Ceph ~30PB Test Report

Dan van der Ster (CERN IT-DSS), Herve Rousseau (CERN IT-DSS)

Abstract

During March 2015 CERN IT-DSS provisioned nearly 30 petabytes of rotational disk storage
for a 2 week Ceph test. For the past year, CERN IT has operated a 3 petabyte cluster in
production for OpenStack and in test for various R&D projects. The present test therefore
represents a 10-fold increase in scale versus known deployments’. This test consisted of
adding 7200 4TB drives on 150 storage nodes to an existing (but much smaller) test cluster.
The cluster was benchmarked and various failure conditions were simulated. In summary, the
test showed that operating such a cluster is feasible, though we present some caveats and
suggestions for improved scalability.

1. Motivation

CERN IT-DSS currently operates around 200PB of disk storage (usually with 2 copies, thus
100PB usable) and the LHC experiments continue to produce an estimated 1-2PB more data
per month.

CERN’s present disk storage system is EOS, a system build upon Xrootd and featuring an
in-memory file location catalog. The large size of this catalog results in a few scalability
limitations: each EOS cluster is limited to a few hundred million files (consuming hundreds of
GB of memory); the catalog must be loaded from persistent storage after a restart, taking tens
of minutes; the catalog is a single point of failure, though backup catalogs can take over after
an outage.

For long term data archival, CERN developed and operates CASTOR, a hierarchical storage
management system having its file location catalog in Oracle. The long term strategy for
CERN data storage is to reduce the role of its disk layer to act only as a buffer between
EOS/users and tapes. The size of this buffer is expected to be around 10PB usable.

Both the EOS and CASTOR use-cases present areas where new developments in
consistent-hashing object stores can help solve our scalability limitations. Based on our
successful experience with Ceph and OpenStack, we would like to understand if Ceph can
help satisfy these growing storage requirements.

' We are not aware of public announcements of production Ceph deployments larger than our 3PB instance.

2. Hardware Description

This test used hardware which was procured for the EOS and CASTOR services -- the
primary goal of EOS/CASTOR servers is to minimise cost per TB. We received 150 identical
servers as described in the following table:

CPUs 2x Xeon E5-2650 v2 @ 2.6GHz (HT-enabled: 32 threads)
RAM 64GB
Network Intel 82599 10 GbE NIC

System drives | 2x 2TB HGST HUS724020AL

OSD drives 48x 4TB HGST HMS5C4040BL

SAS Controller | LSI 9207-8e HBA with 2x SFF-8088 external ports

SAS Chasses | 2x 24-bay chassis (either Promise VTrak J830s or Xyratex)

From the start we acknowledge that these machines are not within the recommended Ceph
hardware spec, notably the RAM/TB ratio is far off the suggested 1GB/TB. However, this
hardware is demonstrated to work well in our existing scale-out storage solution EOS.

3. Installation and Deployment

These new servers were added to our existing pre-production cluster having 3 ceph-mons
running Ceph firefly 0.80.8. All our machines run Scientific Linux 6.6.

3.1 Puppet Installation
Our installation procedure uses puppet to scan externally attached disks and call ceph-disk

prepare on empty drives. Each drive is therefore prepared with a 20GB journal partition and
4TB-20GB data partition.

Following ceph-disk prepare, the drives are activated via udev. “Activation”, in this case,
creates the OSD, adds the OSD keyring to the cluster, and then starts the OSD process. Our
ceph.conf has crush update location on start = false, so the new OSDs are not assigned to a
data pool at creation time.

3.1.1 Issues observed during Puppet Installation (attempt #1)

Ouir first attempt at deploying these 150 machines was to take a naive approach: we let
Puppet start working at 18:00 on day 0 then let the ceph-disk prepare/activations happen over
night. This approach pointed out several issues:

1. Our puppet exec for ceph-disk prepare had the “unless” condition as roughly
ceph-disk list | grep <device> | grep ceph. This lead to many ceph-disk
processes scanning the external drives simulateously, and eventually many of these
processes hung. In general, ceph-disk list is quite slow on these 48-disk servers
(compare with our 24-OSD machines, which never showed an issue).

2. The first couple thousand OSDs were created rather quickly, but once the number of
OSDs exceeded a few thousand we started observing single OSD activations were
taking a very long time.

3. Similarly, the first couple thousand OSD processes used little RAM, but once the
number of OSDs was in the many thousands, OSD processes were consuming ~3GB.

4. During the initial installation, we observed ceph-mon LevelDBs exploding to >25GB
and several monitor elections. One monitor which was manually compacted took more
than 4 hours to synchronize.

3.2 osdmap Scalability

Ouir first attempt at deploying this hardware with our existing Puppet manifests and ceph
configuration was a failure. We formed a few theories:

1. The ceph-mons were overloaded with too many OSD creation transactions. We added
SSDs to these mons and upgraded the cluster to Giant, then the Hammer RC. Giant
and later releases allow LevelDB reads during writes, so we expected these changes
to help the cluster responsiveness.

2. The osdmap caching feature of ceph-osd processes was increasing memory
consumption. Hints in this direction came as we saw the osdmap dedup function
consuming lots of CPU with perf top.

When the cluster had 7200 OSDs, we downloaded the map and found that is measures 4MB
in size. By default, the ceph-osd caches 500 previous osdmaps, it was clear that even with
deduplication the map is consuming around 2GB of extra memory per ceph-osd daemon.
After tuning this cache size, we concluded with the following configuration, needed on all
ceph-mon and ceph-osd processes.

[global]
osd map message max = 10

[osd]
osd map cache size = 20
osd map max advance = 10
osd map share max epochs = 10
osd pg epoch persisted max stale = 10

Having this configuration, ceph-osd daemons generally stay under 500 MB memory used,
even with 7200 OSDs in the cluster.

3.4 Puppet installation (attempt #2)

Our second attempt to install the cluster used the aforementioned osdmap cache config
settings and a couple of tricks to prevent too many rapid updates to the osdmap. These
included:

1. We set the flags noin and noup in order to prevent every OSD boot from changing the
osdmap. After all OSDs were installed, we unset those flags and then all OSDs were
marked up and in within one or two changed osdmaps.

2. We set crush update location = false in order to prevent so many osdmap and
crushmap changes. For running such a large cluster in production, we would develop
a tool which manages the crushmap directly instead of relying on the ceph update
location feature.

3.5 Pool Create/Delete Testing

Following the successful installation of the cluster, we performed some initial basic pool
create/delete testing. In these early tests we found that pool creations behaved normally, but
pool deletions had problems.

On a cluster with 7200 OSDs, a data pool requires around 240,000 PGs to achieve the
recommended 100 PGs per OSD. We tested with 65536 PGs. Deleting such a pool caused
several minutes of monitor inaccessibility and elections. It seems that the pool deletion
process puts the monitor in a tight loop and in our case caused a 10 minute outage. This was
confirmed with repeated pool create/delete tests.

4. Performance Testing

We performed extensive bandwidth and IOPS testing to measure the performance of the
cluster. Details are included in Appendix A.

The figure below shows a typical result. Bandwidth from many clients shows that write
throughput scales linearly with the replication used. Also, performance during single OSD or
single host failure does not dramatically decrease performance. It was not confirmed if the
network switches were a bottleneck in this test.

150 clients write throughput (4MB objects) with failures

30 B Mo failure
B OSD Failure
oo 5 Host Failure
5]
1]
& 15
0
7.5
0
2 replicas 3 replicas B+4 jerasure A+4 ISA
5. Summary

This report summarized a ~30PB test using 150 servers with 48x4TB drives each. In the test
we succeeded to deploy the cluster and run performance tests, but several configuration
changes were needed to fit the ceph-osd daemons within available memory. In conclusion
we suggest the following points be followed up with the Ceph developers:

1. The osdmap is a scalability limitation. With 7200 OSDs it is 4MB in size, a size which
causes various problems:

a. While the osdmap is changing frequently, e.g. during cluster deployment, the
ceph-osd spends a lot time in dedup function iterating over the ever-growing
osdmap entries.

b. The osdmap caching feature on the ceph-osd process consumes up to
4MB*500=2GB of memory, and osdmap dedup is not very effective in
decreasing this requirement.

c. Further to 1(b), we find that repeatedly caching 2GB of osdmaps on all OSDs of
a local server is a waste of RAM (i.e. it would be better used as page cache).
Some way to share osdmap cache between local OSDs would be helpful.

d. As the osdmap becomes large, we had to employ tricks to prevent too many
changes to the osdmap, including setting the noup and noin flags while
deploying the cluster.

2. Pool creation uses an intermediate PG state “creating” which seems to keep the
monitors responsive during creation of large pools (e.g. 65536). Pool deletion does not
have an analogous deleting state, and in our tests ceph-mon processes were busy and
unresponsive for up to 10 minutes while deleting a large pool.

A. Appendix: Performance Plots

We first report the baseline sequential performance of this hardware. In the figure below we
used dd with the O_DIRECT flag to measure sequential reading and writing to drives, with
increasing concurrency. At the maximum, we observed a read throughput of 135MB/s and
write throughput of 110MB/s (1O to a single drive). When all drives are used concurrently, we
observe up to 80MB/s reads (per drive) and 43MB/s writes (per drive).

Sequential O_DIRECT bandwidth with dd
160

120
a0
40

0

1drive 12drives 12 drives 24 drives 24 drives 48 drives

B seq read
B seq write

Per drive BW (MB/s)

(6 in {same (12 in (same
gach chassis) each chassis)
chassis) chassis)

With this baseline we can calculate a maximum OSD write throughput of the entire cluster
(assuming co-located OSD journals, single replica, and no other bottlenecks): 150 * 48 drives
*43MB/s / 2 =~ 150GB/s.

a. Single Client 10

MB/sec

MB/zec

1000

750

500

250

1000

T80

500

250

0

Single client write throughput (4MB objects)

B 1 Thread
B 4 Thread
[0 8 Threads
B 32 Threads
B 128 Threads
1 replica 2 replicas 3 replicas 8+4 I5A
.Jerasure
Single client read throughput (4MB objects)
B 1 Thread
B 4 Thread
[B Threads
B 32 Threads
B 128 Threads

1 replica 2 replicas 3 replicas B+4 154
.Jerasure

b. Single Client IOPS

objs/sec

objs/sec

20000

15000

10000

5000

20000

15000

10000

5000

Single client write performance (4kB objects)

|

1 replica

2 replicas

3 replicas

B+4

Jerasure

8+4 ISA

Single client read 4kB objs/sec performance

1 replica

2 replicas

3 replicas

8+4
Jerasure

8+4 ISA

B 1 Thread

B 4 Threads

[8 Threads

B 32 Threads
B 128 Threads
M 512 Threads
B 2048 Threads

B 1 Thread

B 4 Threads
[B Threads
B 32 Threads
B 128 Threads
B 512 Threads

B 2048
Threads

c. Single Client Latency

0.1

0.08

0.05

seconds

0.03

1000

750

500

MB/sec

250

|
B Write MBis

Single client write latency (4kB objects)

sl

1 replica 2 replicas 3 replicas B+4 |54

.Jerasure

Mixed read/write

B Read MB/s

B 1 Thread

B £ Threads
7 8 Threads
B 32 Threads
B 128 Threads
B 512 Threads

1 client reads while 1 is writing (4MB objects, 32 threads)

10 20 30 40 50

Time {5)

e. Many Clients Writing

150 clients write throughput (4MB objects)

60
45
]
b
& 30
15 I ._ll
0
1 replica 2 replicas 3 replicas 8+4 I5A
jerasure

f. Many Clients Failure

150 clients write throughput (4MB objects) with failures
30

B No failure
B 03D Failure
29 & M Host Failure
§ 15
L]
7.5
0

2 replicas 3 replicas B+4 jerasure B+4 |SA

g. Many Clients IOPS

113 clients write performance (4kB objects, 128 threads)
B Objects [l Avg. latency

120000

90000

60000

objsisec

30000

1 replica 2 replicas 3 replicas B+4 jerasure B+4 ISA

seconds

