
A Framework for Well-Being Integrated Development
Environments (WIDEs): Research Preview
Sara Hassan1, Andrew-Sean Wilson1 and John Galvin2

1School of Computing and Digital Technology, Birmingham City University, Birmingham, United Kingdom
2School of Social Sciences Birmingham City University Birmingham, United Kingdom

Abstract
[Context and Motivation] To date there are very few approaches for systematic requirements modelling of
software from a mental-well-being-awareness perspective. There are even less technological innovations
that address the need for mental-well-being-aware learning and teaching environment among Science,
Technology, Engineering and Mathematics higher education (STEM HE) students. STEM HE student
that study computing would typically work with integrated development environments (IDEs) for
prolonged periods. This can make them more susceptible to technostress factors. Technostress is the
inability to cope in a healthy way with technology. Technostress factors threaten the long-term mental
health, productivity, and achievement outcomes of these students. [Question/Problem] In this paper,
our target problem is the lack of systematic requirements modelling support and design guidelines
for producing mental-well-being-aware IDEs that cater for technostress factors. [Contribution] We
address this problem by proposing a novel idea for a framework that includes guidance for modelling the
requirements for and designing the architectures of Well-being Integrated Development Environments
(WIDEs). WIDEs aims to communicate programming errors such as runtime and syntax errors in a
mental-well-being-aware manner.

Keywords
mental well-being, software design framework, software architectural modelling, software design guide-
lines

1. Introduction

Commonly used computing tools such as Integrated development environments (IDEs) are
important for STEM HE students to learn for their future careers. Prolonged usage of techno-
logical tools can lead to a higher prevalence of technostress factors among this cohort [1, 2].
Technostress is defined as the inability to adapt or cope with information and communication
technologies (ICTs) in a healthy manner [3]. If technostress is not addressed, it can lead to long-
term deteriorated mental health, lower productivity, and deteriorated achievement outcomes
of these students. Additionally, research indicates a significant participation of students with
mental health issues in the STEM fields. [4, 5].

In: J. Fischbach, N. Condori-Fernández, J. Doerr, M. Ruiz, J.-P. Steghöfer, L. Pasquale, A. Zisman, R. Guizzardi, J.
Horkoff, A. Perini, A. Susi, M. Daneva, A. Herrmann, K. Schneider, P. Mennig, F. Dalpiaz, D. Dell’Anna, S. Kopczyńska, L.
Montgomery, A. G. Darby, and P. Sawyer (eds.): Joint Proceedings of REFSQ-2022 Workshops, Doctoral Symposium, and
Poster & Tools Track, Birmingham, UK, 21-03-2022, published at ¸
$ Sara.Hassan@bcu.ac.uk (S. Hassan); Andrew.Wilson@bcu.ac.uk (A. Wilson); John.Galvin@bcu.ac.uk (J. Galvin)
� 0000-0001-7481-0434 (S. Hassan); 0000-0001-7064-6681 (A. Wilson); 0000-0003-4526-7529 (J. Galvin)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

http://ceur-ws.org/
mailto:Sara.Hassan@bcu.ac.uk
mailto:Andrew.Wilson@bcu.ac.uk
mailto:John.Galvin@bcu.ac.uk
https://orcid.org/0000-0001-7481-0434
https://orcid.org/0000-0001-7064-6681
https://orcid.org/0000-0003-4526-7529
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


To our knowledge, there are currently very few technological innovations that address the
need for mental-well-being-aware learning and teaching environment for STEM HE students.
Nevertheless, considering technostress factors when designing learning/teaching software is
integral to creating a mental-well-being-aware learning experience for STEM HE students. This
has motivated us to address the following target problem: the lack of systematic requirements
modelling and design guidelines for producing an IDE that communicates guidance, runtime errors,
and syntax errors in a mental-well-being-aware manner to computing HE students. To pave the
way to addressing this problem, we propose an idea to develop for a framework that aids in
designing Well-being Integrated Development Environments (WIDEs) which aim to address
technostress factors systematically when designing IDEs used by STEM HE students. Our work
aims to expand the communities of requirement modelling and software engineering with a
new track that treats mental-well-being as a quality of service dimension to be systematically
optimised for during requirements and software engineering. For this paper, we consider a
mental-well-being-aware IDE as one which does not impose a high level of technostress in its
users.

The paper is organised as follows: Section 2 motivates our work by highlighting the signif-
icance of mental health and stress issues among STEM students. Section 3 will give a short
motivating scenario to set the context which the WIDEs framework will target. Section 4 will
present the proposed components of the WIDEs framework, their roles, and steps envisioned
for producing these components. In Sections 5 and 6 we conclude the paper by a discussion of
the challenges for producing the WIDEs framework and how they can be addressed.

2. Motivation: Stress and Mental Health Issues in STEM

The literature on stress related to ICTs tends to focus on the phenomenon of technostress. The
negative consequences of technostress include increased anxious and depressive symptoma-
tology, decreased motivation, and intention to quit [1], [2]. For instance, Chirikov et al. [1]
recently reported that over 1 in 3 STEM students are suffering from clinical levels of anxiety
and depression which impacted their work.

Hands-on programming practice is an integral part of STEM degrees. IDEs are the main tools
that students use in this practice. Repeated exposure to IDE related technostress in computing
students can therefore threaten longer-term mental health, productivity, and achievement
outcomes, justifying the need for systematic design guidelines for producing well-being-aware
IDEs. Several technology-related factors (summarised in Table. 1) have been identified as
determinants of technostress [6] and are important considerations for human interaction with
IDEs. Although previous studies have established the importance of technostress [1, 2, 6, 7] it is
not clear which characteristics of the technology create stress. The boundaries and relationship
between technology characteristics and stress is ambiguous. What is stressful for one person is
not necessarily stressful for another, with individual differences variables such as personality
characteristics, coping styles, self-esteem, self-efficacy, accounting for a high proportion of
variance in well-being [8]. Situational factors such as computer system performance, restricted
access to technology, or blurred boundaries between work and home life can also exacerbate
technostress [1, 6]. It is necessary therefore that the WIDEs framework is flexible and considers



Table 1
Definitions of technostress factors

Technostress factor Definition
Techno-overload When the technology usage results in high workload, resulting

in the user feeling forced to work faster and longer.
Techno-complexity Whether the user feels competent enough to use a technologi-

cal tool and achieve the desired results.
Techno-reliability The perception of the consistency or dependability of the tool.
Pace of change An individual’s perception of frequent tool-related changes

and upgrades.

how IDEs can be tailored to individual circumstances.

3. Motivating Scenario

Consider a scenario where a first-year undergraduate STEM student is studying online due to
COVID, personal, or work-related circumstances. These hours are all spent in a seated position
in front of a laptop screen where the laptop is used both for personal and educational purposes.

On any given weekday, about an hour is initially spent reading a programming task on the
screen which was asynchronously provided by the teacher. The task instructions include step-
by-step instructions and screenshots of the outputs and inputs of each task. The screenshots
are in a different version of software from the one the student is using. The student therefore
spends about 2 hours researching how to install and set up an IDE that is compatible with their
laptop and how to translate the instructions from the given task to the IDE version at hand.
This initial task already exposes the student to techno-overload.

The following 2-3 hours are then spent to complete the given programming task after setting
up the required IDE. The written code now includes errors. The error is explained using technical
logs unreadable to the student. This common situation now leads to techno-complexity. Finally,
the student resorts to trial and error making insignificant changes every time in hope for the
program to produce the required output; eventually the output is as required. The student
however does not understand why. This now leads to techno-reliability issues since the IDE
was not consistent as far as the student is concerned. The above common narrative can happen
fully or partially on any given day for a STEM student or in fact for any student.

It is scenarios such as the above that motivate us to propose WIDEs in order to aid in reducing
some of the technostress factors that STEM HE students can experience when using “traditional"
IDEs.

4. WIDEs Framework Outline

In this section we outline the proposed components of the WIDEs framework. The framework
would comprise a requirements modelling language and design guidelines for tailoring the
design of an existing or new IDE to be mental-well-being-aware. Both components of the
framework are intended to be used iteratively together. Fig. 1 summarises the intended usage



Figure 1: Overview of the WIDEs framework usage: the green box indicates input to the WIDEs
framework; the blue boxes indicate components of the WIDEs framework; the yellow boxes indicate
activities to be done by software engineers using the WIDEs framework; the white box indicates an
activity to be done automatically within the WIDEs framework

of the WIDEs framework. Software engineers can create iterations of the model before they
embark on improving an IDE design. They can then choose to adopt some of the designs
from a proposed set of design guidelines. Upon adopting them, the modelling language can
then be used again to create updated versions of the IDE requirements model. Background
research, focus groups and surveys are required to refine the proposed features for each of the
components proposed below.

4.1. A Novel Mental-well-being-aware Software Requirement Modelling
Support

The role of this modelling support would be to capture mental- well-being as a priority of the
non-functional requirements engineering exercise. A model of an existing IDE’s requirements
can be created using this modelling language. This model will be the basis of enhancing the
design using guidelines from the next component of the framework described below. The
modelling support would include constructs to capture:

• Complexity of data displayed to the IDE user.
• Mental-well-being impact of each IDE component.
• Mental-well-being impact of each user-IDE interaction.

Existing interventions and guidance for incorporating mental-well-being into software design
either focus on changing the user’s behaviour and/or on changing the layout of a software
without eliciting the requirements systematically [9, 10, 11]. Producing such modelling support
requires the following activities:

1. Examining state-of-art requirements modelling languages and leveraging them with the
above constructs. The state-of-the-art modelling languages include but are not limited to:
goal-oriented, feature-oriented, aspect-oriented, object-oriented.

2. Developing a graphical and/or textual notation to enable efficient use of the modelling
language by software engineers.



3. Developing a set of mapping rules to facilitate translating requirement models from other
modelling languages to our modelling language.

4. Evaluating our language for expressiveness, our notation for flexibility, and our mapping
rules for comprehensiveness among other criteria.

4.2. Novel Mental-well-being-aware Architectural Design Guidelines

The role of this set of guidelines would be to aid software engineers in improving the overall
mental-well-being-awareness of existing or prospective IDEs, thereby transforming their IDE to
a WIDE. The guidelines would be categorised according their focus: data complexity, component
design and/or user-IDE interaction.

The choice of adopting guidelines introduced in this component would be up to the software
engineer designing the IDE. At a high level, software engineers would use the modelling support
to identify “hot-spots” in the IDE design which have a particularly negative technostress impact.
Guidelines can then be used to refine the requirements in this hot-spots.

Producing this set of guidelines requires the following:

1. Examining current classical software design practices and analysing whether they can
be tailored into more mental-well-being-aware guidelines. The tailored version of the
practice should be described using the aforementioned modelling notation. In this way,
the link between both contributions will become apparent allowing both the modelling
language and the design guidelines to fit under a packaged WIDEs framework.

2. Qualitatively evaluating the tailored guidelines for their flexibility and coverage among
other criteria. Software engineers can be included at this stage of the evaluation. Surveys
and/or focus groups with software engineers can be conducted to assess the practicality
and understandability of both the modelling language and the design guidelines.

5. Discussion and Road map

In this section we summarise the WIDEs framework implementation challenges and potential
solutions for them. In particular:

• Identifying evaluation metrics to quantify mental-well-being impact
• Setting a representative evaluation case study
• Identifying and recruiting a representative and inclusive sample of STEM students to act

as sample end users.

To address the challenges above we propose the following steps for a controlled experiment
evaluation of the WIDEs framework:

1. Identifying relevant IDEs for comparative assessment. A combination of mixed-methods
(qualitative and quantitative), subjective data collection, and objective biometric measure-
ments will be used to profile the user experience, satisfaction and cognitive interaction
with the IDEs using an initial testing cohort of users.



2. Using the above as a basis for creating a heuristic of key issues that would have to be
addressed in a mental-well-being-aware IDE and thereafter producing the initial WIDEs
framework.

3. Creating controlled version(s) of the IDE where the WIDEs framework is not used and a
mental-well-being-aware IDE version of the IDE where the WIDEs framework is applied.

4. Using an iterative software development lifecycle, the WIDE heuristics will be systemati-
cally addressed until a final mental-well-being-aware IDE is produced.

5. Profiling the interaction of the initial testing cohort and/or a subset of them with the
mental-well-being-aware IDE produced.

6. Evaluating the produced IDE in two ways. Firstly, mixed methods and biometric ap-
proaches outlined in point 1 will be used with the initial testing cohort of IDE users.
Secondly, evaluation will also be conducted with a fresh cohort of “tissue testers" who
have not previously experienced the IDE or the mental-well-being-aware IDE produced.
The aim of this evaluation is to study the mental-well-being impact of WIDE compared
to IDE usage.

6. Conclusion

In this paper we present our vision for a framework that aids in designing Well-being Integrated
Development Environments (WIDEs). We present an outline for WIDEs’ components, shed
the light on implementation challenges and possible solutions for them. Once these challenges
are addressed, we intend to investigate the suitability of our framework for software products
beyond IDEs and eventually beyond teaching and learning environments.

References

[1] J. Galvin, M. Evans, K. Nelson, G. Richards, E. Mavritsaki, T. Giovazolias, K. Koutra, B. Mel-
lor, M. C. Zurlo, A. Smith, F. Vallone, Technostress, coping, and anxious and depressive
symptomatology in university students during the COVID-19 pandemic, Europe’s Journal
of Psychology (2021). doi:10.5964/ejop.4725.

[2] P. Upadhyaya, et al., Impact of technostress on academic productivity of university
students, Education and Information Technologies 26 (2021) 1647–1664.

[3] C. Brod, Technostress: The Human Cost Of The Computer Revolution, Basic Books, 1984.
Google-Books-ID: CtMmAAAAMAAJ.

[4] S. Baron-Cohen, S. Wheelwright, C. Stott, P. Bolton, I. Goodyer, Is there
a link between engineering and autism?, Autism 1 (1997) 101–109. URL:
https://doi.org/10.1177/1362361397011010. doi:10.1177/1362361397011010.
arXiv:https://doi.org/10.1177/1362361397011010.

[5] G. C. Windham, K. Fessel, J. K. Grether, Autism spectrum disorders in relation to parental
occupation in technical fields, Autism Research: Official Journal of the International
Society for Autism Research 2 (2009) 183–191. doi:10.1002/aur.84.

[6] R. Ayyagari, V. Grover, R. Purvis, Technostress: Technological Antecedents and Impli-
cations, MIS Quarterly 35 (2011) 831–858. URL: https://www.jstor.org/stable/41409963.

http://dx.doi.org/10.5964/ejop.4725
https://doi.org/10.1177/1362361397011010
http://dx.doi.org/10.1177/1362361397011010
http://arxiv.org/abs/https://doi.org/10.1177/1362361397011010
http://dx.doi.org/10.1002/aur.84
https://www.jstor.org/stable/41409963


doi:10.2307/41409963, publisher: Management Information Systems Research Center,
University of Minnesota.

[7] X. Wang, S. C. Tan, L. Li, Technostress in university students’ technology-enhanced
learning: An investigation from multidimensional person-environment misfit, Computers
in Human Behavior 105 (2020) 106208.

[8] G. M. Mark, A. P. Smith, Stress models: a review and suggested new direction, Nottingham
University Press, Nottingham, 2008, pp. 111–144. URL: https://orca.cardiff.ac.uk/31085/,
issue: 3 Num Pages: 312 Number: 3.

[9] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom, R. van Vliet, Extending software
architecture views with an energy consumption perspective, Computing 99 (2017) 553–573.
URL: https://doi.org/10.1007/s00607-016-0502-0. doi:10.1007/s00607-016-0502-0.

[10] Q. E. Booker, C. M. Rebman Jr, F. L. Kitchens, A model for testing technostress in the
online education environment: An exploratory study., Issues in Information Systems 15
(2014).

[11] T. Bickmore, A. Gruber, R. Picard, Establishing the computer-patient working alliance in
automated health behavior change interventions, Patient Education and Counseling 59
(2005) 21–30. doi:10.1016/j.pec.2004.09.008.

http://dx.doi.org/10.2307/41409963
https://orca.cardiff.ac.uk/31085/
https://doi.org/10.1007/s00607-016-0502-0
http://dx.doi.org/10.1007/s00607-016-0502-0
http://dx.doi.org/10.1016/j.pec.2004.09.008

	1 Introduction
	2 Motivation: Stress and Mental Health Issues in STEM
	3 Motivating Scenario
	4 WIDEs Framework Outline
	4.1 A Novel Mental-well-being-aware Software Requirement Modelling Support
	4.2 Novel Mental-well-being-aware Architectural Design Guidelines

	5 Discussion and Road map
	6 Conclusion

