
Registrations vs Rede�nitions in Mizar

Artur Korniªowicz

Institute of Informatics, University of Biaªystok

K. Cioªkowskiego 1M, 15-245 Biaªystok, Poland

arturk@mizar.org

Abstract

In this paper we brie�y discuss two constructions of the Mizar lan-
guage � rede�nitions and registrations. We focus on practical aspects
of using them in Mizar texts to be e�ectively processed by the Mizar

Verifier. We describe situations when rede�nitions can be and should
be replaced by corresponding registrations.

1 Introduction

The Mizar system [Ban15, Gra15] is a computer system invented for computer-assisted veri�cation of mathe-
matical papers. One of the main components of the system is the Mizar language � a formal language designed
for writing mathematical papers readable for humans and e�ectively processed by computers. The language
consists of rules for writing �rst-order mathematical formulas, proofs, and also syntactic constructions to launch
specialized algorithms increasing computational power of the Verifier (e.g. term identi�cations, term reduc-
tions [Kor13], �exary connectives [Kor15:b], property registrations [Nau04], etc.).

In this paper, in Sec. 2, we focus on two particular constructions � rede�nitions and registrations, especially
how they can be used in Mizar texts to be e�ectively processed by the Mizar Verifier. In Sec. 3, we present
two examples taken from the Mizar Mathematical Library which illustrate our discussion.

2 Rede�nitions and Registrations

In Mizar, rede�nitions can be used for three di�erent purposes: a) to specialize (if provable) result types of
de�ned functors and modes, b) to change de�nientia of notions (predicates, attributes, functors, and modes), and
c) to declare properties of particular constructors [Nau04]. The �rst application in�uences the identi�cation of
operations and types, the second application can be used for the processing de�nitional expansions [Kor15:a], and
the third one can be used for the justi�cation of chosen statements automatically (without explicit references to
appropriate theorems). An important feature of the processing rede�nitions performed by the Verifier is that
the order of rede�nitions accessible in a given text (rede�nitions imported from the database MML or declared
in the text) is important. The last rede�nition of a notion applicable for given arguments is applied.

On the other hand, registrations can be used for three other purposes1: a) to register the existence of objects
satisfying required properties written as adjectives (existential registrations), b) to declare that some objects
possess chosen properties (functorial registrations), and c) to declare that all elements of some type which satisfy
a set of properties satisfy also another set of properties (conditional registrations). A signi�cant feature of the
processing registrations is that the order of registrations accessible in a given text plays no role (in opposite to
the processing rede�nitions), all registrations which can be applied for given arguments are applied.

From the point of view of this paper, the fact that only the last rede�nition of a given notion is considered in
the process of computing types of objects, but all registrations are, is crucial. It is the fundamental reason for

1The Mizar word registration is also used in other contexts, to introduce items like: identify, sethood, reduce.



which registrations should be used instead of rede�nitions, whenever possible. The question now is what are the
situations when rede�nitions can be replaced by corresponding registrations. Before we answer this question,
let us mention that the Mizar system provides two ways to introduce new types: not expandable (really new
constructors) and expandable (shortcuts for collections of adjectives assigned to radix types)2. Now, we can
formulate a rule which de�nes situations when rede�nitions can be replaced by registrations: If the result type

of a functor and the mother type of a mode to which the original type of the functor and the mode is rede�ned

is an expandable type, then such rede�nitions are replaceable by a functorial registration in the case of functors

and by a conditional registration in the case of modes. Practical examples which depict the rule are presented in
the next section.

3 Examples from the Mizar Mathematical Library

3.1 Functors

Let us consider the functor Balls(x) [Sko98] which de�nes a family of balls in a topological space generated by
a metric space:

definition

let M be non empty MetrStruct, x be Point of TopSpaceMetr(M);

func Balls(x) -> Subset-Family of TopSpaceMetr(M)

...

end;

To declare that Balls(x) constitutes a base in the space, the authors used the rede�nition:

definition

let M be non empty MetrSpace, x be Point of TopSpaceMetr(M);

redefine func Balls(x) -> Basis of x;

end;

But, because the mode Basis of x [Try97] is de�ned as an expandable mode:

definition

let T be non empty TopStruct, x be Point of T;

mode Basis of x is open x-quasi_basis Subset-Family of T;

end;

the rede�nition can be replaced by the functorial registration:

registration

let M be non empty MetrSpace, x be Point of TopSpaceMetr(M);

cluster Balls(x) -> open x-quasi_basis;

end;

3.2 Modes

To exemplify how rede�nitions of modes can be replaced by conditional registrations, let us consider the mode
Element of D [Ban92], where D is a set containing only trees:

definition

let D be constituted-Trees non empty set;

redefine mode Element of D -> Tree;

end;

Because the mode Tree [Ban90] is de�ned as an expandable mode:

definition

mode Tree is non empty Tree-like set;

end;

2In fact, there is another way to de�ne new types � structures, but it is not relevant to the topic.



the rede�nition can be replaced by the conditional registration:

registration

let D be constituted-Trees non empty set;

cluster -> non empty Tree-like for Element of D;

end;

3.3 Experiments

To detect all cases in the Mizar Mathematical Library when rede�nitions of functors and modes could be replaced
by corresponding registration, a special tool has been implemented by the author of the paper. In the Mizar

Version 8.1.05 working with the MML Version 5.37.1267, 89 possible replacements of rede�nitions were found.3

A revision [Ala11, Gra07, Pak14] of the MML was proposed to the Library Committee.

References

[Ala11] Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar
Mathematical Library. In: Davenport, J.H. et al. (eds.) Proceedings of the 18th Calculemus and 10th Interna-
tional Conference on Intelligent Computer Mathematics. Lecture Notes in Computer Science, vol. 6824, 149�
163. Springer-Verlag, Berlin, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-22673-1_11

[Ban90] Bancerek, G.: Introduction to trees. Formalized Mathematics 1(2), 421�427 (1990), http://fm.mizar.
org/1990-1/pdf1-2/trees_1.pdf

[Ban92] Bancerek, G.: Sets and functions of trees and joining operations of trees. Formalized Mathematics 3(2),
195�204 (1992), http://fm.mizar.org/1992-3/pdf3-2/trees_3.pdf

[Ban15] Bancerek, G., Byli«ski, C., Grabowski, A., Korniªowicz, A., Matuszewski, R., Naumowicz, A., P¡k, K.,
Urban, J.: Mizar: State-of-the-art and beyond. In: Kerber, M. et al. (eds.): Intelligent Computer Mathemat-
ics � International Conference, CICM 2015, Washington, DC, USA, Proceedings, Lecture Notes in Computer
Science, vol. 9150, 261�279, Springer (2015), http://dx.doi.org/10.1007/978-3-319-20615-8_17

[Gra15] Grabowski, A., Korniªowicz, A., Naumowicz, A.: Four decades of Mizar. Journal of Automated Reason-
ing 55(3), 191�198 (2015), http://dx.doi.org/10.1007/s10817-015-9345-1

[Gra07] Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathematical repositories.
In: Proceedings of the 14th Symposium on Towards Mechanized Mathematical Assistants: 6th International
Conference. 235�249. Calculemus '07 / MKM '07, Springer-Verlag, Berlin, Heidelberg (2007), http://dx.
doi.org/10.1007/978-3-540-73086-6_20

[Kor13] Korniªowicz, A.: On rewriting rules in Mizar. Journal of Automated Reasoning 50(2), 203�210 (2013),
http://dx.doi.org/10.1007/s10817-012-9261-6

[Kor15:a] Korniªowicz, A.: De�nitional expansions in Mizar. Journal of Automated Reasoning 55(3), 257�268
(2015), http://dx.doi.org/10.1007/s10817-015-9331-7

[Kor15:b] Korniªowicz, A.: Flexary connectives in Mizar. Computer Languages, Systems & Structures 44, 238�
250 (2015), http://dx.doi.org/10.1016/j.cl.2015.07.002

[Nau04] Naumowicz, A., Byli«ski, C.: Improving Mizar texts with properties and requirements. In: Asperti, A.
et al. (eds.) Mathematical Knowledge Management, Third International Conference, Proceedings. Lecture
Notes in Computer Science, vol. 3119, 290�301 (2004), http://dx.doi.org/10.1007/978-3-540-27818-4_
21

[Pak14] P¡k, K.: Improving legibility of natural deduction proofs is not trivial. Logical Methods in Computer
Science 10(3), 1�30 (2014), http://dx.doi.org/10.2168/LMCS-10(3:23)2014

[Sko98] Skorulski, B.: First-countable, sequential, and Frechet spaces. Formalized Mathematics 7(1), 81�86
(1998), http://fm.mizar.org/1998-7/pdf7-1/frechet.pdf

3Computations were carried out at the Computer Center of University of Biaªystok http://uco.uwb.edu.pl



[Try97] Trybulec, A.: Baire spaces, Sober spaces. Formalized Mathematics 6(2), 289�294 (1997), http://fm.
mizar.org/1997-6/pdf6-2/yellow_8.pdf


