
Assumable Answer Set Programming
Zhizheng Zhang

School of Computer Science and Engineering, Southeast University, No.2 Dongnandaxue Rd, Nanjing, 211198, China

Abstract
For modeling the assumption-based intelligent agents who make assumptions and use them to construct their
belief sets, this paper proposes a logic programming language AASP (Assumable Answer Set Programming)
by extending ASP (Answer Set Programming). Rational principles of assumption-based reasoning are given
to define the semantics of the AASP program. The relation of AASP to some existing default formalism and
extensions of ASP implies that AASP can be used to model and solve some interesting problems with incomplete
information in the framework of assumption-based reasoning.

Keywords
assumption based reasoning, answer set, logic programming

1. Introduction

In the case of incomplete information, one framework of the mental behavior for an intelligent agent
is to make assumptions, and use them to construct belief set through deductive reasoning [1]. Var-
ious approaches for assumption-based or hypothetical reasoning have been proposed in the past.
Examples include Assumption-Based Truth Maintenance System introduced in [2], [3], [4], and [5],
Probabilistic Assumption-Based Model and language proposed in [6] and [7], Poole’s Default Theory
in [8] and [9] etc.. Some efforts are made to explore the way of identifying assumptions in reasoning,
in which assumptions are not given explicitly. For example, [10] explores the derivation of assump-
tions to explain observed events, [11] and [12] present an approach to hypothetical planning involves
generating assumptions about actions that can not be derived from the knowledge-base etc.. Besides,
many studies show that assumption-based reasoning is closely related to the topics like argumenta-
tion [13], action reasoning [14], planning [15], contextual reasoning [1], defeasible reasoning [16],
logic programming [17], default reasoning [18] [19] etc..

Presently, Answer Set Programming (ASP) has become an increasingly popular tool for declarative
programming, knowledge representation, and nonmonotonic reasoning [20] [21] [22] [23]. Answer
sets are widely accepted as a rational reasoner’s views in an environment described by a logic program
that may contain incomplete information. The increasing success of the answer-set based reasoning
inspires us to explore how to use it in both assumption making and belief building of the framework
of the assumption-based reasoning.

This paper presents a new logic programming formalism for assumption-based reasoning by com-
bining the idea of ASP and the framework of assumption-based reasoning. Specifically, we propose
Assumable Answer Set Programming (AASP) language, an extension of ASP, that can be used to de-
sign the assumption-based intelligent agent whose mental behaviors of assumption making and belief
building are defined on the answer-set based reasoning.

ICLP Workshops 2022, July 31, 2022, Haifa, Israel
" seu_zzz@seu.edu.cn (Z. Zhang)
� 0000-0001-9851-6184 (Z. Zhang)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:seu_zzz@seu.edu.cn
https://orcid.org/0000-0001-9851-6184
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The rest of the paper will introduce AASP formally and is organized as follows. In the next sec-
tion, ASP, two extensions of ASP, and constrained default logic are briefly introduced as background
knowledge for the self-contained requirement and as objects compared with AASP. In section 3, we
introduce syntax, semantics, and some properties of the AASP program. In section 4, the relation
between AASP and some other formalism is given. We conclude in section 5 with some further dis-
cussion.

We will restrict our discussion in this paper to propositional programs. However, as usual in answer
set programming, we admit rule schemata containing variables bearing in mind that these schemata
are just convenient representations for the set of their ground instances.

2. Preliminaries

2.1. Answer Set Program

Follow the description of ASP from [22]. A regular ASP program is a collection of rules of the form

𝑙1 𝑜𝑟 ... 𝑜𝑟 𝑙𝑘 ← 𝑙𝑘+1, ..., 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, ..., 𝑛𝑜𝑡 𝑙𝑛

where the 𝑙s are literals, 𝑛𝑜𝑡 denotes negation as failure, 𝑜𝑟 is epistemic disjunction. The left-hand
side of a rule is called the head and the right-hand side is called the body. A rule is called a fact if its
body is empty (equivalent to containing only a literal ⊤) and its head contains only one literal, and a
rule is called a denial if its head is empty (equivalent to containing only a literal ⊥). An answer set
𝑋 of a program Π if it is the minimal set (in the sense of set inclusion) that satisfies Π𝑋 , where Π

𝑋 is
G-L reduct of Π with respect to 𝑋 achieved by two rules:

• delete all rules whose bodies are not satisfied by 𝑋 .

• delete 𝑛𝑜𝑡 𝑙 in the bodies of the remaining rules.

𝐴𝑆(Π) is used to denote the set of all answer sets of an ASP program Π.

2.1.1. CR-Prolog

CR-Prolog extends the regular ASP with a purpose of representing indirect exceptions to defaults
([22]). Follow the description of CR-Prolog from [24] and [22], a CR-Prolog program is a collection of
regular ASP rules or consistency-restoring rules (CR-rule) of the form

𝑙1 𝑜𝑟 ... 𝑜𝑟 𝑙𝑘

+

← 𝑙𝑘+1, ..., 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, ..., 𝑛𝑜𝑡 𝑙𝑛

where the 𝑙s are literals, 𝑛𝑜𝑡 denotes negation as failure, 𝑜𝑟 is epistemic disjunction. And, ≤ is a partial
order defined on sets of CR-rules in the program. This partial order is often referred to as a preference
relation based on the set-theoretic inclusion (𝑅1 ≤ 𝑅2 iff 𝑅1 ⊂ 𝑅2) or defined by the cardinality of the
corresponding sets (𝑅1 ≤ 𝑅2 iff |𝑅1| ⊂ |𝑅2|).

The set of regular ASP rules of a CR-Prolog programΩ is denoted byΩ
𝑟 ; By 𝛼(𝑟)we denote a regular

rule obtained from a consistency-restoring rule 𝑟 by replacing
+

← by ←, and 𝛼 can be expanded in a
standard way to a set 𝑅 of CR-rules, i.e., 𝛼(𝑅) = {𝛼(𝑟)|𝑟 ∈ 𝑅}.

A minimal (with respect to the preference relation of the program) collection 𝑅 of CR-rules of Ω
such that Ω𝑟

∪ 𝑅 is consistent (i.e., has an answer set) is called an abductive support of Ω. Then, a set
𝑀 is called an answer set of Ω if it is an answer set of a regular program Ω ∪ 𝛼(𝑅) for some abductive
support 𝑅 of Ω. We use 𝐴𝑆⊂(Ω) and 𝐴𝑆♯(Ω) to denote the collection of answer sets of Ω w.r.t. the
preference relation on set-theoretic inclusion and the cardinality respectively.

2.1.2. Abductive ASP

We consider two versions of the abductive answer set programs. In [25], an abductive logic program
(ALP93) Γ is defined as a pair < 𝑃, > where 𝑃 is a regular ASP program and  is a set of literals
from the language of 𝑃 called abducibles. 𝐺 a ground literal represents a positive observation. A set
𝑆 is a belief set of Γ with respect to 𝐸 if 𝑆 is an answer set of 𝑃 ∪ 𝐸 where 𝐸 ⊆ . 𝑆 is called  minimal
if there is no belief set 𝑇 of Γ such that 𝑇 ∩  ⊂ 𝑆 ∩ . A set 𝐸 is an explanation of 𝐺 with respect
to Γ if 𝐺 is true in a belief set 𝑆 of Γ such that 𝐸 = 𝑆 ∩ 𝐴. An explanation 𝐸 of 𝐺 is minimal if no
𝐸
′
⊂ 𝐸 is an explanation of 𝐺. 𝐸 is a minimal explanation of 𝐺 iff 𝑆 is an  minimal belief set of

< 𝑃 ∪ {← 𝑛𝑜𝑡 𝐺}, >.
In [26], an abductive logic program (ALP95) Γ is defined as a pair < 𝑃, > where both 𝑃 and 

are regular ASP programs. 𝐺 a ground literal represents a positive observation. A pair (𝐸, 𝐹) is a
explanation of 𝐺 with respect to Γ if

1. 𝐺 ⊆ 𝑀 for ∀𝑀 ∈ 𝐴𝑆((𝑃 − 𝐹) ∪ 𝐸)

2. (𝑃 − 𝐹) ∪ 𝐸) is consistent
3. 𝐸 ⊆ ( − 𝑃) and 𝐹 ⊆  ∩ 𝑃

On the other hand, a pair (𝐸, 𝐹) is an anti-explanation of 𝐺 with respect to Γ if

1. 𝐺 ⊈ 𝑀 for ∀𝑀 ∈ 𝐴𝑆((𝑃 − 𝐹) ∪ 𝐸)

2. (𝑃 − 𝐹) ∪ 𝐸) is consistent
3. 𝐸 ⊆ ( − 𝑃) and 𝐹 ⊆  ∩ 𝑃

An (anti-)explanation (𝐸, 𝐹) of 𝐺 is called minimal if for any (anti-)explanation (𝐸
′
, 𝐹

′
) of 𝐺, 𝐸′ ⊆ 𝐸

and 𝐹
′
⊆ 𝐹 imply 𝐸

′
= 𝐸 and 𝐹

′
= 𝐹 .

2.2. Constrained Default Logic

As defined by Reiter in [27], a default theory Δ is a pair (𝐷,𝑊) where 𝑊 is a set of first-order formulas
and 𝐷 is a set of defaults of the form

𝛼 ∶ M𝛽

𝛾

where 𝛼 , 𝛽 , and 𝛾 are quantifier-free first order formulas. 𝛼 is called the prerequisite, 𝛽 the justifi-
cations, and 𝛾 the consequent. Formally, For any set 𝑆 of first order logic formulas, Let Γ(𝑆) be the
smallest set of formulas such that

• 𝑊 ⊆ Γ(𝑆)

• Γ(𝑆) = 𝑇ℎ(Γ(𝑆))

• if
𝛼 ∶ M𝛽

𝛾

∈ 𝐷 and 𝛼 ∈ Γ(𝑆) and ¬𝛽 ∉ 𝑆 then 𝛾 ∈ Γ(𝑆)

A set of formulas 𝐸 is an extension of Δ iff 𝐸 = Γ(𝐸)

[28] proposes a variant of the extension of Reiter’s default logic, for any set 𝑇 of first order logic
formulas, let Υ(𝑇) be the pair of smallest sets (𝑆′, 𝑇 ′

) of formulas such that

• 𝑊 ⊆ 𝑆
′
⊆ 𝑇

′

• 𝑆
′
= 𝑇ℎ(𝑆

′
) and 𝑇

′
= 𝑇ℎ(𝑇

′
)

• For any
𝛼 ∶ M𝛽

𝛾

∈ 𝐷, if 𝛼 ∈ 𝑆
′ and 𝑇 ∪ {𝛽, 𝛾} ⊬ ⊥ then 𝛾 ∈ 𝑆

′ and 𝛽 ∧ 𝛾 ∈ 𝑇
′.

A pair of sets of formulas (𝐸, 𝐶) is an constrained extension of Δ iff Υ(𝐶) = (𝐸, 𝐶).

3. Assumable Answer Set Program

3.1. Syntax

An AASP rule 𝑟 is written as

𝑙1 𝑜𝑟 ... 𝑜𝑟 𝑙𝑘 ← 𝑒1, ..., 𝑒𝑚 ∶ 𝑙𝑘+1, ..., 𝑙𝑛.

where the 𝑙s are literals in propositional logic language and 𝑒s are literals possibly preceded by nega-
tion as failure 𝑛𝑜𝑡 , : is called assumption operator. ℎ𝑒𝑎𝑑(𝑟) is used to denote the left-hand side of
𝑟 where 𝑜𝑟 is an epistemic disjunction, and ℎ𝑒𝑎𝑑𝑙𝑖𝑡(𝑟) is used to denote the set {𝑙1, ..., 𝑙𝑘} of literals
in the head of 𝑟 . 𝑏𝑜𝑑𝑦(𝑟) is used to denote the right-hand side of 𝑟 , and 𝑏𝑜𝑑𝑦𝑙𝑖𝑡(𝑟) is used to de-
note the set {𝑒1, ..., 𝑒𝑚, 𝑙𝑘+1, ..., 𝑙𝑛} of literals in the body of 𝑟 . 𝑒1, ..., 𝑒𝑚 is called the precondition of 𝑟
and denoted by 𝑝𝑏𝑜𝑑𝑦(𝑟). Let 𝑝𝑏𝑜𝑑𝑦𝑙𝑖𝑡(𝑟) denote the set {𝑒1, ..., 𝑒𝑚} of literals in the precondition of
𝑟 . 𝑙𝑘+1, ..., 𝑙𝑛 is called the assumption of 𝑟 and denoted by 𝑎𝑏𝑜𝑑𝑦(𝑟). Let 𝑎𝑏𝑜𝑑𝑦𝑙𝑖𝑡(𝑟) denote the set
{𝑙𝑘+1, ..., 𝑙𝑛} of literals in the assumption of 𝑟 . As in usual logic programming, a rule is called a fact if
its body is empty (equival to containing only a literal ⊤) and its head contains only one literal, and
a rule is called a constraint if its head is empty (equival to containing only a literal ⊥). An AASP
rule is called assumption-free if its assumption is empty, otherwise it is called an assumption rule.
Sometimes, we use ℎ𝑒𝑎𝑑(𝑟) ← 𝑏𝑜𝑑𝑦(𝑟) or ℎ𝑒𝑎𝑑(𝑟) ← 𝑝𝑏𝑜𝑑𝑦(𝑟) ∶ 𝑎𝑏𝑜𝑑𝑦(𝑟) to denote 𝑟 . 𝑙𝑖𝑡(𝑟) is used
to denote the set of propositional logic literals appearing in 𝑟 . 𝑟 can be read as On the assumption of
𝑎𝑏𝑜𝑑𝑦(𝑟), ℎ𝑒𝑎𝑑(𝑟) is believed if 𝑝𝑏𝑜𝑑𝑦(𝑟) is believed or ℎ𝑒𝑎𝑑(𝑟) is believed if 𝑝𝑏𝑜𝑑𝑦(𝑟) is believed and
it is consistent to assume 𝑎𝑏𝑜𝑑𝑦(𝑟).

An AASP program is a collection of AASP rules. 𝑙𝑖𝑡(Π) is used to denote the set of propositional
logic literals appearing in Π. For convenient description, sometimes an AASP program Π is written
as a pair (Π𝐷

, Π
𝑊
) in which Π

𝑊 is the set of assumption-free AASP rules in Π and Π
𝐷 is the set of

assumption rules in Π.
It is clear that an assumption-free AASP rule is a regular ASP rule, and an assumption-free AASP

program is an ASP program that can be dealt with by ASP solvers like DLV ([29]), CLASP ([30]).

3.2. Semantics

3.2.1. Satisfiability

Let 𝑀 be a collection of literals, 𝑟 be an AASP rule, the notion of satisfiability denoted by ⊧AASP is
defined below.

• 𝑀 ⊧AASP 𝑙 if 𝑙 ∈ 𝑀

• 𝑀 ⊧AASP 𝑛𝑜𝑡 𝑙 if 𝑙 ∉ 𝑀

• 𝑀 ⊧AASP ℎ𝑒𝑎𝑑(𝑟) if ∃𝑙 ∈ ℎ𝑒𝑎𝑑𝑙𝑖𝑡(𝑟), 𝑀 ⊧AASP 𝑙

• 𝑀 ⊧AASP 𝑝𝑏𝑜𝑑𝑦(𝑟) if ∀𝑒 ∈ 𝑝𝑏𝑜𝑑𝑦𝑙𝑖𝑡(𝑟), 𝑀 ⊧AASP 𝑒

• 𝑀 ⊧AASP 𝑎𝑏𝑜𝑑𝑦(𝑟) if ∀𝑒 ∈ 𝑎𝑏𝑜𝑑𝑦𝑙𝑖𝑡(𝑟), 𝑀 ⊧AASP 𝑒

• 𝑀 ⊧AASP 𝑏𝑜𝑑𝑦(𝑟) if 𝑀 ⊧AASP 𝑎𝑏𝑜𝑑𝑦(𝑟) and 𝑀 ⊧AASP 𝑝𝑏𝑜𝑑𝑦(𝑟).

• 𝑀 ⊧AASP 𝑟 if whenever 𝑀 ⊧AASP 𝑏𝑜𝑑𝑦(𝑟), 𝑀 ⊧AASP ℎ𝑒𝑎𝑑(𝑟).

We say 𝑀 is a model of an AASP program Π, denoted by 𝑀 ⊧AASP Π, if we have 𝑀 ⊧AASP 𝑟 for
∀𝑟 ∈ Π. A set 𝑀 of literals is inconsistent if it contains a literal 𝑙 and its contrary 𝑙

̄.

3.2.2. Assumable Answer Set

We first introduce the notion of Assumption Set of an AASP program that is viewed as the result of
assumption making in the framework of assumption-based reasoning.

Definition 1. Given an AASP program Π, an arbitrary set 𝐴 ⊆ 𝑙𝑖𝑡(Π), 𝐴 is an assumption set of Π if
and only if

𝐴 ∈ 𝐴𝑆(Π
(𝐴)

∪

←

𝐴)

where Π(𝐴) is a regular ASP program obtained by

Π
(𝐴)

= {ℎ𝑒𝑎𝑑(𝑟) ← 𝑝𝑏𝑜𝑑𝑦(𝑟)|𝑟 ∈ Π and 𝐴 ⊧AASP 𝑎𝑏𝑜𝑑𝑦(𝑟)}

and
←

𝐴 is used to denote the rules set {𝑙 ← |𝑙 ∈ 𝐴}.

𝐴𝑆𝑆(Π) is used to denote the collection of all assumption sets of an AASP program Π.

Example 1. Consider Π1:
𝑝 ←∶ 𝑞

𝐴1 = ∅, 𝐴2 = {𝑝}, 𝐴3 = {𝑞}, and 𝐴4 = {𝑝, 𝑞}. We have

Π
(𝐴1)

1
= ∅ Π

(𝐴2)

1
= ∅

Π
(𝐴3)

1
= {𝑝 ←} Π

(𝐴4)

1
= {𝑝 ←}

Therefore,

Π
(𝐴1)

1
∪

←

𝐴1 = ∅ Π
(𝐴2)

1
∪

←

𝐴2 = {𝑝 ←}

both Π
(𝐴3)

1
∪

←

𝐴3 and Π
(𝐴4)

1
∪

←

𝐴4 are:
𝑝 ←

𝑞 ←

Then,
𝐴𝑆(Π

(𝐴1)

1
∪

←

𝐴1) = {∅} 𝐴𝑆(Π
(𝐴2)

1
∪

←

𝐴2) = {{𝑝}}

𝐴𝑆(Π
(𝐴3)

1
∪

←

𝐴3) = {{𝑝, 𝑞}} 𝐴𝑆(Π
(𝐴4)

1
∪

←

𝐴4) = {{𝑝, 𝑞}}

Thus, we have
𝐴1 ∈ 𝐴𝑆(Π

(𝐴1)

1
∪

←

𝐴1) 𝐴2 ∈ 𝐴𝑆(Π
(𝐴2)

1
∪

←

𝐴2)

𝐴3 ∉ 𝐴𝑆(Π
(𝐴3)

1
∪

←

𝐴3) 𝐴4 ∈ 𝐴𝑆(Π
(𝐴4)

1
∪

←

𝐴4)

Hence, ∅, {𝑝}, and {𝑞, 𝑝} are assumption sets of Π1, {𝑞} is not.

Definition 2. Given an AASP program Π, an arbitrary set 𝑀 ⊆ 𝑙𝑖𝑡(Π), 𝑀 is an assumable answer set of
Π if and only if there exists an assumption set 𝐴 of Π such that

1. 𝑀 ∈ 𝐴𝑆(Π
(𝐴)
), and

2. 𝑀 ⊆ 𝐴

We say that 𝑀 is an assumable answer set of Π on the assumption set 𝐴, and that (𝑀, 𝐴) is a view of Π.

𝐴𝐴𝑆(Π) is used to denote the collection of all assumable answer sets of an AASP program Π.
𝑉 𝐼𝐸𝑊 (Π) is used to denote the collection of all views of an AASP program Π.

Example 2. Continue Π1 mentioned in the above example. Consider 𝑀1 = ∅ and 𝑀2 = {𝑝}, obviously,
we have

𝐴𝑆(Π
(𝐴1)

1
) = {∅} 𝐴𝑆(Π

(𝐴2)

1
) = {∅} 𝐴𝑆(Π

(𝐴4)

1
) = {𝑝}

Then,
𝑀1 ∈ 𝐴𝑆(Π

(𝐴1)

1
) and 𝑀1 ⊆ 𝐴1

𝑀1 ∈ 𝐴𝑆(Π
(𝐴2)

1
) and 𝑀1 ⊆ 𝐴2

𝑀2 ∈ 𝐴𝑆(Π
(𝐴4)

1
) and 𝑀2 ⊆ 𝐴4

Hence, ∅ is an assumable answer set of Π1 on 𝐴1, ∅ is also an assumable answer set of Π1 on 𝐴2, and {𝑝}

is an assumable answer set of Π1 on 𝐴4.

The intuitions implied in the definitions are as the following principles based on the ASP-based rea-
soning:

1. Rationality of Assumption Making. This principle tells that, in assuming a formula, the agent
reasons and behaves as if it is a fact.

2. Rationality of Belief Building on Assumptions. This principle tells that the agent’s beliefs are
obtained by reasoning within the scope of assumptions.

3. Consistency between Assumptions and Beliefs. This principle tells that an agent’s assumptions
and beliefs must be consistent.

The notion of Assumption Set is defined by the first principle. By the second and the third principles,
the notion of Assumable Answer Set is defined.

In the scenario of incomplete information, different assumption sets may be generated by a different
set of assumption rules in the program. Some of them are from more assumption rules and some of
them from less. Just as the example above shows, the assumption set ∅ satisfies no assumption of
the rule in the program Π1, and {𝑝, 𝑞} satisfies the assumption of one rule in the program. Based
on this observation, we define several strategies of assumption making while keeping the principles
unchanged.

Definition 3. Given an AASP program Π, 𝐴 is an assumption set of Π,

1. 𝐴 is a max⊂ assumption set of Π if there is no assumption set 𝐴′ of Π such that Π(𝐴)
⊂ Π

(𝐴
′
).

2. 𝐴 is a min⊂ assumption set of Π if there is no assumption set 𝐴′ of Π such that Π(𝐴)
⊃ Π

(𝐴
′
).

3. 𝐴 is a max♯ assumption set of Π if there is no assumption set 𝐴′ of Π such that |Π(𝐴)
| < |Π

(𝐴
′
)
|.

4. 𝐴 is a min♯ assumption set of Π if there is no assumption set 𝐴′ of Π such that |Π(𝐴)
| > |Π

(𝐴
′
)
|.

Definition 4. Given an AASP programΠ, 𝑀 is called max⊂(min⊂ or max♯ or min♯) assumable answer set
of Π if (𝑀, 𝐴) is a view of Π and 𝐴 is a max⊂(min⊂ or max♯ or min♯) assumption set of Π. Correspondingly,
the pair (𝑀, 𝐴) is called a max⊂(min⊂ or max♯ or min♯) view of Π.

max⊂(min⊂ or max♯ or min♯)-𝐴𝐴𝑆(Π) is used to denote the collection of all max⊂(min⊂ or max♯ or
min♯) assumable answer sets of an AASP program Π. max⊂(min⊂ or max♯ or min♯)-𝑉 𝐼𝐸𝑊 (Π) is used
to denote the collection of all max⊂(min⊂ or max♯ or min♯) views of an AASP program Π.

Example 3. Continue Π1 mentioned in the above examples. Obviously, both ∅ and {𝑝} are not only
min⊂ but also min♯ assumption sets, while {𝑝, 𝑞} is both max⊂ and max♯ assumption set. Thus, ∅ is a
min⊂ assumable answer set and also a min♯ assumable answer set of Π1. {𝑝} is a max⊂ assumable answer
set and also a max♯ assumable answer set of Π1.

The intuitions of 𝑚𝑎𝑥 and 𝑚𝑖𝑛 strategies of assumption making are direct: 𝑚𝑎𝑥 means that the
reasoner is positive/optimistic/ credulous in making assumptions. 𝑚𝑖𝑛 is just the opposite. Let us
consider a common advice “Work hard and you will succeed” that can be represented by an AASP
program with one rule

𝑠𝑢𝑐𝑐𝑒𝑒𝑑 ←∶ 𝑤𝑜𝑟𝑘ℎ𝑎𝑟𝑑

Then, a positive reasoner’s view is the 𝑚𝑎𝑥⊂(𝑚𝑎𝑥♯) view ({𝑠𝑢𝑐𝑐𝑒𝑒𝑑}, {𝑤𝑜𝑟𝑘ℎ𝑎𝑟𝑑, 𝑠𝑢𝑐𝑐𝑒𝑒𝑑}) of the
program, a passive reasoner’s view is the 𝑚𝑖𝑛⊂(𝑚𝑖𝑛♯) view (∅, ∅) of the program.

3.3. Properties

In this subsection, some properties of AASP are given.

Theorem 1. For a assumption-free AASP program Π:

𝐴𝐴𝑆(Π) = X⋆ − 𝐴𝐴𝑆(Π) = 𝐴𝑆(Π)

where 𝑋 ∈ {𝑚𝑎𝑥,𝑚𝑖𝑛} and ⋆ ∈ {⊂, ♯}.

Theorem 2. For an AASP program Π, an assumption set of Π is a model of Π.

Theorem 3. For an AASP program Π and a literal subset 𝐴 ⊆ 𝑙𝑖𝑡(Π)

𝐴 ∈ 𝐴𝑆(Π
(𝐴)

∪

←

𝐴) if and only if 𝐴 ∈ 𝐴𝑆(Π ↓𝐴 ∪

←

𝐴)

where
Π ↓𝐴= {ℎ𝑒𝑎𝑑(𝑟) ← 𝑝𝑏𝑜𝑑𝑦(𝑟), 𝑎𝑏𝑜𝑑𝑦(𝑟)|𝑟 ∈ Π and 𝐴 ⊧AASP 𝑎𝑏𝑜𝑑𝑦(𝑟)}

Theorem 3 tells that an alternative definition of the notion of Assumption Set is: 𝐴 is an assumption set

of Π if 𝐴 ∈ 𝐴𝑆(Π ↓𝐴 ∪

←

𝐴), that can be viewed as another way of formalizing the principle of Rationality
of Assumption Making.

Theorem 4. For an AASP program Π = (Π
𝐷
, Π

𝑊
), let 𝐴 be an assumption set of Π

Π
𝑊

⊆ Π
(𝐴)

Theorem 5. For an AASP program Π = (Π
𝐷
, Π

𝑊
), let 𝑀 be an assumable answer set of Π

𝑀 ⊧AASP Π
𝑊

Theorem 5 tells that an assumable answer set of an AASP program always satisfies the assumption-
free rules in the program.

Theorem 6. AASP is constraint monotonic under the assumable answer set semantics.

Theorem 7. AASP is not constraint monotonic under the X⋆ assumable answer set semantics, where
𝑋 ∈ {𝑚𝑎𝑥,𝑚𝑖𝑛} and ⋆ ∈ {⊂, ♯}.

Theorem 7 can be demonstrated by the following example.

Example 4. Π2 is an AASP program containing one rule:

𝑝 ←∶ 𝑝

Π2 has only one max⊂ (also max♯) assumable answer set {𝑝} and only one min⊂ (also min♯) assumable
answer set ∅. Consider Π′

2
:

𝑝 ←∶ 𝑝

← 𝑝

Clearly, Π′

2
has only one max⊂ (max♯) assumable answer set ∅ that is not a max⊂ (or max♯) assumable

answer set of Π2. Consider Π′′

2
:

𝑝 ←∶ 𝑝

← 𝑛𝑜𝑡 𝑝

Obviously, Π′′

2
has only one min⊂ (or min♯) assumable answer set {𝑝} that is not a min⊂ (or min♯) as-

sumable answer set of Π2.

4. Relations

For exploring the power of AASP in commonsense reasoning, this section presents the relationship
between AASP and several well-known knowledge representation languages, including constrained
default logic [28], CR-Prolog [31], and abductive logic programming [25] [26]. First of all, we compare
AASP and ASP in representing assumptions.

4.1. Comparison of AASP and ASP in Representing Assumptions

It seems that the assumption rule On the assumption of 𝛼 , 𝛽 is believed if 𝛾 is believed can also be coded
into an ASP rule 𝛽 ← 𝛾, 𝑛𝑜𝑡 ¬𝛼 where 𝑛𝑜𝑡 ¬𝛼 is used to express 𝛼 is assumable or it is consistent to
assume 𝛼 . However, the following cases demonstrate the difference between ASP encodings and AASP
encodings of the assumptions.

Firstly, let us consider a case containing:

• An assumption: 𝑝 if it is consistent to assume 𝑝.

• A constraint: p is impossible.

Intuitively, the constraint is a denial of 𝑝 such that the assumption is blocked, thus the result is ∅. If
the case is modeled by an ASP program

𝑝 ← 𝑛𝑜𝑡 ¬𝑝

← 𝑝

there is no solution because the ASP program is unsatisfiable. If the case is represented by an AASP
program

𝑝 ←∶ 𝑝

← 𝑝

there is an assumable answer set ∅ as expected.
Now, let us consider another case with two assumptions:

• p if it is consistent to assume r, and

• q if it is consistent to assume ¬𝑟 .

If they are represented as an ASP program

𝑝 ← 𝑛𝑜𝑡 ¬𝑟

𝑞 ← 𝑛𝑜𝑡 𝑟

The result is its answer set {𝑝, 𝑞}. Meanwhile, if they are represented as an AASP program

𝑝 ←∶ 𝑟

𝑞 ←∶ ¬𝑟

There are three assumable answer sets {𝑝}, {𝑞}, and ∅. Among them, both {𝑝} and {𝑞} are 𝑚𝑎𝑥⊂

(and 𝑚𝑎𝑥♯) assumable answer sets, and ∅ is a 𝑚𝑖𝑛⊂ (and 𝑚𝑖𝑛♯) assumable answer set. Consider that
𝑟 and its contrary ¬𝑟 cannot appear in one world, the results given by the AASP program should be
more praised than that of the ASP program.

Another seeming ASP-based encoding of it is consistent to assume 𝛼 is 𝑛𝑜𝑡 𝑛𝑜𝑡 𝛼 . But, it is easy to
verify that the encoding of the second case in this way

𝑝 ← 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟

𝑞 ← 𝑛𝑜𝑡 𝑛𝑜𝑡 ¬𝑟

has only one answer set ∅.
The above two examples demonstrate that it is hard to represent assumptions using the regular

ASP language, and that AASP provides an easy approach to handling assumptions by extending ASP
with a new operator :.

4.2. Relation to Constrained Default Logic

Constrained default logic meets some properties that are in line with human intuition in common-
sense reasoning. The following theorem shows that AASP is closely related to the constrained default
logic.

Define a mapping 𝜙 from a disjunction-free and NAF-free program of AASP to default theories,
identifies an AASP rule 𝑟 :

𝑙0 ← 𝑙1, ..., 𝑙𝑘 ∶ 𝑙𝑘+1, ..., 𝑙𝑛 (1)

with the default 𝜙(𝑟):
𝑙1 ∧ ... ∧ 𝑙𝑘 ∶ M𝑙𝑘+1 ∧ ... ∧ 𝑙𝑛

𝑙0

(2)

Then we have

Theorem 8. For any disjunction-free and NAF-free AASP program Π, if (𝑆, 𝐴) is a max⊂ view of Π, then
(𝑇ℎ(𝑆), 𝑇ℎ(𝐴)) is a constrained extension of 𝜙(Π).

Example 5. Consider Π3:
𝑐 ←∶ 𝑏

𝑑 ←∶ ¬𝑏

has two max⊂ views: ({𝑐}, {𝑏, 𝑐}), and ({𝑑}, {𝑑, ¬𝑏}). {𝑐, 𝑑} is not an assumable answer set of Π3 be-
cause {𝑏, ¬𝑏, 𝑐, 𝑑} is not an assumption set of the program. Correspondingly, 𝜙(Π3) is a default theory
containing two defaults:

∶ M𝑏

𝑐

∶ M¬𝑏

𝑑

that has two extensions:
(𝑇ℎ(𝑐), 𝑇ℎ(𝑏, 𝑐))

and
(𝑇ℎ(𝑑), 𝑇ℎ(¬𝑏, 𝑑))

4.3. Relation to CR-Prolog

CR-Prolog is an ASP extension that greatly extends the expression ability of ASP language. The
following theorem provides an approach to converting a CR-Prolog program into an AASP program.

Define a mapping 𝜂 from a CR-prolog to AASP, identifies a CR-rule 𝑟 :

𝑙1 𝑜𝑟 ... 𝑜𝑟 𝑙𝑘

+

← 𝑙𝑘+1, ..., 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, ..., 𝑛𝑜𝑡 𝑙𝑛 (3)

with an AASP rule 𝜂(𝑟):

𝑙1 𝑜𝑟 ... 𝑜𝑟 𝑙𝑘 ← 𝑙𝑘+1, ..., 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, ..., 𝑛𝑜𝑡 𝑙𝑛 ∶ 𝑎𝑝𝑝𝑙𝑦𝑟 (4)

where 𝑎𝑝𝑝𝑙𝑦𝑟 is used to denote the fresh atom obtained from a CR-rule 𝑟 . Besides, 𝜂 identifies a regular
ASP rule in the CR-prolog program with itself.

Theorem 9. For any CR-Prolog program Ω

𝐴𝑆⋆(Ω) = min⋆ − 𝐴𝐴𝑆(𝜂(Ω))

where ⋆ ∈ {⊂, ♯}.

Example 6. Consider a simple CR-Prolog program Ω that contains only one CR-rule 𝑟 :

𝑎

+

←

It is easy to see Ω has only one answer set ∅. Then, an AASP program 𝜂(Ω) is

𝑎 ←∶ 𝑎𝑝𝑝𝑙𝑦𝑟

whose min♯ and min⊂ assumable answer set is also ∅.

4.4. Relation to Abductive ASP

Define a mapping 𝜃 , for an ALP93 program Γ =< 𝑃, >, 𝜃(Γ) is an AASP program:

𝑃 ∪ {𝑙 ←∶ 𝑙|𝑙 ∈ }

We have

Theorem 10. For the ALP93 program Γ =< 𝑃, >, 𝑆 is a min⊂ assumable answer set of 𝜃(Γ) if and only
if 𝑆 is a -minimal belief set of Γ.

Example 7. Consider an abductive logic program Γ1 =< 𝑃, > in [32]:

• 𝑃 : 𝑝 ← 𝑛𝑜𝑡 𝑎

• : 𝑎

The program has one -minimal belief set {𝑝}. 𝜃(Γ1) is an AASP

𝑝 ← 𝑛𝑜𝑡 𝑎

𝑎 ←∶ 𝑎

Both {𝑎} and {𝑝} are its assumable answer sets, only {𝑝} is its min⊂ assumable answer set as expected.

Theorem 11. For the ALP93 program Γ =< 𝑃, > and a positive observation 𝐺.

1. If 𝑆 is a min⊂ assumable answer set of the AASP program 𝜃(Γ) ∪ {← 𝑛𝑜𝑡 𝐺}, then 𝑆 ∩  is a
credulous explanation of 𝐺 with respect to Γ.

2. If 𝐸 is a credulous explanation of 𝐺 with respect to Γ, then there exists a min⊂ assumable answer
set 𝑆 of the AASP program 𝜃(Γ) ∪ {← 𝑛𝑜𝑡 𝐺} such that 𝐸 = 𝑆 ∩.

Example 8. Continue to consider Γ1 mentioned in Example 7, given a positive observation 𝐺 = 𝑝.
Clearly, ∅ is a credulous explanation of 𝑝 with respect to Γ1. Now, we have 𝜃(Γ1) ∪ {← 𝑛𝑜𝑡 𝐺}:

𝑝 ← 𝑛𝑜𝑡 𝑎

𝑎 ←∶ 𝑎

← 𝑛𝑜𝑡 𝑝

that has a min⊂ assumable answer set ∅ such that 𝐸 = ∅.

Define a mapping 𝜃
′, for the ALP95 program Γ =< 𝑃, >, 𝜃 ′(Γ) is an AASP program:

(𝑃 −) ∪ {ℎ𝑒𝑎𝑑(𝑟) ← 𝑏𝑜𝑑𝑦(𝑟), 𝑎𝑝𝑝𝑙𝑦𝑟 |𝑟 ∈ ( − 𝑃)}∪

{𝑎𝑝𝑝𝑙𝑦𝑟 ←∶ 𝑎𝑝𝑝𝑙𝑦𝑟 |𝑟 ∈ ( − 𝑃)}∪

{ℎ𝑒𝑎𝑑(𝑟) ← 𝑏𝑜𝑑𝑦(𝑟), 𝑛𝑜𝑡 𝑏𝑙𝑜𝑐𝑘𝑟 |𝑟 ∈ ( ∩ 𝑃)}∪

{𝑏𝑙𝑜𝑐𝑘𝑟 ←∶ 𝑏𝑙𝑜𝑐𝑘𝑟 |𝑟 ∈ ( ∩ 𝑃)}

where both 𝑎𝑝𝑝𝑙𝑦𝑟 and 𝑏𝑙𝑜𝑐𝑘𝑟 are used to denote the fresh atoms obtained from 𝑟 ∈ . We have

Theorem 12. For the ALP95 program Γ =< 𝑃, > and a positive observation 𝐺.

1. If 𝑆 is a min⊂ assumable answer set of the AASP program 𝜃
′
(Γ) ∪ {← 𝑛𝑜𝑡 𝐺}, then there exists a

minimal explanation of 𝐺 with respect to Γ is

({𝑟|𝑎𝑝𝑝𝑙𝑦𝑟 ∈ 𝑆}, {𝑟 |𝑏𝑙𝑜𝑐𝑘𝑟 ∈ 𝑆})

2. If (𝐸, 𝐹) is a minimal explanation of 𝐺 with respect to Γ, then there exists a min⊂ assumable answer
set 𝑆 of the AASP program 𝜃

′
(Γ) ∪ {← 𝑛𝑜𝑡 𝐺} such that

𝐸 = {𝑟|𝑎𝑝𝑝𝑙𝑦𝑟 ∈ 𝑆}

𝐹 = {𝑟|𝑏𝑙𝑜𝑐𝑘𝑟 ∈ 𝑆}

Example 9. Consider an abductive logic program Γ2 =< 𝑃, > and a positive observation 𝐺:

• 𝑃 :
𝑓 𝑙𝑦 ← 𝑏𝑖𝑟𝑑

𝑏𝑖𝑟𝑑 ← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛

𝑝𝑒𝑛𝑢𝑖𝑛 ←

• :
(1). 𝑓 𝑙𝑦 ← 𝑏𝑖𝑟𝑑

(2). ¬𝑓 𝑙𝑦 ← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛

• 𝐺: ¬𝑓 𝑙𝑦

Thus, 𝜃 ′(Γ2) is:
𝑏𝑖𝑟𝑑 ← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛

𝑝𝑒𝑛𝑢𝑖𝑛 ←

𝑓 𝑙𝑦 ← 𝑏𝑖𝑟𝑑, 𝑛𝑜𝑡 𝑏𝑙𝑜𝑐𝑘1

¬𝑓 𝑙𝑦 ← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛, 𝑎𝑝𝑝𝑙𝑦2

𝑏𝑙𝑜𝑐𝑘1 ←∶ 𝑏𝑙𝑜𝑐𝑘1

𝑎𝑝𝑝𝑙𝑦2 ←∶ 𝑎𝑝𝑝𝑙𝑦2

Then, 𝜃 ′(Γ2) ∪ {← 𝑛𝑜𝑡 ¬𝑓 𝑙𝑦} has a min⊂ assumable answer set

{𝑎𝑝𝑝𝑙𝑦2, 𝑏𝑙𝑜𝑐𝑘1, ¬𝑓 𝑙𝑦, 𝑝𝑒𝑛𝑔𝑢𝑖𝑛, 𝑏𝑖𝑟𝑑}

by which
𝐸 = {¬𝑓 𝑙𝑦 ← 𝑝𝑒𝑛𝑔𝑢𝑖𝑛}

𝐹 = {𝑓 𝑙𝑦 ← 𝑏𝑖𝑟𝑑}

such that (𝐸, 𝐹) is a minimal explanation of ¬𝑓 𝑙𝑦 with respect to Γ2.

Theorem 13. For the ALP95 program Γ =< 𝑃, > and a positive observation 𝐺.

1. If 𝑆 is a min⊂ assumable answer set of 𝜃 ′(Γ)∪{← 𝐺}, then there exists a minimal anti-explanation
of 𝐺 with respect to Γ is

({𝑟|𝑎𝑝𝑝𝑙𝑦𝑟 ∈ 𝑆}, {𝑟 |𝑏𝑙𝑜𝑐𝑘𝑟 ∈ 𝑆})

2. If (𝐸, 𝐹) is a minimal anti-explanation of 𝐺 with respect to Γ, then there exists a min⊂ assumable
answer set 𝑆 of 𝜃 ′(Γ) ∪ {← 𝐺} such that

𝐸 = {𝑟|𝑎𝑝𝑝𝑙𝑦𝑟 ∈ 𝑆}, 𝐹 = {𝑟|𝑏𝑙𝑜𝑐𝑘𝑟 ∈ 𝑆}

Example 10. Continue to consider the abductive logic program Γ2 used in the Example 9. By the The-
orem 13, the anti-explanation of 𝑓 𝑙𝑦 with respect to Γ2 is the min⊂ assumable answer set of the AASP
program

𝜃
′
(Γ2) ∪ {← 𝑓 𝑙𝑦}

Obviously, a min⊂ assumable answer set of the program is {𝑝𝑒𝑛𝑔𝑢𝑖𝑛, 𝑏𝑖𝑟𝑑} that tells neither (1) nor (2)
is used, and the corresponding minimal anti-explanation (𝐸, 𝐹) of 𝑓 𝑙𝑦 is

𝐸 = ∅ 𝐹 = {𝑓 𝑙𝑦 ← 𝑏𝑖𝑟𝑑}

.

5. Conclusion

This paper introduce AASP that extends ASP with an operator : to express the notion of assump-
tion in logic programming. AASP can be viewed as a tool to design the intelligent agent capable of
assumption-based reasoning that is a framework of many intelligent behaviors in the case of incom-
plete information. AASP provides a rational approach to assumption-based reasoning by using the
answer set-based reasoning in both assumption making and belief building, which makes the exit-
ing ASP solvers can be used to facilitate the implementment of the AASP solver: ASP solvers can be
directly used to generate assumption sets and then the assumable answer set of an AASP program.
Several strategies of assumption making are given in the definition of the semantics of AASP. Those
strategies depicts the attitude of agents to assumptions. The preliminary exploration results on the
relationship between AASP and other existing knowledge representations show that AASP provides
a more general way to model the problems with defaults, exceptions, and to solve the explanation
problems. Especially, the close relationship between AASP and constrained default logic implies that
AASP is able to address several limitations of the original ASP in representing defaults 1.

Future work includes more properties of the AASP languages, implementation, and applications.
The first next step is to investigate the properties of the assumption set of the AASP programs, and the
algorithm and its complexity in solving AASP programs. Besides, it is still needed to explore the rela-
tion of AASP to ASP and its extensions, and the relation of AASP to other knowledge representation
languages more deeply.

Acknowledgments

We are grateful to the anonymous referees for their useful comments on the earlier version of this
paper. The work was supported by the Pre-research Key Laboratory Fund for Equipment (Grant No.
6142101190304).

1The limitations of Reiter’s default logic are extensively studied in [28]. Because of the close relationship between ASP
and Reiter’s default logic shown in [33] and [22], ASP cannot meet some properties, such as the property of joint consistency
of the justifications of applying default rules

References

[1] M. Jago, Modelling assumption-based reasoning using contexts, in: Proceedings of workshop
on Context Representation and Reasoning (CRR’05), 2005.

[2] J. de Kleer, An assumption-based tms, Artificial Intelligence 28 (1986) 127–162.
[3] J. de Kleer, Extending the atms, Artificial Intelligence 28 (1986) 163–196.
[4] R. Reiter, J. de Kleer, Foundations of assumption-based truth maintenance systems: Preliminary

report, in: Proceedings of AAAI-87, 1987.
[5] J. de Kleer, A general labeling algorithm for assumption-based truth maintenance, in: Proceed-

ings of AAAI-88, 1988, pp. 188–192.
[6] J. Kohlas, P.-A. Monney, Probabilistic assumption-based reasoning, in: Uncertainty in Artificial

Intelligence, 1993, pp. 485–491.
[7] B. Anrig, R. Haenni, J. Kohlas, N. Lehmann, Assumption-based modeling using abel, in: Pro-

ceedings of ECSQARU-FAPR, 1997, pp. 171–182.
[8] D. L. Poole, A logical framework for default reasoning, Artif. Intell. 36 (1988) 27–47.
[9] D. L. Poole, Who chooses the assumptions, in: Abductive Reasoning, MIT Press, 1997.

[10] P. T. Cox, T. Pietrzykowski, Causes for events: their computation and applications, in: Interna-
tional Conference on Automated Deduction, Springer, 1986, pp. 608–621.

[11] H. Reichgelt, N. Shadbolt, Planning as theory extension, in: Proceedings of AISB-89, 1989, pp.
191–199.

[12] H. Reichgelt, N. Shadbolt, A specification tool for planning systems, in: ECAI-1990, 1990, pp.
541–546.

[13] A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for non-monotonic
reasoning, in: LPNMR-93, 1993, pp. 171–189.

[14] R. A. Kowalski, F. Sadri, Reconciling the event calculus with the situation calculus, J. Log.
Program. 31 (1997) 39–58.

[15] D. Pellier, H. Fiorino, Multi-agent assumption-based planning, in: IJCAI-05, 2005, pp. 1717–1718.
[16] G. K. Giannikis, A. Daskalopulu, Defeasible reasoning with e-contracts, in: 2006 IEEE/WIC/ACM

International Conference on Intelligent Agent Technology, 2006, pp. 690–694.
[17] D. Stamate, Assumption based multi-valued semantics for extended logic programs, in: 36th

International Symposium on Multiple-Valued Logic (ISMVL’06), 2006, pp. 10–10.
[18] M. Kaminski, A comparative study of open default theories, Artif. Intell. 77 (1995) 285–319.
[19] G. K. Giannikis, A. Daskalopulu, The representation of e-contracts as default theories, in: In-

ternational Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, Springer, 2007, pp. 963–973.

[20] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: ICLP/SLP, 1988.
[21] C. Baral, Knowledge representation, reasoning and declarative problem solving, 2003.
[22] M. Gelfond, Y. Kahl, Knowledge representation, reasoning, and the design of intelligent agents:

The answer-set programming approach, Cambridge University Press, 2014.
[23] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37 (2016)

53–68.
[24] M. Balduccini, M. Gelfond, Logic programs with consistency-restoring rules, in: AAAI Technical

Report SS-03-05, 2003.
[25] K. Inoue, C. Sakama, Transforming abductive logic programs to disjunctive programs, in: ICLP-

93, 1993, p. 335.
[26] K. Inoue, C. Sakama, Abductive framework for nonmonotonic theory change., in: IJCAI, vol-

ume 95, Citeseer, 1995, pp. 204–210.

[27] R. Reiter, A logic for default reasoning, Artif. Intell. 13 (1980) 81–132.
[28] T. Schaub, On constrained default theories, in: ECAI, 1992, pp. 304–308.
[29] W. Faber, G. Pfeifer, N. Leone, T. Dell’armi, G. Ielpa, Design and implementation of aggregate

functions in the dlv system, Theory Pract. Log. Program. 8 (2008) 545–580.
[30] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to practice,

Artif. Intell. 187-188 (2012) 52–89.
[31] M. Balduccini, Cr-models: An inference engine for cr-prolog, in: International Conference on

Logic Programming and Nonmonotonic Reasoning, Springer, 2007, pp. 18–30.
[32] C. Sakama, K. Inoue, Abductive logic programming and disjunctive logic programming: their

relationship and transferability, J. Log. Program. 44 (2000) 75–100.
[33] V. Lifschitz, Answer set programming and plan generation, Artif. Intell. 138 (2002) 39–54.

	1 Introduction
	2 Preliminaries
	2.1 Answer Set Program
	2.1.1 CR-Prolog
	2.1.2 Abductive ASP

	2.2 Constrained Default Logic

	3 Assumable Answer Set Program
	3.1 Syntax
	3.2 Semantics
	3.2.1 Satisfiability
	3.2.2 Assumable Answer Set

	3.3 Properties

	4 Relations
	4.1 Comparison of AASP and ASP in Representing Assumptions
	4.2 Relation to Constrained Default Logic
	4.3 Relation to CR-Prolog
	4.4 Relation to Abductive ASP

	5 Conclusion

