
https://almanac.httparchive.org/static/images/2021/resource-hints/http-headers-vs-html-markup.png
https://github.com/GoogleChromeLabs/quicklink
https://datastudio.google.com/s/uMbv5CQfW4Q
https://datastudio.google.com/s/uMbv5CQfW4Q

The dns-prefetch hint initiates an early request to resolve a domain name. It is only

effective for DNS lookups on cross-origin domains and may be paired together with

preconnect . While Chrome now supports a maximum of 64900 concurrent in-flight DNS

requests—up from 6 last year—other browsers still have tighter limitations. For example, it is

limited to 8901 on Firefox.

preconnect

<link rel="preconnect" href="https://example.com/">

The preconnect hint behaves similarly to dns-prefetch , but in addition to DNS lookups, it

also establishes a connection together with TLS handshake if served over HTTPS. You are able

to use preconnect in place of dns-prefetch as it gives a greater performance boost; but

you must use it sparingly as certificates are usually upwards of 3 KB, which would be competing

with bandwidth for other resources. You also want to avoid wasting CPU time opening

connections which aren’t required for critical resource. Keep in mind that if a connection isn’t

used within a short period of time (e.g., 10 seconds on Chrome), it would automatically be

closed by the browser, wasting any preconnect effort.

prefetch

<link rel="prefetch" href="/library.js" as="script">

The prefetch hint allows you to recommend to the browser that a resource might be

required by the next navigation. The browser may initiate a low-priority request for the

resource, possibly improving the user experience as it would be fetched from the cache when

needed. While resource may be fetched in advanced with prefetch , it will not be

preprocessed or executed until the user navigates to the page which requires the resource.

prerender

<link rel="prerender" href="https://example.com/page-2/">

900. https://source.chromium.org/chromium/chromium/src/+/fdf9418d23d434e0f7134da67dc41b0fe8268e91:net/dns/host_resolver_manager.cc;l=416
901. https://github.com/mozilla/gecko-dev/blob/master/netwerk/dns/nsHostResolver.h#L48

Part IV Chapter 20 : Resource Hints

646 2021 Web Almanac by HTTP Archive

https://source.chromium.org/chromium/chromium/src/+/fdf9418d23d434e0f7134da67dc41b0fe8268e91:net/dns/host_resolver_manager.cc;l=416
https://github.com/mozilla/gecko-dev/blob/master/netwerk/dns/nsHostResolver.h#L48

The prerender hint allows you render a page in the background, improving its load time if the

user navigates to it. In addition to requesting the resource, the browser may preprocess and

fetch and execute subresources. prerender could end up wasteful if the user does not

navigate to the prerendered page. Contrary to the specification, Chrome treats the

prerender hint as a NoState Prefetch902 to reduce this risk. Unlike a full prerender it won’t

execute JavaScript or render any part of the page in advance but only fetch the resources in

advance.

preload

Most modern browsers also support903 the preload hint—and to a lesser degree904, the

modulepreload hint. The preload instruction initiates an early fetch for a resource which

is required in the loading of a page and is most commonly used for late-discovered resources,

such as font files or images referenced in stylesheets. Preloading a resource may be used to

elevate its priority, allowing the developer to prioritize the loading of the Largest Contentful

Paint905 (LCP) image for, even if this would otherwise be discovered while parsing the HTML.

modulepreload is a specialized alternative to preload and behaves similarly, however its

usage is limited to module scripts906.

902. https://developers.google.com/web/updates/2018/07/nostate-prefetch
903. https://caniuse.com/link-rel-preload
904. https://caniuse.com/link-rel-modulepreload
905. https://web.dev/articles/lcp
906. https://html.spec.whatwg.org/multipage/webappapis.html#module-script

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 647

https://developers.google.com/web/updates/2018/07/nostate-prefetch
https://caniuse.com/link-rel-preload
https://caniuse.com/link-rel-modulepreload
https://html.spec.whatwg.org/multipage/links.html#link-type-modulepreload
https://html.spec.whatwg.org/multipage/links.html#link-type-modulepreload
https://web.dev/articles/lcp
https://web.dev/articles/lcp
https://html.spec.whatwg.org/multipage/webappapis.html#module-script

Adoption and trends

The most widely used resource hint is dns-prefetch (36.4% on mobile); which is

unsurprising, considering it was introduced in 2009907. With the widespread use of HTTPS, in

many cases you should replace it with preconnect (12.7% on mobile), if you are certain that

you will be connecting to that domain. Considering that the preload hint is comparatively

new, first appearing in Chrome in 2016908, it is the second most widely adopted resource hint

(22.1% on mobile) and is seeing constant growth year-on-year—a testament to the importance

and flexibility of this directive.

As shown in the charts above, the adoption rates on mobile and desktop are near-identical.

Figure 20.2. Adoption of the link rel attribute.

907. https://caniuse.com/link-rel-dns-prefetch
908. https://groups.google.com/a/chromium.org/g/blink-dev/c/_nu6HlbNQfo/m/XzaLNb1bBgAJ?pli=1

Part IV Chapter 20 : Resource Hints

648 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/resource-hints/resource-hints-adoption.png
https://almanac.httparchive.org/static/images/2021/resource-hints/resource-hints-adoption.png
https://caniuse.com/link-rel-dns-prefetch
https://groups.google.com/a/chromium.org/g/blink-dev/c/_nu6HlbNQfo/m/XzaLNb1bBgAJ?pli=1

By rank

You can observe that when segmenting the data by rank, the adoption rates change notably,

with the preload hint increasing from 22.1% for our whole data set, to claim the top spot with

an adoption rate of 44.3% amongst the top 1,000 sites.

Figure 20.3. Adoption of rel="preload" segmented by CrUX rank.

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 649

https://almanac.httparchive.org/static/images/2021/resource-hints/rel-preload-adoption-by-rank.png
https://almanac.httparchive.org/static/images/2021/resource-hints/rel-preload-adoption-by-rank.png

dns-prefetch is the only resource hint which exhibits a decrease in adoption when

comparing the top 1,000 sites with the overall adoption.

To counter this decrease, the top 1,000 pages have an increased adoption for the preconnect

Figure 20.4. Adoption of rel="dns-prefetch" segmented by CrUX rank.

Figure 20.5. Adoption of rel="preconnect" segmented by CrUX rank.

Part IV Chapter 20 : Resource Hints

650 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/resource-hints/rel-dns-prefetch-adoption-by-rank.png
https://almanac.httparchive.org/static/images/2021/resource-hints/rel-dns-prefetch-adoption-by-rank.png
https://almanac.httparchive.org/static/images/2021/resource-hints/rel-preconnect-adoption-by-rank.png
https://almanac.httparchive.org/static/images/2021/resource-hints/rel-preconnect-adoption-by-rank.png

hint, taking advantage of its increased performance boost and wide support. I expect that the

adoption for preconnect will continue increasing as the rest of the internet follow suit.

Usage

Resource hints can be very effective if used correctly. By shifting the responsibility from the

browser to the developer, it allows you to prioritize resources required for the critical

rendering path and improve the load times & user experience.

Of the sites using resource hints, when comparing the median for the top 1,000 sites to the

entire corpus, the top-ranking sites have more resource hints per page. The only hint which

observes a different pattern is prerender , which has a total of 0 occurrences in the top 1,000

sites.

Figure 20.6. Median number of resource hints per page by rank.

Rank preload prefetch preconnect prerender
dns-

prefetch
modulepreload

1,000 3 2 4 0 4 1

10,000 3 1 4 1 3 1

100,000 2 2 3 1 3 1

1,000,000 2 2 2 1 2 1

all 2 2 1 1 2 1

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 651

Correlation with Core Web Vitals

By combining a page’s Core Web Vitals909 scores in the CrUX dataset and the usage of the

preload resource hint, you can observe a negative correlation between the number of link

elements and the percentage of pages which score a good rating on CWV. The pages which use

fewer preload hints are more likely to have a good rating.

Figure 20.7. Correlation between good CWV score and number of rel="preload" hints

909. https://web.dev/articles/vitals

Part IV Chapter 20 : Resource Hints

652 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/resource-hints/correlation-of-good-cwv-and-preload.png
https://almanac.httparchive.org/static/images/2021/resource-hints/correlation-of-good-cwv-and-preload.png
https://web.dev/articles/vitals

This same observation may be seen on a page’s LCP, indicating that in many cases, the developer

is prioritizing resources which aren’t needed to render the LCP element and as a consequence

degrading the user experience.

While this doesn’t prove that having preload hints causes a page to get slower, having many

hints does correlate with having slower performance. Every page has its unique requirements

and it is impossible to apply a “one size fits all” approach, but in the majority of cases the

number of preloaded resources should be kept low and resource prioritization should be

delegated to the browser when possible.

Note: In addition to the number of hints, the size of each preloaded resource has an impact on the
website performance. The above figure does not take into consideration the size of each preloaded
resource.

rel="preload"

With that being said, and the expectation that more websites will adopt preload , let’s take a

better look at the preload resource hint and understand why it is so effective, yet at the same

time so prone to misuse.

Figure 20.8. Correlation between good LCP score and number of rel="preload" hints

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 653

https://almanac.httparchive.org/static/images/2021/resource-hints/correlation-of-good-lcp-and-preload.png
https://almanac.httparchive.org/static/images/2021/resource-hints/correlation-of-good-lcp-and-preload.png

The as attribute

The as attribute should be specified when using rel="preload" (or rel="prefetch") to

specify the type of resource being downloaded. Applying the correct as attribute allows the

browser to prioritize the resource more accurately. For example, preload as="script" will

get a low or medium priority, while preload as="style" would be assigned an internal

request priority of Highest. The as attribute is required for caching the resource for future

requests and applying the correct Content Security Policy910.

script

script is the most common value by a significant margin. <script> elements are usually

discovered early as they are embedded in the initial HTML document, but it is a common

practice to place <script> elements before the closing <body> tag. Since HTML is parsed

sequentially, this means that the scripts will be discovered after the DOM is downloaded and

parsed—and with more websites dependent on JavaScript frameworks, the necessity to have

JavaScript load early has increased. The downside is that JavaScript resources would be

prioritized over the other resources discovered within the HTML document, including images

and stylesheets, possibly compromising the user experience.

Figure 20.9. rel="preload" as attribute values.

910. https://developer.mozilla.org/docs/Web/HTTP/CSP

Part IV Chapter 20 : Resource Hints

654 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/CSP
https://almanac.httparchive.org/static/images/2021/resource-hints/preload-as-attribute-values.png
https://almanac.httparchive.org/static/images/2021/resource-hints/preload-as-attribute-values.png

font

The second most commonly preloaded resource is the font , which is a late-discovered

resource since the browser will only download a font file after the layout phase when the

browser knows that the font will be rendered on the page.

style

Stylesheets are ordinarily embedded in the document’s <head> and discovered early during

the document parsing. Additionally, as stylesheets are render-blocking resources they are

assigned the Highest request priority. This should make preloading stylesheets unnecessary, but

it is sometimes required to re-prioritize the requests. A bug911 in Google Chrome (fixed in

Chrome 95) prioritizes preloaded resources ahead of other higher-priority resources

discovered by the preload scanner, including CSS files. Preloading the stylesheet will restore its

Highest priority. Another instance when stylesheets are preloaded is when they are not

downloaded directly from the HTML document, such as the asynchronous CSS912 “hack” which

uses an onload event to avoid render-blocking the page with non-critical CSS.

fetch

Preload may be used to initiate a request to retrieve data which you know is critical to the

rendering of the page, such as a JSON response or stream.

image

Preloading images may help improve the LCP score when the image is not included in the initial

HTML, such as a CSS background-image .

The crossorigin attribute

The crossorigin attribute is used to indicate whether Cross-Origin Resource Sharing913

(CORS) must be used when fetching the requested resource. This could apply to any resource

type, but it is most commonly associated with font files as they should always be requested

using CORS.

911. https://bugs.chromium.org/p/chromium/issues/detail?id=629420
912. https://www.filamentgroup.com/lab/async-css.html
913. https://developer.mozilla.org/docs/Web/HTTP/CORS

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 655

https://bugs.chromium.org/p/chromium/issues/detail?id=629420
https://www.filamentgroup.com/lab/async-css.html
https://developer.mozilla.org/docs/Web/HTTP/CORS

anonymous

The default value when no value is specified is anonymous and this value will set the

credentials flag to same-origin . It is required when downloading resources protected by

CORS. It is also a requirement914 when downloading font files—even if they are on the same

origin! If you omit the crossorigin attribute when the eventual request for the preloaded

resource uses CORS, you will end up with a duplicate request since it won’t match in the

preload cache.

use-credentials

When requesting cross-origin resources which require authentication, for example through the

use of cookies, client certificates or the Authorization header; setting the

crossorigin="use-credentials" attribute will include this data in the request and allow

the server to respond to the request so that the resource may be preloaded. This is not a

common scenario with 0.1% usage, however if your page content is dependent on an

authenticated status, it could be used to initiate an early fetch request to get the login status.

The media attribute

An oft-neglected feature available to rel="preload" is the ability to specify media queries

through the media attribute—with less than 4% of all preloads using this attribute. The

media attribute accepts media queries allowing you to target the media type and specific

browser features, such as viewport width. As an example, the media attribute would allow

you to preload a low-resolution image on devices with a narrow viewport and a full-sized image

on devices with a large viewport.

In addition to the media attribute, the <link> element supports imagesrcset and

Figure 20.10. rel="preload" crossorigin attribute values.

value desktop mobile

not set 66.6% 65.9%

crossorigin (or equivalent) 14.5% 13.5%

use-credentials < 0.1% < 0.1%

914. https://drafts.csswg.org/css-fonts/#font-fetching-requirements

Part IV Chapter 20 : Resource Hints

656 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/docs/Web/Security/Same-origin_policy
https://drafts.csswg.org/css-fonts/#font-fetching-requirements

imagesizes attributes which correspond to the srcset and sizes attributes on
elements. Using these attributes, you can use the same resource selection criteria that you

would use on your image. Unfortunately, their adoption is very low (less than 1%); most likely

owing to the lack of support915 on Safari.

Note: The media attribute is not available on all <link> elements as the spec suggests, but it is

only available on rel="preload" .

Bad practices

Owing to the versatility of rel="preload" , there isn’t a clear set of rules dictating how to

implement the preload hint, but we can learn a lot from our mistakes and understand how to

avoid them.

Unused preloads

We have already seen that there is a negative correlation between a website’s performance and

the number of preload hints. This relationship may be influenced by two factors:

• Incorrect preloads

• Unused preloads

An incorrect preload refers to when you preload a resource which is not as important as the

other resources which the browser would have otherwise prioritized. We are unable to

measure the extent of incorrect preloads as you would need to A/B test the page with and

without each hint.

An unused preload occurs when you preload a resource which is not needed within the first few

seconds of loading the page.

In such cases, the preload hint is regressing the website’s performance, as you are instructing

the browser to download and prioritize files or resources which are not needed

immediately—or even not needed at all. This is one of the challenges when using resource hints,

Figure 20.11. Percent of unused preload hints within the first 3 seconds.

21.5%

915. https://caniuse.com/mdn-html_elements_link_imagesizes

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 657

https://caniuse.com/mdn-html_elements_link_imagesizes

as they require regular maintenance and automating the process opens the door to allow such

issues to creep in.

Incorrect crossorigin attribute

Attempting to preload a CORS-enabled resource without including the correct crossorigin
attribute will download the same resource twice. The crossorigin attribute is required on

the <link> element if the eventual request would also use CORS. This is also the case when

requesting font files, even when self-hosting font files on the same origin, as font files are

always treated as CORS-enabled.

More than half (63.6%) of the cases when the crossorigin attribute on the

rel="preload" hint is either missing or incorrect, are linked to the preloading of font files,

with a total of 14,818 instances across the dataset.

Invalid as attribute

The as attribute plays an important role when preloading your resources and getting this

wrong may result in downloading the same resource twice. On most browsers, specifying an

unrecognized as attribute will ignore the preload. The supported values are audio ,

document , embed , fetch , font , image , object , script , style , track , worker

Figure 20.12. Percent of incorrect crossorigin values segmented by file extension on mobile devices.

Part IV Chapter 20 : Resource Hints

658 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/resource-hints/incorrect-crossorigin-attribute-by-file-extension.png
https://almanac.httparchive.org/static/images/2021/resource-hints/incorrect-crossorigin-attribute-by-file-extension.png

and video .

There are 17,861 cases of unrecognized values, with the most frequent error being omitting it

completely; while the most common invalid as values are other and stylesheet (the

correct value is style).

When using an incorrect as attribute value—as opposed to unrecognized value, such as using

style instead of script —the browser will duplicate the file download as the request won’t

match the resource stored in the preload cache.

Note: While video is included in the spec, it isn’t supported by any browser and would be treated as

an invalid value and ignored.

Unused font files

More than 5% of pages which preload font files preload more font files than needed. When

preloading font files, all browsers which support preload also support .woff2 . This means

that, assuming that the .woff2 font files are available, it is not necessary to preload older

formats, including .woff .

Third parties

You can use resource hints to connect to, or download resources from, both first and third

parties. While dns-prefetch and preconnect are only useful when connecting to different

origins, including subdomains, preload and prefetch may be used for both resources on

the same origin and resources hosted by third parties.

When considering which resource hints you should use for third-party resources, you need to

evaluate the priority and role of each third party on your application’s loading experience and

whether the costs are justified.

Prioritizing third-party resources over your own content is potentially a warning sign, however

there are cases when this is recommended. As an example, if we look at cookie notice

scripts—which are required in the European Union by General Data Protection

Figure 20.13. Pages incorrectly used as="stylesheet" instead of "style"

1,114

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 659

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Regulation916—these are usually accompanied by a dns-prefetch or preconnect hint as

they are highly obtrusive to the user experience and also a prerequisite for some site functions,

such as serving personalized ads.

Analyzing the table above, 36.7% of all pages which include a preload hint are preloading

resources hosted on adservice.google.com. The s.w.org host is the most popular domain for

dns-prefetch and is used on WordPress sites (since version 4.6) for the loading of SVG

images from its Twemoji CDN, when the browser is detected to not support native emoji

characters. Google Fonts related services on fonts.gstatic.com and

fonts.googleapis.com are the two most popular hosts for the preconnect directive.

Figure 20.14. Most popular third-party connections using resource hints on mobile devices.

host dns-prefetch preconnect preload Total

adservice.google.com 0.2% 0.5% 35.7% 36.4%

fonts.gstatic.com 0.9% 24.0% 0.6% 25.5%

fonts.googleapis.com 14.0% 4.5% 2.7% 21.2%

s.w.org 19.7% 0.2% - 19.9%

cdn.shopify.com - 1.7% 9.6% 11.2%

siteassets.parastorage.com - - 5.9% 5.9%

www.google-analytics.com 1.2% 3.9% 0.2% 5.3%

www.googletagmanager.com 1.9% 2.7% 0.2% 4.8%

static.parastorage.com - - 4.7% 4.7%

ajax.googleapis.com 2.2% 1.6% 0.3% 4.1%

www.google.com 2.7% 1.0% 0.1% 3.8%

images.squarespace-cdn.com - 3.5% - 3.5%

cdnjs.cloudflare.com 1.6% 1.0% 0.4% 2.9%

monorail-edge.shopifysvc.com 2.0% 0.8% - 2.8%

fonts.shopifycdn.com - 1.1% 1.0% 2.1%

916. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Part IV Chapter 20 : Resource Hints

660 2021 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
http://www.google.com/

Google Fonts now includes instructions to preconnect to both the fonts.gstatic.com origin

and fonts.googleapis.com, which is usually good practice to offset the impact of these late

discovered resources.

To learn more about the state of third parties, check out the Third Parties chapter.

Native lazy-loading

Lazy-loading refers to the technique to defer downloading a resource—in this case an image or

iframe—until it is needed or visible within the viewport. Native lazy-loading refers to the ability

to specify this in the HTML with a loading="lazy" attribute, rather than having to use a

JavaScript library to handle this. Native image and iframe lazy-loading have been standardized

in 2019 and since then their adoption—especially for images—has grown exponentially.

loading="lazy" for images is supported on most major browsers. On Safari, it is marked as

in progress918 and is available behind a flag, but not yet enabled by default.

Lazy-loading of iframes is supported on Chrome, once again behind a flag on Safari but not yet

supported on Firefox919.

Figure 20.15. Google Fonts instructions to preconnect to fonts.gstatic.com and
fonts.googleapis.com. (Source: Google Fonts917)

917. https://fonts.google.com/
918. https://bugs.webkit.org/show_bug.cgi?id=200764
919. https://bugzilla.mozilla.org/show_bug.cgi?id=1622090

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 661

https://almanac.httparchive.org/static/images/2021/resource-hints/google-fonts.png
https://almanac.httparchive.org/static/images/2021/resource-hints/google-fonts.png
https://fonts.google.com/
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugzilla.mozilla.org/show_bug.cgi?id=1622090
https://bugzilla.mozilla.org/show_bug.cgi?id=1622090

Browsers which do not support the loading attribute will simply ignore it—making it safe to

add without unwanted side-effects. JavaScript based alternatives, such as lazysizes920 may still

be used, however considering that full browser support is around the corner, it may not be

worth adding to a project at this stage.

The percent of pages using loading="lazy" has grown from 4.2% in 2020 to 17.8% by the

time of our analysis. That’s a whopping 423% growth! This rapid growth is extraordinary and is

likely driven by two key elements: the ease with which it could be added to pages without cross-

browser compatibility issues, and the frameworks or technologies powering these websites. In

WordPress 5.5, lazy-loading images became the default implementation921, supercharging the

adoption rate of loading="lazy" , with WordPress sites now making up 84%922 of all pages

which use native image lazy-loading.

Figure 20.16. The percent of pages that have the loading="lazy" attribute on img elements.

920. https://github.com/aFarkas/lazysizes
921. https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/
922. https://web.dev/articles/lcp-lazy-loading

Part IV Chapter 20 : Resource Hints

662 2021 Web Almanac by HTTP Archive

https://github.com/aFarkas/lazysizes
https://almanac.httparchive.org/static/images/2021/resource-hints/adoption-of-loading-lazy-on-img.png
https://almanac.httparchive.org/static/images/2021/resource-hints/adoption-of-loading-lazy-on-img.png
https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/
https://web.dev/articles/lcp-lazy-loading

61.5% of lazy-loaded images on mobile and 63.1% of lazy-loaded images on desktop are

actually within the initial viewport and shouldn’t be lazy-loaded. A study923 on the load times for

pages which use lazy-loading indicated that pages which use lazy-loading tend to have a worse

LCP performance, possibly caused by overusing the lazy-loading attribute. This is increasingly

significant on the LCP element, which shouldn’t be lazy-loaded. If you are using

loading="lazy" , you should check that the lazily-loaded images are below the fold and

more critically, that the LCP element is not lazy-loaded. You may dig deeper into the effects of

lazy-loading the LCP image on your Core Web Vitals in the Performance chapter.

The likelihood of a page containing at least one iframe is much lower than for that containing an

image with only 2.6% of pages containing an iframe taking advantage of native lazy-loading. The

benefits of lazy-loading an iframe are potentially important, as an iframe could initiate further

requests to download even more resources, including scripts and images. This is especially true

when using embeds, such as YouTube or Twitter embeds. Similarly, when deciding the loading

strategy for an image, you must check whether the iframe is shown within the initial viewport

Figure 20.17. Percent of img elements with loading="lazy" which are in the initial viewport.

Figure 20.18. Percent of pages that have the loading="lazy" attribute on iframe elements.

2.6%

923. https://web.dev/articles/lcp-lazy-loading

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 663

https://almanac.httparchive.org/static/images/2021/resource-hints/lazy-loaded-images.png
https://almanac.httparchive.org/static/images/2021/resource-hints/lazy-loaded-images.png
https://web.dev/articles/lcp-lazy-loading

or not. If it isn’t, then it is usually safe to add loading="lazy" to the <iframe> element to

benefit from a reduced initial load and boost performance.

HTTP/2 Server Push

HTTP/2 supports a technology called Server Push that preemptively pushes a resource it

expects the client will be requesting. As the server is pushing the resource instead of informing

the client that it should request it, cache-management becomes complex and, in some cases, the

pushed resources would even delay the delivery of the HTML, which is critical for discovering

all resources required to load the page.

Unfortunately, HTTP/2 push has been disappointing, with little evidence that it provides the

performance boost promised compared to the risk of over pushing resources that either the

browser already has, or that are of less importance than resources the browser requests.

So, while the technology is widely available, overcoming these obstacles makes it highly

unpopular—with less than 1% adoption. Chrome has also filed an Intent to Remove924 that is

paused until a testable implementation of 103 Early Hints (covered next) is available. Chrome

does not support925 Server Push on HTTP/3 either.

You can read more about HTTP, HTTP/2, and HTTP/3 in the HTTP chapter.

Future

While there are no proposals to add new rel directives, improvements from the browser

vendors to the current set of resource hints—such as the prioritization bug926 in Chrome—are

expected to have a positive impact. Hint adoption is expected to evolve, and the use of

preload should shift towards its intended purpose: late discovered resources.

Additionally, two proposals, 103 Early Hints and Priority Hints, are expected to be made

available soon, with experimental support already available on Chrome.

103 Early Hints

Chrome 95 added experimental support for 103 Early Hints927 for preload and preconnect .

Early hints enable the browser to preload resources before the main response is served and

924. https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0078.html
925. https://github.com/httpwg/http2-spec/issues/786#issuecomment-724371629
926. https://bugs.chromium.org/p/chromium/issues/detail?id=629420
927. https://datatracker.ietf.org/doc/html/rfc8297

Part IV Chapter 20 : Resource Hints

664 2021 Web Almanac by HTTP Archive

https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0078.html
https://github.com/httpwg/http2-spec/issues/786#issuecomment-724371629
https://bugs.chromium.org/p/chromium/issues/detail?id=629420
https://datatracker.ietf.org/doc/html/rfc8297

take advantage of the idle time on the browser between the request being sent and the

response from the server. When using 103 Early Hints, the server immediately sends an

“informational” response status detailing the resources to be preloaded using the HTTP header

method, while processing the real document response. This way, the browser will be able to

initiate preload requests for critical resources even before the HTML arrives and much earlier

than it would if using the <link> element in the document markup. 103 Early Hints

overcomes most of the difficulties encountered with HTTP/2 Server Push.

Priority Hints

Priority hints inform the browser of the relative importance of resources within the page,

intending to prioritize critical resources and improve Core Web Vitals. Priority Hints are

enabled through the document markup by adding the importance attribute to resources,

such as or <script> . The importance attribute accepts an enumeration of high ,

low or auto and by combining this with the type of resource, the browser would be able to

assign the optimal fetch priority based on its heuristics. Priority Hints are available on Chrome

96 as an origin trial928.

Conclusion

During the past year, resource hint adoption grew and is expected to continue growing as

developers take advantage of these APIs to prioritize resources and improve the user’s

experience. At the same time, browser vendors have continued calibrating these directives,

evolving their role and effectiveness.

Resource hints could become a double-edged sword if the benefit for your users is not

evaluated. Almost a quarter of preload requests went unused while the number of preload

hints correlated with slower load times.

Resource hints are akin to fine-tuning a race car’s engine. They would not turn a slow engine

into a fast one, and too many adjustments could break it. Yet, some small tweaks here and there

would allow you to maximize it.

So once again, the mantra behind resource hints remains, “if everything is important, then

nothing is”. Use resource hints wisely and don’t overuse them.

928. https://developer.chrome.com/blog/origin-trials

Part IV Chapter 20 : Resource Hints

2021 Web Almanac by HTTP Archive 665

https://developer.chrome.com/blog/origin-trials

Author

Kevin Farrugia

@imkevdev @https://webperf.social/@kevinfarrugia kevinfarrugia imkevdev

https://imkev.dev

Kevin Farrugia is a consultant on web performance and software architecture. You

can find him blogging on imkev.dev929.

929. https://imkev.dev

Part IV Chapter 20 : Resource Hints

666 2021 Web Almanac by HTTP Archive

https://x.com/imkevdev
https://webperf.social/@kevinfarrugia
https://github.com/kevinfarrugia
https://www.linkedin.com/in/imkevdev/
https://imkev.dev/
https://imkev.dev/

Part IV Chapter 21

CDN

Written by Navaneeth Krishna
Reviewed by Julia Yang and Shilpa Raghunathan
Analyzed by Paul Calvano
Edited by Julia Yang and Shaina Hantsis

Introduction

A Content Delivery Network (CDN) is a geographically distributed network of proxy servers in

data-centers. The goal of a CDN is to provide high availability and performance for web

content. It does this by distributing content closer to the end users.

CDNs have been in existence for over two decades. With the exponential rise in internet traffic

contributed by online video consumption, online shopping, and increased video conferencing

due to COVID-19, CDNs are required more than ever before. They ensure high availability and

good web performance despite this growth in internet traffic.

During the early days, a CDN was a simple network of proxy servers which would:

1. Cache content (like HTML, images, stylesheets, JavaScript, videos, etc.)

2. Reduce network hops for end users to access content

3. Offload TCP connection termination away from the data centers hosting the web

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 667

properties

They primarily helped web owners to improve the page load times and to offload traffic from

the infrastructure hosting these web properties.

Over time, the services offered by CDN providers have evolved beyond caching and offloading

bandwidth/connections. Now they offer additional services such as:

• Cloud-hosted Web Application Firewalls

• Bot Management solutions

• Clean pipe solutions (Scrubbing Data-centers)

• Serverless Computing offerings

• Image and Video Management solutions etc.,

Thus, a web owner these days has a lot of options to choose from. This can be overwhelming

and complex since these new offerings from CDNs make them an extension of your application

and require closer integration with application development life-cycles.

There are benefits to web owners in pushing web application logic and workflows closer to the

end user. This eliminates the round trip and bandwidth that a HTTP/HTTPS request would take.

It also handles near-instant scalability requirements for the origin. A side-effect of this is that

Internet Service Providers (ISPs) benefit from the scalability management as well, which

improves their infrastructure capacities.

This reduction in requests reduces the load on the internet backbone, (read Middle-Mile of the

Internet930). It also helps manage more of the internet load within the last mile of the internet.

Thus, a CDN plays a multifaceted role in the Internet landscape as it allows web owners to

improve the performance, reliability and scalability of content delivery.

Caveats and disclaimers

As with any observational study, there are limits to the scope and impact that can be measured.

The statistics gathered on CDN usage for the Web Almanac are focused more on applicable

technologies in use and not intended to measure performance or effectiveness of a specific

CDN vendor. While this ensures that we are not biased towards any CDN vendor, it also means

that these are more generalized results.

These are the limits to our testing methodology:

930. https://en.wikipedia.org/wiki/Middle_mile

Part IV Chapter 21 : CDN

668 2021 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Middle_mile
https://en.wikipedia.org/wiki/Middle_mile

• Simulated network latency: We use a dedicated network connection that

synthetically shapes traffic.

• Single geographic location: Tests are run from a single datacenter and cannot test

the geographic distribution of many CDN vendors.

• Cache effectiveness: Each CDN uses proprietary technology and many, for security

reasons, do not expose cache performance.

• Localization and internationalization: Just like geographic distribution, the effects

of language and geo-specific domains are also opaque to these tests.

• CDN detection: This is primarily done through DNS resolution and HTTP headers.

Most CDNs use a DNS CNAME to map a user to an optimal datacenter. However,

some CDNs use Anycast IPs or direct A+AAAA responses from a delegated domain

which hide the DNS chain. In other cases, websites use multiple CDNs to balance

between vendors, which is hidden from the single-request pass of our crawler.

All of this influences our measurements.

Most importantly, these results reflect the utilization of specific features (Example: TLS,

HTTP/2 etc.,) per site, but do not reflect actual traffic usage. YouTube is more popular than

“www.example.com” yet both will appear as equal value when comparing utilization.

With this in mind, here are a few statistics that were intentionally not measured in the context

of a CDN:

1. Time To First Byte (TTFB)

2. CDN Round Trip Time

3. Core Web Vitals

4. Cache Hit versus Cache Miss performance etc.

While some of these could be measured with HTTP Archive dataset, and others by using the

CrUX dataset, the limitations of our methodology and the use of multiple CDNs by some sites,

will be difficult to measure and so could be incorrectly attributed. For these reasons, we have

decided not to measure these statistics in this chapter.

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 669

CDN adoption

The contents in a web page can be divided into 3 parts, namely:

1. Base HTML page (e.g., www.example.com)

2. Embedded first-party content on subdomains (e.g., images.example.com ,

css.example.com etc.)

3. Third-party content (e.g., Google Analytics, Advertisements etc.)

From their inception, CDNs have been the go-to solution for delivering embedded content such

as images, stylesheets, JavaScript, and fonts. This kind of content doesn’t change frequently,

making it a good candidate for caching on a CDN’s proxy servers.

With the evolution of CDN technology an expressway was set up on the internet for non-

cacheable assets. This means the main web page and APIs can now be delivered reliably and

faster, compared to a TCP connection to the origin.

The impact of this can be seen in the above chart when we compare this against the same data

in 2019 chapter931 (note, there was no CDN chapter in 2020 Web Almanac). It’s good to see the

trend of sites using CDN has improved by 7% between 2019 and 2021. This shows that more of

the industry is leveraging CDNs to take benefit of consistent content delivery times and

minimize the impact of congestion on Internet.

Figure 21.1. CDN usage vs hosted resources.

931. https://almanac.httparchive.org/en/2019/cdn

Part IV Chapter 21 : CDN

670 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-hosted.png
https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-hosted.png
https://almanac.httparchive.org/en/2019/cdn

Looking at third-party content, there is negative growth for CDN adoption. Compared to 2019

chapter932, we see 3% reduction in domains using CDNs. Third-party domains are used by SaaS

vendors for analytics, advertisements, responsive pages, etc. It is in the SaaS vendor’s interest

to use CDNs for their services. Their content is used by multiple web owners and this content

gets accessed by end users across geographies, making CDNs necessary from both a business

and performance standpoint. This is evident in the charts where it’s clear that third-party

content has the highest adoption of CDN.

But why do we see this negative growth in CDN Adoption for third-party domains?

The probable reasons for this include:

• The HTTP/2 protocol requires web owners to consolidate the domains instead of

using multiple domains for optimal performance

• Contribution of third-party content to total page weight has also increased over the

years (refer to the Third Parties chapter for more details) leading to increased page

load time concerns for web owners

• Customization/personalization of third-party scripts to suit the requirements of

web owners

These changes have led to the SaaS vendors offering “self-hosting” options to web owners. This

leads to more content being delivered over the first-party domain instead of the vendor’s

domain. When this happens, it’s up to the web owner to either deliver the content over a CDN

or directly from their hosting infrastructure.

While we observed CDN adoption across different types of content, we will look at this data

from a different point of view below.

932. https://almanac.httparchive.org/en/2019/cdn

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 671

https://almanac.httparchive.org/en/2019/cdn
https://almanac.httparchive.org/en/2019/cdn

Ranking the websites based on their popularity (sourced from Google’s Chrome UX Report) in

the web and then checking for their CDN usage, the top 1,000 contribute to the highest usage

of CDN. The top websites are owned by larger companies like Google and Amazon, who

contribute to much of the internet traffic we see today, so it’s no surprise that these names

Figure 21.2. CDN usage by site popularity (desktop).

Figure 21.3. CDN usage by site popularity (mobile).

Part IV Chapter 21 : CDN

672 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-ranking-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-ranking-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-ranking-mobile.png
https://almanac.httparchive.org/static/images/2021/cdn/cdn-usage-ranking-mobile.png

make it to the list of top CDN providers in the next section. This also backs the fact about the

benefits CDNs bring to the table when operating at scale and having the ability to scale further

if needed.

The CDN adoption rate falls below 50% when we look at the top 100,000 websites but the rate

of reduction slows down beyond this. For the full data set (which is 6.2 million sites on desktop

and 7.5 million on mobile), 27% of these websites use CDN. When you translate that

percentage into real number, that’s 2 million mobile websites using CDN! It’s not such a small

number when you look at it this way.

But the decreasing percentage of CDN adoption in the low-popularity website end does make

sense considering the benefits of CDN (such as caching and TCP connection offload) increases

with the number of end users on the web property. Below a certain scale of end-user traffic on a

web property, the cost-to-benefit math of a CDN may not work in web property owner’s favor

and they might be better off delivering the web content directly from the origin.

Top CDN providers

CDN providers can be broadly classified into 2 segments:

1. Generic CDN (Akamai, Cloudflare, Fastly etc.)

2. Purpose-built CDN (Netlify, WordPress etc.)

Generic CDN addresses the mass market requirements. Their offerings include:

• Web site delivery

• mobile app API delivery

• Video streaming

• Serverless compute offerings

• Web security offerings, etc.

This appeals to a larger set of industries and is reflected in the data. Generic CDNs hold the

lion’s share of the HTML and First party subdomain traffic:

Figure 21.4. Percent of top 1,000 mobile websites using a CDN.

61.1%

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 673

CDN providers such as Cloudflare, Fastly, Akamai and Limelight appear in this list of Generic

CDN providers. We also see other providers such as Google and AWS. They appear in this list

since they offer bundled CDN offerings along with their Cloud hosting services. These bundles

help reduce load on the hosting infrastructure and also improves web performance.

Figure 21.5. Top CDNs for HTML requests.

Figure 21.6. Top CDNs for sub-domain requests.

Part IV Chapter 21 : CDN

674 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/top-cdns.png
https://almanac.httparchive.org/static/images/2021/cdn/top-cdns.png
https://almanac.httparchive.org/static/images/2021/cdn/top-cdns-subdomain.png
https://almanac.httparchive.org/static/images/2021/cdn/top-cdns-subdomain.png

Looking at third-party domains below, a different trend in top CDN providers is seen. We see

Google top the list before the generic CDN providers. The list also brings Facebook into

prominence. This is backed by the fact that a lot of third-party domain owners require CDNs

more than other industries. This necessitates them to invest in building a purpose-built CDN. A

purpose-built CDN is one which is optimized for a particular content delivery workflow.

For example, a CDN built specifically to deliver advertisements will be optimized for:

• High input-output (I/O) operations

• Effective management of long tail933 content

• Geographical closeness to businesses requiring their services

This means purpose-built CDNs meet the exact requirements of a particular market segment as

opposed to a generic CDN solution. Generic solutions can meet a broader set of requirements

but are not optimized for any particular industry or market.

TLS adoption impact

With CDNs set up in the request-response workflows, the end-user’s TLS connection

Figure 21.7. Top CDNs for third-party requests.

933. https://en.wikipedia.org/wiki/Long_tail

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 675

https://almanac.httparchive.org/static/images/2021/cdn/top-cdns-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/top-cdns-3p.png
https://en.wikipedia.org/wiki/Long_tail

terminates at the CDN. In turn, the CDN sets up a second independent TLS connection and this

connection goes from the CDN to the origin host. This break in the CDN workflow allows the

CDN to define the end-user’s TLS parameters. CDNs tend to also provide automatic updates to

internet protocols. This allows web owners to receive these benefits without making changes

to their origin.

Figure 21.8. Distribution of TLS version for HTML (desktop).

Figure 21.9. Distribution of TLS version for HTML (mobile).

Part IV Chapter 21 : CDN

676 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/tls-version-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-version-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-version-mobile.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-version-mobile.png

We see in the data above that 83% websites on CDNs use TLS 1.3 compared to 33-36% on the

origin. That’s a huge benefit of using a CDN. These protocol upgrades also come with minimal to

no-effort for web owners. The trend is identical for mobile and desktop websites.

Similar trend is observed for the third-party domains below. These web services with CDNs

have better adoption of TLS 1.3 than the ones without for the same reasons.

Figure 21.10. Distribution of TLS version for third-party requests (desktop).

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 677

https://almanac.httparchive.org/static/images/2021/cdn/tls-version-desktop-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-version-desktop-3p.png

It is important for third-party domains to be on the latest TLS version for security reasons. With

the increase in web attacks, web owners are aware of loopholes that can be exploited with

unsecure connections to third-party domains. They will expect equally secure TLS connections

which meet the security and performance requirements of their web sites. These expectations

enhance the benefits CDNs bring to the table.

TLS performance impact

Common logic dictates that the fewer hops it takes for a HTTPS request-response to traverse,

the faster the round trip would be. So exactly how much quicker can it be if the TLS connection

terminates closer to the end user? The answer: As much as 3 times faster!

Figure 21.11. Distribution of TLS version for third-party requests (mobile).

Part IV Chapter 21 : CDN

678 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/tls-version-mobile-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-version-mobile-3p.png

CDNs have helped slash the TLS connection times. This is due to their proximity to the end user

and adoption of newer TLS protocols that optimize the TLS negotiation. CDNs hold the edge

over origin at all percentiles here. At P10 and P25, CDNs are nearly 1.5x to 2x faster than origin

in TLS set up time. The gap increases even more once we hit the median and above, where

CDNs are nearly 3x faster. 90th percentile users using a CDN will have better performance

than 50th percentile users on direct origin connections.

This is quite important when you consider that all sites will have to be on TLS these days.

Optimal performance at this layer is essential for other steps that follow TLS connection. In this

regard, CDNs are able to move more users to lower percentile brackets compared to direct

origin connections.

HTTP/2+ (HTTP/2 or better) adoption

HTTP/2 was introduced with a lot of hype and expectation. This was because the application

layer protocol had not been updated since HTTP 1.1 in 1997. Since then, the web traffic trend,

content-type, content size, website design, platforms, mobile apps and more have evolved

significantly. Thus, there was a need to have a protocol which can meet the requirements of the

modern-day web traffic and that protocol was realized with HTTP/2, and then further improved

with the more recent HTTP/3.

However, the implementation challenges of HTTP/2 discouraged adoption. In addition, the net

Figure 21.12. HTML TLS negotiation - CDN vs origin.

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 679

https://almanac.httparchive.org/static/images/2021/cdn/tls-negotiation.png
https://almanac.httparchive.org/static/images/2021/cdn/tls-negotiation.png

performance gains which can be expected with these changes was also not clear. Challenges

repeated with the introduction of HTTP/3.

This was where the CDNs being the intermediary can help in bridging the challenge of HTTP/2

implementation for web owners. An HTTP/2 connection terminates at the CDN level, and this

provides web owners the ability to deliver their website and subdomains over HTTP/2 without

the need to upgrade their infrastructure to support it—the exact same reasons and benefits we

saw for newer TLS versions.

CDNs act as the proxy to bridge the gap by providing a layer to consolidate hostnames and

route traffic to relevant endpoints with minimal change to their hosting infrastructure.

Features like prioritizing content in the queue and server push can be managed from the CDN’s

side and a few CDN’s even provide hands-off automated solutions to run these features

without any inputs from website owners, thus providing a boost to HTTP/2 adoption.

The trend cannot be clearer than what the graph shows below. There is high HTTP/2+ adoption

by domains on CDNs compared to the ones not using a CDN.

Note that due to the way HTTP/3 works (see the HTTP chapter for more information), HTTP/3 is often
not used for first connections which is why we are instead measuring “HTTP/2+”, since many of those
HTTP/2 connections may actually be HTTP/3 for repeat visitors (we have assumed that no servers
implement HTTP/3 without HTTP/3).

Figure 21.13. Distribution of HTTP versions for HTML (desktop).

Part IV Chapter 21 : CDN

680 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/http-versions-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/http-versions-desktop.png

Back in 2019, the origin domains had 27% adoption of HTTP/2 compared to 71% adoption on

CDN. While we see in desktop sites that there is about a 14% increase in origins supporting

HTTP/2+ in 2021, domains on CDNs have maintained that lead with a 15% increase. This gap is

a bit less when we look at mobile sites, where domains using a CDN have a slightly lower HTTP/

2+ adoption compared to desktop sites.

Figure 21.14. Distribution of HTTP versions for HTML (mobile).

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 681

https://almanac.httparchive.org/static/images/2021/cdn/http-versions-mobile.png
https://almanac.httparchive.org/static/images/2021/cdn/http-versions-mobile.png

Looking at third-party domains supporting newer protocols, we see an interesting trend of

higher adoption of HTTP/2+protocols compared to first-party domains. This makes sense,

considering the fact that most of the top third-party domains use purpose-built CDNs and thus

have more control on the content development and content delivery. Additionally, third-party

domains need to have consistent performance across all network conditions, and this is where

Figure 21.15. Distribution of HTTP versions for third-party requests (desktop).

Figure 21.16. Distribution of HTTP versions for third-party requests (mobile).

Part IV Chapter 21 : CDN

682 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/http-versions-desktop-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/http-versions-desktop-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/http-versions-mobile-3p.png
https://almanac.httparchive.org/static/images/2021/cdn/http-versions-mobile-3p.png

HTTP/2+ adds value by mixing in other protocols like UDP (used by HTTP/3) along with

traditional TCP connections.

Back in 2019, Uber did an experiment to understand how UDP along with TCP (aka QUIC, the

transport layer of HTTP/3) can help deliver content with consistent performance and overcome

packet loss in highly congested mobile networks. The results of this experiment documented in

this blog post934 throws valuable insights into the demographic where HTTP/3 can help. Over

time, this trend will trickle down and we should see web owners adopting HTTP/3, especially

with mobile network traffic having a higher contribution to the total internet traffic.

Brotli adoption

Content delivered over the internet employs compression to reduce the payload size. A smaller

payload means it’s faster to deliver the content from server to end user. This makes websites

load faster and provide a better end-user experience. For images, this compression is handled

by image file formats like JPEG, WEBP, AVIF, etc. (refer to the Media chapter for more on this).

For textual web assets (such as HTML, JavaScript, and stylesheets) compression was

traditionally handled by a file format called Gzip. Gzip has been in existence since 1992. It did a

good job of making text asset payloads smaller, but a new text asset compression can do better

than Gzip: Brotli (refer to the Compression chapter for more information).

Similar to TLS and HTTP/2 adoption, Brotli went through a phase of gradual adoption across

web platforms. At the time of this writing, Brotli is supported by 96%935 of the web browsers

globally. However, not all websites compress text assets in Brotli format. This is because of both

lack of support and of the longer time required to compress a text asset in Brotli format

compared to Gzip compression. Also, the hosting infrastructure needs to have backward

compatibility to serve Gzip compressed assets for older platforms which do not support the

Brotli format, which can add complexity.

The impact of this is observed when we compare websites which are using CDN against the

ones not using CDN.

934. https://eng.uber.com/employing-quic-protocol/
935. https://caniuse.com/brotli

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 683

https://eng.uber.com/employing-quic-protocol/
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Brotli
https://caniuse.com/brotli

On both desktop and mobile platforms, we see that CDNs are delivering twice as many text

assets in Brotli, compared to domains delivered from origin. From the CDN adoption section

covered earlier, 73% of the domains serving sites are on CDNs and these can all benefit from

the Brotli compression. By offloading the computational load of compressing a text asset in the

Figure 21.17. Distribution of compression types (desktop).

Figure 21.18. Distribution of compression types (mobile).

Part IV Chapter 21 : CDN

684 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/cdn/compression-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/compression-desktop.png
https://almanac.httparchive.org/static/images/2021/cdn/compression-mobile.png
https://almanac.httparchive.org/static/images/2021/cdn/compression-mobile.png

Brotli format to CDNs, website owners need not invest resources for hosting infrastructure.

However, it is at the web property owner’s discretion whether to use Brotli compression on

their CDNs or not. Compared to 95% of the web browsers globally which support Brotli

compression, even with CDNs in place, less than half of all the text assets are delivered in Brotli

format—so there is clearly space for this adoption to improve.

Conclusion

There are limitations to the insights we can deduce about CDNs from the outside, since it is

hard to know the secret sauce powering them behind the scenes. However, we have crawled

the domains and compared the ones on CDNs against those who are not. We can see that CDNs

have been an enabler for websites to adopt new web protocols, from the network layer to the

application layer.

This impact is universal, with similar adoption rates across mobile and desktop: from using the

latest TLS versions to upgrading to the newest HTTP versions (like HTTP/2, HTTP/3) to using

the Brotli compression. What stands out is the depth of this impact and the sizable lead the

CDN domains have built relative to non-CDN domains.

This role of CDNs is highly valuable and this will continue to be the case. CDN providers are

also a key part of the Internet Engineering Task Force936, where they help shape the future of the

internet. They will continue to play a key role aiding the internet-enabled industries to operate

smoothly, reliably and quickly.

Author

Navaneeth Krishna

@Navanee55755217 Navaneeth-akam

Navaneeth Krishna is a Web Performance Architect at Akamai937, a leading CDN

provider. With over a decade of experience in the CDN industry, he believes the

CDN will be an integral part to the growth of internet in the years to come and it

will be a space to watch out for. You can find him tweeting @Navanee55755217.

936. https://www.ietf.org/
937. https://www.akamai.com/

Part IV Chapter 21 : CDN

2021 Web Almanac by HTTP Archive 685

https://www.ietf.org/
https://x.com/Navanee55755217
https://github.com/Navaneeth-akam
https://www.akamai.com/
https://x.com/Navanee55755217

686 2021 Web Almanac by HTTP Archive

Part IV Chapter 22

Compression

Written by Lode Vandevenne, Moritz Firsching, and Jyrki Alakuijala
Reviewed by Thomas Fischbacher, Eugene Kliuchnikov, and Iulia Comșa
Analyzed by Paul Calvano
Edited by Shaina Hantsis

Introduction

A user’s time is valuable, so they shouldn’t have to wait a long time for a web page to load. The

HTTP protocol allows the responses to be compressed, which decreases the time needed to

transfer the content. Compression often leads to significant improvement in the user

experience. It can reduce page weight, improve web performance and boost search rankings. As

such, it’s an important part of Search Engine Optimization.

This chapter discusses lossless compression applied on a HTTP response. Lossy and lossless

compression used in media938 formats such as images, audio and video are equally (if not more)

important for increasing the page loading speed. However, these are not in the scope of this

chapter, as they usually are part of the file format itself.

938. https://almanac.httparchive.org/en/2020/media

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 687

https://almanac.httparchive.org/en/2020/media

Content types using HTTP compression

HTTP compression is recommended for text-based content, such as HTML, CSS, JavaScript,

JSON, or SVG, as well as for woff , ttf and ico files. Media files such as images that are

already compressed do not benefit from HTTP compression since, as mentioned previously,

their representation already includes internal compression.

Compared to the other content types, text/plain and text/html use the least amount of

compression, with merely 12% and 14% using compression at all. This might be because text/
html is more often dynamically generated than static content such as JavaScript and CSS, even

though compressing dynamically generated content also has a positive impact. More analysis

about the compression of JavaScript content is available in the JavaScript chapter.

Server settings for HTTP compression

For HTTP content encoding, the HTTP standard defines the Accept-Encoding939 request header,

with which a HTTP client can announce to the server what content encodings it can handle. The

server’s response can then contain a Content-Encoding940 header field that specifies which of

the encodings was chosen to transform the data in the response body.

Figure 22.1. Compression methods for different content types.

939. https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
940. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Encoding

Part IV Chapter 22 : Compression

688 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/compression/compession-methods-by-content-type.png
https://almanac.httparchive.org/static/images/2021/compression/compession-methods-by-content-type.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Encoding

Practically all text compression is done by one of two HTTP content encodings: Gzip941 and

Brotli942. Both Brotli and Gzip are supported by virtually all browsers. On the server side, most

popular servers943 like nginx and Apache can be configured to use Brotli and/or Gzip. The

configuration is different depending on when the content is generated:

• Static content: this content can be precompressed. The web server can be set up to

map the URLs to the appropriate compressed files, e.g. based on the filename

extension. For example, CSS and JavaScript are often static content and so can be

precompressed to reduce effort for the web server to compress for each request.

• Dynamically generated content: this has to be compressed on the fly for each

request by the web server (or a plugin) itself. For example, HTML or JSON can be

dynamic content in some cases.

When compressing text with Brotli or Gzip it is possible to select different compression levels.

Higher compression levels will result in smaller compressed files, but take a longer time to

compress. During decompression, CPU usage tends not to be higher for more heavily

compressed files. Rather, files that are compressed with a higher compression level are slightly

faster to decode.

Depending on the web server software used, compression needs to be enabled, and the

configuration may be separate for precompressed and dynamically compressed content. For

Apache944, Brotli can be enabled with mod_brotli945, and Gzip with mod_deflate946. For nginx947

instructions for enabling Brotli948 and for enabling Gzip949 are available as well.

Trends in HTTP compression

The graph below shows the usage share trend of lossless compression from the HTTP Archive

metrics over the last 3 years. The usage of Brotli has doubled since 2019, while the usage of

Gzip has slightly decreased, and overall the use of HTTP compression is growing on desktop

and on mobile.

941. https://tools.ietf.org/html/rfc1952
942. https://github.com/google/brotli
943. https://en.wikipedia.org/wiki/HTTP_compression#Servers_that_support_HTTP_compression
944. https://httpd.apache.org/
945. https://httpd.apache.org/docs/2.4/mod/mod_brotli.html
946. https://httpd.apache.org/docs/2.4/mod/mod_deflate.html
947. https://nginx.org/
948. https://github.com/google/ngx_brotli
949. https://nginx.org/en/docs/http/ngx_http_gzip_module.html

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 689

https://tools.ietf.org/html/rfc1952
https://github.com/google/brotli
https://en.wikipedia.org/wiki/HTTP_compression#Servers_that_support_HTTP_compression
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/mod/mod_brotli.html
https://httpd.apache.org/docs/2.4/mod/mod_deflate.html
https://nginx.org/
https://github.com/google/ngx_brotli
https://nginx.org/en/docs/http/ngx_http_gzip_module.html

Of the resources that are served compressed, the majority are using either Gzip (66%) or Brotli

(33%). The other compression algorithms are used infrequently. This split is virtually the same

for desktop and mobile.

Figure 22.2. Compression method trend for desktop.

Figure 22.3. Compression method trend for mobile.

Part IV Chapter 22 : Compression

690 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/compression/compression-format-trend-desktop.png
https://almanac.httparchive.org/static/images/2021/compression/compression-format-trend-desktop.png
https://almanac.httparchive.org/static/images/2021/compression/compression-format-trend-mobile.png
https://almanac.httparchive.org/static/images/2021/compression/compression-format-trend-mobile.png

First-party vs third-party compression

Third Parties have an impact on the user experience of a website. Historically the amount of

compression used by first parties compared with third parties was significantly different.

From these results we can see that, compared to 2020, first party content has caught up with

third party content in the use of compression and they use compression in comparable ways.

Figure 22.4. Compression algorithm for HTTP responses.

Figure 22.5. First-party versus third-party compression by device type.

Desktop Mobile

Content-encoding First-party Third-party First-party Third-party

No text compression 58.0% 57.5% 56.1% 58.3%

Gzip 28.1% 28.4% 29.1% 28.1%

Brotli 13.9% 14.1% 14.9% 13.7%

Deflate 0.0% 0.0% 0.0% 0.0%

Other / Invalid 0.0% 0.0% 0.0% 0.0%

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 691

https://almanac.httparchive.org/static/images/2021/compression/compression-algorithms-for-http-responses.png
https://almanac.httparchive.org/static/images/2021/compression/compression-algorithms-for-http-responses.png
https://almanac.httparchive.org/en/2020/compression#first-party-vs-third-party-compression

Usage of compression and especially Brotli has grown in both categories. Brotli compression

has doubled in percentage for first party content compared to a year ago.

Compression levels

Compression level is a parameter given to the encoder to adjust the amount of effort is applied

to find redundancy in the input in order to consequently achieve higher compression density. A

higher compression level results in slower compression, but does not substantially affect the

decompression speed, even making it slightly faster. For precompressed content, the time

needed to compress the data has no effect on the user experience because it can be done

beforehand. For dynamic content, the amount time the CPU needs to compress the resource

can be traded off to the gain in speed to send the reduced, compressed data over the network.

Brotli encoding allows compression levels from 0 to 11, while Gzip uses levels 1 to 9. Higher

levels can be achieved for Gzip as well, with a tool such as Zopfli. This is indicated as opt in the

graph below.

We used the HTTP Archive summary_response_bodies data table to analyze the

compression levels currently used on the web. This is estimated by re-compressing the

responses with different compression level settings and taking the closest actual size, based on

around 14,000 compressed responses that used Brotli, and 11,000 that used Gzip.

When plotting the amount of instances of each level, it shows two peaks for the most

commonly used Brotli compression levels, one around compression level 5, and another at the

maximum compression level. Usage of compression levels below 4 is rare.

Part IV Chapter 22 : Compression

692 2021 Web Almanac by HTTP Archive

Gzip compression is applied largely around compression level 6, extending to level 9. The peak

at level 1 might be explained because this is the default compression level of the popular web

server nginx950. For comparison, Gzip level 9 attempts thousands of redundancy matches, level 6

limits it to about a hundred, while level 1 means limiting redundancy matching to only four

candidates and 15% worse compression.

Figure 22.6. Compression levels for Brotli.

950. https://nginx.org/

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 693

https://almanac.httparchive.org/static/images/2021/compression/compression-levels-brotli.png
https://almanac.httparchive.org/static/images/2021/compression/compression-levels-brotli.png
https://nginx.org/

The figure breaks down each compression level by content type. JavaScript is the most common

content type in almost all cases. For Brotli, the proportion of JavaScript in the highest

compression levels is higher than in the lower compression levels, while JSON is more common

in the lower compression levels. For Gzip, the distribution of the JavaScript content type is

roughly equal at all levels.

How to analyze compression on sites

To check which content of a website is using HTTP compression, the Firefox Developer Tools951

or the Chrome DevTools952 can be used. In the developer tools, open the Network tab and reload

your site. A list of responses such as HTML, CSS, JavaScript, fonts and images should appear. To

see which ones are compressed, you can check the content encoding in their response header.

You can enable a column to easily see this for all responses at once. To do this, right click on the

column titles, and in the menu navigate to Response Headers and enable Content-Encoding.

Responses that are Gzip compressed will show “gzip”, while those compressed with Brotli will

show “br”. If the value is blank, no HTTP compression is used. For images this is normal, since

these resources are already compressed on their own.

Figure 22.7. Compression levels for Gzip.

951. https://developer.mozilla.org/docs/Tools
952. https://developers.google.com/web/tools/chrome-devtools

Part IV Chapter 22 : Compression

694 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/compression/compression-levels-gzip.png
https://almanac.httparchive.org/static/images/2021/compression/compression-levels-gzip.png
https://developer.mozilla.org/docs/Tools
https://developers.google.com/web/tools/chrome-devtools

Figure 22.8. Chrome DevTools checking the content-encoding of responses

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 695

https://almanac.httparchive.org/static/images/2021/compression/content-encoding.jpg
https://almanac.httparchive.org/static/images/2021/compression/content-encoding.jpg

A different tool that can analyze compression on a site is Google’s Lighthouse953 tool. It runs a

series of audits, including the “Enable text compression” audit954. This audit attempts to

compress resources to check if they reduced by at least 10% and 1,400 bytes. Depending on the

score, it can show a compression recommendation in the results, with a list of the resources

that can be compressed to benefit a website.

The HTTP Archive runs Lighthouse audits for every mobile page, and from this data we

observed that 72% of websites pass this audit. This is 2% less than last year’s955 74%, which is

despite more usage of text compression overall compared to last year, a slight drop.

How to improve on compression

Before thinking about how to compress content, it is often wise to reduce the content

transmitted to begin with. One way of achieving this is to use so-called “minimizers”, such as

HTMLMinifier956, CSSNano957, or UglifyJS958.

After having the minimal form of the content to transmit, the next step is to ensure

compression is enabled. You can verify it is enabled as highlighted in the previous section, and

configure your web server if needed.

Figure 22.9. Text compression Lighthouse scores.

953. https://developers.google.com/web/tools/lighthouse
954. https://web.dev/uses-text-compression/
955. https://almanac.httparchive.org/en/2020/compression#fig-9
956. https://github.com/kangax/html-minifier
957. https://github.com/ben-eb/cssnano
958. https://github.com/mishoo/UglifyJS2

Part IV Chapter 22 : Compression

696 2021 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse
https://web.dev/uses-text-compression/
https://almanac.httparchive.org/en/2020/compression#fig-9
https://almanac.httparchive.org/static/images/2021/compression/text-compression-lighthouse-scores.png
https://almanac.httparchive.org/static/images/2021/compression/text-compression-lighthouse-scores.png
https://github.com/kangax/html-minifier
https://github.com/ben-eb/cssnano
https://github.com/mishoo/UglifyJS2

If using only Gzip compression (also known as Deflate or Zlib), adding support for Brotli can be

beneficial. In comparison to Gzip, Brotli compresses to smaller files at the same speed959 and

decompresses at the same speed.

You can choose a well-tuned compression level. What compression level is right for your

application might depend on multiple factors, but keep in mind that a more heavily compressed

text file does not need more CPU when decoding, so for precompressed assets there’s no

drawback from the user’s perspective to set the compression levels as high as possible. For

dynamic compression, we have to make sure that the user doesn’t have to wait longer for a

more heavily compressed file, taking both the time it takes to compress as well as the

potentially decreased transmission time into account. This difference is borne out when looking

at compression level recommendations for both methods.

When using Gzip compression for precompressed resources, consider using Zopfli960, which

generates smaller Gzip compatible files. Zopfli uses an iterative approach to find an very

compact parsing, leading to 3-8% denser output, but taking substantially longer to compute,

whereas Gzip uses a more straightforward but less effective approach. See this comparison

between multiple compressors961, and this comparison between Gzip and Zopfli962 that takes into

account different compression levels for Gzip.

Improving the default settings on web server software would provide significant improvements

to those who are not able to invest time into web performance, especially Gzip quality level 1

seems to be an outlier and would benefit from a default of 6, which compresses 15% better on

the HTTP Archive summary_response_bodies data. Enabling Brotli by default instead of

Gzip for user agents that support it would also provide a significant benefit.

Conclusion

The analysis of compression levels used on 28,000 HTTP responses reveals that about 0.5% of

Gzip-compressed content uses more advanced compressors such as Zopfli, while a similar

Figure 22.10. Recommended compression levels to use.

Brotli Gzip

Precompressed 11 9 or Zopfli

Dynamically compressed 5 6

959. https://quixdb.github.io/squash-benchmark/
960. https://en.wikipedia.org/wiki/Zopfli
961. https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
962. https://blog.codinghorror.com/zopfli-optimization-literally-free-bandwidth/

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 697

https://quixdb.github.io/squash-benchmark/
https://en.wikipedia.org/wiki/Zopfli
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://blog.codinghorror.com/zopfli-optimization-literally-free-bandwidth/

“optimal parsing” approach is used for 17% of Brotli-compressed content. This indicates that

when more efficient methods are available, even if slower, a significant number of users will

deploy these methods for their static content.

Usage of HTTP compression continues to grow, and especially Brotli has increased significantly

compared to the previous year’s chapter963. The number of HTTP responses using any text

compression increased by 2%, while Brotli increased by over 4%. Despite the increase, we still

see opportunities to use more HTTP compression by tweaking the compression settings of

servers. You can benefit from taking a closer look at your own website’s responses and your

server configuration. Where compression is not used, you may consider enabling it, and where

it is used you may consider tweaking the compression methods towards higher compression

levels, both for dynamic content such as HTML generated on the fly, and static content.

Changing the default compression settings in popular HTTP servers could have a great impact

for users.

Authors

Lode Vandevenne

lvandeve

Lode Vandevenne works at Google Switzerland as a software engineer and has

contributed to compression projects including Zopfli, Brotli and the JPEG XL

image format.

Moritz Firsching

mo271 https://mo271.github.io/

Moritz Firsching is software engineer at Google Switzerland, where he works on

progressive image formats and font compression. Before that Moritz did research

as a mathematician studying polytopes.

963. https://almanac.httparchive.org/en/2020/compression

Part IV Chapter 22 : Compression

698 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2020/compression
https://github.com/lvandeve
https://github.com/mo271
https://mo271.github.io/

Jyrki Alakuijala

@jyzg jyrkialakuijala

Jyrki Alakuijala is an active member of the open source software community, and a

data compression researcher. Jyrki works at Google as a Technical Lead/Manager,

and his recent published work has been with Zopfli, Butteraugli, Guetzli, Gipfeli,

WebP lossless, Brotli, and JPEG XL compression formats and algorithms, and two

hashing algorithms, CityHash, and HighwayHash. Before his Google employment

he developed software for neurosurgery and radiation therapy treatment

planning.

Part IV Chapter 22 : Compression

2021 Web Almanac by HTTP Archive 699

https://x.com/jyzg
https://github.com/jyrkialakuijala

700 2021 Web Almanac by HTTP Archive

Part IV Chapter 23

Caching

Written by Leonardo Zizzamia and Jessica Nicolet
Reviewed by Wilhelm Willie and Rory Hewitt
Analyzed by Rick Viscomi
Edited by Barry Pollard

Introduction

Over the last two decades, the way we experience web applications has changed, giving us

richer and more interactive content. Unfortunately, this content comes with a cost in both data

storage and bandwidth. Most of the time, this makes it harder for many of us to fully experience

a web product when the network we use is degraded, or our device doesn’t have enough space.

Caching is both a solution to and the cause of some of these problems. Learning to navigate the

multitude of choices will enable you to build not only for high-end devices but also for the next

billion users that access your product from low-end devices.

Caching is a technique that enables the reuse of previously downloaded content, from simple

static assets like JavaScript, CSS files or basic string values to more complex JSON API

responses.

At its core, caching avoids making specific HTTP requests and allows an application to feel more

responsive and reliable to the user. Each request is usually cached in two main places:

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 701

• Content Delivery Networks (CDNs) is usually a third-party company with the

primary goal of replicating your data as closely as possible to where the user is

accessing the application. Most CDNs have some default behavior, but mainly you

can give them instructions on how to cache by using headers.

• Browsers will either respect the HTTP headers you defined to optimize the

experience, or apply some internal defaults. On top of that, browsers provide access

to additional manual caching strategies including storing simple strings in cookies,

complex API responses in IndexedDB, or entire resources using CacheStorage with a

service worker.

In this chapter, we will mostly focus on the HTTP headers used between the browser and the

CDN, briefly mentioning service worker caching strategies.

CDN cache adoption

A Content Delivery Network (CDN) is a group of servers spread out over several locations that

usually store copies of data. This allows servers to fulfill requests based on the server closest to

the end-user.

Part IV Chapter 23 : Caching

702 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Cookies
https://developer.mozilla.org/docs/Web/API/IndexedDB_API

Across the web in 2021, the most popular CDN used for Desktop was Cloudflare with 14% of

total pages, followed by Google with 6%. While Cloudflare and Google are the most popular, a

large variety of solutions remain available beyond these two including Fastly, Amazon

CloudFront, Akamai, and many others.

Service worker adoption

The adoption of service workers has continued to steadily increase.

Figure 23.1. Adoption of the top CDNs.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 703

https://almanac.httparchive.org/static/images/2021/caching/top-cdns.png
https://almanac.httparchive.org/static/images/2021/caching/top-cdns.png
https://developers.google.com/web/fundamentals/primers/service-workers

While just over 1% of pages registered a service worker, nearly 9% of pages ranked in the top

1,000 most visited domains registered one.

This higher adoption of service workers, particularly in the top 1,000 pages, could be related to

the world-wide trend towards remote-first and by association, mobile-friendly. As our reliance

on working and living in one place throughout the entire year shifts, we need our devices to

work even harder and smarter to keep up with us. Service workers are a tool that can improve

performance when the user is dealing with unreliable networks or low-end devices.

The primary way to cache resources within a service worker is by using the CacheStorage API.

This allows a developer to create a custom cache strategy for any requests passing through the

worker; some well-known ones are stale-while-revalidate, Cache Falling Back to Network, Network

Falling Back to Cache, and Cache Only. In recent years it has become even easier to adopt those

strategies thanks to the increased popularity of Workbox964, which helps you decide what cache

you want to plug and play.

Service workers, and Workbox, are discussed in more detail in the PWA chapter.

Figure 23.2. Service worker adoption.

964. https://developers.google.com/web/tools/workbox/modules/workbox-strategies

Part IV Chapter 23 : Caching

704 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/sw-adoption.png
https://almanac.httparchive.org/static/images/2021/caching/sw-adoption.png
https://developer.mozilla.org/docs/Web/API/CacheStorage
https://developers.google.com/web/tools/workbox/modules/workbox-strategies

Caching headers adoption

With both a CDN and the Browser, HTTP headers are the primary tool a developer must master

to properly cache resources. Headers are simply instructions read from the HTTP request or

response, and some of them help control the cache strategy used.

The caching-related headers, or the absence of them, tell the browser or CDN three essential

pieces of information:

• Cacheability: Is this content cacheable?

• Freshness: If it is cacheable, how long can it be cached for?

• Validation: If it is cacheable, how do I ensure that my cached version is still fresh?

Headers are meant to be used either alone or together. To determine if the content is cacheable

and fresh, we have:

• Expires specifies an explicit expiration date and time (i.e., when precisely the

content expires).

• Cache-Control specifies a cache duration (i.e., how long the content can be

cached in the browser relative to when it was generated).

When both are specified, Cache-Control takes precedence.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 705

Usage of the Cache-Control header has increased steadily since 2019. 74.2% of responses

on mobile requests included the Cache-Control header, while 74.8% of responses on

desktop requests utilized the header.

Since 2020, the usage of this specific header increased by 0.71% for mobile and by 1.13% for

desktop. But on mobile, we still have 25.1% of requests using neither Cache-Control nor

Expires headers. This leads us to believe there has been an increase in awareness in the

community around proper usage of Cache-Control , but we still have a long way to go to full

adoption of these headers.

To validate the content, we have:

• Last-Modified indicates when the object was last changed. Its value is a date

timestamp.

• ETag (Entity Tag) provides a unique identifier for the content as a quoted string. It

can take any format the server chooses. It is typically a hash of the file contents, but

it can be a timestamp or a simple string.

When both are specified, ETag takes precedence.

Figure 23.3. Percent of responses that set Cache-Control and Expires headers.

Part IV Chapter 23 : Caching

706 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/cache-control-expires.png
https://almanac.httparchive.org/static/images/2021/caching/cache-control-expires.png

Comparing 2020 and 2021, we notice a recurring trend from past years with the ETag
becoming slightly more popular each year, and Last-Modified being used 1.5% less. What

we should probably keep an eye on next year is a new trend of 1.4% more responses using

neither ETag nor Last-Modified headers, as this could imply a challenge in the community

understanding the value of these headers.

Cache-Control directives

When using the Cache-Control header, you specify one or more directives—predefined

values that indicate specific caching functionality. Multiple directives are separated by commas

and can be set in any order, although some clash with one another (e.g., public and

private). In addition, some directives take a value, such as max-age .

Below is a table showing the most common Cache-Control directives:

Figure 23.4. Percent of responses that set Last-Modified and ETag headers.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 707

https://almanac.httparchive.org/static/images/2021/caching/last-modified-etag.png
https://almanac.httparchive.org/static/images/2021/caching/last-modified-etag.png

Directive Description

max-age
Indicates the number of seconds that a resource can be cached for

relative to the current time. For example, max-age=86400.

public
Indicates that any cache can store the response, including the browser

and the CDN. This is assumed by default.

no-cache
A cached resource must be revalidated before its use, via a conditional

request, even if it is not marked as stale.

must-revalidate
A stale cached entry must be revalidated before its use, via a

conditional request.

no-store Indicates that the response must not be cached.

private
The response is intended for a specific user and should not be stored

by shared caches such as CDNs.

immutable
Indicates that the cached entry will never change during its TTL, and

that revalidation is not necessary.

Figure 23.5. Usage of Cache-Control directives.

Part IV Chapter 23 : Caching

708 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/cache-control-directives.png
https://almanac.httparchive.org/static/images/2021/caching/cache-control-directives.png

The max-age directive is the most commonly found with 62.2% of desktop requests including

a Cache-Control response header with this directive.

Compared to 2020, max-age adoption increased by 2% on desktop, along with most of the top

seven directives in the above chart.

The immutable directive is relatively new and can significantly improve cacheability for

certain types of requests. However, it is still only supported by a few browsers, and we see most

requests coming from host networks like Wix with 16.4%, Facebook with 8.6%, Tawk with 2.8%,

and Shopify with 2.4%.

The most misused Cache-Control directive continues to be set-cookie , used for 0.07% of

total directives for desktop and 0.08% for mobile. However, we are pleased to see a meaningful

0.16% reduction of usage from 2020.

When we take a look when no-cache , max-age=0 and no-store are used together, we

also see a growing trend year after year, in which no-store is specified with either/both of

no-cache and max-age=0 , the no-store directive takes precedence, and the other

directives are ignored. Driving more awareness around using these directives, for example

during larger conferences, could help avoid accidentally wasted bytes.

Fun fact: The most common max-age value is 30 days, and the largest value is 51 trillion years.

304 Not Modified status

When it comes to size, 304 Not Modified responses are much smaller than 200 OK
responses, so it follows that page performance can be sped up by only delivering the necessary

size of data. This is where correctly using conditional requests comes in. Revalidation, and

therefore data savings, can be done by using either an ETag or Last-Modified header.

The Last-Modified response header works in conjunction with the If-Modified-Since
request header to let the browser know if any changes have been made to the requested file.

Figure 23.6. Largest recorded value for max-age .

51 trillion years

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 709

We saw the distribution of 304 responses increase by 7.7% for If-Modified-Since
between 2020 and 2021. This shows that the community is capitalizing on these data savings.

Validity of date strings

The three main HTTP headers used to represent timestamps, Date , Last-Modified , and

Expires all use a date formatted string. The Date HTTP response header is almost always

generated automatically by the web server, meaning that invalid values are extremely rare. Still,

in the event that the date is set incorrectly it can affect cacheability on the response on which it

is served.

Figure 23.7. HTTP 304 response rate by caching strategy.

Part IV Chapter 23 : Caching

710 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/http-304-by-caching-strategy.png
https://almanac.httparchive.org/static/images/2021/caching/http-304-by-caching-strategy.png

Between 2020 and 2021, the percent using invalid Date improved by 0.5% but worsened for

Last-Modified and Expires showing that it was related to how the date was set on

caching.

This shows us that automation of the date-based headers could benefit from further attention.

Vary

An essential step in caching a resource is understanding if it was previously cached. The

browser typically uses the URL as the cache key. At the same time, requests for the same URLs

but with different Accept-Encoding will result in different responses and so could be cached

incorrectly. That’s why we use the Vary header to instruct the browser to add a value of one

or more headers to the cache key.

Figure 23.8. Percent of responses with invalid date formats.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 711

https://almanac.httparchive.org/static/images/2021/caching/invalid-date-formats.png
https://almanac.httparchive.org/static/images/2021/caching/invalid-date-formats.png

The most popular Vary header is Accept-Encoding with 90.3% usage, followed by User-
Agent with 10.9%, Origin with 10.1%, and Accept with 4.8%.

We saw a 1.5% decrease in use of Accept-Encoding from 2020.

It’s important to point out that only 46.25% of total requests audited use the Vary header, but

when compared to 2020, we see an overall increase by 2.85%.

Of the requests using the Vary header, 83.4% also have the Cache-control . This shows us

Figure 23.9. Usage of Vary directives.

Figure 23.10. Percent of mobile responses that set the Vary header.

46.3%

Figure 23.11. Percent of mobile responses with the Vary header that also set Cache-Control .

83.4%

Part IV Chapter 23 : Caching

712 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/vary-directives.png
https://almanac.httparchive.org/static/images/2021/caching/vary-directives.png

a 2.1% improvement from 2020.

Setting cookies on cacheable responses

In the 2020 Caching chapter, we were reminded to be aware of using set-cookie with

cacheable responses because only 4.9% of responses used the private directive, putting a

user’s private data at risk of being accidentally served to a different user via a CDN.

In 2021, we see an increase in awareness regarding set-cookie and caching coexisting.

While still only 5% of web pages are using the private directive with set-cookie , the total

number of cacheable set-cookie responses decreased by 4.41%.

Figure 23.12. Percent of cacheable responses that use Set-Cookie .

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 713

https://almanac.httparchive.org/static/images/2021/caching/cacheable-set-cookie.png
https://almanac.httparchive.org/static/images/2021/caching/cacheable-set-cookie.png

What type of content are we caching?

Font, CSS, and audio files are over 99% cacheable, with almost 100% of pages currently caching

fonts. This is likely due to their static nature, making them prime choices for caching.

However, some of our most commonly used resources are non-cacheable, likely due to their

dynamic nature. Notably, HTML saw some of the highest percentage of non-cacheable

resources at 23.4%, followed closely by images with 10.1%.

When we compare the mobile data between 2020 and 2021, we notice a 5.1% increase in

cacheable HTML. This tells us we may be moving towards better usage of our CDNs to cache

HTML pages, like those generated by Server-Side Rendered applications. Pages are typically

generated by SSR if the content of a particular web page doesn’t change frequently. The URL

can potentially serve the same HTML for weeks or even months, making that content highly

cacheable.

Figure 23.13. The percent of requests that use caching strategies by resource type.

Part IV Chapter 23 : Caching

714 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/caching-by-resource-type.png
https://almanac.httparchive.org/static/images/2021/caching/caching-by-resource-type.png

Taking a look at the median Time To Live (TTL) across all resource types, we see that even if we

cache a similar percentage in total, there is a much longer cache for mobile, particularly for

HTML, audio and video.

Figure 23.14. Median TTL (in days).

Type Desktop Mobile

Text 0.2 0.2

XML 1 1

Other 1 1

Video 4 8

HTML 3 14

Audio 0.2 30

CSS 30 30

Image 30 30

Script 30 30

Font 365 365

Figure 23.15. Percent of cacheable vs non-cacheable responses.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 715

https://almanac.httparchive.org/static/images/2021/caching/cacheable-responses.png
https://almanac.httparchive.org/static/images/2021/caching/cacheable-responses.png

That said, even as we continue to optimize for the mobile experience, it’s interesting to note

that the potential amount of cacheable desktop resources remains slightly higher than those

for mobile.

How do cache TTLs compare to resource age?

Figure 23.16. Distribution of first-party resource age by content type (mobile only).

Part IV Chapter 23 : Caching

716 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/first-party-resource-age-by-content-type.png
https://almanac.httparchive.org/static/images/2021/caching/first-party-resource-age-by-content-type.png

We see that images and videos maintained the same average age whether from first or third-

party sources. Images consistently had a resource age of 2 years, while most video resources

were between 8-52 weeks old.

Breaking down the other types of content, we discovered fonts for third-parties are cached the

most between 8-52 weeks at 72.4%. However, for first-party the largest resource age groups is

evenly split between 8-52 weeks and over 2 years- quite a large variance. We see similar results

for audio and scripts where the majority of first-party are between 8-52 weeks old while for

third-party they are between 1-7 weeks.

Audio was the most highly cached resource across both first and third parties. However, the

resource age varied greatly between first-party (averaging 8-52 weeks) and third-party, at only

1-7 weeks. Audio resources in first-party situations tend to be updated less frequently (why?),

so third parties may be capitalizing on a caching opportunity by offering fresher resources.

The largest group of cached first-party CSS (32.2%) tended to be 8-52 weeks old, while the

largest group for 3rd parties was less than a week with 51.8% of resources cached for that

duration.

Finally, HTML has the largest first-party group served with less than a week with 42.7% and

third-party’s largest group is between 1-7 weeks with 43.1%.

Considerations after reviewing this data:

Figure 23.17. Distribution of third-party resource age by content type (mobile only).

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 717

https://almanac.httparchive.org/static/images/2021/caching/third-party-resource-age-by-content-type.png
https://almanac.httparchive.org/static/images/2021/caching/third-party-resource-age-by-content-type.png

• The freshest content for first-party is HTML while for third-party it is CSS.

• The stalest content for both first and third-party is images.

This data shows us that first parties have prioritized refreshing HTML content, which usually

holds the link to JS and CSS files, while third-party providers that are mostly CSS and script-

driven, like browser extensions, have prioritized keeping their CSS up to date. When we

consider the origins behind first parties vs. third parties, it follows that the way content is

delivered may be more important to third parties than the actual content, thus making their

presentation and optimization of it, all the more important.

Mobile resources with a cache TTL that was considered too short compared to its content age

have seen an improvement since 2020. This data is exciting because it hints at the community’s

growing understanding of appropriately relative caching.

While a cache TTL that is too long may serve stale content, there is no benefit for the end user if

it is too short. The connection between cache TTL and content age is slowly closing this gap,

moving from 60.2% in 2020 to 54.3% in 2021. The more attentive we can be towards to content

age (i.e. how often we revamp a page’s HTML, CSS etc.), the more accurately we can set cache

limits.

Developers are getting better at setting the cache duration more accurately to the content age,

resulting in more responsible, and therefore more effective, caching.

When we split the data between first and third-party providers, the largest improvements

come from 3rd parties where we have a 13.2% improvement. It is highly encouraging to see

companies around the world building products for developers that are optimizing caching. It’s

possible that the developer community’s increased attention towards improving performance

has encouraged and even incentivized 3rd parties to optimize their caching strategies.

Figure 23.18. 54% of mobile resources are older than their TTL.

54%

Figure 23.19. Percent of requests with short TTLs.

Client First-party Third-party Overall

Desktop 59.5% 46.2% 54.3%

Mobile 60.1% 44.7% 54.3%

Part IV Chapter 23 : Caching

718 2021 Web Almanac by HTTP Archive

However, the challenge remains for how first parties can effectively improve over the coming

years.

Identifying caching opportunities

Based on the Lighthouse caching TTL score, we have seen an improvement in pages ranked with

a perfect score of 100 increase from 3.3% in 2020 to 4.4% in 2021.

The score reflects whether the pages can benefit from additional caching policy improvements.

Even though we are excited to see 31% of pages scoring above the 50th percentile score, a

large potential for improvement exists for the 52% of pages that are ranking below the 25th

percentile.

This makes us consider that even though web pages have some level of caching, the way the

policies are used is outdated and not optimized to the latest state of their products.

Figure 23.20. Distribution of Lighthouse caching TTL scores.

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 719

https://almanac.httparchive.org/static/images/2021/caching/lighthouse-caching-ttl-scores.png
https://almanac.httparchive.org/static/images/2021/caching/lighthouse-caching-ttl-scores.png

Based on Lighthouse wasted bytes audit from 2020 to 2021, there was a 3.28% improvement in

wasted bytes across all audited pages on repeated views. This lowers the percentage of pages

that waste 1 MB from 42.8% to 39.5%, showing a considerable trend from the community

towards building products that are less costly for international users with paid internet data

plans.

The current percentage of pages audited that have 0 wasted bytes is still relatively low at

1.34%. In the coming years, we’re looking forward to seeing an increase in that percentage as

the community continues to focus on optimizing web performance.

Conclusion

The late, great Phil Karlton965 famously said, “There are only two hard things in Computer Science:

cache invalidation and naming things.”, and in all honesty I have always wondered why caching is

so hard. My take is that to do caching well, you need two key ingredients: to keep it simple and

to understand all potential edge cases.

Unfortunately, when we try to make the cache too clever, we can end up caching the wrong

things or, worse, caching too much. On a similar note, understanding all the edge cases requires

extensive research, testing, and slow incremental improvements. Even with that, you have to

Figure 23.21. Distribution of potential byte savings from caching.

965. https://www.karlton.org/karlton/

Part IV Chapter 23 : Caching

720 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/caching/lighthouse-caching-byte-savings.png
https://almanac.httparchive.org/static/images/2021/caching/lighthouse-caching-byte-savings.png
https://www.karlton.org/karlton/

hope that an old browser will not throw you under the bus. But the reason we still chase great

caching strategies is that the ultimate reward is very high, with a significant reduction in round-

trip requests, high savings for your server, less data required from your users, and ultimately a

better user experience.

No matter the case, make sure to have a playbook for how to best use caching:

• Prioritize caching work at an early stage of the development cycle, and after a

product is shipped

• Write end-to-end tests to recreate major edge cases

• Regularly audit the site and update cache rules that might be outdated or missing

Ultimately, caching can be made less complex if we spread the knowledge by mentoring our

peers and writing good documentation that is simple to understand. Caching is not something

that should only be mastered by a few. Our goal is to move towards it being common knowledge

across an entire company. Because at the end of the day, what we really want to focus on is

building easy and frictionless experiences for our users.

Authors

Leonardo Zizzamia

@Zizzamia Zizzamia

Leonardo is a Staff Software Engineer at Coinbase966, leading initiatives that enable

product engineers to ship the highest quality applications in the world at scale. He

curates the NGRome Conference967. Leo also maintains the Perfume.js968 library,

which helps companies prioritize roadmaps and make better business decisions

through performance analytics.

966. https://www.coinbase.com/
967. https://ngrome.io
968. https://github.com/Zizzamia/perfume.js

Part IV Chapter 23 : Caching

2021 Web Almanac by HTTP Archive 721

https://x.com/Zizzamia
https://github.com/Zizzamia
https://www.coinbase.com/
https://ngrome.io/
https://github.com/Zizzamia/perfume.js

Jessica Nicolet

@jessica_nicolet jessnicolet https://www.jessicanicolet.com/

Jessica began her career as an opera singer and has been in the classical music

industry for the past 10 years. In early 2020 and due to the pandemic, she decided

to start a new career in Tech, specifically Web Development. She has always

enjoyed writing and telling stories both on stage and off and published a series of

three articles969 on Medium documenting her experience transitioning to this new

field. She is currently looking for a full-time position in Technical Writing.

969. https://jessicanicolet.medium.com/

Part IV Chapter 23 : Caching

722 2021 Web Almanac by HTTP Archive

https://x.com/jessica_nicolet
https://github.com/jessnicolet
https://www.jessicanicolet.com/
https://jessicanicolet.medium.com/
https://jessicanicolet.medium.com/

Part IV Chapter 24

HTTP

Written by Dominic Lovell
Reviewed by Barry Pollard and Robin Marx
Analyzed by Barry Pollard
Edited by Shaina Hantsis

Introduction

The HTTP protocol is one of key parts of the web. HTTP itself was unchanged for nearly two

decades after HTTP/1.1 was introduced in 1997. It wasn’t until 2015 with the introduction of

HTTP/2, that saw a major design change to the way HTTP was implemented. HTTP/2 was

designed to introduce changes primarily at the transport level of the protocol. These protocol

changes, while significant in how they worked, still allowed for backward compatibility between

versions.

This year we again take a closer look at HTTP/2, discussing some of its major features. We then

look at some of the benefits of HTTP/2, and why it has been adopted heavily across the web

performance community. While HTTP/2 aimed at solving many problems with HTTP, including

connection limits, better header compression, and binary support which allowed for better

payload encapsulation, not all features put forward were successful in their design.

After several years of HTTP/2 in the wild, some of the intentions of HTTP/2 are still to be

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 723

realized. For example, last year we put forward the question of whether we say goodbye to

HTTP/2 push. This year we aim to answer this question with more confidence by looking at the

2021 data. As these shortcomings came to light, they have been addressed or omitted from the

next iteration of HTTP: HTTP/3.

Increased support for HTTP/3 over the past year has allowed for introspection on HTTP/3’s

adoption on the web. This chapter takes a closer look at some of the core features of HTTP/3

and the benefits of each of these. We also examine the major vendors who are supporting

HTTP/3 evolution, as well as some of the ongoing critiques of HTTP/3.

Some of the data points the Web Almanac aims to answer across the HTTP chapter include the

adoption across HTTP versions, support from the key software vendors and CDN companies,

and how this distribution between first and third parties influences adoption. We also take a

look at usage across the top ranked sites across the web, including metrics on HTTP attributes

such as connections, server push and response data size.

These data points provide a snapshot for 2021 on the HTTP usage across the web and how the

protocol is evolving across its major versions. They then provide insight into the adoption of

major features in the coming years.

Evolution of HTTP

It’s been six years since the Internet Engineering Task Force (IETF)970 introduced us to HTTP/2971,

and it’s worth understanding how we got to HTTP/2 in the first place. Thirty years ago (in 1991)

we were first introduced to HTTP 0.9. HTTP has come a long way since 0.9, which was limited in

capabilities. 0.9 was used for one-line protocol transfers, which only supported the GET

method, and had no support for headers nor status codes. Responses were only provided in

hypertext. Five years later, this was enhanced with HTTP/1.0. The 1.0 version contains most of

the protocol we know now, including response headers, status codes, and the GET , HEAD and

POST methods.

A problem not addressed in 1.0 was that the connection was terminated immediately after the

response was received. This meant each request was required to open a new connection,

perform TCP handshakes, and close the connection after the data was received. This major

inefficiency saw HTTP/1.1 introduced only a year later in 1997, which allowed for persistent

connections to be made, which can be reused once opened. This version served its purpose for

18 years, without any changes introduced until 2015. During this time Google experimented

with SPDY972—a complete reimagining of how HTTP messages were sent. This was eventually

formalized into HTTP/2.

970. https://www.ietf.org/
971. https://datatracker.ietf.org/doc/html/rfc7540
972. https://wikipedia.org/wiki/SPDY

Part IV Chapter 24 : HTTP

724 2021 Web Almanac by HTTP Archive

https://www.ietf.org/
https://datatracker.ietf.org/doc/html/rfc7540
https://wikipedia.org/wiki/SPDY

HTTP/2 aimed to address many of the problems web developers were facing when trying to

achieve increased performance. Complicated processes such as domain sharding, asset spriting,

and concatenating files were necessary to work around inefficiencies in HTTP/1.1. By

introducing resource multiplexing, prioritization, and header compression, HTTP/2 was

designed to provide network optimization at the protocol level. As well as addressing the

known performance problems, HTTP/2 introduced new potential performance optimizations

with features such as HTTP/2 push, where the server could preemptively send content to the

client before the client would be aware of the asset.

Adoption of HTTP/2

In the thirty years since HTTP version 0.9, there has been a shift in the protocol’s adoption.

With over 6 million web pages analyzed, the HTTP Archive found only a single instance of HTTP

0.9 being used for the initial page request, only a couple of thousand pages still using 1.0.

Almost 40% of pages were still using version 1.1 however, with the remaining 60% using

HTTP/2 or above. HTTP/2 adoption is thus up 10% since the same analysis was performed in

2020.

Note: Due to the way HTTP/3 works, as we will discuss below, and how our crawl works with a fresh
instance each time, HTTP/3 is unlikely to be used for the initial page request, or even subsequent
requests. Therefore, we report some statistics in this chapter as “HTTP/2+” to indicate HTTP/2 or
HTTP/3 might be used in the real world. We will investigate how much HTTP/3 is actually supported

Figure 24.1. HTTP versions used by page load.

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 725

https://almanac.httparchive.org/static/images/2021/http/http-versions-main-page.png
https://almanac.httparchive.org/static/images/2021/http/http-versions-main-page.png

(even if not used in our crawl) later in the chapter.

Adoption by request

The initial page request is supplemented by many other requests, often served by third parties,

which may have different, often better, protocol support. Due to this we have seen in the past

years that when looking at request level, rather than just for the initial page, usage is much

higher, and this is again the case this year.

In 2021, the HTTP Archive data suggests that HTTP/0.9 and HTTP/1.0 are all but virtually dead.

While 0.9 did have hundreds of requests present, this becomes rounded down to zero when

aggregated across the entire dataset. HTTP/1.0 has thousands of requests, but it too only

represents 0.02% of the total amount.

Interestingly, over a quarter of requests are still served via HTTP/1.1. When compared with

2020, this represents a 25% decline, as 2020 had 50% of requests still leveraging 1.1 across

both mobile and desktop. Over 70% of requests are served over HTTP/2 or above, which

Figure 24.2. HTTP versions used by requests.

Figure 24.3. Decline in HTTP/1.1 requests in last year.

25%

Part IV Chapter 24 : HTTP

726 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/http-version-requests.png
https://almanac.httparchive.org/static/images/2021/http/http-version-requests.png

suggests that HTTP/2 and HTTP/3 are well and truly the dominant protocol versions for the

web.

Looking at the protocol used by page, we can again plot the dominance of HTTP/2 and above:

Beyond the 50th percentile of pages, pages have 92% or more of their resources being served

over HTTP/2+. And for beyond the 70th percentile 100% of sites resources are loaded over

HTTP/2 or better. Put another way, 30% of sites use no HTTP/1.1 resources at all.

Figure 24.4. Usage HTTP/2+ resources by percentile.

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 727

https://almanac.httparchive.org/static/images/2021/http/http2-and-above-resources-by-percentile.png
https://almanac.httparchive.org/static/images/2021/http/http2-and-above-resources-by-percentile.png

Adoption by third parties

HTTP/2 adoption by third-party content is so heavily skewed, that beyond the 40th percentile

of third-party requests, 100% of traffic is being served by HTTP/2. In fact, even at the tenth

percentile, over 66% of requests are leveraging HTTP/2. This suggests the majority of adoption

is still being influenced by third-party content, and content being served by domains leveraging

a CDN.

Adoption by servers

According to caniuse.com973, 97% of browsers support HTTP/2 globally. HTTPS is required by

browsers for HTTP/2 support, which may have been a blocker in the past. However, 93% of

sites on desktop and 91% on mobile974 all support HTTPS. This is up 5% from last year in 2020

and was up 6% in the year prior between 2019 and 2020. Implementation of HTTPS is no

longer a blocker.

It’s important to understand that with such a high adoption across browsers, and high HTTPS

adoption, the limiting factor in even greater adoption of HTTP/2 is still largely dictated by the

server implementation. Despite the rapid increase in HTTP/2 usage, when you split it out by

web server, the adoption figures show a much more fragmented story.

Figure 24.5. Usage HTTP/2+ for third-party resources.

973. https://caniuse.com/http2
974. https://httparchive.org/reports/state-of-the-web#pctHttps

Part IV Chapter 24 : HTTP

728 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/http2-and-above-third-party-resources-by-percentile.png
https://almanac.httparchive.org/static/images/2021/http/http2-and-above-third-party-resources-by-percentile.png
https://caniuse.com/http2
https://httparchive.org/reports/state-of-the-web#pctHttps
https://httparchive.org/reports/state-of-the-web#pctHttps

If a site uses the Apache HTTP server, it is unlikely to have upgraded to HTTP/2, with only one

third of Apache servers leveraging the newer protocol. Nginx shows a more promising number

with two-thirds of all servers having upgraded to HTTP/2. CDN and cloud servers all promote

high adoption rates, from services such as Cloudfront, Cloudflare, Netlify, S3, Flywheel and

Vercel. Other niche server implementations such as Caddy or Istio-Envoy also promote good

adoption. On the other end of the spectrum, implementations such as IIS, Gunicorn, Passenger,

Lighthttpd, and Apache Traffic Server (ATS) all have low adoption rates, with Scuri also

reporting almost zero adoption.

Figure 24.6. Top servers and % of pages served over HTTP/2+.

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 729

https://almanac.httparchive.org/static/images/2021/http/server-http2-or-above-usage.png
https://almanac.httparchive.org/static/images/2021/http/server-http2-or-above-usage.png

In fact, of all servers reporting a HTTP/1.1 response, the server with the largest majority are

Apache servers at 20%. As Apache is one of the most popular web servers on the web, it

suggests that older installations of Apache may be holding up the web’s ability to move forward

and adopt the new protocol in full.

Adoption by CDNs

CDNs are often pivotal to drive adoption of new protocols like HTTP/2, and looking at the stats

proves this.

Figure 24.7. Server software used by sites not using HTTP/2+.

Part IV Chapter 24 : HTTP

730 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/server-software-not-using-http2-or-above.png
https://almanac.httparchive.org/static/images/2021/http/server-software-not-using-http2-or-above.png

The vast majority of CDNs have 70% or greater adoption of sites with HTTP/2 - much higher

than the 49.1% of non-CDN traffic. Some CDNs such as Yottaa, WP Compress and jsDeliver all

have 100% adoption of HTTP/2!

The high adopters are typically services around ad networks, analytics, content providers, tag

managers, and social media services. The higher adoption of HTTP/2 in these services is clear as

even at the fifth percentile and above in which at least 50% of them have enabled HTTP/2. At

the median, 95% of these services will be using HTTP/2.

Figure 24.8. Top CDNs and % of pages served over HTTP/2+.

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 731

https://almanac.httparchive.org/static/images/2021/http/top-cdns-and-http2-or-above-usage.png
https://almanac.httparchive.org/static/images/2021/http/top-cdns-and-http2-or-above-usage.png

Adoption by rank

There is also a direct correlation between a site’s page rank in the HTTP Archive and its support

for HTTP/2. 82% of sites listed in the top 1,000 have HTTP/2 enabled. Over 76% in the top 10k

websites, followed by 66% of sites in the top 100k, and at least 60% of sites in the top 1 million

will have HTTP/2 enabled. This suggests that higher ranking sites have enabled HTTP/2 for the

security and performance benefits offered. The higher ranking a site, the more likely it is to

have HTTP/2 enabled.

Digging a little deeper into HTTP/2

One of main benefits of HTTP/2 is that it is binary instead of a text-based protocol. A request

sent over a stream may be made up of one or more frames. This changes the mechanics between

client and server.

By chunking messages into frames, and interleaving those frames on the wire, a single TCP

connection can be used to send and receive multiple messages in one connection. This helps

eliminate the need for domain hacks and other HTTP/1.1 performance workarounds.

However, this completely new way of sending HTTP traffic means that HTTP/2 is not

compatible with previous versions, and so clients and servers must each know they are talking

HTTP/2. HTTPS has been adopted as the de facto standard in HTTP/2. While HTTP/2 can be

Figure 24.9. HTTP/2+ usage on home page by ranking.

Part IV Chapter 24 : HTTP

732 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/http2-or-above-usage-by-ranking.png
https://almanac.httparchive.org/static/images/2021/http/http2-or-above-usage-by-ranking.png

implemented without HTTPS, all major browser vendors ensure HTTP/2 is used over HTTPS.

HTTP/2 also uses ALPN975, which allows for faster-encrypted connections as the protocol can be

determined during the initial connection.

Switching between protocols

While the use of HTTPS can be used to help decide whether to “speak” HTTP/1.1 or the newer

HTTP/2, there are other methods of switching to the newer protocol. HTTP/2 support can be

advertised on a HTTP/1.1 connection via the upgrade HTTP header, and then the client can

use the 101 (Switching Protocols) response status code to make the switch. For HTTP/2 to

HTTP/3, a similar alt-svc (Alternative Service) header is used, which we will discuss later in

this chapter.

The HTTP Archive data suggests that the use of the Upgrade header is often misused or

configured incorrectly. This feature will in fact be dropped976 from the next version of HTTP/2.

Only a fraction of sites offer the Upgrade header at all. The most common header reported is

the h2,h2c detailing the HTTP/2 option, or HTTP/2 over cleartext, with 0.09% of desktop and

0.16% of mobile sites reporting this header.

A similar rate of sites also offer websockets as an Upgrade option, with 0.08%. Some sites

also offer HTTP/1.1 as an upgrade option incorrectly, as Upgrade should be used to signal an

incompatible or more appropriate protocol other than the existing HTTP/1.1 connection the

request was made on. 0.04% of sites also incorrectly report H2 as an Upgrade option, despite

having this connection already on HTTP/2.

975. https://wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
976. https://github.com/httpwg/http2-spec/issues/772

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 733

https://wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://github.com/httpwg/http2-spec/issues/772

More worrying is the number of sites which offer to “upgrade” a HTTP/2 connection to HTTP/2.

This is a clear error and used to confuse browsers in the early days of HTTP/2.

There were also almost 120,000 mobile sites found on HTTP, while still reporting an Upgrade
header to HTTP/2. A better practice would be to issue a redirect from HTTP to HTTPS, and

leverage HTTP/2 on the secure connection directly.

22,000 and 26,000 web pages on desktop and mobile respectively were also found to be on

HTTPS but not support HTTP/2. Similarly, hundreds of web pages were incorrectly signaling to

upgrade to HTTP/2 despite the connection already on HTTP/2 itself.

Number of connections

Since the introduction of HTTP/2 the median number of TCP connections per page has steadily

been decreasing.

Figure 24.10. Upgrade headers sent over HTTP/2 connections.

Figure 24.11. Mobile websites claiming to support HTTP/2 when they do not.

26,000

Part IV Chapter 24 : HTTP

734 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/upgrade-headers-sent-over-http2.png
https://almanac.httparchive.org/static/images/2021/http/upgrade-headers-sent-over-http2.png

At the time of this writing, desktop connections are down 44% over 12 months to a median

value of 16 connections. Mobile is down 7% with a median connection count of 12. This

represents a good reduction of connections over time, as the adoption of HTTP/2 has increased

sharply since 2020.

Figure 24.12. TCP connections by home page HTTP version.

Figure 24.13. TCP connections per HTTP version by percentile.

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 735

https://almanac.httparchive.org/static/images/2021/http/tcp-connections-by-home-page-http-version.png
https://almanac.httparchive.org/static/images/2021/http/tcp-connections-by-home-page-http-version.png
https://almanac.httparchive.org/static/images/2021/http/tcp-connections-per-http-version-by-percentile.png
https://almanac.httparchive.org/static/images/2021/http/tcp-connections-per-http-version-by-percentile.png

Based on the HTTP Archive data collected, a median HTTP/1.1 site will have 16 connections

per page. Then 24 connections at the 75th percentile. This more than doubles to 40 at the 90th

percentile for mobile and desktop. By comparison a HTTP/2 site will have 12 connections on

median, 21 connections at 75th percentile, and hits 33 connections at the 90th percentile. Even

at the top end, this represents a 21% reduction in the number of connections used across

websites.

TLS adds a slight overhead to performance, and with the de facto implementation of HTTP/2

over HTTPS, which means there are performance considerations with the versions of TLS used.

Since the introduction of TLS 1.3977, extra performance considerations have been added,

including TLS false starts978, which allows the client to start sending encrypted data immediately

after the first TLS round trip. As well as zero round trip time (0-RTT979) to improve the TLS

handshake. TLS 1.2 needs two round trips to complete TLS handshake, while 1.3 requires only

one, which reduces the encryption latency by half.

The HTTP Archive data suggests that 34% of desktop pages are using TLS 1.2, while 56% are

using TLS 1.3, with the remaining 10% unknown (HTTPS sites that failed to connect or similar).

This is slightly lower on mobile, with 36% using TLS 1.2, 55% using TLS 1.3 and 9% unknown.

While the majority of sites use TLS 1.3, a third of sites on the web could leverage an upgrade to

receive these performance boosts.

Figure 24.14. TLS version used by page HTTP version.

977. https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
978. https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
979. https://blog.cloudflare.com/introducing-0-rtt/

Part IV Chapter 24 : HTTP

736 2021 Web Almanac by HTTP Archive

https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
https://blog.cloudflare.com/introducing-0-rtt/
https://almanac.httparchive.org/static/images/2021/http/tls-version-by-http-version.png
https://almanac.httparchive.org/static/images/2021/http/tls-version-by-http-version.png

Reduce headers

Another feature put forward in HTTP/2 was header compression. HTTP/1.1 proved that there

were many duplicate or repeating HTTP headers being sent over the wire. These headers can

be particularly large when dealing with cookies. To reduce this overhead, HTTP/2 leverages the

HPACK compression format980 to reduce the size of headers sent and received. Both client and

server maintain an index of often used and previously transferred headers in a lookup table and

can refer to the index of those values in the table, rather than sending the individual values back

and forth. This saves in the number of bytes sent over the wire.

In terms of the most common response headers received, the top five most common headers

Figure 24.15. Most popular HTTP response headers.

980. https://datatracker.ietf.org/doc/html/rfc7541

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 737

https://datatracker.ietf.org/doc/html/rfc7541
https://almanac.httparchive.org/static/images/2021/http/most-popular-http-response-headers.png
https://almanac.httparchive.org/static/images/2021/http/most-popular-http-response-headers.png

are: date , content-type , server , cache-control and content-length
respectively. The most common non-standard header is Cloudflare’s cf-ray , followed by

Amazon’s x-amz-cf-pop and X-amz-cf-id . Outside of content information (length ,

type , encoding), caching policies (expires , etag , last-modified) and origin policies

(STS, CORS981), expect-ct reporting certificate transparency and the CSP report-to
headers are some of the most commonly used headers.

While some of these headers (e.g., date or content-length) may change with every

request, the vast majority will send the same, or a limited number of variations for every

request and this is where HTTP/2 header compression can provide benefit. Similarly request

headers often send the same data (such as the long user-agent header) over and over for

every request. Therefore, to consider the impact we must look at the number of requests pages

are making.

The median desktop site has 74 requests, and the median mobile site has 69 requests.

Hundreds of sites had over thousands of requests per page. The highest in fact reporting

17,923 requests in total, followed by 10,224. By compressing and reusing the headers sent on

previous requests HTTP/2 reduces the impact of repeated requests.

Why our analysis is currently unable to measure the exact impact of Header compression as

those details are buried deep in the browser network stack, we can look at the uncompressed

header sizes to give some indication of the potential benefit.

Figure 24.16. Number of HTTP requests by percentile.

981. https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

Part IV Chapter 24 : HTTP

738 2021 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/docs/Web/HTTP/Headers/Expect-CT
https://developer.mozilla.org/docs/Web/HTTP/Headers/Expect-CT
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-to
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Security-Policy/report-to
https://almanac.httparchive.org/static/images/2021/http/number-of-http-requests-by-percentile.png
https://almanac.httparchive.org/static/images/2021/http/number-of-http-requests-by-percentile.png

The median web page returns 34 KB worth of headers for desktop and 31 KB for mobile. At the

90th percentile this increases to 98 KB and 94 KB for desktop and mobile respectively.

However, the largest instance of response header was over 5.38 MB. Many sites were

discovered having over 1 MB in response headers. Typically, these large response headers are

due to overweight CSP or P3P headers, suggesting the complexities or mismanagement of

these headers across websites. In other extreme examples, overweight headers were due to

misconfigurations or errors in the application that duplicate multiple Set-Cookies or

Cache-Control settings.

Prioritization

Streams can also be linked by having one stream depend on another, and they can be weighted

by being assigned an integer between 1 and 256. Through these dependencies and weighting

scores, the server can prioritize certain key streams, sending their response data before that of

other streams.

Since the introduction of HTTP/2, prioritization has been implemented inconsistently across

different parts of the web. Andy Davis982 has found that this inconsistency may create sub-

optimal experiences for users on the web. Often this is because servers will ignore

prioritizations and serve based on a first-come first-served behavior. In fact, Andy’s research

Figure 24.17. HTTP response header sizes.

982. https://x.com/AndyDavies

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 739

https://almanac.httparchive.org/static/images/2021/http/http-response-header-sizes.png
https://almanac.httparchive.org/static/images/2021/http/http-response-header-sizes.png
https://x.com/AndyDavies
https://github.com/andydavies/http2-prioritization-issues

highlights983 that many of the major CDNs do not implement HTTP/2 prioritization correctly.

This also includes a number of the popular cloud load balancers. The 2021 data suggests similar

findings as previous years, with only 6 CDNs implementing prioritization correctly. This

includes Akamai, Fastly, Cloudflare, Automattic, section.io and Facebook’s own CDN.

Patrick Meehan984 suggests that outside using one of the CDNs that implement prioritization

correctly, there are a number of TCP optimizations985, including BBR and

tcp_notsent_lowat , that can be enabled to improve prioritization on the server side.

This inconsistency also exists at the client level, with different browser vendors implementing

this behavior differently. Safari implements a static approach to prioritization depending on the

asset type and does not map dependencies. Chrome, Edge, and Firefox have a more advanced

approach to building out logical dependencies across streams and can reprioritize requested

assets on the stream based on the discovered prioritization.

Since HTTP/2 there has been an updated proposal to prioritizations, with the Extensible

Prioritization Scheme for HTTP986 proposal. This includes adding a priority header in the

Figure 24.18. WebPageTest waterfall example.

983. https://github.com/andydavies/http2-prioritization-issues
984. https://x.com/patmeenan
985. https://blog.cloudflare.com/http-2-prioritization-with-nginx/
986. https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority

Part IV Chapter 24 : HTTP

740 2021 Web Almanac by HTTP Archive

https://github.com/andydavies/http2-prioritization-issues
https://x.com/patmeenan
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://almanac.httparchive.org/static/images/2021/http/webpagetest-waterfall-example.png
https://almanac.httparchive.org/static/images/2021/http/webpagetest-waterfall-example.png
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority

response, as well as a new PRIORITY_UPDATE frame for HTTP/2. This PRIORITY_UPDATE
frame is also proposed for HTTP/3. This has yet to be adopted across the web in full, but has

received focus from Cloudflare987 in an effort to improve the underlying behavior of

prioritization988.

The death of HTTP/2 Push?

Another major feature was the introduction of the server push mechanism. HTTP/2 server push

allows the server to send multiple resources in response to a client request. Thus, the server

informs the client about assets it may need before the client becomes aware they exist. The

common use case is to push critical assets such as JavaScript and CSS to the client before the

browser has parsed the base HTML and identified those critical assets and subsequently

requested them itself. The client also has the option to decline the push message.

Despite the promises of zero round trips, pre-emptive critical assets and the potential for

performance upsides, HTTP/2 push has not lived up to the hype.

When analyzed in 2019 HTTP/2 had little adoption, averaging around 0.5%. The following year

in 2020, there was an increase to 0.85% adoption across desktop and 1.06% adoption on

mobile. This year in 2021 the numbers have slightly increased at 1.03% on desktop, and 1.25%

on mobile. Relatively, mobile has seen a significant increase year on year, however at 1.25%

overall adoption of HTTP/2 it is still negligible. At the page level, this sits at 64k and 93k

requests for desktop and mobile respectively.

Figure 24.19. Sites using HTTP/2 push.

1.25%

987. https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
988. https://blog.cloudflare.com/adopting-a-new-approach-to-http-prioritization/

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 741

https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/adopting-a-new-approach-to-http-prioritization/

Many HTTP/2 implementations reused the preload resource hint as a signal to push.

However, in some cases, a developer may want to preload an asset, but decide they do not want

to have it delivered via a HTTP/2 push mechanism. They may want to signal to a CDN or other

downstream server to not attempt a push, via the nopush directive. This year’s data shows

that over 200,000 preload headers were used, and on average 12% of those were issued with a

nopush attribute.

One of the challenges is to implement dynamic push directives at a page level, where the push

messages are formed based on the current page and the critical assets for that page, as opposed

to a hardcoded series of pushes that apply as a blanket across the site, such as those that may

be defined globally in an Nginx989 or Apache990 configuration. Despite implementation examples

from Akamai991 and Google992 that use real user data and analytics to determine this dynamic

push configuration, the data shows implementation across the web has been limited. Akamai993’s

research suggests that when applied correctly, HTTP/2 push provides a clear benefit to web

performance.

However, investments made from other CDN providers and server implementations prove that

designing for HTTP/2 push is difficult. In fact Jake Archibald994 described some of these

challenges995 back in 2017. These focus on problems with push cache, browser inconsistencies,

Figure 24.20. HTTP preload link headers with nopush .

989. https://www.nginx.com/blog/nginx-1-13-9-http2-server-push/
990. https://httpd.apache.org/docs/2.4/howto/http2.html#push
991. https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
992. https://github.com/guess-js/guess/
993. https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
994. https://x.com/jaffathecake
995. https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

Part IV Chapter 24 : HTTP

742 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/preload-link-nopush-header-usage.png
https://almanac.httparchive.org/static/images/2021/http/preload-link-nopush-header-usage.png
https://www.w3.org/TR/preload/#server-push-http-2
https://www.w3.org/TR/preload/#server-push-http-2
https://www.nginx.com/blog/nginx-1-13-9-http2-server-push/
https://httpd.apache.org/docs/2.4/howto/http2.html#push
https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
https://github.com/guess-js/guess/
https://medium.com/@ananner/http-2-server-push-performance-a-further-akamai-case-study-7a17573a3317
https://x.com/jaffathecake
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

and superfluous bytes sent from the server if the client determines the push isn’t needed.

Attempts to resolve some996 of these997 issues were abandoned, largely due to issues around

privacy and security concerns, where cache digests may be used to identify users.

Patrick Meehan breaks down some of the problems in this post on a possible alternative - 103

Early Hints998. In that post he details that Push usually ends up delaying HTML and other render

blocking assets.

Pushed assets

In cases where items were pushed, the median size of the bytes that were pushed were 145 KB

for desktop and 48 KB for mobile. This almost doubles to 294 KB for desktop and more than

quadruples for mobile at 221 KB for the 75th percentile. At the top end, we see 372 KB pushed

and 323 KB for mobile at the 90th percentile.

While these numbers at the 90th percentile appear fine, it’s when you start to review the

number of pushes, it highlights the misuse of the push feature:

Figure 24.21. HTTP/2 pushed kilobytes.

996. https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-digest#appendix-A
997. https://datatracker.ietf.org/doc/html/draft-vkrasnov-h2-compression-dictionaries-03
998. https://blog.cloudflare.com/early-hints/#:~:text=summarized%20server%20push%E2%80%99s%20gotchas

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 743

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-digest#appendix-A
https://datatracker.ietf.org/doc/html/draft-vkrasnov-h2-compression-dictionaries-03
https://blog.cloudflare.com/early-hints/#:~:text=summarized%20server%20push%E2%80%99s%20gotchas
https://blog.cloudflare.com/early-hints/#:~:text=summarized%20server%20push%E2%80%99s%20gotchas
https://almanac.httparchive.org/static/images/2021/http/http2-push-size.png
https://almanac.httparchive.org/static/images/2021/http/http2-push-size.png

The median number of pushes is 4 and 3 across desktop and mobile respectively. This moves to

8 at the 75% percentile and jumps to 21 and 16 at the 90th percentile. The 100% percentile

sees an amazing 517 and 630 pushes being done by some sites, which highlights the dangers of

the feature, particularly when considering push was originally designed to advertise a small

number of critical assets early in the request.

Figure 24.22. HTTP/2 pushed kilobytes.

Part IV Chapter 24 : HTTP

744 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/http2-push-number.png
https://almanac.httparchive.org/static/images/2021/http/http2-push-number.png

When analyzing by content type, the data suggests that fonts are the most commonly pushed

asset, followed by images, CSS, scripts and video. These numbers paint a different story when

looking at the size of the asset types. Fonts are still the largest assets pushed by volume, but

scripts are not far behind. This is followed by images, videos and then CSS. Therefore, this

suggests that despite more CSS files being pushed, they are small in size. Scripts aren’t pushed

as often as fonts, images and CSS, but represent a larger volume of the push data.

As the numbers above suggest, and as described in previous years, HTTP push is underutilized.

When utilized, it is often misused or not used in the intended manner, which is likely to be a

performance detriment for the end user.

Google has flagged its intent to remove push from Chrome. However, throughout 2021 there

was still ongoing debate999 around the efficacy of HTTP/2 Push. This removal is yet to happen,

and it is largely suggested that Push can be leveraged through CDNs who implement it

correctly. Google recommends leveraging the <link rel="preload"> directive as an

alternative to push, albeit this still incurs a 1 RTT, which is what push aims to solve. Google also

reports1000 it has not implemented Push in HTTP/3, and neither have others such as Cloudflare.

An alternative to push

The other commonly suggested alternative to Push is the use of Early Hints. This works by

Figure 24.23. HTTP/2 pushed counts.

999. https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ
1000. https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 745

https://almanac.httparchive.org/static/images/2021/http/http2-push-counts.png
https://almanac.httparchive.org/static/images/2021/http/http2-push-counts.png
https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/K3rYLvmQUBY/m/vOWBKZGoAQAJ
https://github.com/bashi/early-hints-explainer/blob/main/explainer.md

having the server report a 103 status code response message, with preload hints in the Link

header. Early Hints allows the server to report on assets that the client should preload
before getting the page HTML back.

HTTP/1.1 103 Early Hints

Link: <style.css>; rel="preload"; as="style"

CDNs such as Fastly1001 and Cloudflare1002 have been experimenting with early hints, but it’s still

early days for Early Hints. At the time of this writing, Early Hints support in HTTP/2 inside

Chrome is still being worked on1003, and while other browser vendors have announced support

for Early Hints, and while Cloudflare has introduced support in the wild, many other vendors

have not yet made concrete implementations.

Despite incremental adoption for HTTP/2 push year on year, it is likely that Google and other

browser vendors abandon support for push, in favor of alternatives such as Early Hints.

Coupled with support from CDNs, Early Hints is likely to be the replacement. Last year, we

proposed the question of whether it was a goodbye to HTTP/2 push. This year we suggest that

mainstream use of HTTP/2 is dead, at least for the web browsing use case.

HTTP/3

HTTP/3 is the next advancement of HTTP/2 and builds upon its foundation with even more

changes down throughout the protocol. The biggest change is the move away from TCP to a

UDP-based transport protocol called QUIC. This allows quicker advancements in HTTP,

without waiting for TCP implementations that are ingrained all across the internet to support

them. For example, HTTP/2 introduced the concept of independent streams but, at a TCP level

these were still part of one TCP stream, and so not truly independent. Changing TCP to support

this would take considerable time before it would be so widely support as to be safe to use.

Therefore HTTP/3 switches to an alternative transport protocol. QUIC is similar to TCP in

many ways, and basically re-builds all the many useful features of TCP, but with the addition of

new features. QUIC is encrypted and delivered over the well-support, lightweight UDP

transport protocol.

1001. https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
1002. https://blog.cloudflare.com/early-hints/
1003. https://bugs.chromium.org/p/chromium/issues/detail?id=671310

Part IV Chapter 24 : HTTP

746 2021 Web Almanac by HTTP Archive

https://www.fastly.com/blog/beyond-server-push-experimenting-with-the-103-early-hints-status-code
https://blog.cloudflare.com/early-hints/
https://bugs.chromium.org/p/chromium/issues/detail?id=671310

HTTP/3 Adoption

Earlier in the chapter we found that sites that were ranked higher had greater adoption of

HTTP/2. Surprisingly, the opposite is true of HTTP/3. We see less support from the top one

thousand sites than we do the top one million, with slightly more support implemented across

mobile sites.

Distribution across the top one hundred thousand sites and top one million sites at 18% and

19% for desktop and mobile respectively. This drops to 16% and 17% within the top ten

thousand sites. The top one thousand sees 11% and 13% deployment across desktop and

mobile. Adoption beyond the top one million sit around 15% for implementation across home

pages. Overall, this is quite a strong adoption across the board, likely spearheaded by the

support from some of the major CDNs. This suggests that while the top websites have adopted

HTTP/2 as mainstream, many have yet to explore HTTP/3.

HTTP/3 Support

Web server support for HTTP/3 is still limited in the market. Nginx represents the most

common HTTP server on the web, with about two thirds of HTTP/2 sites using a version of

Nginx. Nginx has publicly expressed support for HTTP/3, including discussing their roadmap1004

to roll out full support, and aim to have full support by the end of 2021. The Apache server, by

Figure 24.24. HTTP/3 support on home page by ranking.

1004. https://www.nginx.com/blog/our-roadmap-quic-http-3-support-nginx/

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 747

https://almanac.httparchive.org/static/images/2021/http/http3-support-by-ranking.png
https://almanac.httparchive.org/static/images/2021/http/http3-support-by-ranking.png
https://www.nginx.com/blog/our-roadmap-quic-http-3-support-nginx/

comparison, has yet to provide any guidance on when HTTP/3 will be supported. Microsoft has

announced support for HTTP/3 in its new Windows Server 20221005. Other alternatives such as

the LiteSpeed web server have leaned into its support1006 for HTTP/3, whereas Caddy has

enabled support for HTTP/3 as an experimental feature1007 available. Node.js support is held up1008

due to lack of OpenSSL support.

A number of CDNs have also expressed support for HTTP/3. Cloudflare has been

experimenting with HTTP/3 since 20191009, in which they report better performance in many

examples. Cloudflare have also published their quiche1010 library, which powers their HTTP/3

deployment on the edge network. Fastly has also discussed its support1011 for HTTP/3, and has it

available as a BETA service1012. Fastly have also open sourced their own implementation known

as quicly1013, designed for the H2O HTTP1014 server that Fastly uses on their edge network.

Akamai has also expressed continued support1015 for HTTP/3 and QUIC, and has worked with

Microsoft to fork a version of OpenSSL with QUIC1016 to help move support forward1017.

Browser support for HTTP/3 is still evolving. As of October 2021, support is available in the

most recent version of Microsoft Edge, Firefox, Google Chrome, and Opera, and partially across

mobile for some Android variants and Opera mobile. Support from Safari is limited on macOS

11 Big Sur and must be enabled via the “Experimental Features”, support for iOS is also only

available as an experimental feature behind a flag.

Negotiating HTTP/3

As HTTP/3 is on a completely different transport layer to traditional TCP-based HTTP it is not

possible to negotiate HTTP/3 as part of the connection set up—like what happens with HTTP/2

through the HTTPS negotiation. By that stage you have already picked your transport protocol!

HTTP/3 instead requires the alt-svc header. You start on a TCP-based HTTP connection

(presumably HTTP/2 if the client is advanced enough to support HTTP/3), and then the server

can signal though the alt-svc header on responses to any requests, that this server also

support HTTP/3 over UDP and QUIC. The browser can then decide to try to connect via that.

Due to the several iterations of HTTP/3, this header is also how client and server can decide

which version of HTTP/3 they decide on.

1005. https://blog.workinghardinit.work/2021/10/11/iis-and-http-3-quic-tls-1-3-in-windows-server-2022/
1006. https://docs.litespeedtech.com/cp/cpanel/quic-http3/
1007. https://caddyserver.com/docs/caddyfile/options
1008. https://github.com/nodejs/node/pull/37067
1009. https://blog.cloudflare.com/http3-the-past-present-and-future/
1010. https://github.com/cloudflare/quiche
1011. https://www.fastly.com/blog/why-fastly-loves-quic-http3
1012. https://www.fastly.com/blog/modernizing-the-internet-with-http3-and-quic
1013. https://github.com/h2o/quicly
1014. https://h2o.examp1e.net/
1015. https://www.akamai.com/blog/performance/http3-and-quic-past-present-and-future
1016. https://github.com/quictls/openssl
1017. https://daniel.haxx.se/blog/2021/10/25/the-quic-api-openssl-will-not-provide/

Part IV Chapter 24 : HTTP

748 2021 Web Almanac by HTTP Archive

https://blog.workinghardinit.work/2021/10/11/iis-and-http-3-quic-tls-1-3-in-windows-server-2022/
https://docs.litespeedtech.com/cp/cpanel/quic-http3/
https://caddyserver.com/docs/caddyfile/options
https://github.com/nodejs/node/pull/37067
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://github.com/cloudflare/quiche
https://www.fastly.com/blog/why-fastly-loves-quic-http3
https://www.fastly.com/blog/modernizing-the-internet-with-http3-and-quic
https://github.com/h2o/quicly
https://h2o.examp1e.net/
https://www.akamai.com/blog/performance/http3-and-quic-past-present-and-future
https://github.com/quictls/openssl
https://daniel.haxx.se/blog/2021/10/25/the-quic-api-openssl-will-not-provide/

So, in the very first case, HTTP/2 will be used in the initial request, and once the browser

discovers the alt-svc header, it can then switch protocols and start using HTTP/3. For future

cases the browser can cache the alt-svc header, and next time jump straight to trying HTTP/

3.

Also, due to connection coalescing (connection reuse), in some instances if two hostnames

resolve over DNS to the same IP and use the same TLS certificate and version, then the client

could reuse the same connection across both hostnames. Therefore, it is not uncommon to see

a waterfall request with a mix of both HTTP/2 and HTTP/3, depending on the number of hosts

and TLS certificates used.

At a page level, about 15% of requests offer an alt-svc header. These vary between syntax

that offer QUIC, one of the various H3 pre-release versions (officially HTTP/3 is not

standardized at the time of writing, but it’s in the very final stages). Some sites will advertise

support for multiple versions of QUIC, for example quic=":443"; ma=2592000;
v="39,43,46,50" , while some will only offer one version. The most common advertisement

of the alt-svc is "h3-27=":443"; ma=86400, h3-28=":443"; ma=86400,
h3-29=":443"; ma=86400, h3=":443"; ma=86400" , across 11% of all alt-svc
responses. This header instructs clients that it supports HTTP/33 versions 27, 28 and 29, with a

max-age of 24 hours.

In instances where alt-svc was present, most sites were appending version numbers as they

adopt support for new protocol versions, however there were many cases where sites were

using the clear directive to invalidate previously advertised support.

At the time of this writing the most recent version of the HTTP/3 spec1018 is version 34. However,

Figure 24.25. WebPageTest example showing HTTP2 switching to HTTP3 during page load.

1018. https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 749

https://almanac.httparchive.org/static/images/2021/http/webpagetest-h2-h3-example.jpeg
https://almanac.httparchive.org/static/images/2021/http/webpagetest-h2-h3-example.jpeg
https://developer.mozilla.org/docs/Web/HTTP/Headers/alt-svc
https://developer.mozilla.org/docs/Web/HTTP/Headers/alt-svc
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34

only 0.01% of responses report this latest version. When viewing details of alt-svc at a

request level, version 27 is the most commonly requested version in response headers. The

server will indicate the preferred versions in order from left to right. 6% of requests will report

h3-27 in the first instance preferred, with 28 and 29 as alternate versions offered in the same

response. 2% of responses will offer h3-29 as the only preferred version for upgrade. QUIC as

the preferred protocol update, receives a mere 0.11%, mostly due to outdated servers

reporting this incorrectly. In reality there were little differences technically from h3-29
onwards and most implementations froze versions at that, awaiting the official launch of h3 .

Most alt-svc reported a max-age of only 24 hours, which is the default if not specified. The

longest max-age reported for alt-svc was 30 days or 2592000 seconds.

HTTP/3 considerations and concerns

While many of the upsides of HTTP/3 have been discussed, there are also some concerns and

criticisms that have been raised. Many developers are only now comfortable with the changes

introduced from HTTP/2, after having to roll back many web performance workarounds to

overcome the limitations from HTTP/1.1, as those workarounds later became anti-patterns1019 in

HTTP/2.

In some cases, developers and site owners may argue that the incremental gains from HTTP/3

may not be worth major upgrades to their web servers. Particularly when HTTP/3 hasn’t solved

all the problems identified in HTTP/2, such as prioritization or effective use of server push. As

Figure 24.26. WebPageTest alt-svc example.

1019. https://docs.google.com/presentation/d/1r7QXGYOLCh4fcUq0jDdDwKJWNqWK1o4xMtYpKZCJYjM/present?slide=id.p19

Part IV Chapter 24 : HTTP

750 2021 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2021/http/webpagetest-alt-svc-example.png
https://almanac.httparchive.org/static/images/2021/http/webpagetest-alt-svc-example.png
https://docs.google.com/presentation/d/1r7QXGYOLCh4fcUq0jDdDwKJWNqWK1o4xMtYpKZCJYjM/present?slide=id.p19

such, adoption may be driven at the CDN level, and not within web applications. This may

particularly be the case if some servers may not support HTTP/3 or be blocked by lack of

OpenSSL support.

As discussed throughout this chapter, QUIC relies on the UDP protocol. With the introduction

of HTTP/3, UDP traffic is due to increase across the web. However, currently UDP is often used

as an attack vector, such as those in a reflection attack1020. QUIC does have some protection

mechanisms1021 in place, but this may mean changes to the way UDP is treated across the web,

and the amount of UDP traffic allowed on some networks and firewalls. In the same instance,

there may be adoption pushback in cases where TCP headers and the unencrypted parts of the

packet are used by firewalls and other middleboxes1022 across the web. As QUIC encrypts more

parts of the packet, there is less visibility for inspection on the packet, and may limit how these

middleboxes operate, including the ability to do additional security checks.

There are also concerns that QUIC may be a performance problem on the server side. This is

because of higher CPU requirements needed when dealing with UDP. Some estimates suggest

twice as much CPU is needed when compared with HTTP/2. This said, there are a number of

attempts to optimize QUIC CPU performance1023 ongoing.

Despite these concerns, the real benefits will be received from the web’s end users. QUIC’s

ability to maintain connections, when switching network connections, allowing for a mobile-

first experience in a mobile-first world. The improvements to head-of-line blocking will also

ensure greater gains in page load, where we all now know that every millisecond1024 counts. The

enhanced encryption QUIC introduces also allows for a more safe and secure web. As well as

the 0-RTT possible with HTTP/3 allows for improved performance.

Conclusion

Throughout this chapter we have looked at the evolution of HTTP, with a primary focus on the

increasing adoption of HTTP/2, and the benefits the newer protocol version offers. This was

followed by a closer look at HTTP/3 and how version 3 aims to solve many of the concerns

identified after several years of HTTP/2 use across the web.

The HTTP Archive data suggests that this year saw a major uptake in adoption of HTTP/2, with

72% of requests using HTTP/2, and 59% of base HTML pages using HTTP/2. This adoption is

largely fueled by increased adoption from CDN providers. HTTP/1.1 is now in the minority

across the web.

1020. https://blog.cloudflare.com/reflections-on-reflections/
1021. https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-27#section-8.1
1022. https://wikipedia.org/wiki/Middlebox
1023. https://conferences.sigcomm.org/sigcomm/2020/files/slides/epiq/0%20QUIC%20and%20HTTP_3%20CPU%20Performance.pdf
1024. https://ai.googleblog.com/2009/06/speed-matters.html

Part IV Chapter 24 : HTTP

2021 Web Almanac by HTTP Archive 751

https://blog.cloudflare.com/reflections-on-reflections/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-27#section-8.1
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-27#section-8.1
https://wikipedia.org/wiki/Middlebox
https://conferences.sigcomm.org/sigcomm/2020/files/slides/epiq/0%20QUIC%20and%20HTTP_3%20CPU%20Performance.pdf
https://ai.googleblog.com/2009/06/speed-matters.html

Despite the uptake on HTTP/2, the push features of HTTP/2 remain underutilized, due to the

complexities of implementation, and we suggest that push may be in fact dead on arrival. At the

same time, we have seen ongoing concerns with resource prioritization, and incorrect

implementations outside the major CDN vendors. Complexities with prioritization remain so

prevalent that it has been removed from the HTTP/3 specification.

2021 also allowed us to take a closer inspection on the adoption of HTTP/3. Major players such

as Google and Facebook have been rolling out their own support for HTTP/3 for a number of

years. Wider adoption of HTTP/3 has been influenced by Akamai, Cloudflare, and Fastly who

have publicly been working to support HTTP/3 for other parts of the web.

HTTP/3 aims to build upon the improvements of HTTP/2, including the head-of-line blocking

imposed by TCP, while also ensuring more parts of the protocol stack are secure with QUIC’s

tighter encapsulation of TLS 1.3. However, it is still early days for HTTP/3. We look forward to

measuring the adoption of HTTP/3 in 2022, and believe it is likely to gain further traction as

support for HTTP/2 becomes mainstream and people look to gain further improvements over

current deployments.

There are some concerns expressed with HTTP/3, but any of these concerns should be

outweighed by performance gained by the end user. It is likely the HTTP/3 adoption will also be

fueled by CDN rollouts, as they work towards their own implementations, as we saw with

HTTP/2. Particularly we are yet to see implementations across major web frameworks. It is also

likely that we will see a mix of HTTP/2 and HTTP/3 over the next several years.

Author

Dominic Lovell

@dominiclovell dominiclovell

Dominic Lovell is currently a Solutions Engineering Manager at Akamai

Technologies, and has been working for a number of years to make sites more

performant and safer across the web. You can find him tweeting @dominiclovell,

or you can connect with him on LinkedIn1025.

1025. https://www.linkedin.com/in/dominiclovell/

Part IV Chapter 24 : HTTP

752 2021 Web Almanac by HTTP Archive

https://x.com/dominiclovell
https://www.linkedin.com/in/dominiclovell/
https://x.com/dominiclovell
https://www.linkedin.com/in/dominiclovell/

Appendix A

Methodology

Overview

The Web Almanac is a project organized by HTTP Archive1026. HTTP Archive was started in 2010

by Steve Souders with the mission to track how the web is built. It evaluates the composition of

millions of web pages on a monthly basis and makes its terabytes of metadata available for

analysis on BigQuery1027.

The Web Almanac’s mission is to become an annual repository of public knowledge about the

state of the web. Our goal is to make the data warehouse of HTTP Archive even more

1026. https://httparchive.org
1027. https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

Appendix A : Methodology

2021 Web Almanac by HTTP Archive 753

https://httparchive.org/
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data

accessible to the web community by having subject matter experts provide contextualized

insights.

The 2021 edition of the Web Almanac is broken into four parts: content, experience, publishing,

and distribution. Within each part, several chapters explore their overarching theme from

different angles. For example, Part II explores different angles of the user experience in the

Performance, Security, and Accessibility chapters, among others.

About the dataset

The HTTP Archive dataset is continuously updating with new data monthly. For the 2021

edition of the Web Almanac, unless otherwise noted in the chapter, all metrics were sourced

from the July 2021 crawl. These results are publicly queryable1028 on BigQuery in tables prefixed

with 2021_07_01 .

All of the metrics presented in the Web Almanac are publicly reproducible using the dataset on

BigQuery. You can browse the queries used by all chapters in our GitHub repository1029.

Please note that some of these queries are quite large and can be expensive1030 to run yourself. For help
controlling your spending, refer to Tim Kadlec’s post Using BigQuery Without Breaking the Bank1031.

For example, to understand the median number of bytes of JavaScript per desktop and mobile

page, see bytes_2021.sql1032:

#standardSQL

Sum of JS request bytes per page (2021)

SELECT

 percentile,

 _TABLE_SUFFIX AS client,

 APPROX_QUANTILES(bytesJs / 1024, 1000)[OFFSET(percentile *

10)] AS js_kilobytes

FROM

 `httparchive.summary_pages.2021_07_01_*`,

1028. https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
1029. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2021
1030. https://cloud.google.com/bigquery/pricing
1031. https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
1032. https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2021/javascript/bytes_2021.sql

Appendix A : Methodology

754 2021 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2021
https://cloud.google.com/bigquery/pricing
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2021/javascript/bytes_2021.sql

 UNNEST([10, 25, 50, 75, 90, 100]) AS percentile

GROUP BY

 percentile,

 client

ORDER BY

 percentile,

 client

Results for each metric are publicly viewable in chapter-specific spreadsheets, for example

JavaScript results1033. Links to the raw results and queries are available at the bottom of each

chapter. Metric-specific results and queries are also linked directly from each figure.

Websites

There are 8,198,531 websites in the dataset. This represents an increase of 9% compared to

the 2020 edition of the Web Almanac. Among those, 7,499,763 are mobile websites and

6,294,605 are desktop websites. Most websites are included in both the mobile and desktop

subsets.

HTTP Archive sources the URLs for its websites from the Chrome UX Report. The Chrome UX

Report is a public dataset from Google that aggregates user experiences across millions of

websites actively visited by Chrome users. This gives us a list of websites that are up-to-date

and a reflection of real-world web usage. The Chrome UX Report dataset includes a form factor

dimension, which we use to get all of the websites accessed by desktop or mobile users.

The July 2021 HTTP Archive crawl used by the Web Almanac used the most recently available

Chrome UX Report release for its list of websites. The 202105 dataset was released on June 8,

2021 and captures websites visited by Chrome users during the month of May.

Due to resource limitations, the HTTP Archive can only test one page from each website in the

Chrome UX report. To reconcile this, only the home pages are included. Be aware that this will

introduce some bias into the results because a home page is not necessarily representative of

the entire website.

HTTP Archive is also considered a lab testing tool, meaning it tests websites from a datacenter

and does not collect data from real-world user experiences. All pages are tested with an empty

cache in a logged out state, which may not reflect how real users would access them.

1033. https://docs.google.com/spreadsheets/d/1zU9rHpI3nC6jTz3xgN6w13afW7x34xAKBh2IPH-lVxk/edit#gid=18398250

Appendix A : Methodology

2021 Web Almanac by HTTP Archive 755

https://docs.google.com/spreadsheets/d/1zU9rHpI3nC6jTz3xgN6w13afW7x34xAKBh2IPH-lVxk/edit#gid=18398250
http://127.0.0.1:8080/en/2020/methodology#websites

Metrics

HTTP Archive collects thousands of metrics about how the web is built. It includes basic metrics

like the number of bytes per page, whether the page was loaded over HTTPS, and individual

request and response headers. The majority of these metrics are provided by WebPageTest,

which acts as the test runner for each website.

Other testing tools are used to provide more advanced metrics about the page. For example,

Lighthouse is used to run audits against the page to analyze its quality in areas like accessibility

and SEO. The Tools section below goes into each of these tools in more detail.

To work around some of the inherent limitations of a lab dataset, the Web Almanac also makes

use of the Chrome UX Report for metrics on user experiences, especially in the area of web

performance.

Some metrics are completely out of reach. For example, we don’t necessarily have the ability to

detect the tools used to build a website. If a website is built using create-react-app, we could

tell that it uses the React framework, but not necessarily that a particular build tool is used.

Unless these tools leave detectible fingerprints in the website’s code, we’re unable to measure

their usage.

Other metrics may not necessarily be impossible to measure but are challenging or unreliable.

For example, aspects of web design are inherently visual and may be difficult to quantify, like

whether a page has an intrusive modal dialog.

Tools

The Web Almanac is made possible with the help of the following open source tools.

WebPageTest

WebPageTest1034 is a prominent web performance testing tool and the backbone of HTTP

Archive. We use a private instance1035 of WebPageTest with private test agents, which are the

actual browsers that test each web page. Desktop and mobile websites are tested under

different configurations:

1034. https://www.webpagetest.org/
1035. https://docs.webpagetest.org/private-instances/

Appendix A : Methodology

756 2021 Web Almanac by HTTP Archive

https://www.webpagetest.org/
https://docs.webpagetest.org/private-instances/

Desktop websites are run from within a desktop Chrome environment on a Linux VM. The

network speed is equivalent to a cable connection.

Mobile websites are run from within a mobile Chrome environment on an emulated Moto G4

device with a network speed equivalent to a 3G connection.

Test agents run from various Google Cloud Platform locations1036 based in the USA.

HTTP Archive’s private instance of WebPageTest is kept in sync with the latest public version

and augmented with custom metrics1037, which are snippets of JavaScript that are evaluated on

each website at the end of the test.

The results of each test are made available as a HAR file1038, a JSON-formatted archive file

containing metadata about the web page.

Lighthouse

Lighthouse1039 is an automated website quality assurance tool built by Google. It audits web

pages to make sure they don’t include user experience antipatterns like unoptimized images

and inaccessible content.

HTTP Archive runs the latest version of Lighthouse for all of its mobile web pages — desktop

pages are not included because of limited resources. As of the July 2021 crawl, HTTP Archive

Config Desktop Mobile

Device Linux VM Emulated Moto G4

User Agent

Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/

91.0.4472.114 Safari/537.36

PTST/210702.163639

Mozilla/5.0 (Linux; Android 6.0.1; Moto

G (4)) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/91.0.4472.114

Mobile Safari/537.36 PTST/

210702.163639

Location Google Cloud Locations, USA Google Cloud Locations, USA

Connection Cable (5/1 Mbps 28ms RTT) 3G (1.600/0.768 Mbps 300ms RTT)

Viewport 1376 x 768px 512 x 360px

1036. https://cloud.google.com/compute/docs/regions-zones/#locations
1037. https://github.com/HTTPArchive/custom-metrics
1038. https://en.wikipedia.org/wiki/HAR_(file_format)
1039. https://developers.google.com/web/tools/lighthouse/

Appendix A : Methodology

2021 Web Almanac by HTTP Archive 757

https://cloud.google.com/compute/docs/regions-zones/#locations
https://github.com/HTTPArchive/custom-metrics
https://en.wikipedia.org/wiki/HAR_(file_format)
https://developers.google.com/web/tools/lighthouse/

used a combination of 8.0.01040 and 8.1.01041 versions of Lighthouse.

Lighthouse is run as its own distinct test from within WebPageTest, but it has its own

configuration profile:

For more information about Lighthouse and the audits available in HTTP Archive, refer to the

Lighthouse developer documentation1042.

Wappalyzer

Wappalyzer1043 is a tool for detecting technologies used by web pages. There are 90 categories1044

of technologies tested, ranging from JavaScript frameworks, to CMS platforms, and even

cryptocurrency miners. There are over 2,600 supported technologies (an increase from 1,400

last year).

HTTP Archive runs the latest version of Wappalyzer for all web pages. As of July 2021 the Web

Almanac used the 6.7.7 version1045 of Wappalyzer.

Wappalyzer powers many chapters that analyze the popularity of developer tools like

WordPress, Bootstrap, and jQuery. For example, the Ecommerce and CMS chapters rely heavily

on the respective Ecommerce1046 and CMS1047 categories of technologies detected by Wappalyzer.

All detection tools, including Wappalyzer, have their limitations. The validity of their results will

always depend on how accurate their detection mechanisms are. The Web Almanac will add a

note in every chapter where Wappalyzer is used but its analysis may not be accurate due to a

specific reason.

Config Value

CPU slowdown 1x/4x

Download throughput 1.6 Mbps

Upload throughput 0.768 Mbps

RTT 150 ms

1040. https://github.com/GoogleChrome/lighthouse/releases/tag/v8.0.0
1041. https://github.com/GoogleChrome/lighthouse/releases/tag/v8.1.0
1042. https://developers.google.com/web/tools/lighthouse/
1043. https://www.wappalyzer.com/
1044. https://www.wappalyzer.com/technologies
1045. https://github.com/AliasIO/Wappalyzer/releases/tag/v6.7.7
1046. https://www.wappalyzer.com/categories/ecommerce
1047. https://www.wappalyzer.com/categories/cms

Appendix A : Methodology

758 2021 Web Almanac by HTTP Archive

https://github.com/GoogleChrome/lighthouse/releases/tag/v8.0.0
https://github.com/GoogleChrome/lighthouse/releases/tag/v8.1.0
https://developers.google.com/web/tools/lighthouse/
https://www.wappalyzer.com/
https://www.wappalyzer.com/technologies
https://github.com/AliasIO/Wappalyzer/releases/tag/v6.7.7
https://www.wappalyzer.com/categories/ecommerce
https://www.wappalyzer.com/categories/cms

Chrome UX Report

The Chrome UX Report1048 is a public dataset of real-world Chrome user experiences.

Experiences are grouped by websites’ origin, for example https://www.example.com . The

dataset includes distributions of UX metrics like paint, load, interaction, and layout stability. In

addition to grouping by month, experiences may also be sliced by dimensions like country-level

geography, form factor (desktop, phone, tablet), and effective connection type (4G, 3G, etc.).

As of this year, the Chrome UX Report dataset now includes relative website ranking data1049.

These are referred to as rank magnitudes because, as opposed to fine-grained ranks like the #1

or #116 most popular websites, websites are grouped into rank buckets from the top 1k, top

10k, up to the top 10M. Each website is ranked according to the number of eligible1050 page views

on all of its pages combined. This year's Web Almanac makes extensive use of this new data as a

way to explore variations in the way the web is built by site popularity.

For Web Almanac metrics that reference real-world user experience data from the Chrome UX

Report, the July 2021 dataset (202107) is used.

You can learn more about the dataset in the Using the Chrome UX Report on BigQuery1051 guide

on web.dev1052.

Blink Features

Blink Features1053 are indicators flagged by Chrome whenever a particular web platform feature

is detected to be used.

We use Blink Features to get a different perspective on feature adoption. This data is especially

useful to distinguish between features that are implemented on a page and features that are

actually used. For example, the CSS chapter's section on Grid layout uses Blink Features data to

measure whether some part of the actual page layout is built with Grid. By comparison, many

more pages happen to include an unused Grid style in their stylesheets. Both stats are

interesting in their own way and tell us something about how the web is built.

Blink Features are reported by WebPageTest as part of our regular testing.

1048. https://developers.google.com/web/tools/chrome-user-experience-report
1049. https://developers.google.com/web/updates/2021/03/crux-rank-magnitude
1050. https://developer.chrome.com/docs/crux/methodology#eligibility
1051. https://web.dev/chrome-ux-report-bigquery
1052. https://web.dev/
1053. https://chromium.googlesource.com/chromium/src/+/HEAD/docs/use_counter_wiki.md

Appendix A : Methodology

2021 Web Almanac by HTTP Archive 759

https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/updates/2021/03/crux-rank-magnitude
https://developer.chrome.com/docs/crux/methodology#eligibility
https://web.dev/chrome-ux-report-bigquery
https://web.dev/
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/use_counter_wiki.md

Third Party Web

Third Party Web1054 is a research project by Patrick Hulce, author of the 2019 Third Parties

chapter, that uses HTTP Archive and Lighthouse data to identify and analyze the impact of third

party resources on the web.

Domains are considered to be a third party provider if they appear on at least 50 unique pages.

The project also groups providers by their respective services in categories like ads, analytics,

and social.

Several chapters in the Web Almanac use the domains and categories from this dataset to

understand the impact of third parties.

Rework CSS

Rework CSS1055 is a JavaScript-based CSS parser. It takes entire stylesheets and produces a

JSON-encoded object distinguishing each individual style rule, selector, directive, and value.

This special purpose tool significantly improved the accuracy of many of the metrics in the CSS

chapter. CSS in all external stylesheets and inline style blocks for each page were parsed and

queried to make the analysis possible. See this thread1056 for more information about how it was

integrated with the HTTP Archive dataset on BigQuery.

Rework Utils

This year’s CSS chapter revisits many of the metrics introduced in last year's CSS chapter, which

was led by Lea Verou. Lea wrote Rework Utils1057 to more easily extract insights from Rework

CSS's output. Most of the stats you see in the CSS chapter continue to be powered by these

scripts.

Parsel

Parsel1058 is a CSS selector parser and specificity calculator, originally written by 2020 CSS

chapter lead Lea Verou and open sourced as a separate library. It is used extensively in all CSS

metrics that relate to selectors and specificity.

1054. https://www.thirdpartyweb.today/
1055. https://github.com/reworkcss/css
1056. https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
1057. https://github.com/LeaVerou/rework-utils
1058. https://projects.verou.me/parsel/

Appendix A : Methodology

760 2021 Web Almanac by HTTP Archive

https://www.thirdpartyweb.today/
https://almanac.httparchive.org/en/2019/third-parties
https://github.com/reworkcss/css
https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
https://almanac.httparchive.org/en/2019/contributors#LeaVerou
https://github.com/LeaVerou/rework-utils
https://projects.verou.me/parsel/
https://almanac.httparchive.org/en/2019/css

Analytical process

The Web Almanac took about a year to plan and execute with the coordination of more than a

hundred contributors from the web community. This section describes why we chose the

chapters you see in the Web Almanac, how their metrics were queried, and how they were

interpreted.

Planning

The 2021 Web Almanac kicked off in April 2021 with a call for contributors1059. We initialized

the project with all 23 chapters from previous years and the community suggested additional

topics that became two new chapters this year: Structured Data and WebAssembly.

As we stated in the inaugural year’s Methodology:

To that end, this year we’ve refined our author selection process1060:

• Previous authors were specifically discouraged from writing again to make room for

different perspectives.

• Everyone endorsing 2021 authors were asked to be especially conscious not to

nominate people who all look or think alike.

• The project leads reviewed all of the author nominations and made an effort to

select authors who will bring new perspectives and amplify the voices of

underrepresented groups in the community.

We hope to iterate on this process in the future to ensure that the Web Almanac is a more

diverse and inclusive project with contributors from all backgrounds.

Analysis

In May and June 2021, data analysts worked with authors and peer reviewers to come up with a

list of metrics that would need to be queried for each chapter. In some cases, custom metrics1061

One explicit goal for future editions of the Web Almanac is to encourage even

more inclusion of underrepresented and heterogeneous voices as authors and

peer reviewers. "
1059. https://github.com/HTTPArchive/almanac.httparchive.org/issues/2167
1060. https://github.com/HTTPArchive/almanac.httparchive.org/discussions/2165
1061. https://github.com/HTTPArchive/custom-metrics

Appendix A : Methodology

2021 Web Almanac by HTTP Archive 761

https://github.com/HTTPArchive/almanac.httparchive.org/issues/2167
http://127.0.0.1:8080/en/2019/methodology#brainstorming
https://github.com/HTTPArchive/almanac.httparchive.org/discussions/2165
https://github.com/HTTPArchive/custom-metrics

were created to fill gaps in our analytic capabilities.

Throughout July 2021, the HTTP Archive data pipeline crawled several million websites,

gathering the metadata to be used in the Web Almanac. These results were post-processed and

saved to BigQuery1062.

Being our third year, we were able to update and reuse the queries written by previous

analysts. Still, there were many new metrics that needed to be written from scratch. You can

browse all of the queries by year and chapter in our open source query repository1063 on GitHub.

Interpretation

Authors worked with analysts to correctly interpret the results and draw appropriate

conclusions. As authors wrote their respective chapters, they drew from these statistics to

support their framing of the state of the web. Peer reviewers worked with authors to ensure

the technical correctness of their analysis.

To make the results more easily understandable to readers, web developers and analysts

created data visualizations to embed in the chapter. Some visualizations are simplified to make

the points more clearly. For example, rather than showing a full distribution, only a handful of

percentiles are shown. Unless otherwise noted, all distributions are summarized using

percentiles, especially medians (the 50th percentile), and not averages.

Finally, editors revised the chapters to fix simple grammatical errors and ensure consistency

across the reading experience.

Looking ahead

The 2021 edition of the Web Almanac is the third in what we hope to continue as an annual

tradition in the web community of introspection and a commitment to positive change. Getting

to this point has been a monumental effort thanks to many dedicated contributors and we hope

to leverage as much of this work as possible to make future editions even more streamlined.

If you’re interested in contributing to the 2022 edition of the Web Almanac, please fill out our

interest form1064. Let’s work together to track the state of the web!

1062. https://console.cloud.google.com/bigquery?p=httparchive&d=almanac&page=dataset
1063. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2021
1064. https://forms.gle/55uatdX9T3JZG2837

Appendix A : Methodology

762 2021 Web Almanac by HTTP Archive

https://console.cloud.google.com/bigquery?p=httparchive&d=almanac&page=dataset
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2021
https://forms.gle/55uatdX9T3JZG2837

Appendix B

Contributors

The Web Almanac has been made possible by the hard work of the web community. 122 people

have volunteered countless hours in the planning, research, writing and production phases of

the 2021 Web Almanac.

Abby Tsai
AbbyTsai

Developer

Adam Argyle
@argyleink

argyleink

https://nerdy.dev
Reviewer

Addy Osmani
@addyosmani

addyosmani

https://www.addyosmani.com
Reviewer

Adriana Jara
@tropicadri

tropicadri
Reviewer

Akshay Ranganath
@rakshay

akshay-ranganath

akshayranganath

https://akshayranganath.github.io/
Analyst and Reviewer

Alan Kent
@akent99

alankent

https://alankent.me
Reviewer

Alba Silvente Fuentes
@dawntraoz

Dawntraoz

https://www.dawntraoz.com/
Reviewer

Alex Lakatos
@avolakatos

AlexLakatos

http://alexlakatos.com/
Author

Alex Tait
@at_fresh_dev

alextait1

https://atfreshsolutions.com
Author

Alon Kochba
@alonkochba

alonkochba

alonkochba
Author

Alon Zakai
@kripken

kripken
Reviewer

Andrea Volpini
@cyberandy

cyberandy

https://wordlift.io/blog/en/entity/

andrea-volpini
Author

Appendix B : Contributors

2021 Web Almanac by HTTP Archive 763

https://github.com/AbbyTsai
https://x.com/argyleink
https://github.com/argyleink
http://127.0.0.1:8080/en/2021/argyleink
https://x.com/addyosmani
https://github.com/addyosmani
http://127.0.0.1:8080/en/2021/addyosmani
https://x.com/tropicadri
https://github.com/tropicadri
https://x.com/rakshay
https://github.com/akshay-ranganath
https://www.linkedin.com/in/rakshay
http://127.0.0.1:8080/en/2021/rakshay
https://x.com/akent99
https://github.com/alankent
http://127.0.0.1:8080/en/2021/akent99
https://x.com/dawntraoz
https://github.com/Dawntraoz
http://127.0.0.1:8080/en/2021/dawntraoz
https://x.com/avolakatos
https://github.com/AlexLakatos
http://127.0.0.1:8080/en/2021/avolakatos
https://x.com/at_fresh_dev
https://github.com/alextait1
http://127.0.0.1:8080/en/2021/at_fresh_dev
https://x.com/alonkochba
https://github.com/alonkochba
https://www.linkedin.com/in/alonkochba
https://x.com/kripken
https://github.com/kripken
https://x.com/cyberandy
https://github.com/cyberandy
http://127.0.0.1:8080/en/2021/cyberandy

Andrey Lipattsev
@AndreyLipattsev

andreylipattsev
Reviewer

André Cipriani Bandarra
@andreban

andreban
Reviewer

Andy Davies
@AndyDavies

andydavies

http://andydavies.me/
Reviewer

Artem Denysov
@denar90_

denar90
Analyst and Author

Ashley Berman Hale
ashleyish

Author

Barry Pollard
@tunetheweb

https://webperf.social/@tunetheweb

tunetheweb.com

tunetheweb

tunetheweb

https://www.tunetheweb.com
Analyst, Author, Developer, Editor,
Project Lead, and Reviewer

Brian Kardell
@briankardell

https://toot.cafe/@bkardell

bkardell

https://bkardell.com
Reviewer

Caleb Queern
@httpsecheaders

cqueern
Reviewer

Carlie Dixon
cdixon83

Reviewer

Carlo Piovesan
@carlop54002226

carlopi
Reviewer

Cassey Lottman
clottman

https://cassey.dev/
Reviewer

Chris Lilley
@svgeesus

svgeesus

https://svgees.us
Reviewer

Chris Sater
christophersater

Reviewer

Christian Liebel
@christianliebel

https://mastodon.cloud/@christianliebel

christianliebel

christianliebel

https://christianliebel.com
Author

Dave Smart
https://seocommunity.social/@dwsmart

tamethebots.com

dwsmart

davewsmart

https://tamethebots.com
Author

David Fox
@theobto

foxdavidj

https://www.lookzook.com
Analyst, Project Lead, and Reviewer

Appendix B : Contributors

764 2021 Web Almanac by HTTP Archive

https://x.com/AndreyLipattsev
https://github.com/andreylipattsev
https://x.com/andreban
https://github.com/andreban
https://x.com/AndyDavies
https://github.com/andydavies
http://127.0.0.1:8080/en/2021/AndyDavies
https://x.com/denar90_
https://github.com/denar90
https://github.com/ashleyish
https://x.com/tunetheweb
https://webperf.social/@tunetheweb
https://bsky.app/profile/tunetheweb.com
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb
http://127.0.0.1:8080/en/2021/tunetheweb
https://x.com/briankardell
https://toot.cafe/@bkardell
https://github.com/bkardell
http://127.0.0.1:8080/en/2021/briankardell
https://x.com/httpsecheaders
https://github.com/cqueern
https://github.com/cdixon83
https://x.com/carlop54002226
https://github.com/carlopi
https://github.com/clottman
https://x.com/svgeesus
https://github.com/svgeesus
http://127.0.0.1:8080/en/2021/svgeesus
https://www.linkedin.com/in/
https://x.com/christianliebel
https://mastodon.cloud/@christianliebel
https://github.com/christianliebel
https://www.linkedin.com/in/christianliebel
http://127.0.0.1:8080/en/2021/christianliebel
https://seocommunity.social/@dwsmart
https://bsky.app/profile/tamethebots.com
https://github.com/dwsmart
https://www.linkedin.com/in/
https://x.com/theobto
https://github.com/foxdavidj
http://127.0.0.1:8080/en/2021/theobto

Demian Renzulli
@drenzulli

demianrenzulli
Analyst and Author

Dominic Lovell
@dominiclovell

dominiclovell
Author

Doug Sillars
@dougsillars

dougsillars

https://dougsillars.com
Analyst and Author

Edmond W. W. Chan
edmondwwchan

https://edmondwwchan.github.io/
Reviewer

Eric A. Meyer
@meyerweb

meyerweb

http://meyerweb.com/
Author

Eric Bailey
@ericwbailey

ericwbailey

https://ericwbailey.design/
Reviewer

Eric Portis
@etportis

ericportis.com

eeeps

https://ericportis.com
Analyst and Author

Estelle Weyl
@estellevw

estelle

http://standardista.com
Reviewer

Eugene Kliuchnikov
eustas

Reviewer

Fili Wiese
@filiwiese

fili

filiwiese

https://fili.com/
Reviewer

Gary Wilhelm
gwilhelm

Author

Gertjan Franken
@GJFR_

gjfr
Analyst

Gigi Rajani
GigiRajani

Reviewer

Greg Brimble
@gregbrimble

GregBrimble

https://gregbrimble.com/
Analyst

Harry Roberts
@csswizardry

csswizardry

https://csswizardry.com/
Reviewer

Hemanth HM
@gnumanth

hemanth

http://h3manth.com
Reviewer

Ian Lurie
@ianlurie

wrttnwrd

https://www.ianlurie.com
Author

Ingvar Stepanyan
@RReverser

RReverser

https://rreverser.com/
Analyst and Author

Appendix B : Contributors

2021 Web Almanac by HTTP Archive 765

https://x.com/drenzulli
https://github.com/demianrenzulli
https://x.com/dominiclovell
https://www.linkedin.com/in/dominiclovell
https://x.com/dougsillars
https://github.com/dougsillars
http://127.0.0.1:8080/en/2021/dougsillars
https://github.com/edmondwwchan
https://x.com/meyerweb
https://github.com/meyerweb
http://127.0.0.1:8080/en/2021/meyerweb
https://x.com/ericwbailey
https://github.com/ericwbailey
http://127.0.0.1:8080/en/2021/ericwbailey
https://x.com/etportis
https://bsky.app/profile/ericportis.com
https://github.com/eeeps
http://127.0.0.1:8080/en/2021/etportis
https://x.com/estellevw
https://github.com/estelle
http://127.0.0.1:8080/en/2021/estellevw
https://github.com/eustas
https://x.com/filiwiese
https://github.com/fili
https://www.linkedin.com/in/filiwiese
http://127.0.0.1:8080/en/2021/filiwiese
https://github.com/gwilhelm
https://x.com/GJFR_
https://github.com/gjfr
https://github.com/GigiRajani
https://x.com/gregbrimble
https://github.com/GregBrimble
http://127.0.0.1:8080/en/2021/gregbrimble
https://x.com/csswizardry
https://github.com/csswizardry
http://127.0.0.1:8080/en/2021/csswizardry
https://x.com/gnumanth
https://github.com/hemanth
http://127.0.0.1:8080/en/2021/gnumanth
https://x.com/ianlurie
https://github.com/wrttnwrd
http://127.0.0.1:8080/en/2021/ianlurie
https://x.com/RReverser
https://github.com/RReverser
http://127.0.0.1:8080/en/2021/RReverser

Iulia Comșa
iulia-m-comsa

https://sites.google.com/view/

iuliacomsa/
Reviewer

JR Oakes
@jroakes

jroakes
Analyst

Jamie Indigo
@Jammer_Volts

not-a-robot.com

fellowhuman1101

jamie-indigo

https://not-a-robot.com
Author and Reviewer

Jarno van Driel
@JarnoVanDriel

jvandriel

jarno-van-driel-36a47075
Editor

Jarrod Overson
jsoverson

http://jarrodoverson.com/
Reviewer

Jasmine Drudge-Willson
@jasminedwillson

JasmineDWillson
Editor

Jeff Posnick
@jeffposnick

jeffposnick

https://jeffy.info
Reviewer

Jens Oliver Meiert
@j9t

https://mas.to/@j9t

meiert.com

j9t

meiert

https://meiert.com/en/
Reviewer

Jess Peck
@jessthebp

jessthebp

https://jessbpeck.com/
Analyst

Jessica Nicolet
@jessica_nicolet

jessnicolet

https://www.jessicanicolet.com/
Author

John Teague
@jtteag

logicalphase

https://gemservers.com
Author and Reviewer

Jono Alderson
@jonoalderson

jonoalderson

https://www.jonoalderson.com
Author

Julia Yang
@Jules_Yang

jzyang

yangzhe
Editor and Reviewer

Jyrki Alakuijala
@jyzg

jyrkialakuijala
Author

Kai Hollberg
@schweinepriestr

Schweinepriester
Reviewer

Katriel Paige
kachiden

https://www.flowerstorm.tech/
Author

Kevin Farrugia
@imkevdev

https://webperf.social/@kevinfarrugia

kevinfarrugia

imkevdev

https://imkev.dev
Analyst, Author, and Reviewer

Appendix B : Contributors

766 2021 Web Almanac by HTTP Archive

https://github.com/iulia-m-comsa
https://x.com/jroakes
https://github.com/jroakes
https://x.com/Jammer_Volts
https://bsky.app/profile/not-a-robot.com
https://github.com/fellowhuman1101
https://www.linkedin.com/in/Jammer_Volts
http://127.0.0.1:8080/en/2021/Jammer_Volts
https://x.com/JarnoVanDriel
https://github.com/jvandriel
https://www.linkedin.com/in/JarnoVanDriel
https://github.com/jsoverson
https://x.com/jasminedwillson
https://github.com/JasmineDWillson
https://x.com/jeffposnick
https://github.com/jeffposnick
http://127.0.0.1:8080/en/2021/jeffposnick
https://x.com/j9t
https://mas.to/@j9t
https://bsky.app/profile/meiert.com
https://github.com/j9t
https://www.linkedin.com/in/j9t
http://127.0.0.1:8080/en/2021/j9t
https://x.com/jessthebp
https://github.com/jessthebp
http://127.0.0.1:8080/en/2021/jessthebp
https://x.com/jessica_nicolet
https://github.com/jessnicolet
http://127.0.0.1:8080/en/2021/jessica_nicolet
https://x.com/jtteag
https://github.com/logicalphase
http://127.0.0.1:8080/en/2021/jtteag
https://x.com/jonoalderson
https://github.com/jonoalderson
http://127.0.0.1:8080/en/2021/jonoalderson
https://x.com/Jules_Yang
https://github.com/jzyang
https://www.linkedin.com/in/Jules_Yang
https://x.com/jyzg
https://github.com/jyrkialakuijala
https://x.com/schweinepriestr
https://github.com/Schweinepriester
https://github.com/kachiden
https://x.com/imkevdev
https://webperf.social/@kevinfarrugia
https://github.com/kevinfarrugia
https://www.linkedin.com/in/imkevdev
http://127.0.0.1:8080/en/2021/imkevdev

Koen Van den Wijngaert
@vdwijngaert

vdwijngaert

https://www.neok.be/
Reviewer

Lea Verou
@leaverou

LeaVerou

https://lea.verou.me/
Reviewer

Leonardo Zizzamia
@Zizzamia

Zizzamia
Author

Lode Vandevenne
lvandeve

Author

Lucas Gonçalves
lucasbona05

Developer

Manuel Garcia
@corrosion_pt

soulcorrosion

manuel-garcia-12b6928

https://farfetchtechblog.com/en/blog/

authors/manuel-garcia/
Reviewer

Matteo Große-Kampmann
@pizzahax

lord-r3

https://lord-r3.github.io/
Reviewer

Maud Nalpas
maudnals

Reviewer

Max Ostapenko
max-ostapenko

max-ostapenko

https://maxostapenko.com
Analyst

Maxim Salnikov
@webmaxru

webmaxru

https://medium.com/@webmaxru
Reviewer

Michelle O'Connor
Designer

Minko Gechev
@mgechev

mgechev

https://blog.mgechev.com/
Reviewer

Moritz Firsching
mo271

https://mo271.github.io/
Author

Mukesh Jat
mukeshjat

Translator

Navaneeth Krishna
@Navanee55755217

Navaneeth-akam
Author and Reviewer

Nikita Dubko
@dark_mefody

MeFoDy

https://mefody.dev/
Translator

Nishu Goel
@TheNishuGoel

NishuGoel

https://unravelweb.dev/
Author

Nitin Pasumarthy
Nithanaroy

nitinpasumarthy

https://nithanaroy.medium.com/
Analyst

Appendix B : Contributors

2021 Web Almanac by HTTP Archive 767

https://x.com/vdwijngaert
https://github.com/vdwijngaert
http://127.0.0.1:8080/en/2021/vdwijngaert
https://x.com/leaverou
https://github.com/LeaVerou
http://127.0.0.1:8080/en/2021/leaverou
https://x.com/Zizzamia
https://github.com/Zizzamia
https://github.com/lvandeve
https://github.com/lucasbona05
https://x.com/corrosion_pt
https://github.com/soulcorrosion
https://www.linkedin.com/in/corrosion_pt
http://127.0.0.1:8080/en/2021/corrosion_pt
https://x.com/pizzahax
https://github.com/lord-r3
http://127.0.0.1:8080/en/2021/pizzahax
https://github.com/maudnals
https://github.com/max-ostapenko
https://www.linkedin.com/in/
https://x.com/webmaxru
https://github.com/webmaxru
http://127.0.0.1:8080/en/2021/webmaxru
https://x.com/mgechev
https://github.com/mgechev
http://127.0.0.1:8080/en/2021/mgechev
https://github.com/mo271
https://github.com/mukeshjat
https://x.com/Navanee55755217
https://github.com/Navaneeth-akam
https://x.com/dark_mefody
https://github.com/MeFoDy
http://127.0.0.1:8080/en/2021/dark_mefody
https://x.com/TheNishuGoel
https://github.com/NishuGoel
http://127.0.0.1:8080/en/2021/TheNishuGoel
https://github.com/Nithanaroy
https://www.linkedin.com/in/

Nurullah Demir
@nrllah

nrllh

https://ndemir.com
Author

Olu Niyi-Awosusi
@oluoluoxenfree

oluoluoxenfree

https://olu.online/
Author

Pankaj Parkar
@pankajparkar

pankajparkar

https://pankajparkar.dev
Analyst, Editor, and Reviewer

Pascal Schilp
thepassle

Reviewer

Patrick Hulce
@patrickhulce

patrickhulce

http://patrickhulce.com
Reviewer

Patrick Stox
@patrickstox

patrickstox

https://patrickstox.com
Author

Paul Calvano
@paulcalvano

paulcalvano

https://paulcalvano.com
Analyst and Project Lead

Phil Barker
@philbarker

philbarker

https://blogs.pjjk.net/phil/
Reviewer

Rajiv Ramnath
rrajiv

rajivramnath
Analyst

Rebecca Holmlund
RMHolmlund

Reviewer

Rick Viscomi
@rick_viscomi

rviscomi

https://rviscomi.dev/
Analyst, Editor, Project Lead, and
Reviewer

Rob Teitelman
@teitelmanrob

SeoRobt

https://www.paulteitelman.com/
Reviewer

Robin Marx
@programmingart

programmingart.bsky.social

rmarx

rmarx

http://internetonmars.org
Reviewer

Rockey Nebhwani
@rnebhwani

rockeynebhwani

rockeynebhwani
Reviewer

Rory Hewitt
@roryhewitt3

roryhewitt

roryhewitt

https://romche.com
Reviewer

Ruth Everett
@rvtheverett

rvth
Analyst

Sakae Kotaro
@beltway7

ksakae1216

https://ksakae1216.com/
Translator

Appendix B : Contributors

768 2021 Web Almanac by HTTP Archive

https://x.com/nrllah
https://github.com/nrllh
http://127.0.0.1:8080/en/2021/nrllah
https://x.com/oluoluoxenfree
https://github.com/oluoluoxenfree
http://127.0.0.1:8080/en/2021/oluoluoxenfree
https://x.com/pankajparkar
https://github.com/pankajparkar
http://127.0.0.1:8080/en/2021/pankajparkar
https://github.com/thepassle
https://x.com/patrickhulce
https://github.com/patrickhulce
http://127.0.0.1:8080/en/2021/patrickhulce
https://x.com/patrickstox
https://github.com/patrickstox
http://127.0.0.1:8080/en/2021/patrickstox
https://x.com/paulcalvano
https://github.com/paulcalvano
http://127.0.0.1:8080/en/2021/paulcalvano
https://x.com/philbarker
https://github.com/philbarker
http://127.0.0.1:8080/en/2021/philbarker
https://github.com/rrajiv
https://www.linkedin.com/in/
https://github.com/RMHolmlund
https://x.com/rick_viscomi
https://github.com/rviscomi
http://127.0.0.1:8080/en/2021/rick_viscomi
https://x.com/teitelmanrob
https://github.com/SeoRobt
http://127.0.0.1:8080/en/2021/teitelmanrob
https://x.com/programmingart
https://bsky.app/profile/programmingart.bsky.social
https://github.com/rmarx
https://www.linkedin.com/in/programmingart
http://127.0.0.1:8080/en/2021/programmingart
https://x.com/rnebhwani
https://github.com/rockeynebhwani
https://www.linkedin.com/in/rnebhwani
https://x.com/roryhewitt3
https://github.com/roryhewitt
https://www.linkedin.com/in/roryhewitt3
http://127.0.0.1:8080/en/2021/roryhewitt3
https://x.com/rvtheverett
https://github.com/rvth
https://x.com/beltway7
https://github.com/ksakae1216
http://127.0.0.1:8080/en/2021/beltway7

Samar Panda
samarpanda

Reviewer

Saptak Sengupta
@Saptak013

saptaks

https://saptaks.website/
Author and Developer

Scott Davis
@scottdavis99

scottdavis99

http://thirstyhead.com
Author

Shaina Hantsis
shantsis

Designer, Editor, and Reviewer

Shilpa Raghunathan
boosef

Reviewer

Shuvam Manna
@shuvam360

GeekBoySupreme

https://shuvam.xyz
Author and Designer

Sia Karamalegos
https://front-end.social/@sia

sia.codes

siakaramalegos

karamalegos

https://sia.codes
Analyst, Author, and Reviewer

Simon Hearne
@simonhearne

simonhearne

https://simonhearne.com
Reviewer

Tamas Piros
@tpiros

tpiros

https://tamas.io
Reviewer

Thom Krupa
@thomkrupa

thomkrupa

https://www.thomkrupa.com/
Reviewer

Thomas Fischbacher
fischbacher

Reviewer

Thomas Steiner
@tomayac

tomayac

https://blog.tomayac.com/
Analyst and Reviewer

Timur Kartashov
@krutoi_paren

kartashovio

kartashov-io

https://kartashov.io/
Translator

Tom Robertshaw
@bobbyshaw

bobbyshaw

tomrobertshaw

https://www.space48.com
Author

Tom Van Goethem
@tomvangoethem

tomvangoethem

https://tom.vg/
Author

Tomek Rudzki
@TomekRudzki

Tomek3c

https://tomekseo.com/
Author

Tosin Arasi
tosinarasi

Analyst

Victor Le Pochat
@VictorLePochat

VictorLeP

victor-le-pochat

https://lepoch.at
Analyst, Author, and Translator

Appendix B : Contributors

2021 Web Almanac by HTTP Archive 769

https://github.com/samarpanda
https://x.com/Saptak013
https://github.com/saptaks
http://127.0.0.1:8080/en/2021/Saptak013
https://x.com/scottdavis99
https://github.com/scottdavis99
http://127.0.0.1:8080/en/2021/scottdavis99
https://github.com/shantsis
https://github.com/boosef
https://x.com/shuvam360
https://github.com/GeekBoySupreme
http://127.0.0.1:8080/en/2021/shuvam360
https://front-end.social/@sia
https://bsky.app/profile/sia.codes
https://github.com/siakaramalegos
https://www.linkedin.com/in/
https://x.com/simonhearne
https://github.com/simonhearne
http://127.0.0.1:8080/en/2021/simonhearne
https://x.com/tpiros
https://github.com/tpiros
http://127.0.0.1:8080/en/2021/tpiros
https://x.com/thomkrupa
https://github.com/thomkrupa
http://127.0.0.1:8080/en/2021/thomkrupa
https://github.com/fischbacher
https://x.com/tomayac
https://github.com/tomayac
http://127.0.0.1:8080/en/2021/tomayac
https://x.com/krutoi_paren
https://github.com/kartashovio
https://www.linkedin.com/in/krutoi_paren
http://127.0.0.1:8080/en/2021/krutoi_paren
https://x.com/bobbyshaw
https://github.com/bobbyshaw
https://www.linkedin.com/in/bobbyshaw
http://127.0.0.1:8080/en/2021/bobbyshaw
https://x.com/tomvangoethem
https://github.com/tomvangoethem
http://127.0.0.1:8080/en/2021/tomvangoethem
https://x.com/TomekRudzki
https://github.com/Tomek3c
http://127.0.0.1:8080/en/2021/TomekRudzki
https://github.com/tosinarasi
https://x.com/VictorLePochat
https://github.com/VictorLeP
https://www.linkedin.com/in/VictorLePochat
http://127.0.0.1:8080/en/2021/VictorLePochat

Weston Ruter
@westonruter

westonruter

https://weston.ruter.net/
Reviewer

Wilhelm Willie
WilhelmWillie

Reviewer

William Sandres
@hakacode

HakaCode

https://hakacode.github.io
Translator

Yana Dimova
ydimova

Author

Yusuf Seyhan
@yuseyhan

yuseyhan

https://webpen.de/
Designer

Ziemek Bućko
ziemek-bucko

Reviewer

Appendix B : Contributors

770 2021 Web Almanac by HTTP Archive

https://x.com/westonruter
https://github.com/westonruter
http://127.0.0.1:8080/en/2021/westonruter
https://github.com/WilhelmWillie
https://x.com/hakacode
https://github.com/HakaCode
http://127.0.0.1:8080/en/2021/hakacode
https://github.com/ydimova
https://x.com/yuseyhan
https://github.com/yuseyhan
http://127.0.0.1:8080/en/2021/yuseyhan
https://github.com/ziemek-bucko

	2021Web Almanac
	HTTP Archive’s annualstate of the web report

	Table of Contents
	Introduction
	Part I. Page Content
	Part II. User Experience
	Part III. Content Publishing
	Part IV. Content Distribution
	Appendices

	Foreword
	CSS
	Introduction
	Usage
	Selectors and the cascade
	Class names
	IDs
	Attribute selectors
	Pseudo-classes and -elements
	!important
	Selector specificity

	Values and units
	Lengths
	Calculations
	Global keywords

	Colors
	Images
	Formats of images in CSS
	Number of images in CSS
	Weight of images in CSS
	Gradients

	Layout
	Flexbox and Grid adoption
	Usage of different Grid layout techniques
	Multicolumn
	Box sizing

	Transitions and animations
	Responsive design
	Media features in use
	Common breakpoints
	Properties inside media queries

	Feature queries
	Custom properties
	Naming
	Usage
	Complexity

	Internationalization
	Direction
	Logical and physical properties
	Ruby

	CSS and JS
	Houdini

	Meta
	Declaration repetition
	Shorthands and longhands
	Shorthands before longhands
	Background
	Margins and paddings
	Font
	Flexbox
	Grid

	CSS mistakes
	Unrecoverable syntax errors
	Nonexistent properties
	Longhands before shorthands

	Sass
	Conclusion
	Authors

	JavaScript
	Introduction
	How much JavaScript do we load?
	JavaScript requests per page

	How is JavaScript requested?
	module and nomodule
	async and defer
	First-party vs third-party
	preload and prefetch

	How is JavaScript delivered?
	Compression
	Minification
	Source maps

	Libraries and frameworks
	Libraries usage
	Libraries used together
	Security vulnerabilities

	How do we use JavaScript?
	AJAX
	Web Components and the shadow DOM

	Conclusion
	Author

	Markup
	Introduction
	General
	Doctypes
	Document size
	Compression
	Document language
	Comments
	SVG use

	Elements
	Element diversity
	Top elements
	main
	base
	dialog
	canvas

	Probability of element use
	script
	template
	style
	Custom elements
	Obsolete elements
	Proprietary and non-standard elements
	Embedded content
	Forms

	Attributes
	Top attributes
	Meta flavors
	Social markup

	data- attributes

	Miscellaneous
	viewport specifications
	Favicons
	Button and input types
	Links
	Web Monetization

	Conclusion
	Author

	Structured Data
	Introduction
	Key concepts
	The semantic web
	Search engines, and beyond

	Types of structured data and coverage
	Data caveats
	1. The influence of Content Management Systems
	2. The limitations of home page-only data
	3. Data overlaps
	4. Mobile metrics

	Usage by type
	Coverage by syntax type
	RDFa
	On FOAF
	On other notable RDFa findings

	Dublin Core
	Social metadata
	Open Graph
	Twitter
	Facebook
	Microformats and microformats2

	Microdata
	JSON-LD
	JSON-LD structures & relationships
	Relationship depth
	Use of sameAs

	Conclusion
	Future years

	Authors

	Media
	Introduction
	Images
	Encoding
	Single pixel images
	Multiple pixel images
	Aspect ratios
	Bytes
	Bits per pixel
	Bits per pixel, by format
	Format adoption

	Embedding
	Lazy-loading
	Decoding
	Accessibility
	Responsive images
	x and w descriptor adoption
	Number of srcset candidates
	srcset density ranges
	sizes accuracy
	<picture> usage

	Layout
	Intrinsic vs extrinsic sizing
	Reducing layout shifts with height and width

	Delivery
	Cross-origin image hosts

	Video
	Video: formats
	Video CSS: display
	Video attributes
	preload
	autoplay
	width
	src and <source>

	Conclusion
	Authors

	WebAssembly
	Introduction
	Methodology
	How many modules?
	How often do we reuse Wasm libraries?
	How much do we ship?
	How is Wasm compressed in the wild?
	Can we improve compression?
	Which sections take up most of the space?
	How much can we save by stripping debug info?
	How much can we save via wasm-opt?

	What are the most popular instructions?
	What’s the usage of post-MVP extensions?
	Conclusion
	Author

	Third Parties
	Introduction
	Definitions
	“Third party”
	Third-party categories
	Caveats

	Prevalence
	Third party prevalence by rank

	Third-party type
	Third-party requests by type and rank

	Content types
	Third-party domains
	Performance impact of third parties
	Using third-party domains versus self-hosting
	Popular third parties embeds and their performance impact
	Popular third parties and their impact on render
	Popular third parties and their impact on main thread
	YouTube
	Google Analytics
	Google/Doubleclick Ads
	Google Tag Manager
	Facebook
	Google Maps
	Twitter

	Timing-Allow-Origin header prevalence

	Security and Privacy
	Security
	Privacy

	Conclusion
	Author

	SEO
	Introduction
	Crawlability and Indexability
	robots.txt
	robots.txt size
	robots.txt search engine breakdown
	Canonical tags
	Two methods of implementing canonical tags
	Conflicting canonical tags

	Page Experience
	HTTPS
	Mobile-friendliness
	Core Web Vitals

	On-Page
	Metadata
	<title> Element
	Meta description tag

	Images
	Image alt attributes
	Image loading attributes

	Word count
	Rendered word count
	Raw word count

	Structured Data
	Most popular structured data formats
	Most popular schema types

	<h> elements (headings)

	Links
	Internal and external links
	Text and image links
	Link attributes

	Accelerated Mobile Pages (AMP)
	Internationalization
	Conclusion
	Authors

	Accessibility
	Introduction
	Ease of reading
	Color contrast
	Zooming and scaling
	Language identification
	Font size and line height
	Focus Styles
	User preference media queries and high contrast support

	Ease of page navigation
	Landmarks and page structure
	Document titles
	Secondary Navigation
	Tabindex
	Skip links
	Heading hierarchy
	Tables
	Table captions
	Tables for layout
	Tabs
	Captchas

	Forms
	The <label> element
	The improper use of the placeholder attribute for labeling inputs
	Requiring information

	Media on the web
	Overview of text alternatives
	Images
	Audio
	Video

	Supporting assistive technology with ARIA
	ARIA roles
	Just use a button!
	Using presentation role
	Labelling and describing elements with ARIA
	Where do buttons get their accessible names from?

	Hiding content
	Screen reader-only text
	Dynamically-rendered content

	Accessibility overlays
	The consequences of overlays
	Privacy concerns
	Overlays and lawsuits
	Why do some companies use overlays?
	Additional resources about overlays

	Conclusion
	Authors

	Performance
	Introduction
	Notes on Methodology

	High-Level Performance: Core Web Vitals
	By Device
	By Effective Connection Type
	By Geographic Region
	By Rank

	Analysis by Metric
	Time-to-First-Byte (TTFB)
	First Contentful Paint (FCP)
	Largest Contentful Paint (LCP)
	The LCP Element

	Cumulative Layout Shift (CLS)
	First Input Delay (FID)
	Total Blocking Time (TBT)

	Conclusion
	Author

	Privacy
	Introduction
	How websites profile you: online tracking
	Third-party tracking
	Third-party cookies
	Fingerprinting
	CNAME tracking
	(Re)targeting

	How websites handle your sensitive data
	Device sensors
	Media devices
	Geolocation-as-a-service
	Data breaches

	How websites protect your sensitive data
	Permissions Policy / Feature Policy
	Referrer Policy
	User-Agent Client Hints

	How websites give you a privacy choice: Privacy preference signals
	Consent Management Platforms
	IAB’s Consent Frameworks
	Privacy policies
	Do Not Track - Global Privacy Control

	How browsers are evolving their privacy approaches
	Privacy Sandbox
	FLoC
	Other Privacy Sandbox experiments

	Conclusion
	Authors

	Security
	Introduction
	Transport security
	Protocol versions
	Cipher suites
	Certificate Authorities
	HTTP Strict Transport Security

	Cookies
	Secure
	HttpOnly
	SameSite
	Prefixes
	Cookie age

	Content inclusion
	Content Security Policy
	Subresource Integrity
	Permissions Policy
	Iframe sandbox

	Thwarting attacks
	Security feature adoption
	Features enabled in <meta> element
	Stopping XSS attacks via CSP
	Defending against XS-Leaks
	Web Cryptography API
	Utilizing bot protection services

	Drivers of security mechanism adoption
	Where website’s visitors connect from
	Technology stack
	Website popularity

	Malpractices on the web
	security.txt
	Conclusion
	Authors

	Mobile Web
	Introduction
	A note on methodology
	A note on our data sources

	Worldwide connectivity
	Cost of mobile web access
	Traffic to a site from mobile versus desktop (CrUX)
	Traffic use by popularity
	Traffic distribution
	Beyond CrUX data
	Not all days are equal
	Not all times are equal

	Drawing conclusions

	Mobile methodology & tech stacks
	Client Hints
	Device Client Hints
	Network Client Hints
	User-Agent Client Hints

	Network Information API and Device Memory API usage
	Network Information API
	Device Memory API

	Client Hints, Network Information API and Device Memory API conclusions
	App usage on the mobile web
	Content Management Systems
	Comparing desktop technology adoption rates
	Drawing conclusions on mobile web app usage

	Interacting with the mobile web
	Alternative protocol links
	mailto
	tel
	sms
	Other messaging apps
	Alternative protocol links conclusions

	Input fields
	Type declarations
	Advanced input types
	Telephone
	Email
	Search input

	Autocomplete
	Input field conclusions

	Accessibility on the mobile web
	ARIA roles
	Color contrast
	Tap targets
	Zoom and scaling
	Accessibility conclusions

	Mobile Search Engine Optimization (SEO)
	Mobile-first index
	Mobile-friendliness
	Core Web Vitals & Page Experience

	Mobile performance
	Loading performance
	Largest Contentful Paint

	Images
	Appropriately sized images
	Responsive images
	Lazy loading
	Image conclusions

	Layout stability
	Cumulative Layout Shift

	Response to user interaction
	First Input Delay

	Service workers
	Mobile performance conclusions

	Conclusion
	Authors

	Capabilities
	Introduction
	Project Fugu
	Methodology
	Status of the presented APIs

	Async Clipboard API
	Write access
	Read access

	File System Access API
	Write access
	Read access
	Opening directories

	Web Share API
	URL Handlers and Declarative Link Capturing
	URL Handling
	Declarative Link Capturing

	Hardware APIs
	Web USB API
	Web Bluetooth API
	Web Serial API
	Generic Sensor API

	Sites using the most capabilities
	Conclusion
	Author

	PWA
	Introduction
	Service workers
	Service workers usage
	Service worker features
	Service worker events
	Lifecycle events
	Notification-related events
	Background processing events

	Other popular service worker features

	Web App Manifests
	Manifest properties
	Top manifest icon sizes
	Top manifest display values
	Manifests preferring native
	Top manifest categories

	Lighthouse insights
	Service worker libraries
	Popular import scripts
	Workbox usage
	Workbox versions
	Workbox packages
	Workbox strategies

	Web Push notifications
	Web Push notification acceptance rates

	Distribution
	Add to home screen
	App Store distribution
	PWA Builder
	Bubblewrap

	Conclusion
	Author

	CMS
	Introduction
	What is a CMS?
	CMS adoption
	CMS adoption by geography
	CMS adoption by rank

	Top CMSs
	CMS user experience
	Core Web Vitals
	Largest Contentful Paint (LCP)
	First Input Delay (FID)
	Cumulative Layout Shift (CLS)

	Lighthouse
	Performance score
	SEO score
	Accessibility score
	Best practices

	Resource weights
	Page Weight Breakdown
	Images
	JavaScript
	HTML document
	CSS
	Fonts

	WordPress specific
	Adoption
	Passing CWVs by geography
	Plugins

	Conclusion
	Author

	Ecommerce
	Introduction
	Platform detection
	Limitations

	Ecommerce platforms
	Top ecommerce platforms
	Top ecommerce platforms by website popularity
	Top 1 million sites
	Top 100,000 sites
	Top 10,000 sites

	The impact of COVID-19

	Ecommerce user experience
	Lighthouse
	Lighthouse scores by platform
	Performance
	Accessibility
	PWA
	Best Practices

	Core Web Vitals
	Largest Contentful Paint (LCP)
	First Input Delay (FID)
	Cumulative Layout Shift (CLS))

	Page anatomy
	Page requests
	Page weight
	HTML payload size
	Images
	Third-party requests

	Tools
	JavaScript frameworks & libraries
	Analytics
	Tag managers
	A/B Testing
	Web push notifications
	Accessibility overlays
	AMP
	Consent management
	Content Security Policies
	Internationalization

	Conclusion
	Future analysis opportunities

	Author

	Jamstack
	Introduction
	Adoption of SSGs
	Which SSGs are the most popular
	Adoption by rank

	Geographic adoption
	Adoption by country
	Adoption by region
	Adoption by subregion

	SSGs distribution among CDN providers
	User experience and performance
	Lighthouse
	Performance score
	Accessibility score
	SEO score

	Core Web Vitals
	Largest Contentful Paint
	First Input Delay
	Cumulative Layout Shift

	Resources
	Resources weight
	JavaScript
	CSS
	Images
	Images format adoption

	What the resources tells us

	Conclusion
	Author

	Page Weight
	Introduction
	What is page weight?
	Storage
	Transmission
	Rendering

	Assets
	Images
	A word about the proliferation in the use of JavaScript

	Third-party services
	Caching

	Page weight by the numbers
	Requests
	File formats
	Image bytes

	Conclusion
	Author

	Resource Hints
	Introduction
	The Link directive
	HTML element
	HTTP header

	Types of resource hints
	dns-prefetch
	preconnect
	prefetch
	prerender
	preload

	Adoption and trends
	By rank
	Usage

	Correlation with Core Web Vitals
	rel="preload"
	The as attribute
	script
	font
	style
	fetch
	image

	The crossorigin attribute
	anonymous
	use-credentials

	The media attribute
	Bad practices
	Unused preloads
	Incorrect crossorigin attribute
	Invalid as attribute
	Unused font files

	Third parties
	Native lazy-loading
	HTTP/2 Server Push
	Future
	103 Early Hints
	Priority Hints

	Conclusion
	Author

	CDN
	Introduction
	Caveats and disclaimers

	CDN adoption
	Top CDN providers
	TLS adoption impact
	TLS performance impact
	HTTP/2+ (HTTP/2 or better) adoption
	Brotli adoption
	Conclusion
	Author

	Compression
	Introduction
	Content types using HTTP compression
	Server settings for HTTP compression
	Trends in HTTP compression
	First-party vs third-party compression
	Compression levels
	How to analyze compression on sites
	How to improve on compression
	Conclusion
	Authors

	Caching
	Introduction
	CDN cache adoption
	Service worker adoption
	Caching headers adoption
	Cache-Control directives
	304 Not Modified status
	Validity of date strings
	Vary

	Setting cookies on cacheable responses
	What type of content are we caching?
	How do cache TTLs compare to resource age?
	Identifying caching opportunities
	Conclusion
	Authors

	HTTP
	Introduction
	Evolution of HTTP

	Adoption of HTTP/2
	Adoption by request
	Adoption by third parties
	Adoption by servers
	Adoption by CDNs
	Adoption by rank

	Digging a little deeper into HTTP/2
	Switching between protocols
	Number of connections
	Reduce headers
	Prioritization
	The death of HTTP/2 Push?
	Pushed assets
	An alternative to push

	HTTP/3
	HTTP/3 Adoption
	HTTP/3 Support
	Negotiating HTTP/3
	HTTP/3 considerations and concerns

	Conclusion
	Author

	Methodology
	Overview
	About the dataset
	Websites
	Metrics

	Tools
	WebPageTest
	Lighthouse
	Wappalyzer
	Chrome UX Report
	Blink Features
	Third Party Web
	Rework CSS
	Rework Utils
	Parsel

	Analytical process
	Planning
	Analysis
	Interpretation

	Looking ahead

	Contributors

