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Abstract

We present a method for encoding game logs as numeric fea-
tures in the card game Dominion. We then run the manifold
learning algorithm t-SNE on these encodings to visualize the
landscape of player strategies. By quantifying game states as
the relative prevalence of cards in a player’s deck, we cre-
ate visualizations that capture qualitative differences in player
strategies. Different ways of deviating from the starting game
state appear as different rays in the visualization, giving it
an intuitive explanation. This is a promising new direction
for understanding player strategies across games that vary in
length.

Introduction
The study of artificial intelligence for games has historically
been concerned with understanding strategy. However, until
recently, the focus has been on the ideal strategy, and design-
ing an agent that can outperform or compete with the best
humans. As a result, the AI community has made signifi-
cant advances in developing agents with a similar skill level
to humans, even if their behavior is not particularly similar
(Jaffe et al. 2012).

These high performance agents reflect big steps forward
for the AI community, but offer little to the game develop-
ment community. A game developer is less likely to be in-
terested in a perfect agent, and more likely to be concerned
with designing an AI that is fun to play against, or models
a specific personality. Here, we consider personality to be a
tendency towards a specific playstyle or strategy.

Personality-based agents also have significant implica-
tions for game design. A well-designed game should ide-
ally be robust to a variety of player strategies, but it can
be difficult to understand the landscape of those strategies
in the game development process. Personality-based agents
can automate that process, allowing game designers to un-
derstand how individual mechanics or rule changes affect
the relative strength of various game-playing approaches.

More broadly, games provide a closed environment for
understanding the landscape of individual preferences. Ul-
timately, we hope to extract personalities or strategies that
can be applied to a new task or set of game mechanics, and
model how that player would behave.

The natural question that follows from this is how we
learn these strategies. Ideally, we could develop these strate-

gies from only the rules of the game. In reality, this process is
significantly easier for an already-released game for which
we can observe properties about the meta-game, and how
players interact with it. This field of work’s application to
game balance can still apply in the case of already-released
games—many online games are constantly updated to main-
tain balance, and other games, like Dominion, are concerned
with designing well-balanced expansions.

In this work, we examine the popular strategy card game
Dominion, and propose a method for encoding games traces
into numeric features. After encoding individual players’
gameplay, we use the t-SNE dimensionality reduction tech-
nique to visualize the landscape of player strategies. We
see promising results that reflect different ways of diverg-
ing from the starting game state.

We explore game strategy as a proxy for player personal-
ity; once a field of strategies is observed, they can be clus-
tered into player personalities based on our belief about a
player’s propensity to choose one strategy over another.

Background
Dominion
Dominion is a well-studied game by the game AI community
(Winder 2014; Mahlmann, Togelius, and Yannakakis 2012;
Gold 2011). It is a card game in which players aim to build
a deck of high-quality cards starting from a seed of 10 low-
quality cards. Cards are drawn from a player’s deck and then
used to buy new cards from the common pool, which are
cycled into the player’s deck for future turns.

The game consists of three primary card types: action
cards, which allow a player to execute specific abilities; trea-
sure cards, which count as currency for the player to be able
to buy new cards at the end of her turn; and victory cards,
which are worth points at the end of the game but useless in
hand. The diversity in card mechanics leads to variability in
player strategy.

Dominion exhibits many properties that make it a difficult
game to extract knowledge from or design AI agents for.
Firstly, it is stochastic, with players drawing from a shuffled
deck every turn. Thus player decisions at time-step t cannot
be directly compared.

Further, the set of cards in the common pool from which
players build their deck changes from game to game. The



base game of Dominion consists of 26 cards of which 10
are chosen for each game. These are added to a pool of 7
universal cards that are used in every game. There are ap-
proximately five million ways to set up the game from the
base game alone, and with 359 total cards in all expansions,
the combinatorial explosion means that most card sets have
never been observed before.

This poses an interesting opportunity to game AI experts:
Dominion’s mechanic space is changeable, and by develop-
ing theories on a single set of cards, we can see how they
hold up to mechanic changes. In the context of this work,
we examine the strategies present under a single set of cards,
with the goal of extrapolating these strategies into player
personality models which can be applicable to a different
set of cards.

Related Work
Previous work on player persona modeling has largely been
motivated by the development of utility functions that reflect
players’ propensities towards certain actions (Holmgård et
al. 2014). It has been shown that these utility functions
can be developed with evolutionary computation and com-
bined with the Monte-Carlo Tree Search algorithm to de-
velop agents that model certain personalities (Holmgård et
al. 2018). However, the motivation behind these papers is to
examine and encode intuitive player desires, like “finish as
quickly as possible” or “defeat all the enemies.” In a game
where it is harder to identify underlying motivations, these
models become less applicable.

In an earlier work on clustering of Dominion personas,
Kevin Gold developed intuitions for what certain players
strive for, and then used Bayesian network models to cluster
players into groups (Gold 2011). However, the final clusters
did not reflect the priors, and the vast majority of players
were moved into a single cluster. Gold concluded that clus-
ters may not as discrete as we might want. Many players
will try a combination of synergies in a single game, just
as many players enjoy both speedy gameplay and defeating
monsters, and so in building off of Gold’s conclusions we
expect a continuum between different ways of playing.

Gold’s paper proposed two specific models for predict-
ing card buys: a trigram model based on two previous buys,
and a naive Bayes model, based on all cards currently in the
player’s deck. The author notes that the “natural follow-up
experiment should be to determine whether EM can assign
players to one model structure or other based on how well
the models capture player behavior” (Gold 2011). Thus Gold
proposed clustering players on which factors inform their
decision making.

However, the issue of examining what informs a player
decision is particularly difficult in Dominion. Because vic-
tory cards are useless in the deck until the end of the game,
general strategies involve so-called engine building: at the
start, a player buys high quality cards so that towards the
end she can buy as many victory cards as she can. However,
when this switch occurs, and to what degree it is a binary
switch as opposed to a gradual one, remains an open ques-
tion.
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Figure 1: Histogram of game lengths, measured in turns, for
all player counts.

Games can vary greatly in length, and with multiple possi-
ble end conditions, it can be difficult to estimate what stage
a game is in. A recent work found that a neural network
achieved better performance at Dominion when replaced
with two neural networks for the early and late game, and
evolving the change point between them (Winder 2014).

Strategy
These papers are primarily concerned with modeling a
player’s decision-making process in order to understand her
personality. This can be done by considering a player’s ac-
tions across multiple games. In contrast, in this paper we
are concerned with understanding a player’s strategy, the se-
quence of actions taken in a single game.

Previous work on knowledge extraction from games has
considered two methodologies for encoding play traces: ei-
ther as a sequence of decisions (Osborn, Samuel, and Mateas
2017) or a sequence of game states (Andersen et al. 2010;
Liu et al. 2011; Zhan and Smith 2015). Because of the
stochastic nature of Dominion, sequences of decisions are
not directly comparable, so we will primarily encode the
traces as sequences of game states.

Methodology
Data
For this study we make use of data provided by domin-
ion.isotropic.org, a server created by fans for online play of
Dominion. In 2013, the server was shut down due to the offi-
cial licensed implementation of online Dominion going live,
but all of the game logs are still available online. We ex-
amine logs from June 2011 to March 2013, totaling almost
eleven million files.

Despite there being eleven million total logs, the most
popular card-set appears in only 3,012 games. The 10 cards
were: Cellar, Market, Militia, Mine, Moat, Remodel, Smithy,
Village, Woodcutter, and Workshop. For this study, we want
to examine strategies under a closed set of rules, so we use
this as our data. We are considering each player’s game trace
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Figure 2: 2-dimensional embeddings of player traces, with color encoding the length of the trace in turns. On the left is the turn
encoding; on the right, the game state encoding.

individually, so each player in a multiplayer game will have
her own encoding.

Because some of the traces are 1-player games where the
player appears to be experimenting with card combinations
or playing illogically, we subset our data to only 2+ player
games of length 10-30 turns. We found this to be the range of
“normal” game lengths, see Figure 1. We are left with 2,795
traces.

Feature Encoding
We propose a new encoding of game traces and compare
its results with three naive encodings. For the first naive en-
coding, we create one feature for the number of each card
played on each turn, and another feature for the number of
that card bought on that turn. Given that there are 17 cards
and 30 turns, the data is 1,020-dimensional. We will refer to
this as the turn encoding method.

Next we try clustering on game state space, where each
turn, we encode the number of cards of each type present in
the player’s deck at the end of the turn. In this case, the fea-
ture space is 510-dimensional. Further, we let the last game
state hang, meaning that for a game that ends on turn 20, the
feature for turns 20-30 are all identical, and reflect the end-
game deck composition of that player. We call this the game
state encoding method.

For the third encoding, we use the same methodology as
the second encoding, but only encode the first 10 turns of the
game and ignore everything that happens after that. The fea-
ture space here is 170-dimensional. We call this the opening
encoding method.

Finally, for our proposed encoding, instead of the features
representing the amount of each card in a player’s deck, we
encode them as the proportion of each card in the player’s
deck. Just as in the game state encoding method, we let the
final state hang. Here the feature space is 510-dimensional.
We will refer to this as the normalized encoding method.

Manifold Learning
We run t-distributed Stochastic Neighbor Embedding (t-
SNE) on these features to visualize the topology of the point

cloud. t-SNE is a manifold learning technique that allows
for the detection and representation of non-linear structure
in the high-dimensional data, keeping nearby points close
together in the resulting low-dimensional embedding (Van
Der Maaten 2014). In the case of Dominion play traces, we
encode the games into a set of features and use t-SNE to plot
these games such that traces that are close to each other on
the plot are similar in their features. Because Dominion has
some well-known strategies, we can verify t-SNE’s output
by looking for regions corresponding to these strategies.

The axes of the resulting plot have no direct interpretation.
We use the Barnes-Hut approximation (Van Der Maaten
2013) to improve running time and compute the embedding
efficiently.

Results
In the first two encodings, the number of turns in the trace
dominated the clustering results (see Figure 2). In the turn
encoding, the sparsity of features for short games causes
them to all be close to one another, resulting in the above
figure. In the game state encoding, the divergence of the
magnitude of the game state vectors has a similar effect.
This is consistent with other methods that have been used to
visualize game traces (Osborn, Samuel, and Mateas 2017).
However, because a player has limited control over the game
length, it seems inappropriate as the defining characteristic
of the play trace.

In the opening encoding, we clustered on only the first 10
turns. Because we are only observing games of length 10-30
turns, this solves the problems observed in the first two clus-
terings, and we get good mixing of game length (see Figure
3). However, we are leaving out important information. We
are clustering not on player strategies but on player opening
strategies.

Finally, we consider the normalized encoding results. Be-
cause cards are being drawn randomly from the player’s
deck, there is little difference between two decks of the
same proportional composition but different sizes. One sub-
stantive difference is the rate of intake for new cards, be-
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Figure 3: t-SNE embedding of features in opening encoding
method, where only the first 10 game states are used, with
color representing the length of the trace in turns.
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Figure 4: t-SNE embedding of features using the normalized
encoding method, with color representing the length of the
trace in turns.
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Figure 5: Normalized feature embedding, with color repre-
senting the proportion of Villages in the player’s deck at the
end of turn 2.

cause a smaller deck will more quickly draw a card recently
bought than a bigger deck. The other difference is that when
it comes to victory cards we care about the number owned,
not the proportion, because the sum of victory card values
decides who wins.

In exchange for these simplifications, we end up with
something more agnostic to game length. Intuitively, we are
encoding the game state as the relative prevalence of game
features instead of the absolute prevalence. Geometrically,
this is forcing each game state to live on the l1 unit ball, and
encoding a game trace as a movement across the surface of
that ball starting from the common seed deck. Regulariza-
tion is a common data science tool which we can leverage
here to compare varied-length games.

By encoding the deck as proportions, game state vectors
are not diverging in magnitude, and thus longer games only
appear distant from short games if they are qualitatively dif-
ferent, too.

We see that the clustering isn’t dominated by trace length,
see Figure 4. We further note that opening moves do not
dominate the clustering, despite having the highest marginal
effect on deck proportions and proliferating throughout the
game state for all subsequent turns. For example, consider
the popular starting card Village in Figure 5.

However, this encoding does have a very interesting in-
terpretation. The central cluster contains decks that have a
high density of Coppers at the end of the game (see Figure
6). Coppers are the starting cards, and are very weak. Some
of these traces simply did nothing on their turns, or per-
formed poorly. This cluster represents little movement from
the starting state, and the ring around it represents different
ways of diverging from that state.

To the top of the t-SNE embedding, we see decks that
rely heavily on Mines, a card that lets a player replace their
low-quality Coppers with Silvers and Golds. To the left, we
see so-called “Big Money” players, going for currency. On
the right, we see players who bought a lot of Villages, a re-
quirement for an action-heavy deck. Other action cards, like
Smithy, which synergizes well with Village, are also dense
on the right. Finally, we see a Market strategy on the bot-
tom.

Because we are not encoding plays, we cannot confirm
how these synergies are being utilized, but we can apply
conventional wisdom to the apparent correlation in the pur-
chase of multiple cards. These figures reflect intuition about
this cardset, that a player will either want to focus on ac-
tion cards, which requires Villages to be able to string those
actions together, or focus on buying high-quality currency
cards. These are the left and right hemispheres of the em-
bedding.

We also see Militia and Moat concentrated in the center of
the embedding. Militia is a combative card that hurts other
players and Moats defend against these attacks, so it matches
our expectation that these cards are associated with not mov-
ing as far from the starting state.

In the previous, non-proportional representations of
decks, game length has a disproportional effect on encoding,
because decks naturally get bigger. However, by looking at
proportions, we can see the primary goal of the game is to
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Figure 6: Normalized feature embedding, where color represents the proportion of various cards in a player’s deck at end of the
game. Top-left is Copper, top-right is Mines, middle-left is Silvers and Golds, middle-right is Villages, bottom-left is Markets,
and bottom-right is Militias and Moats .
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Figure 7: Normalized feature embedding. On the left, color represents the proportion of Provinces in the player’s deck on turn
10. On the right, color represents the proportion of Provinces at in the player’s deck at the end of the game.

start with the weak starting deck and produce something that
has a high concentration of strong cards.

Provinces are the main game-winning card, worth the
most victory points. In Figure 7, we can see that as ex-
pected the players who have traveled the most distance
from the starting deck are the ones with Provinces. We note
that at turn 10, the players with the highest concentration
of Provinces were those in the Big Money camp. Because
of Dominion’s nature as an engine building game, differ-
ent strategies get their engines functional at different rates,
and this indicates that Big Money is a better strategy for
shorter games. Other strategies start buying Provinces later,
but might be able to buy them more consistently, making
them better late-game strategies.

Future Work
This work proposed a method for representing stochastic,
varied-length games like Dominion, by encoding game fea-
tures as proportions. In the more general case, this method
can be extended to other games by encoding the relative
presence of game features in each game state, thus control-
ling for the divergence of the game state vector.

The method used above, where end-game states are re-
sampled to fill out empty features, has the advantage that it
allows early turns, which are the most directly comparable
turns, to be compared directly. The next step towards a more
robust model would be to approximate game stage, and re-
sample intermediate game states from shorter games to line
up stages of the game. This would better allow us to talk
about distance between both players’ movements across the
surface of the game space, comparing the early game of one
trace to the early game of the other, and late game to late
game. This would have to be more complex than sampling
proportionally, because the early turns are directly compara-
ble agnostic to game length, meaning the later turns would
need to be resampled more to compensate.

Another important further step is to encode cards by their
effects, so as to allow comparison of strategies for games
that used different card sets. We might still observe the di-

chotomy of currency cards versus action-enabling cards. In
that situation we could talk about the ways in which cards
serve similar roles in different sets, and imagine the player
who would want to buy them.
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