
Word Embedding for Social Book Suggestion

Nawal Ould-Amer1, Philippe Mulhem1, Mathias Géry2, and Karam
Abdulahhad1

1 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

2 Université de Lyon, F-42023, Saint-Étienne, France,
CNRS, UMR 5516, Laboratoire Hubert Curien, F-42000, Saint-Étienne, France

Université de Saint-Étienne, Jean-Monnet, F-42000, Saint-Étienne, France
{Nawal.Ould-Amer, Philippe.Mulhem, Karam.Abdulahhad}@imag.fr,

mathias.gery@univ-st-etienne.fr

Abstract. This paper presents the joint work of the Universities of
Grenoble and Saint-Étienne at CLEF 2016 Social Book Search Sugges-
tion Track. The approaches studied are based on personalization, con-
sidering the user’s profile in the ranking process. The profile is filtered
using Word Embedding, by proposing several ways to handle the gener-
ated relationships between terms. We find that tackling the problem of
“non-topical” only queries is a great challenge in this case. The official
results show that Word Embedding methods are able to improve results
in the SBS case.

Keywords: social network, word embedding, probabilistic retrieval, pro-
file selection

1 Introduction

This paper presents the joint participation of the MRIM group from the Labora-
toire d’Informatique de Grenoble and the Laboratoire Hubert Curien de Saint-
Étienne at CLEF 2016 Social Book Search (SBS) Suggestion Track. The goal
of this track is to evaluate book retrieval approaches using the metadata of the
book and user-generated content [6]. Considering our previous participation to
this track in 2015 [9], our finding was that taking into account the whole user
profile is not adequate. Hence, we believe that a selection of an adequate set of
terms related both to the user’s profile and to his query could enhance the re-
sults. Such selection of terms is then matched against the documents, and fused
with the query/document matching values. The work described here relies on
Word Embedding (word2vec [7]) as a mean to help to select those terms.

Recent works investigate the use of Word Embedding for enhancing IR effec-
tiveness [1, 3, 8] or classification [5]. Word Embedding techniques seek to embed

representations of words. For example, two vectors
−→
t0 and

−→
t1 , corresponding to

the words t0 and t1, are close in a space of N dimensions if they have similar
contexts and vice-versa, i.e. if the contexts in turn have similar words [4]. In this



vector space of embedded words, the cosine similarity measure is classically used
to identify words occurring in similar contexts. In the work described here, we
used this approach to select words from the user’s profile that occur in the same
context as the query terms. These selected words represent a user sub-profile
according to the context of his query.

More precisely, we investigate here several ways to filter these terms and their
impact on the quality of the results. In a way to determine the impact of such
term filtering, we also study the use of non-personalized word embeddings for
the query terms, i.e., without using the user’s profile.

The rest of the paper is organized as follows: Section 2 presents the proposed
approach and its four steps. The experiments and the official results are presented
in Section 3. We conclude this work in Section 4.

2 Proposed approach

2.1 Global Process

The task described here aims to suggest books according to a user’s query and
to his profile. It consists of four steps:

1. Learning of the Word Embedding : this step describes the learning of a set of
word embeddings using word2vec [7] and the features applied in the training
process;

2. User Model: this step describes the way user profile is modeled;
3. Profile Query-Filtering: this step describes the building process for the user

sub-profile based on his query;
4. Ranking Model: this step depicts the ranking model using a Profile Query-

Filtering.

2.2 Notations

We present now the notations used in this paper:

– u ∈ U : a user u from the whole set of users U ;
– q = {t1, t2, ..., tm}: the original query of a user u.
– qf = {t1, t2, ..., to}: the filtered query of a user u.
– P (u) = {t1 : w1, t2 : w2, ..., tn : wn}: the profile of a user u, composed of

couples <term : weight>.
– Terms(u) = {t1, t2, ..., tn}: a set of user terms belonging to the user profile
P (u).

– WordEmbeddingw2v(q): a set of word embeddings (i.e. output of the section
2.3).

– PFiltered(q, u): a sub-profile of the user u according to the user query q.
– PWeighted filtered(q, u): a weighted sub-profile of the user u according to the

user query q.



2.3 Learning of Word Embeddings

Word Embedding is the generic name of a set of NLP-related learning tech-
niques to map words to low-dimensional (w.r.t. vocabulary size) vectors of real
numbers. Word Embedding [7], which falls in the same category as Latent Se-
mantic Analysis (LSA) [2], enables us to deal with a richer representation of
words, namely words are represented as vectors of more elementary components
or features. The similarity between vectors is supposed to be a good indicator
to the ‘closeness’ between the respective words [11]. In addition, the arithmetic
operations between vectors reflect a type of semantic-composition, e.g. bass +
guitar = bass guitar [11].

In this section, we describe the process of learning word-vectors. To this end,
we train word2vec [7] on the Social Book Search corpus. Word2vec represents
each word w of the training set as a vector of features, where this vector is sup-
posed to capture the contexts in which w appears. Therefore, we chose the Social
Book Search corpus to be the training set, where the training set is expected to
be consistent with the data on which we want to test.

To construct the training set from the Social Book Search corpus, we sim-
ply concatenate the contents of all documents in one document, without any
particular pre-processing such as stemming or stop-words removal, except some
text normalization and cleaning operations such as lower-case normalization, re-
moving HTML tags, etc. The obtained document is the input training set of
word2vec. The size of the training set is ∼ 12.5GB, where it contains 2.3 bil-
lions words, and the vocabulary size is about 600K. The training parameters of
word2vec are set as follows:

– we used the continuous bag of words model instead of the skip-gram (word2vec
options: cbow=1);

– the output vectors size or the number of features of resulting word-vectors
is set to 500 (word2vec options: size=500);

– the width of the word-context window is set to 8 (word2vec options: win-
dow=8);

– the number of negative samples is set to 25 (word2vec options: negative=25).

For example, based on the output of word2vec, the 10 most similar (using
cosine similarity) words of “novel” in the Social Book Search corpus are: story,
novella, thriller, tale, storyline, masterpiece, plot, debut, engrossing, and genre.

2.4 User Modeling

We model each user u by a set of terms that describe his interests. These terms
are the tags that a user u used to describe or annotate the documents (books
present in his catalogue). Each user u is represented by his profile P (u) as a
vector over the set of tags as follow:

P (u) = {t1 : w1, t2 : w2, ..., tn : wn} (1)



Where ti is a term and wi a weight of this term, corresponding to his importance
in the user profile. This weight wi is the tf of ti: the number of times the user u
used this tag to annotate books.

2.5 Profile Query-Filtering

2.5.1 Term Filtering

As stated before, Word Embedding can potentially be helpful in the selection
of terms related to the query. Despite the effectiveness of Word Embedding to
select embedded terms, it could happen that they decrease the effectiveness of
the system. Usually, embedded terms are used as extensions of a term, as query
expansion. In fact, if an extended term is a noisy term (because of its ambiguity
for instance, or because it is not a topical term of the query), then the set of
its resulting word embeddings will increase the noise in the extended query. For
example, in the queries (taken from the topics of Social Book Search 2016) “Help!
i Need more books”, “Can you recommend a good thesaurus?”, “New releases
from authors that literally make you swoon...” or “Favorite Christmas Books
to read to young children”, the majority of words are not useful for expansion,
like “new, good, recommend, make, you ...”. Therefore, we need to filter the
words of the queries before the expansion process. We chose to remove from the
words to be expanded all the words that are adjectives. To do that, we use an
English stop-adjective list in addition to the standard English stop-word. Then,
this process generates, from initial query q, a filtered query qf = {t1, t2, ..., to}
that is expected to contain more relevant topical elements as output.

2.5.2 Word Embedding Selection

From each of the terms in the filtered query qf obtained by the previous step
2.5.1, we then select their set of word embeddings. For each term as an input, we
obtain the top-k most related terms as an output. The metric used is the cosine
similarity between the query term and all words in the training corpus. From
these top-k terms, we do not want to over-emphasize variations of the query
term. So, we filter out from the top-k terms the ones that have the same stem
as the initial query term. Such stems are generated using the well know Porter
stemmer for English.

The expanded query generated as output of this step is:

WordEmbeddingw2v(qf ) =


emt11, emt12, ..., emt1k,
emt21, emt22, ..., emt2k,
...
emto1, emto2, ..., emtok

 (2)

Where WordEmbeddingw2v(qf ) denotes the function that returns a set of
word embedding for a given filtered query qf , and em tij denotes the jth element
of the top-k word embeddings of ti.



2.5.3 Generation of user’s sub-profile

The goal of our proposal is to construct a sub-profile using a set of word
embeddings based on a user query. Our approach here is to apply a naive method
based on the Intersection between a) the query word embeddings set and b)
the user profile, as follows:

PFiltered(qf , u) = WordEmbeddingw2v(qf ) ∩ Terms(u) (3)

We propose two variations of such a user query sub-profile:

– Non-Weighted Sub-Profile (PFiltered): this user sub-profile is represented
by only the terms without weights, then all terms in the query have a same
weight (i.e. corresponds to PFiltered(qf , u) defined in Eq. 3).

– Weighted Sub-Profile (PWeighted filtered): for this user sub-profile, the
weight for each term in the profile is the cosine between of the embeddings
of the filtered term and its respective query term.

2.6 Ranking

In this part, we present the ranking used to suggest books to the user according to
his query and to his profile. We take into account two elements: if the document
is related to the user query, and if the document is related to the user profile, as
follows:

Score(qf , u, d) = α Score(qf , d) + (1− α) Score(u, d) (4)

Where Score(qf , d) is the matching score between the filtered query qf and the
document d, Score(u, d) is the matching score between the user u and the docu-
ment d, and α ∈ [0, 1] determines the relative importance of each part of formula.

The Score(qf , d) is a fusion of four parts:

Score(qf , d) = β ScoreBM25(qf , d) + γ ScoreLM (qf , d) (5)

+ λ ScoreBM25(WordEmbeddingw2v(qf ), d)

+ δ ScoreLM (WordEmbeddingw2v(qf ), d)

Where ScoreBM25(qf , d) (resp. ScoreLM (qf , d)) denotes a matching using the
classical BM25 model (resp. language model), and β, γ, λ and δ are parameters
that determine the importance of each part of the document overall score (β +
γ + λ + δ = 1).

The function Score(u, d) in equation (4) is computed as a classical matching
function (BM25 or Language Model) between the document d and the filtered
user’s profile (weighted: PWeighted filtered, or not weighted: PFiltered) of u.



3 Experimental Results

3.1 Parameters and post-processing

For all the runs described below, for the BM25 runs the parameters are the
defaults of Terrier [10], except for one parameter b = 0.5, according to previous
experiments on SBS 2015. For the Language Models with Dirichlet smoothing,
we use the default Terrier parameter µ = 2500.

For the re-ranking post process, we used the same protocol used in [9]. The
documents that belong to the user’s catalogue are removed for the result. This
process is applied for each run.

3.2 Submitted runs

We submitted the 6 following runs:

1. RUN1: This run is the non-personalized approach (α = 1 in the Eq. 4). The
Score(qf , d) is computed using Eq. 5 with the following parameters: β = 0.6,
γ = 0.2, λ = 0.2, δ = 0.0.

2. RUN2: This run is also a non-personalized approach (α = 1 in the Eq. 4),
very similar to the run RUN1. The Score(qf , d) is computed using Eq. 5
with the following parameters: β = 0.6, γ = 0.2, λ = 0, δ = 0.2.

3. RUN3: This run is a personalized approach where the user u is repre-
sented by his filtered profile PFiltered in the Score(u, d) function (Eq.4). The
Score(qf , d) represents the score of d according to the RUN1 above. The
score Score(u, d) of equation (4) is equal to ScoreBM25(PFiltered(qf , u), d).
The parameter α is equal to 0.7.

4. RUN4: This run is a personalized approach where the user is represented by
his filtered profile PFiltered in the Score(u, d) function (Eq.4). The Score(qf , d)
represents the score of d according to the RUN1 above. The score Score(u, d)
of equation (4) is equal to ScoreLM (PFiltered(qf , u), d). The parameter α is
equal to 0.7.

5. RUN5: This run is a personalized approach where the user is represented by
his weighted profile PWeighted filtered in the Score(u, d) function (Eq.4). The
Score(qf , d) represents the score of d according to the RUN1 above. The score
Score(u, d) of equation (4) is equal to ScoreBM25(PWeighted Filtered(qf , u), d).
The parameter α is equal to 0.7.

6. RUN6: This run is a personalized approach where the user is represented by
his weighted profile PWeighted filtered in the Score(u, d) function (Eq.4). The
Score(qf , d) represents the score of d according to the RUN1 above. The score
Score(u, d) of equation (4) is equal to ScoreLM (PWeighted Filtered(qf , u), d).
The parameter α is equal to 0.7.

All these runs parameters are described in table 1.



Table 1. Runs Parameters

Run α Score(qf , d) Score(u, d)

β γ λ δ profile

RUN1 1.0 0.6 0.2 0.2 0.0 -
RUN2 1.0 0.6 0.2 0.0 0.2 -
RUN3 0.7 0.6 0.2 0.2 0.0 filtered
RUN4 0.7 0.6 0.2 0.2 0.0 filtered
RUN5 0.7 0.6 0.2 0.2 0.0 filtered, weighted
RUN6 0.7 0.6 0.2 0.2 0.0 filtered, weighted

3.3 Official Results

According to table 2, we see that all of our results are quite close to each other.
Even the weighted profiles compared to unweighted ones does not change results:
runs RUN6 and RUN3 on one side and runs RUN4 and RUN5 lead to exactly
the same result lists, and therefore the same evaluation results. This may be
explained by the fact that the top-10 terms are usually very close (according to
the cosine similarity) to the query terms, leading to weights close to 1.0. This
has to be studied more carefully in the future. We remark that our two best
runs (RUN2 and RUN6) include word embeddings. Both of them use Word
Embedding applied on Language Models. It seems so that the integration of
word embeddings behaves a bit better on language models than on BM25. Our
best run, RUN2, is not personalized. This shows that using word embeddings
in the context of personalization must be further studied.

Table 2. Official Results

Rank Run NDCG@10 MRR MAP R@1000

18 RUN2 0.0889 0.1889 0.0518 0.3491
19 RUN6 0.0872 0.1914 0.0538 0.3652
20 RUN3 0.0872 0.1914 0.0538 0.3652
21 RUN1 0.0864 0.1858 0.0529 0.3654
22 RUN5 0.0861 0.1866 0.0525 0.3652
23 RUN4 0.0861 0.1866 0.0524 0.3652

3.4 Unofficial Results

We depict here a strange behavior that we faced after the release of the official
relevance judgments: the reranking (described in Section 3.1) that removes the
documents that belong to the user catalogue does lower the evaluations results.
Table 3 presents the NDCG@10 values with and without reranking, with the
relative improvement. This is explained by the fact that we chose to remove all
the ISBN documents that correspond to the documents from the user catalogue,
and not only the documents that correspond to the LT id of the books. This



approach increased the quality of the results in 2015, but is clearly not adequate
for this year. This may come from a different removal, in the relevance judgments,
of the documents in the user’s catalogue.

Table 3. Unofficial Results

Run NDCG@10 official NDCG@10 non reranked (%)

RUN1 0.0864 0.1073 (+24.2%)
RUN2 0.0889 0.1092 (+22.8%)
RUN3 0.0872 0.1073 (+23.1%)
RUN4 0.0861 0.1063 (+23.5%)
RUN5 0.0861 0.1063 (+23.(%)
RUN6 0.0872 0.1073 (+23.1%)

4 Conclusion

We presented in this paper a joint work between the universities of Grenoble
and Saint-Étienne. Our focus was to study the integration of word embeddings
for the Social Book Suggestion task. We find that the nature of the queries
pose a great challenge to an effective use of word embeddings in this context.
Weighting the expansion terms does not lead to better results. Our future works
may help to understand this behavior. One last point is related to the removal
of the documents that belong to the user’s catalogue: removing all the ISBN ids
and not only the LT ids from the results, assuming that is a user already bought
one edition of a book he does not want another edition, is clearly not the right
choice, as such removal decreased substantially our official results.

References

1. Almasri, M., Berrut, C., Chevallet, J.: A comparison of deep learning based query
expansion with pseudo-relevance feedback and mutual information. In: European
Conference on IR Research. pp. 709–715. ECIR’16 (2016)

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. Journal of the American Society for Information
Science 41(6), 391–407 (1990)

3. Ganguly, D., Roy, D., Mitra, M., Jones, G.J.: Word embedding based generalized
language model for information retrieval. In: Conference on Research and Devel-
opment in Information Retrieval. pp. 795–798. SIGIR’15, New York, USA (2015)

4. Goldberg, Y., Levy, O.: word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. CoRR abs/1402.3722 (2014)

5. Kim, Y.: Convolutional neural networks for sentence classification. CoRR
abs/1408.5882 (2014)

6. Koolen, M., Bogers, T., Gäde, M., Hall, M.A., Huurdeman, H.C., Kamps, J., Skov,
M., Toms, E., Walsh, D.: Overview of the CLEF 2015 Social Book Search lab. In:
Conference and Labs of the Evaluation Forum. pp. 545–564. CLEF’15, Toulouse,
France (2015)



7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

8. Nalisnick, E., Mitra, B., Craswell, N., Caruana, R.: Improving document ranking
with dual word embeddings. In: Conference Companion on World Wide Web. pp.
83–84. WWW’16 Companion, Montreal, Quebec, Canada (2016)

9. Ould-Amer, N., Mulhem, P., Géry, M.: LIG at CLEF 2015 SBS Lab. In: Conference
and Labs of the Evaluation Forum. CLEF’15, Toulouse, France (2015)

10. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
High Performance and Scalable Information Retrieval Platform. In: Workshop on
Open Source Information Retrieval. OSIR’06, Seattle, Washington, USA (2006)

11. Widdows, D.: Geometry and Meaning. Center for the Study of Language and
Information/SRI (2004)


